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For most pathogens, testing procedures can be used to distinguish be-
tween different strains with which individuals are infected. Due to the grow-
ing availability of such data, multistrain models have increased in popular-
ity over the past few years. Quantifying the interactions between different
strains of a pathogen is crucial in order to obtain a more complete under-
standing of the transmission process, but statistical methods for this type of
problem are still in the early stages of development. Motivated by this de-
mand, we construct a stochastic epidemic model that incorporates additional
strain information and propose a statistical algorithm for efficient inference.
The model improves upon existing methods in the sense that it allows for both
imperfect diagnostic test sensitivities and strain misclassification. Extensive
simulation studies were conducted in order to assess the performance of our
method, while the utility of the developed methodology is demonstrated on
data obtained from a longitudinal study of Escherichia coli O157:H7 strains
in feedlot cattle.

1. Introduction. Over the past decades, mathematical models have been established as
an important tool for understanding the transmission dynamics of infectious diseases. Statis-
tical inference in transmission dynamic models is not trivial and requires specialised method-
ology. A key facet of the problem is that the actual process of infection is in most cases
only partially observed, in the sense that the times of acquiring and clearing infection are not
directly observed. This is because individuals are often tested at sparse time points and the
diagnostic tests that are used to detect the disease are typically imperfect. A further compli-
cation is the existence of dependencies in the data that arises because of the contacts made
between individuals. For all of these reasons, it is often difficult to analytically evaluate the
likelihood function on which inferences are based, since its calculation involves integrating
out all unobserved quantities.

When the full data are available, that is, the times of infection and recovery are known,
one can use standard techniques to obtain estimates of the parameters of interest, for ex-
ample, by maximum likelihood methods (Becker (1989)). However, since data are typically
incomplete, most of the literature deals with methods that tackle the problem of inference in
partially observed epidemics. Many exact and approximate approaches have been developed;
for an extended review, see, for example, Becker (1989), Daley and Gani (1999), O’Neill
(2002) and Diekmann, Heesterbeek and Britton (2013), among others. Initial approaches use
martingale theory to obtain method of moments estimates for the model parameters (Becker
(1989), Becker and Hasofer (1997), Rida (1991)), but it is hard to extend these methods to
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the complex models that are used in practice. Instead, it is more common to employ data
augmentation methods, in which the missing data are treated as additional model parame-
ters. For example, Becker (1997) and Becker and Britton (1999) tackle the problem with an
Expectation–Maximisation (EM) algorithm. An alternative approach is the use of Markov
chain Monte Carlo (MCMC) methods under the Bayesian paradigm which are currently pop-
ular techniques for analysing data on partially observed infectious diseases.

The first data augmentation MCMC algorithms were developed by Gibson and Renshaw
(1998) and O’Neill and Roberts (1999) for statistical analysis of the continuous time SEIR
and SIR models, respectively. After that, several works adapting MCMC techniques with
data imputation appeared in the literature, including Auranen et al. (2000), O’Neill (2002),
Morton and Finkenstädt (2005), Jewell et al. (2009), Kypraios et al. (2010), Erästö, Hoti and
Auranen (2012), Spencer et al. (2015) and numerous other papers. O’Neill and Becker (2001)
and Streftaris and Gibson (2004) were among the first to apply MCMC in models with a non-
Markovian infection period. Smith and Vounatsou (2003) demonstrate the use of discrete
time hidden Markov models for modelling longitudinal epidemiological data. The framework
extends to partially observed continuous time epidemic models; see, for example, Fearnhead
and Meligkotsidou (2004). Some of the literature focuses on coupled hidden Markov models
for modelling partially observed longitudinal household data which can effectively account
for interactions between individuals and are used in the present work (e.g., Dong, Pentland
and Heller (2012), Touloupou, Finkenstädt and Spencer (2020)).

Another class of techniques that have growing popularity in several scientific fields, along
with epidemiology, are the so-called simulation-based methods. These include Approximate
Bayesian Computation (ABC; Kypraios, Neal and Prangle (2017), McKinley, Cook and Dear-
don (2009), Neal (2012)), iterated filtering for maximum likelihood estimation in partially
observed epidemic models (Ionides, Bretó and King (2006), Ionides et al. (2015)), Sequen-
tial Monte Carlo ABC (Toni et al. (2009)) and pseudo-marginal methods (McKinley et al.
(2014)). Clancy and O’Neill (2007) demonstrated the usefulness of rejection sampling as an
alternative to MCMC. Lastly, there are examples of studies exploring the use of nonparamet-
ric methods for inference in epidemic models (Kypraios and O’Neill (2018), Xu, Kypraios
and O’Neill (2016)).

Our work is concerned with epidemic data containing information regarding the strain of
a pathogen with which individuals are colonised. When multiple strains of a pathogen are
coexisting then the number of infectious states an individual can exhibit is greatly increased
and existing inference approaches become prohibitive. Here, we utilise recent advances in
computationally scalable data augmentation (Touloupou, Finkenstädt and Spencer (2020)) to
impute the missing strain data and hence to perform inference for a pathogen with multiple
strains.

In this study a strain is defined as “a genetically distinct and identifiable subpopulation
of a parasite or pathogen which has distinct epidemiological, immunological or pathologi-
cal characteristics” (Lord et al. (1999)). As such we are interested in modelling relatively
low resolution genotype data, such as pulsed field gel electrophoresis (PFGE), multilocus
sequence typing data or high resolution data (e.g., whole genome sequencing data) on which
some genetic clustering has been performed. We consider each strain as a distinct pathogen
population circulating within a population of hosts and ignore the effects of evolutionary
processes acting during the study. In such cases it is reasonable to examine whether there is
appreciable heterogeneity between the different strains in, for example, their transmissibility
or the duration for which each strain remains within the host. Additionally, we would like
to address the question of between-strain competition, that is if carriage of a certain strain
reduces the possibility of being colonised by a different strain. Such knowledge can further
our understanding of the epidemiology of an infectious disease.
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Parameter estimation in a multistrain pathogen context may be challenging due to iden-
tifiability issues which occur due to the many strain-specific parameters that need to be es-
timated. A pragmatic solution can be to group multiple strains into a single class in order
to simplify the model. Some examples include Cauchemez et al. (2006) who group strains
according to whether they are included in the vaccine formulation or not, Erästö, Hoti and
Auranen (2012) who classify strains according to their frequency in the data and Melegaro
et al. (2007) who use a separate model for each strain. More recently, Worby et al. (2016) use
genome sequence information to classify the isolates into genetically similar groups. In all of
these approaches, the problem of missing data is dealt with either by extending the Bayesian
data augmentation framework proposed by Gibson and Renshaw (1998) and O’Neill and
Roberts (1999) (Cauchemez et al. (2006), Erästö, Hoti and Auranen (2012), Worby et al.
(2016)) or by adopting a maximum profile likelihood approach (Melegaro et al. (2007)). An
additional complication arises from the fact that strain information often relies on diagnostic
tests which suffer from low sensitivity. As a result, carriage incidents may remain undetected
or be recorded as the wrong strain. Most of the above methods assume that test results are ob-
served without error and hence do not allow the possibility of false positive or false negative
outcomes. The exception is Worby et al. (2016) who estimate a common test sensitivity for
all groups. However, their model does not allow for competition between strains and is there-
fore unable to separate strain misclassification from strain replacement. Our model addresses
some of the limitations of the existing approaches by simultaneously allowing for imperfect
test sensitivities and strain misclassification.

The paper is structured as follows. We start by describing our motivating dataset obtained
from a longitudinal study of Escherichia coli O157:H7 in cattle. E. coli O157:H7 is a human
pathogen that causes severe disease symptoms in people but does not cause disease in its
cattle reservoir host. The novel dataset is presented in Section 2.1, in which the diagnostic
tests not only show whether an individual carries the disease but also provide additional
information regarding the genotypes in which the bacterium appears. The transmission and
observation models are formulated in Sections 2.2 and 2.3, respectively. In Section 2.4 we
describe the algorithm which is used for posterior inference. Performance of our method is
assessed on simulated data under different scenarios in Section 3.1. In Section 3.2 we apply
the proposed methodology to the dataset described in Section 2.1 in order to further our
understanding regarding the dynamics of various genotypes of E. coli O157:H7 in cattle, as
well as to investigate between-genotype competition. Finally, in Section 4 we conclude with
a discussion.

2. Material and methods.

2.1. Colonisation and pathogen genetic data. A longitudinal study of natural rectoanal
junction colonisation and faecal excretion of E. coli O157:H7 was conducted in feedlot cattle.
In this study 160 cattle were randomly assigned to 20 pens of eight animals each. The pens
were separated by an empty pen, ensuring that no direct contact was possible between animals
of different pens. In addition, each pen had an individual water supply and a separate feed
bunk. The animals were housed in north and south pens measuring 6 m × 17 m and 6 m×
37 m, respectively.

Animals were sampled approximately twice per week over a 14-week period. In brief, at
each sampling date two samples were collected from each animal: a rectoanal mucosal swab
(RAMS) sample and a sample of freshly passed manure. In the original study the samples
were cultured in selective media and a polymerase chain reaction (PCR) test was used to
identify whether or not the samples contained E. coli O157:H7. The cultures were then frozen
for future use. This dataset was originally described by Cobbold et al. (2007) and modelled by
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FIG. 1. Frequencies of genotypes identified in E. coli O157:H7 data, ordered by their appearance in the PFGE
dendogram. Strains 1,2, . . . ,7 are defined for the seven most common genotypes recovered in this dataset, types
D, J, X, b, d, f and l, respectively, and the remaining genotypes are treated as a single strain, referred as type 8.

Spencer et al. (2015) who used a susceptible-infected-susceptible (SIS) transmission model
for the spread of infection in a pen, in which each individual is assumed to belong to one of
two states—either susceptible or colonized (infected).

The cultures were subsequently unfrozen and PFGE was used to identify the genotypes
within a subset of the E. coli O157:H7 cultures. In this paper we introduce the additional
genotyping data that has not previously been published or analysed. More specifically, a sub-
set of 12 PCR positive samples (either RAMS or faecal) were randomly selected from each
pen for genotyping using PFGE, as described by Tenover et al. (1997). For five pens, fewer
genotyped samples were available, either because fewer than 12 positive samples were ob-
tained or genotyping was unsuccessful. Overall, there were a total of 223 genotyped samples
among the 756 positive samples, a proportion of almost 30%.

A total of 48 different genotypes were identified in the study population to which we as-
sign arbitrary labels according to the order in which they appeared in the PFGE dendrogram.
Seven genotypes were observed in at least 10 RAMS and/or faecal samples, whilst the re-
maining 41 genotypes were detected in at most five isolates with 24 appearing only once.
Figure 1 illustrates the frequencies of genotypes, ranked according to the order in which they
appeared in the dendrogram. In addition, Table 1 summarises the frequencies of the seven
most common E. coli O157:H7 PFGE genotypes (D, J, X, b, d, f and l) in the data by pen
groups, that is, north and south.

Among the 160 cattle examined in the study, 106 (66.25%) gave at least one genotyped
sample. For these, the median number of genotyped samples was two (min-max: 1–9). Fig-
ure 2 presents data collected in a subset of four pens. These data allow us to comment on
the microepidemics of a genotype within a pen. For example, at the beginning of the study
genotype X was detected in the samples collected from individual 5 in pen number 8, and
then a microepidemic was observed with at least five individuals carrying genotype X during
the following period. Note that several individuals were never selected for genotyping (e.g.,
animal 7, pen 8).

Moreover, of the 223 genotyped samples, 22 pairs of positive samples were chosen to be
genotyped, where a pair is defined as RAMS and faecal isolates from the same individual on
the same sampling date. Of these, there were 19 occasions in which an animal was observed
to carry the same genotype by RAMS and faecal isolates, and the remaining four were pairs
of different genotypes (e.g., animal 5, pen 6 at day 88); this could be attributed to misclassi-
fication errors of the genotyping procedure, or it could be evidence of coinfection.
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TABLE 1
Distribution of E. coli O157:H7 observed genotypes during follow-up of 160 cattle among 12 north and eight

south pens

Observed positive samples

South North Total

Genotypes No. % No. % No. %

D (1) 10 3.6 22 4.6 32 4.2
J (2) 2 0.7 14 2.9 16 2.1
X (3) 2 0.7 28 5.8 30 4.0
b (4) 3 1.1 7 1.5 10 1.3
d (5) 15 5.5 17 3.5 32 4.2
f (6) 3 1.1 7 1.5 10 1.3
l (7) 19 6.9 0 0.0 19 2.5
Other genotypes (8) 32 11.6 42 8.7 74 9.8
Non-typed† 189 68.7 344 71.5 533 70.5

Total 275 100 481 100 756 100

†Positive samples that were not chosen to be genotyped.

2.2. Transmission model. The unobserved (hidden) colonisation process within each pen
is modelled as a multistate discrete time Markov model. This model is an extension of the
standard individual-based SIS model (Anderson and May (1991)) but also incorporates strain-
specific information. More precisely, we define a discrete time Markov transition model with
ng + 1 states, in which individuals belong to a state according to their carriage status. The
possible states include being a noncarrier (state 0) or being a carrier of one of the ng strains
(states 1,2, . . . , ng). The model assumes that an individual can carry at most one strain at a
time: when individuals acquire a new strain, then it replaces the existing strain. We do not
model coinfection, which can be justified by the fact that there were only four occasions
in the data set in which an individual was observed to carry different genotypes on RAMS
and faecal positive samples taken on the same sampling day. These contradictory pairs can
be handled by allowing for the possibility of genotype misspecification, as described in the
subsequent Section 2.3.

The transition probabilities are defined in equation (2.3) based on the following functions,
which we call “transition rates” because of their similarity to the transition rates in the analo-
gous continuous time Markov process. The transition rate between any two carriage states in
this Markov model, r, s ∈ {0,1, . . . , ng}, for each individual in pen p at day t , is defined for
three cases:

(2.1) hp
r,s(t) =

⎧⎪⎪⎨
⎪⎪⎩

λp
s (t), r = 0, s �= 0; colonisation,

δλp
s (t), r, s > 0 and r �= s; change of genotype,

μr, r �= 0, s = 0; clearance,

where the first case defines the colonisation rate at which a noncarrier acquires a particu-
lar genotype s (0 �→ s) at day t , for which the rate depends on the genotype, the day and
the individual’s pen. The second case corresponds to the rate of transition from carriage of
genotype r to carriage of genotype s (r �→ s), where r �= s. Between-genotype competition
in colonising the host is included in the model by using an additional parameter δ > 0 to
scale the rate of colonisation in an individual already carrying another genotype. This pa-
rameter is assumed to be the same for all genotype pairs. Finally, once colonised, individuals
can recover from carriage of genotype r (r �→ 0) according to a genotype-dependent clear-
ance rate μr that is constant over time and across different pens. A simplified version of this
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FIG. 2. RAMS and faecal samples for each individual (top red and bottom blue, respectively) collected in pens
1, 2, 6 and 8 participating in the study. “–” indicates negative sample; “+” indicates that the sample was positive
but not chosen for genotyping; otherwise, the genotype name is given.

model is presented in Figure 3 with only three genotypes. Since individuals were assigned to
pens at random, we assume that at the beginning of the study each individual is colonised by
genotype s independently with a genotype-dependent probability νs .

In addition, the model assumes that the rate at which a noncarrier individual acquires a
genotype is pen-, type- and time-dependent, varying as a function of the number of other pen
members carrying this particular genotype. To be more specific, for a noncarrying individual
in pen p, where p ∈ N (north group) or p ∈ S (south group), the rate of colonisation of
genotype s, at any given time t , is defined as the sum of two components as follows:

λp
s (t) = αs + (1{p∈S} + γ1{p∈N })βsI

p
s (t − 1),(2.2)

where I
p
s (t) denotes the number of carriers of genotype s in pen p at time t and 1 denotes

the indicator function. The genotype-specific terms βs and αs represent the rates of coloni-
sation from contacts with other members of the pen (within-pen colonisation rate) and from
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FIG. 3. The model graph for an individual that belongs to pen p in which, for simplicity, three genotypes
are considered, denoted as 1, 2 and 3, respectively, and four carriage states. Transitions between the states are
governed by rates of acquisition and clearance, as marked at each arrow. The acquisition rates depend on the
number of individuals within the pen carrying that particular genotype, and, for individuals already carrying an-
other genotype, the rates are adjusted by a competition parameter δ. Moreover, the rates of within-pen acquisition
for individuals that belong to a smaller north pen are scaled by a factor γ .

sources outside of the pen (external colonisation rate), respectively. To account for differ-
ences between north (smaller) and south (larger) pens the within-north pen colonisation rates
are multiplied with γ , where γ is the relative acquisition rate in smaller vs. bigger pens, as
shown in equation (2.2). This can be justified by differences in pen sizes (6 m × 17 m com-
pared with 6 m × 37 m) and by previous finding in Spencer et al. (2015) and Touloupou
(2016) that animals in smaller pens are at greater risk of within-pen infection.

The proportion of positive samples in the study population was less than 10%, with only
a few events per genotype (Figure 1). Consequently, analysing these data using a multistate
model where the possible states include being a carrier of one of the 48 different genotypes,
presents a considerable challenge; the large number of genotype-specific parameters lead
to problems in identifiability. Like most of the previous epidemic analyses, we solve this
problem by dividing the genotypes into groups as follows. States of carriage are defined for
the seven genotypes most commonly recovered in this study, types D = 1, J = 2, X = 3, b =
4, d = 5, f = 6 and l = 7. The remaining genotypes are treated as a single group, referred as
the “Pooled” group and assumed to be of the same type 8. This unrealistic assumption affects
a small proportion (9.8%) of the genotyped samples. For the most common genotypes we
assume their own individual rates of acquisition and clearance, and the pooled group has its
own rate parameters. The colonisation process parameters are described in Table 2.

Formulating the model with a pooled group substantially reduces the number of different
carriage states to nine, with ng = 8. To this end, we denote the carriage state of individual

c ∈ {1,2, . . . ,C} in pen p ∈ {1,2, . . . ,P } on day t ∈ T c,p , by X
[c,p]
t ∈ Xg = {0,1, . . . , ng},

where X
[c,p]
t = 0 refers to the noncarriage state, state X

[c,p]
t = ng to carriage of the pooled

group and state X
[c,p]
t = s, for 0 < s < ng , to carriage of one of the common genotypes.

The observation (sampling) period for each individual is defined as the period from the first
sample to the last one, denoted by T c,p ⊆ {1,2, . . . , T }, where the first sample is taken at
t = 1 and the last at t = T .

According to the assumptions and notation above, the model is defined as a discrete-time
Markov process with time interval equal to one day (the greatest common divisor of the
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TABLE 2
Symbols and interpretations of the colonisation process parameters, where s = 1,2, . . . ,8 denotes the genotype

Parameter Interpretation

αs External colonisation rate for genotype s (days−1).
βs Within-pen colonisation rate for genotype s (days−1).
μs Clearance rate for genotype s (days−1).
νs Initial probability of carriage with genotype s.
δ Relative colonisation rate in a carrier versus noncarrier individual.
γ Relative colonisation rate in smaller versus bigger pens.

times between sampling events), in which the current status of each individual depends on the
previous status of all the individuals within the pen. The probabilities of transition between
states, for any individual c in pen p at time t , can be arranged in a (ng + 1) × (ng + 1)

matrix Mp(t) (time- and pen-dependent) with elements m
p
r,s(t), for r, s = 0,1,2, . . . , ng and

t ∈ T c,p \ {1}. For convenience we start indexing the rows and columns of Mp(t) from 0.
The off-diagonal elements of Mp(t) are specified below,

mp
r,s(t) = P

(
X

[c,p]
t = s|X[c,p]

t−1 = r,X[−c,p]
t−1

)
(2.3)

=
(

1 − exp

(
−

ng∑
j=0
j �=r

h
p
r,j (t)

))

︸ ︷︷ ︸
Probability that an

event occurs

× h
p
r,s(t)∑ng

j=0
j �=r

h
p
r,j (t)︸ ︷︷ ︸

Probability that
event r �→ s occurs,

given an event occurs

,

for r �= s, where X[−c,p]
t−1 is the vector of the hidden states of the remaining individuals within

pen p at time t − 1. Diagonal elements in Mp(t) contain the m
p
r,r (t), which are defined

as m
p
r,r (t) = 1 − ∑ng

j=0
j �=r

m
p
r,j (t), so that the sum of all elements in each row equals one.

Thus, using this parametrization the transition probability in the case where r = s is given by
m

p
r,r (t) = exp(−∑ng

j=0
j �=r

h
p
r,j (t)) which is equal to the probability of there being no events in a

Poisson process with rate
∑ng

j=0
j �=r

h
p
r,j (t).

2.3. Observation model. In our study the diagnostic tests used to detect E. coli O157:H7
in cattle are imperfect; the sensitivities of these techniques may be as low as 50%, and thus
some colonised individuals remain undetected (see, e.g., Spencer et al. (2015)). In addition,
the PFGE clustering of the data used for genotyping the samples was assumed to have less
than perfect accuracy, meaning that the carriage states may have not been recorded with their
true genotype. Therefore, the classification at an observation time can sometimes be subject to
error. Our approach to tackle the problem involves assuming that the observed classifications
are imperfect measures of an underlying hidden colonisation process.

The observed data for an individual c in pen p are collected in prescheduled observation
times, which we denote by Oc,p = {Oc,p

g ∪ O
c,p
± } ⊆ T c,p , where O

c,p
g is defined as the set

of genotyped observation times and O
c,p
± = Oc,p \ O

c,p
g are the times where no genotyping

was done. Moreover, let Uc,p = T c,p \ Oc,p denote the times that the individual was not
tested. Let R

[c,p]
t and F

[c,p]
t denote the outcome of the RAMS and faecal test, respectively,

recorded at time t ∈ Oc,p . When t ∈ O
c,p
± , a test result is classified as negative, denoted by
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0, or positive, denoted by +. When a positive test is genotyped at t ∈ O
c,p
g , then we can

further characterise the test as s-genotype positive (when a type s is detected), denoted by
s ∈ {1,2, . . . , ng}.

We assume that the RAMS and faecal tests are independent conditional on the carriage
status of the individual. Moreover, the observed states R

[c,p]
t and F

[c,p]
t are generated condi-

tional on the carriage state X
[c,p]
t according to a misspecification matrix ER and EF , respec-

tively, with elements eR
r,s = P(R

[c,p]
t = s|X[c,p]

t = r) and eF
r,s = P(F

[c,p]
t = s|X[c,p]

t = r).
We distinguish two cases: tests not chosen to be genotyped and tests that were genotyped.

For the case where a positive RAMS sample was not chosen to be genotyped, we assume
that both the RAMS and the faecal tests have 100% specificity (i.e., it is not possible to test
positive when the true carriage status is noncarrier) and so the observation matrix ER± =
{eR±

r,s }r∈{0,1,...,ng};s∈{0,+} is given by

hidden
true state

0

1

...

ng

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

observed state
0 +
1 0

1 − θR θR

...
...

1 − θR θR

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.4)

and, similarly, for the faecal test with θR replaced with θF . Here, the test sensitivities
are denoted by θR = P(R

[c,p]
t = +|X[c,p]

t = r) and θF = P(F
[c,p]
t = +|X[c,p]

t = r), for
r = 1,2, . . . , ng .

For a positive sample that was genotyped, we introduce additional parameters θC , θS and
θP to allow for the possibility of genotype misspecification. The parameters have the follow-
ing interpretations. Given that a test is found positive, θC denotes the probability of correctly
identifying a common genotype {1,2, . . . , ng − 1}, θS is the probability of misclassifying a
common genotype with a different common genotype and θP the probability that a genotype
of pooled type ng is classified as a common genotype. We assume that these probabilities are
the same for both the RAMS and faecal tests. More specifically, the matrix of classification
probabilities for the RAMS test, ERg , is a (ng + 1) × (ng + 1) matrix of the form

hidden
true
state

0

1

2

...

ng − 2

ng − 1

ng (Pooled )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

observed state
0 1 2 3 · · · ng − 1 ng (Pooled)

1 0 0 0 · · · 0 0

1 − θR θC θR

θS θR

ng − 2

θS θR

ng − 2
· · · θS θR

ng − 2
(1 − θC − θS) θR

1 − θR

θS θR

ng − 2
θC θR

θS θR

ng − 2
· · · θS θR

ng − 2
(1 − θC − θS) θR

...
. . .

...

1 − θR

θS θR

ng − 2
· · · θS θR

ng − 2
θC θR

θS θR

ng − 2
(1 − θC − θS) θR

1 − θR

θS θR

ng − 2
· · · θS θR

ng − 2

θS θR

ng − 2
θC θR (1 − θC − θS) θR

1 − θR

θP θR

ng − 1
· · · θP θR

ng − 1

θP θR

ng − 1

θP θR

ng − 1
(1 − θP ) θR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5)
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such that, for all r �= 0, the probabilities e
Rg

r,0 = P(R
[c,p]
t = 0|X[c,p]

t = r) = 1 − θR and∑ng

s=1 e
Rg
r,s = θR . The misclassification matrix for the faecal test is defined similarly replacing

θR with θF in matrix (2.5).

2.4. Model fitting. The approach adopted in this paper uses Bayesian data augmenta-
tion methods, in which the unobserved carriage states are treated as additional parameters
and are imputed from the data. This is facilitated by the use of MCMC algorithms. Let
X[1:C,p]

t be the vector of the hidden carriage states for individuals 1,2, . . . ,C in pen p at
time t and X = {X[1:C,p]

t }p∈{1,2,...,P };t∈T c,p be the whole hidden state process (i.e., over all
individuals in all pens and for all time points). Similarly, the observed longitudinal data
comprises RAMS and faecal test results, denoted by R = {R[1:C,p]

t }p∈{1,2,...,P };t∈T c,p and

F = {F[1:C,p]
t }p∈{1,2,...,P };t∈T c,p , respectively. We use the notation θ = (θR, θF , θC, θS, θP )

for the observation parameters and φ = (α,β,μ, ν, γ, δ) for the transmission parameters,
where α = {αs}ng

s=1, β = {βs}ng

s=1, μ = {μs}ng

s=1 and ν = {νs}ng

s=1.
The Bayesian approach requires the specification of the prior distributions over the model

parameters ψ = (φ, θ), π(ψ). For the genotype-specific external colonisation rates, the
within-pen colonisation rates and the clearance rates, we assigned weakly informative uni-
variate exponential priors each with mean 1. The priors for δ and γ are also assumed to be
exponential with rate parameter ln(2), reflecting equal prior probabilities for these parameters
to be less or more than one. We assume Beta(0.5, 0.5) prior distributions for the sensitivity
parameters θR , θF and θP which is the Jeffreys’ prior (Jeffreys (1961)). For the remaining sen-
sitivity parameters we assume a minimally informative Dirichlet prior distribution (Kelly and
Atwood (2011)) with E(θC) = 0.9, that is, (θC, θS,1 − θC − θS) ∼ Dirichlet(4.5,0.25,0.25).
Finally, for the probabilities of carriage at the beginning of the study we use a Jeffreys’
Dirichlet distribution with all (ng + 1) parameters set to 0.5.

Combining the complete data likelihood with the prior allows us to formulate the joint pos-
terior distribution of the hidden carriage states (unobserved data) and the model parameters,
which can be factorised as

π(X,φ, θ | R,F)

∝ π(R,F | X, θ)π(X | φ)π(ψ)

=
P∏

p=1

C∏
c=1

[ ng∏
r=0

∏
s∈Xg

∏
t∈O

c,p
g

[(
e
Rg
r,s

)1{X[c,p]
t =r,R

[c,p]
t =s}(eFg

r,s

)1{X[c,p]
t =r,F

[c,p]
t =s}]

(2.6)

×
ng∏

r=0

∏
s∈{0,+}

∏
t∈O

c,p
±

[(
eR±
r,s

)1{X[c,p]
t =r,R

[c,p]
t =s}(eF±

r,s

)1{X[c,p]
t =r,F

[c,p]
t =s}]

×
ng∏

s=0

ν

1{X[c,p]
1 =s}

s ×
ng∏

r=0

ng∏
s=0

∏
t∈T c,p\{1}

[(
mp

r,s(t)
)1{X[c,p]

t−1 =r,X
[c,p]
t =s}]]

× π(ψ),

where 1A is the indicator function of event A. The factorisation in equation (2.6) is based on
the assumption that, conditionally on the model parameters, the carriage process is assumed
to be independent across pens.

Sampling from the posterior distribution is done by constructing an MCMC algorithm that
employs both Gibbs (Geman and Geman (1984)) and Hamiltonian Monte Carlo (HMC; Neal
(2011)) updates. The main emphasis is on sampling the hidden carriage process X, which
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was done by using a Gibbs step via the recent individual-forward filtering backward sam-
pling (iFFBS) algorithm by Touloupou, Finkenstädt and Spencer (2020). A point which is
worth emphasising is that iFFBS method has made it computationally feasible to fit such a
complex model, which we believe would not have been able to be fitted using any other exist-
ing methodologies. For example, the vanilla forward filtering backward sampling (Carter and
Kohn (1994)) method in our setting, with eight genotypes and eight animals per pen, is com-
putationally infeasible since the transition matrix has 82×8 = 2.81475 × 1014 elements. The
initial probability parameters ν and the observation parameters θ are updated using Gibbs up-
dates. The remaining parameters are updated jointly using an HMC algorithm which requires
the partial derivatives for these parameters found in equations (A.1)–(A.4) of the Supplemen-
tary Material (Touloupou et al. (2020a)).

The inference method for the proposed partially observed multistrain model was imple-
mented in the R programming language (R Core Team (2019)) using the recently developed
package epiPOMS (Touloupou and Spencer (2020)), which is available in the Supplementary
Material (Touloupou et al. (2020b)) and online at https://github.com/ptouloupou/epiPOMS.

3. Results.

3.1. Simulated data analysis. The performance of our Bayesian approach is evaluated
via simulation studies under different settings. In the first setting we simulate data with the
same structure as the observed data, and in the second setting we investigate the effect of the
total number of samples that are genotyped per pen. A full description of the analysis can be
found in the Supplementary Material in Section B (Touloupou et al. (2020a)), and here we
summarize the key results from the simulations.

Priors specifications are identical to the ones defined in Section 2.4. In terms of parameter
estimation, all the simulation studies show that the method was able to identify and provide
estimates in the sense that in all settings the 90% quantile intervals of the posterior medians,
over 50 simulated datasets, contained the true parameter values that were used to generate
the data; see Figures B.1 and B.4 of the Supplementary Material (Touloupou et al. (2020a))
for each of the two settings, respectively. Another important task in the estimation procedure
is recovering the hidden carriage process. Using the augmented states of carriage in each
MCMC iteration, one can plot the receiver operating characteristic (ROC) curve for each
genotype, shown in Figures B.3 and B.5 of the Supplementary Material (Touloupou et al.
(2020a)). These figures indicate that the method reproduced the incidence of colonisation
with high accuracy, since in all genotypes the ROC curve is located close to the top left
corner.

Finally, in order to investigate the performance of our approach subject to the amount
of genotyped samples per pen, we simulated different datasets representing situations with
sparse, moderate and dense genotyping. We showed that the performance of our method
depends on the amount of genotyped samples: as the total number of genotypes increases,
the accuracy of the estimate also increases for all model parameters (see Figure B.4 of the
Supplementary Material (Touloupou et al. (2020a))). We can reconstruct the genetic type of
infection with high probability from surprisingly few typed observations, as can be seen from
the ROC curves in Figure B.5 of the Supplementary Material (Touloupou et al. (2020a)) and
the area under the curve (AUC) in Table 3. More specifically, the median AUC value is found
to be above 0.95 in all settings. An AUC above 95% indicates that our method gives a higher
posterior probability to positive samples than negative samples more than 95% of the time,
even with only five typed samples per pen.

https://github.com/ptouloupou/epiPOMS


1936 P. TOULOUPOU ET AL.

TABLE 3
Medians of the area under the ROC curve over 50 simulated data sets with varying levels of genotyping

Total number of genotyped samples per pen

Genotype 5 10 15 20 All

D (1) 0.977 0.982 0.985 0.988 0.993
J (2) 0.970 0.979 0.983 0.983 0.991
X (3) 0.972 0.983 0.985 0.988 0.992
b (4) 0.967 0.974 0.981 0.981 0.991
d (5) 0.970 0.982 0.985 0.987 0.992
f (6) 0.969 0.977 0.985 0.983 0.991
l (7) 0.967 0.977 0.984 0.986 0.992
Pooled (8) 0.952 0.969 0.971 0.980 0.986

3.2. Data analysis. In this section we apply our Bayesian data augmentation approach
to the observed E. coli O157:H7 data described in Section 2.1. Our goals are to obtain esti-
mates for the epidemiologically important parameters and to investigate possible differences
between genotypes in carriage colonisation and clearance.

We ran the MCMC for 35,000 iterations, discarding the first 10,000 as a burn-in and saved
every five iterations to obtain 5000 samples from the posterior. We used the same priors as
in the simulation studies of Section 3.1. Convergence was assessed by visual inspection of
posterior trace plots for all 39 model parameters, shown in Figure C.2 of the Supplementary
Material (Touloupou et al. (2020a)). We also checked that estimates were robust to a change
in the initial values by running three chains starting from diverse values. Convergence of
the hidden state process was also visually assessed. In particular, trace plots of two different
summary statistics are provided: the first is the total number of individuals in the population
having a specific augmented state of carriage over the entire study period, whilst the sec-
ond summary statistic is the total number of genotype-specific transitions in the augmented
carriage process over all individuals. The trace plots are shown in Figure C.3 of the Supple-
mentary Material (Touloupou et al. (2020a)) and demonstrate very good mixing of the chains
which appear to reach their stationary distribution.

In addition, estimated posterior probabilities of colonisation by a specific genotype are
shown for individuals in pen 3 in Figure 4. Even though samples were taken only twice per
week, the algorithm provides probabilities of colonisation for every day of the study period.
Moreover, our method predicts the genotype of infection for an individual whose samples
were not genotyped. This is achieved by borrowing information from the other individuals
within the pen or from the individual itself in a nearby time point. For example, we ob-
serve that, for individual 6, the method assigns a nonzero probability of the individual to be
colonised by type 6 during the whole study period, even though the faecal sample at day
39 identified type 5. This happens because a few days earlier and after there were individu-
als that had a positive type 6 result, and therefore the method allows for the possibility that
individual 6 was also colonised by the same type. When sequences of positive test results
separated by a negative result occur, the method can quantify the probability of reinfection
vs. a false negative test. An example is individual 4 where we can see a spike of grey (rep-
resenting the individual becoming uncolonised) immediately after day 15. The convergence
and mixing properties of the augmented unobserved carriage states were further evaluated by
running the MCMC algorithm for 40,000 iterations and splitting the last 30,000 into three
batches of equal size (where a thinning of five was applied to the samples). The posterior
probabilities of colonisation for each individual, were estimated using each batch of 10,000
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FIG. 4. Posterior probability of colonisation over time with separate plots for each individual within Pen 3 in
the E. coli O157:H7 data. In each figure the top panel contains the observed test results, where the first line
represents the outcome of RAMS samples and the second line represents the outcome of faecal samples. “-”
indicates negative sample; “+” indicates that the sample was positive but not chosen for genotyping, otherwise,
the genotype name is given.

samples. Results are shown in Figure C.4 of the Supplementary Material for individual 6 in
pen 3 (Touloupou et al. (2020a)). We see that all plots provide identical results, indicating no
evidence of nonconvergence or poor mixing.
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TABLE 4
Estimates of genotype-specific transmission model parameters among cattle in the E. coli O157:H7 data: the

posterior median of the parameter and the 90% credible interval within parentheses. Estimates are multiplied by
100

Transmission model parameter (×100)

Initial probability External rate Within-pen Clearance rate
Genotype (s) of carriage (νs ) (αs,day−1) rate (βs,day−1) (μs,day−1)

D (1) 2.909 0.123 0.989 16.104
(0.314, 5.814) (0.050, 0.204) (0.367, 1.693) (9.713, 23.002)

J (2) 0.556 0.080 1.222 17.164
(0.000, 2.455) (0.024, 0.152) (0.290, 2.411) (8.574, 27.164)

X (3) 0.686 0.122 1.093 13.310
(0.000, 2.484) (0.054, 0.203) (0.473, 1.834) (8.460, 18.431)

b (4) 0.261 0.058 0.620 9.789
(0.000, 1.492) (0.011, 0.110) (0.003, 1.259) (3.268, 17.734)

d (5) 1.628 0.146 0.693 9.964
(0.000, 3.896) (0.063, 0.231) (0.276, 1.169) (6.080, 14.202)

f (6) 0.314 0.059 0.347 6.853
(0.000, 1.667) (0.013, 0.118) (0.000, 0.845) (0.743, 16.849)

l (7) 0.955 0.046 1.571 11.767
(0.000, 2.601) (0.009, 0.094) (0.901, 2.345) (7.268, 17.091)

Pooled (8) 2.119 0.192 0.723 9.501
(0.000, 5.443) (0.086, 0.314) (0.274, 1.186) (6.081, 13.002)

Tables 4 shows the posterior median estimates of the transmission parameters, along with
90% credible intervals. We see that the external colonisation rate for the pooled group, type
8, is uniformly higher than the rest of the types. This is due to the fact that α8 accounts for all
acquisitions of the 41 genotypes in the group. The lowest external colonisation rate belongs
to genotype 7, following by 4, 6 and 2. However, most of the differences are not significant,
as suggested by the overlap of the credible intervals for all parameters. Moreover, we see
that the sum of the posterior medians of the eight genotype-specific external colonisation
rates (

∑ng

s=1 αs = 0.008 per day) is in close agreement with the external colonisation rate
estimated in a nongenotype specific analysis in Spencer et al. (2015) (α = 0.009 per day).

The posterior median for the within-pen colonisation rate was almost 4.5 times higher for
genotype 7 (0.0157 per day), compared to genotype 6 (0.0035 per day) with nonoverlapping
90% credible intervals, which suggests that there are differences in the within-pen colonisa-
tion rates between the studied genotypes. The estimates of within-pen colonisation rate for
the remaining genotypes were estimated to be between these two values. Results suggest no
significant differences in durations of carriage (1/μs) between genotypes. In particular, in
Table 4 we see that all parameters have overlapping credible intervals.

As a general finding, we observe that genotype 7 appears to have the highest within-pen
but the lowest external colonisation rate, suggesting that it is mainly transmitted through
contact between animals in the same pen. Similarities between colonisation rates are found
for genotypes 1 with 3 and also 4 with 6 (Table 4). The latter genotypes (4 and 6) are the least
prevalent (Figure C.1 in Supplementary Material Touloupou et al. (2020a), as calculated from
the latent carriage process) which explains their low within-pen and external transmission
rates.

The relative colonisation rate γ in smaller vs. bigger pens was estimated as 1.499 with a
90% credible interval of [0.826, 2.285], suggesting higher rates of infection when animals
are kept closer together. However, since the interval contains one this difference is not signif-
icant. This finding is consistent with Spencer et al. (2015), where a similar relative difference
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TABLE 5
Estimates of observation model parameters among cattle in the E. coli O157:H7 data: the posterior median of

the parameter and the 90% credible interval within parentheses. Estimates are given as percentages

Observation model parameter (%)

θR θF θC θS 1 − θP

76.4 45.7 81.6 1.2 97.9
(72.6, 80.0) (42.0, 49.2) (74.6, 88.7) (0.0, 4.4) (90.8, 100)

between pens was obtained. The posterior median relative colonisation rate in a carrier vs.
noncarrier individual was 0.842 (90% credible interval [0.001, 1.806]) which indicates that
individuals colonised by one genotype were less likely to acquire a new infection with an-
other genotype. However, the 90% credible interval contains one, indicating no significant
effect.

Table 5 shows posterior summaries for the observation parameters. As in a previous anal-
ysis (Spencer et al. (2015)), we find that the test sensitivities θR and θF are 0.76 and 0.46,
respectively. Additionally, the model estimates that 81.6% of the observed common geno-
types are correctly classified as the right type, 1.2% are misclassified as another common
type and the remaining 17.2% are misclassified as type 8. Finally, we estimate that 98% of
the observed eight genotypes are correctly classified as type 8.

To explore the effect of our prior specifications, we perform a sensitivity analysis using dif-
ferent hyperparameter values each time. Results are shown in the Supplementary Material in
Figure C.5 for parameters γ and δ, Figure C.6 for the observation parameters and Figure C.7
for the transmission and clearance rate parameters (Touloupou et al. (2020a)). The posterior
distributions of the within-pen and external transmission rates as well as the clearance rates
remained unchanged. No major change is observed in the posterior median and quantiles of
the observation parameters when replacing the minimally informative Dirichlet prior with
one of the other two noninformative alternatives. Finally, the use of an Exp(2 ln(2)) prior for
parameters γ and δ leads to a decrease in their posterior median, compared to the use of an
uninformative prior Exp(0.01). A possible explanation is that our data are only weakly infor-
mative due to the relatively small number of type-specific transitions r �→ s, where r, s �= 0
(posterior median 29, 90% credible interval [1, 59]).

For comparison, we also fitted simpler models to the data, namely, a model where a com-
mon clearance rate is assumed for the common genotypes, a model in which we set δ = 0
and so carriers cannot be infected until they have cleared their current strain and a model
with γ = 1 in which there is no difference in colonisation rates between individuals housed
in small and large pens. Posterior distributions for the parameters of interest are shown in
Figure C.8 of the Supplementary Material (Touloupou et al. (2020a)). As expected, when
a common clearance rate is assumed, the new estimate is approximately equal to the aver-
age of the full model estimates for common genotypes but less associated variability. This
leads to minor changes in external and within-pen colonisation rates. When γ = 1, no pro-
found change is observed in the posterior distribution of the model parameters, except for the
within-pen colonisation rates where estimates are higher compared to the estimates obtained
using the other models. This is expected, since now the β parameters must take values that
account for the number of infections occurring within pens with smaller area, for which γ

parameter accounts in the remaining models. Finally, setting δ = 0 has small effects on the
posterior estimates of the parameters. In particular, we observe a higher degree of genotype
misclassification, as can be seen by the slightly lower and higher estimates of parameters θC

and θS , respectively. This happens because the model does not allow for genotype changes,
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and therefore, when two consecutive observations of different genotypes occur, they are ei-
ther attributed to type misspecification or to true conversions. However, due to the very low
number of genotype-to-genotype transitions that are estimated in the full model, we find only
little difference in the estimates.

To conclude, we highlight that the typing information gives a better understanding of who
infected whom within a pen. In particular, the multistrain model allows us to say with greater
certainty which infections were transmitted within the pen and which were acquired from
outside the pen. Moreover, the new insights we uncover regarding the genotype-specific
properties, related to transmission, as well as competition between different genotypes and
genotype misspecification, represent important aspects of the analysis of host-pathogen in-
teractions which would have been overlooked if we had considered the data with the strains
pooled together.

4. Discussion. In this paper we have developed a model for analysing longitudinal car-
riage studies with multiple strains. Our model extends existing methodologies (Cauchemez
et al. (2006), Erästö, Hoti and Auranen (2012), Melegaro et al. (2007), Numminen et al.
(2013)) by allowing imperfect classification, that is, that the true carriage states can be falsely
recorded as noncarrier or misclassified as another genotype. Furthermore, it gains flexibility
by allowing nontyped samples to be classified as any of the studied genotypes rather than
pooling them into the pooled group, as is assumed by the majority of the aforementioned
models. We assume that during the study no evolution occurs that results in a change in the
PFGE banding pattern, and so our approach is unsuitable for high resolution genotying data
unless some clustering has first been applied to reduce the resolution of the data.

Although our method was motivated by a study of repeated observations of E. coli
O157:H7 colonisation, it can be applied with minor modifications to other infectious dis-
eases. Important examples might include the transmission of strains of Staphylococcus aureus
within healthcare settings, where our modelling approach could make inferences about the
differences in transmissibility and competition between methicillin resistant and nonmethi-
cillin resistant strains. Dengue virus has five known types (Normile (2013)), many of which
cocirculate (Messina et al. (2014)), and repeated infection is thought to bring more serious
consequences for individuals. Improving understanding of the interaction between compet-
ing strains of influenza A could help in vaccine design and pandemic preparedness. In these
important human examples, pens would be replaced by households and additional parameters
would be needed to describe contacts between households.

The algorithm proposed in Touloupou, Finkenstädt and Spencer (2020) has made it compu-
tationally feasible to fit the multistrain epidemic model described in this paper. An advantage
of this algorithm, compared to previous approaches for fitting multistrain models, is that it
can be efficiently applied with several genotypes and can reduce the correlation between pos-
terior samples by updating the entire hidden carriage process at each iteration. Moreover, the
computation time required for the algorithm can scale linearly with population size and in the
cube of number of different genotypes, making it applicable to much larger datasets.

Simulations demonstrated that the algorithm accurately estimated the model parameters
and successfully reproduced the incidence of colonisation. A sensitivity analysis was con-
ducted to explore different genotyping strategies and indicated that a surprisingly small num-
ber of genotyped samples were required to successfully recover the strain dynamics. This
suggests that, in future studies, a simulation study like the one described in the Supplemen-
tary Material can be used to design more efficient genotyping schemes, based on parameter
estimates from an initial study.

Application of our method to a longitudinal study of E. coli O157:H7 in feedlot cattle has
given us valuable insights into the multistrain dynamics within herds. The analysis has been
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implemented in the R package epiPOMS by Touloupou and Spencer (2020). Results provided
evidence for between-genotype competition, as the relative colonisation rate for carriers vs.
noncarriers was estimated to be 0.85. Smaller pens with higher stocking densities were more
susceptible to within-pen colonisation compared to larger pens, as suggested by a relative
transmission rate of 1.5. However, both credible intervals contain the value of one, indicating
no clear evidence of a difference.

Differences between genotypes were detected with respect to the external rate of colonisa-
tion. In particular, we found that genotype 8 (pooled group) has the highest rate while geno-
type 7 has the lowest. This is expected given that type 8 represents a total of 41 genotypes in
the data. For the within-pen colonisation rate we found significant differences between geno-
types 6 and 7, the latter being 4.5 times the former. Similarities were observed for genotypes
1 and 3 in terms of both external and within-pen colonisation rates. Genotypes 4 and 6 shared
a low external colonisation rate as well as within-pen rate. Clearance rates were found to be
relatively homogeneous between genotypes, in the sense that posterior credible intervals for
these parameters were overlapping.

A significant merit of our approach is that it allows for the presence of imperfect diagnostic
tests. We estimated that in the real data the sensitivity of the faecal test was as low as 46%
and the sensitivity of the RAMS test was close to 76%. In addition, we estimated that only
82% of the observed common genotypes were correctly identified. These findings highlight
the importance of allowing for imperfect tests within the model, an assumption which has
been ignored in several previous epidemiological studies.

Following previous work, our model treats different genotypes that appear rarely in the ob-
served data as a single pooled group. Even though this assumption is unrealistic, we believe
that this does not impair our inferences for the parameters relating to common genotypes, and
we don’t provide any epidemiological interpretation for the within-pen transmission parame-
ter of the pooled group. Further, we allow the pooled group to have a different probability of
genotype misclassification to the other groups.

One potential limitation of our model is that we currently do not allow for coinfection, that
is, an individual carrying more than one genotype at a time. This assumption may be reason-
able for the current E. coli O157 dataset, as there was infrequent evidence of coinfection in
this study. However coinfection models may be applicable for other epidemiological studies
of microbial transmission where mixed infections are more common. Nevertheless, one can
envisage that our model can be extended to allow for colonisation by all pairwise combina-
tions of single carriage states, and the same algorithm can be used for posterior inferences.
Another extension of our model that one may consider is accounting for between-pen in-
teractions; this can be achieved by adding an extra between-pen transmission parameter, as
was done in Touloupou (2016) for a single-strain model. However, on account of the findings
there which suggested no interaction between pens in this particular study, we chose not to
consider this extension here.

In conclusion we’ve used state-of-the-art techniques from Bayesian inference, such as the
individual forward filtering backward sampling algorithm for coupled hidden Markov models
and Hamiltonian MCMC, to make inferences for the transmission dynamics of a multistrain
epidemic model. Furthermore, our model contains some novel features, such as the ability to
account for strains to be misclassified in the data. Altogether, this has generated novel insights
into the epidemiology of infection for Escherichia coli O157:H7 in feedlot cattle that would
not have been possible using previous approaches.

Acknowledgments. PT was supported by a University of Warwick Department of Statis-
tics PhD scholarship. SEFS gratefully acknowledges funding by MRC grant MR/P026400/1
and EPSRC grant EP/R018561/1. The original data set was generated from work funded



1942 P. TOULOUPOU ET AL.

by the Beef Checkoff, with support from National Institutes of Health Public Health Ser-
vice grants U54-AI-57141, P20-RR16454 and P20-RR15587 and by Agriculture and Food
Research Initiative competitive grant no. 2010-04487 from the USDA National Institute of
Food and Agriculture. The authors would like to thank Rowland Cobbold for sharing the data
from the original study.

We thank an Associate Editor and two anonymous referees for insightful comments which
have helped in revising the paper.

SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/20-AOAS1366SUPPA; .pdf). We provide further details on al-
gorithmic implementation and we show results of the simulations studies on synthetic data
to investigate our estimation procedure. Additional plots and results of the real data analysis
can also be found in the appendix.

epiPOMS R package (DOI: 10.1214/20-AOAS1366SUPPB; .zip). The R package
epiPOMS provides tools for Bayesian inference on epidemiological data using partially
observed multistrain (POMS) epidemic models, focusing on applications where observa-
tions are gathered longitudinally and the population under investigation is organised in small
groups. The E. coli O157:H7 multistrain dataset is provided there as an example.
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