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This research proposes a comprehensive ALG model (Adaptive Log-
linear zero-inflated Generalized Poisson integer-valued GARCH) to describe
the dynamics of integer-valued time series of crime incidents with the features
of autocorrelation, heteroscedasticity, overdispersion and excessive number
of zero observations. The proposed ALG model captures time-varying non-
linear dependence and simultaneously incorporates the impact of multiple
exogenous variables in a unified modeling framework. We use an adaptive
approach to automatically detect subsamples of local homogeneity at each
time point of interest and estimate the time-dependent parameters through an
adaptive Bayesian Markov chain Monte Carlo (MCMC) sampling scheme.
A simulation study shows stable and accurate finite sample performances
of the ALG model under both homogeneous and heterogeneous scenarios.
When implemented with data on crime incidents in Byron, Australia, the
ALG model delivers a persuasive estimation of the stochastic intensity of
criminal incidents and provides insightful interpretations on both the dynam-
ics of intensity and the impacts of temperature and demographic factors for
different crime categories.

1. Introduction. The measurement of crime intensities is an important topic across mul-
tiple disciplines, varying from criminology and archaeology to economics and political sci-
ence. It is also necessary to understand the dynamics of criminal incidents over time and
investigate potential factors triggering high levels of crime in order to assist officers and
agencies in the field at apprehending criminals and suppressing incidences of crime. There
is an abundant amount of literature in this rapidly growing area; see, for example, weather
and crime (Anderson et al. (2000), Cohn (1990), Ranson (2014), Mares and Moffett (2016)),
crime seasonality and temporal variations (McDowall, Loftin and Pate (2012), Pereira, An-
dresen and Mota (2016), Yan (2004)) and dynamics modeling of crime (Chen and Lee (2017),
Chen et al. (2016), Famoye and Singh (2006), Lee, Lee and Chen (2016)) among many oth-
ers. This paper investigates the nonlinear dependence of several categories of crime in Byron,
which is a local government area in the Northern Rivers region of New South Wales (NSW),
Australia.

Various studies in the literature document the impact of exogenous factors on criminal
behavior. For example, Anderson et al. (2000) find that hotter temperatures lead to increases
in rapes, assaults and domestic violence across 260 U.S. cities. Hsiang, Burke and Miguel
(2013) present a mean effect for a 2.3% increase in interpersonal violence for each stan-
dard deviation increase in temperature; see also Anderson (2001), Rotton and Cohn (2000)
and Hird and Ruparel (2007). Moreover, Mares (2009) presents that the effect of economic
change and civilizing process on interpersonal violence trends is on a long-term decline.
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Stacey, Carbone-López and Rosenfeld (2011) address the influence of a demographic change
in immigration of anti-Hispanic hate crime in the United States. Famoye and Singh (2006)
investigate the relationship between domestic violence and level of education, employment
status and income of victims and batterers. Though insightful, the aforementioned works do
not analyze the dynamics of factors’ effects and/or only focus on one or a single type of
factors.

Data on crime counts are discrete and integer valued, often exhibiting unique features
including overdispersion, serial correlation and excess zeros and could be influenced by ex-
ogenous factors such as weather and socioeconomic status, as stated above. Studies have
used Poisson regression to model count time series, where the variance and mean have to
be identical, but this is not suitable for over-dispersed crime counts with a larger variance
than the mean. The Poisson models are further generalized with, for example, generalized
Poisson (GP), negative binomial (NB), zero-inflated Poisson (ZIP) and exponential family
distributions; see Consul and Famoye (1992), Sellers and Shmueli (2010) and Zhu (2012a).

Among others, Ferland, Latour and Oraichi (2006) and Fokianos, Rahbek and Tjøs-
theim (2009) propose the Poisson integer-valued generalized autoregressive conditional het-
eroscedastic model (P-INGARCH) that allows the conditional mean (namely, the inten-
sity), which is also the conditional variance, to be heteroscedastic and be able to handle
overdispersion as well. The literature extensively develops this model to flexibly capture
features in specific situations, such as nonlinearity and zero inflation; see, for example,
log-linear P-INGACRH (Fokianos and Fried (2012), Fokianos and Tjøstheim (2011)) and
GP/NB/ZIP/ZIGP-INGARCH models (Famoye and Singh (2006), Jazi, Jones and Lai (2012),
Zhu (2011, 2012b)). Fokianos and Tjøstheim (2012) generalize the P-INGARCH type model
to a nonlinear framework and study the geometric ergodicity properties. Coping with effects
of exogenous covariates, studies have established the generalized linear model (Davis, Dun-
smuir and Streett (2003)), linear and nonlinear INGARCHX type models where “X” refers
to one or more eXogenous variables in the conditional mean equation (Agosto et al. (2016),
Chen, Khamthong and Lee (2019), Chen and Lee (2017), Chen and Khamthong (2019)).
Some existing works extend to bivariate or multivariate integer-valued autoregressive mod-
els; see Karlis and Pedeli (2013), Cui and Zhu (2018), Cui, Li and Zhu (2020) and Fokianos
et al. (2020).

The aforementioned works derive models and estimations in a stationary framework where
the coefficients are forced to be constant. The dynamics of crime counts often shift transitorily
or permanently, driven by various factors such as governmental policy changes and critical
events’ occurrences. Lee, Lee and Chen (2016) test the existence of a structural (parameter)
change in the modeling of crime counts of robbery and assault police in inner Sydney. In
the existing literature of nonstationary count time series analysis, the focus is on structural
break detection or estimation via a test or Bayesian approach. Fokianos and Fried (2010)
develop a testing procedure for the detection of intervention effects within the framework of
INGARCH models. Franke, Kirch and Kamgaing (2012) and Kang and Lee (2014) propose a
CUSUM test to locate change points in a Poisson autoregressive model. Chen and Lee (2016)
propose a Bayesian method to identify locations of structural transitions for time series of
counts with zero inflation, while Chen et al. (2016) introduce dynamic overdispersion into
the INGARCH models. Alternatively, approximating nonstationary time series via a locally
stationary process with a piecewise constant or more generally time-varying coefficients is
also prevalent in the time series literature; see, for example, Mercurio and Spokoiny (2004),
Davis, Lee and Rodriguez-Yam (2006), Spokoiny (2009) and Chen and Li (2017). In fact,
researchers have yet to examine the dynamic modeling of a local stationary integer-valued
time series.

This paper proposes an Adaptive Log-linear zero-inflated Generalized Poisson
INGARCHX (ALG) model to investigate the dynamics of nonstationary count time series
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with unique features of autocorrelation, heteroscedasticity, overdispersion and excess zeros
in a unified framework. We conduct a comprehensive analysis to the dynamics of several
crimes and simultaneously investigate the impacts of multiple covariates, including temper-
ature, seasonality, population and unemployment rate. Our study represents nonstationarity
in the dynamics of crime count series with time-dependent coefficients. Instead of detect-
ing the exact time and location of breakpoints, at each time we automatically detect a local
interval of a count series over which the process is approximately stationary. We derive a lo-
cal adaptive estimation procedure in the Bayesian framework based on the MCMC technique
without requiring prior knowledge of the location and type of breaks. The ALG model is flex-
ible and can take on both stationary and nonstationary count series to decipher the essential
dynamic evolution. We perform simulation studies to investigate the model’s finite sample
performance under various scenarios and demonstrate the application of the ALG model on
six types of crime incidents from January 1995 to December 2017 in Byron, NSW, Australia.

Our contributions include the following: (1) We propose an ALG model to account for
a number of features in a unified framework and simultaneously incorporate the impact of
multivariate exogenous covariates. In comparison, existing works consider only a part of
the features and/or do so under stationarity. (2) We develop an adaptive procedure in the
Bayesian framework that can automatically react to unforeseeable structural breaks, while
the existing literature either assumes stationarity or requires piecewise stationarity. Our work
adaptively estimates parameters and local interval of homogeneity at each time point, and
both vary over time. (3) We provide an interpretable estimation of the stochastic intensity
of monthly crime data and the time-dependent impacts from multivariate environmental and
demographic variables.

The rest of the paper runs as follows. Section 2 describes the data on crime incidents in
Byron, Australia. Section 3 presents the ALG model and derives the adaptive estimation pro-
cedure using the Bayesian MCMC sampling scheme under local homogeneity assumption.
Section 4 investigates the finite sample performance of the ALG model under various scenar-
ios. Section 5 implements real data analysis. Section 6 concludes.

2. Data. We consider six types of monthly crime datasets in Byron, NSW, Australia
from January 1995 to December 2017, comprising 276 observations. The data come from the
NSW Bureau of Crime Statistics and Research website (BOCSAR). The NSW Police Force
organizes each dataset by type of offense, month and local government area.

The first three offense categories of “assault: nondomestic violence related assault” (la-
beled ASS), “malicious damage to property” (MDP) and “theft: steal from person” (TSP) are
three of the major personal violence and property offenses according to BOCSAR. Among
them, MDP generally denotes the intentional destruction or defacement of public, commer-
cial and private property, including vandalism, trespassing, graffiti, illegal tipping, smashed
windows or other defacing acts, where graffiti is the most common form of malicious damage.
Crime statistics from the Australian Institute of Criminology indicate that malicious damage
is the most commonly reported criminal offense in NSW; see Anderson et al. (2012). We also
consider another three crimes of “liquor offenses” (LOS), “against justice procedures: breach
bail conditions” (AJP) and “arson” (ARS). In 2012, the recorded rate of LOS in Byron ranked
first out of 140 local government areas that have populations greater than 3000. The crime
trend of this offense is, naturally, of particular interest for Byron. ARS is the most dangerous
crime in this study.

We also obtain three environmental and demographic variables, including monthly mean
maximum temperature at Byron (station number: 58198), monthly unemployment rate and
quarterly population counts in NSW. All the variables are collected in the same period from
the Australia Government Bureau of Meteorology. To investigate the seasonality effect of
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TABLE 1
Description and summary statistics of monthly crime data, temperature and demographic variables from

January 1995 to December 2017 (276 observations)

Dataset Min Median Max Variance Variance/Mean 0s %

ASS 3 21 54 78 3.55 0
MDP 10 30.5 78 119.16 3.72 0
TSP 0 5 34 25.22 4.20 3.99
LOS 0 16 134 461.70 21.99 6.88
AJP 0 3 11 2.30 6.90 13.77
ARS 0 1 11 2.13 2.13 37.68

Temp (◦C) 18.4 25 30.5 9.12 0.37 0
URate (%) 4.3 5.6 9.65 1.07 0.18 0
Population(×106) 6.09 6.75 7.92 2.64 × 105 38,306 0

ASS—Assault: Nondomestic violence related assault. MDP—Malicious damage to property. TSP—Theft: Steal
from person. LOS—Liquor offenses. AJP—Against justice procedures: Breach bail conditions. ARS—Arson.
Temp: Monthly mean maximum temperature. URate: Monthly unemployment rate of NSW. Population: Quarterly
population of NSW.

crimes, especially the hot season effect as documented in the literature (Anderson et al.
(2000), McDowall, Loftin and Pate (2012), Yan (2004)), we fix a dummy variable Dt = 1
if the month is November, December or January, which is the summer period in Australia
and equal to 0 otherwise. This dummy is to designed to examine the hot (summer) seasonal-
ity effect vs. the rest of the year.

Table 1 reports the descriptive statistics of the six categories of monthly crime offenses
and three exogenous covariates. The monthly series of ASS and MDP do not have any zero
observations. The crime series have 3.99%, 6.88% and 13.77% of zeros, respectively, for
TSP, LOS and AJP which is considered as the medium level of zero percentage. There are
104 number counts of zeros among the 276 months (37.68%) for ARS, indicating the feature
of excess zeros. The sample variance is larger than the sample mean for all the crime count
data (the ratio ranges 2.12 to 21.99), implying the overdispersion feature for all the datasets.
Because the exogenous variables vary in scale, the maximum value of the population, for
example, is 7.65 × 105, and the maximum value of the variable unemployment rate is 4.3%;
the exogenous variables are scaled to be between 0 and 1 by subtracting the minimum and
dividing the range for computational convenience. As population is quarterly variable, we
allocate the same value to each month within a quarter to use in the model. Figure 1 displays
the time series plots, barplots and the ACF plot of two crime categories, MDP and ARS, as
illustration along with three exogenous variables, respectively. The graphical demonstration
of the rest four datasets refers to Figure A in the Supplementary Material (Xu et al. (2020a)).
MDP reveals an increasing trend until 2009 and then a decreasing pattern thereafter, while
ARS develops an increasing trend in more recent years. The serial dependence of MDP is,
in general, stronger than that of ARS. The values of the monthly crime count series vary
from one category to another; yet all datasets present similar complexity in data features.
The empirical data features motivate the adoption of a model that can effectively handle zero
observations, serial dependence, overdispersion and changing structures. The bottom panel
in Figure 1 demonstrates the monthly mean maximum temperature, unemployment rate and
population counts, respectively. The temperature series exhibits a strong seasonality pattern
with higher values at around January and lower values at around July. The unemployment rate
reveals a roughly decreasing trend until 2009 and moves up after that. Population is purely
increasing over the sample period.
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FIG. 1. Time series plots, barplots and ACFs for MDP (upper) and ARS (middle) at Byron, and the plots of
three exogenous covariates (bottom) from January 1995 to December 2017, Australia. The exogenous covariates
are scaled between 0 and 1.

3. ALG model. In this section we introduce the Adaptive Log-linear zero-inflated
Generalized Poisson INGARCHX (ALG) model to simultaneously account for both time-
varying dynamics of crime count series with multiple features, including autocorrelation,
heteroscedasticity, overdispersion and excess zero observations and the impacts of exoge-
nous factors under instability. We then introduce an adaptive Bayesian method based on the
MCMC sampling scheme for parameter estimation.

3.1. The ALG model. We recall the definition of the ZIGP distribution (Gupta, Gupta and
Tripathi (1996)). A random variable Y is said to follow the ZIGP distribution with parameters
λ, ϕ and ρ if the probability mass function is

P(Y = y) =

⎧⎪⎪⎨
⎪⎪⎩

ρ + (1 − ρ)e−λ if y = 0,

(1 − ρ)λ(λ + ϕy)y−1e−(λ+ϕy)/y! if y = 1,2, . . . ,

0 for y > m if ϕ < 0,

where λ > 0, 0 ≤ ρ < 1, max(−1,−λ/m) < ϕ < 1 and m(≥ 4) is the largest positive integer
for which λ + ϕm > 0 when ϕ < 0. If ϕ > 0, then the distribution includes overdispersion,
whereas underdispersion or no dispersion is present when ϕ < 0 or ϕ = 0, given that ρ = 0.
The distribution reduces to the generalized Poisson distribution when ρ = 0 and to the Pois-
son distribution when ρ = ϕ = 0.

Figure 2 displays the probability mass function of ZIGP distribution with different param-
eters of λ, ϕ and ρ. Compared to Poisson, a positive ρ significantly increases the probability
of zeros, leading to a lower probability of other values to occur; a positive value of ϕ leads to
a lower probability of smaller counts and heavier right tail. When both ρ and ϕ are positive,
we observe a larger probability of zero and a heavier right tail.
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FIG. 2. Probability mass function of the ZIGP distribution with different parameters of λ, ϕ and ρ.

Under ZIGP, the conditional expectation and variance of Y are, respectively,

E(Y ) = 1 − ρ

1 − ϕ
λ and Var(Y ) = (1 − ρ)

[
ρλ2

(1 − ϕ)2 + λ

(1 − ϕ)3

]
.

The variance of Y is greater than the mean if 0 ≤ ϕ < 1. When ρ = 0, the variance is equal
or smaller than the mean if ϕ = 0 or ϕ < 0.

Let {Yt ; t = 1, . . . , n} denote a count series that is conditionally ZIGP distributed with
mean λt and log-intensity process μt = log(λt ), such as the number of monthly criminal
offense counts. We model the dynamics of this process in terms of its own past, Yt−1 and
q exogenous covariates xt = (xt1, . . . , xtq)

�. In our study the exogenous covariates include
the relevant climate and demographic factors of temperature, population, unemployment rate
and a summer dummy. We define the ALG model as

(3.1)

Yt |(F (y)
t−1,F

(x)
t

) ∼ ZIGP
(
λ∗

t , ϕt , ρt

)
,

λ∗
t = 1 − ϕt

1 − ρt

λt , μt = log(λt ),

μt = ωt + αt log(Yt−1 + 1) + βtμt−1 +
q∑

i=1

γtixti ,

where 0 ≤ ρt < 1, max(−1,−λ∗
t /m) < ϕt < 1, m(≥ 4) is again the largest positive integer

for which λ∗
t + ϕtm > 0 when ϕt < 0, and γti is a time-dependent real-valued parameter

reflecting the effect of covariate xti for i = 1, . . . , q . Here, F
(y)
t is the σ -field generated

by {Yt , . . . , Y1, λ0}, where λ0 is the initial intensity and F
(x)
t is the σ -field generated by

{xt , . . . ,x1} with xj = (xj1, xj2, . . . , xjq) for j = 1, . . . , t , representing all available past
information of exogenous variables. We set 0 ≤ ϕt < 1 for all time indices for the overdis-
persion case. The unknown time-varying parameters include (ωt , αt , βt , ρt , ϕt , γt1, . . . , γtq).
For notational simplicity we denote the parameter set as ϑ t = (θ t ,κ t ,γ t ), where θ t =
(ωt , αt , βt ), κ t = (ρt , ϕt ) and γ t = (γt1, . . . , γtq).

Under stationarity with all parameters constant, if κ t and γ t equal zero, then the ALG
model reduces to the log-linear Poisson autoregression model in Fokianos and Tjøstheim
(2011). In other words, that model ignores the case with excess zeros and relies on stationar-
ity. The ALG model has time-dependent parameters ϑ t , allowing for both smooth structural
changes and abrupt breaks where no prior information of breaks is required. As it is impossi-
ble to estimate local parameters that vary from every time point, we assume at each time that
there exists a subinterval over which ϑ t can be properly approximated by a constant. Such an
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interval is called the local homogeneous interval. In other words, the ALG model does not de-
viate much from a stationary model with constant parameters over the local interval. As time
moves, the local homogeneous interval updates at each point based on past available infor-
mation. As such, the local intervals have time-dependent length, over which we can estimate
the globally nonstationary yet locally stationary dynamics using an adaptive procedure. Note
that Chen and Lee (2016) consider the ZIGP-INGARCH model in a nonstationary framework
too, yet without exogenous variables and aiming to locate a single structural break.

3.2. Bayesian inference under stationarity. Under a stationarity assumption with con-
stant parameters, we drop the subscript t of parameters for all time and have ϑ t = ϑ =
(θ ,κ,γ ). Let Yt and Xt denote all the past count and exogenous variables’ observations
at time t , respectively. The conditional posterior for each parameter group is proportional to
the likelihood function multiplied by the prior density of that group,

p(ϑ
|Yt ,Xt ,ϑ �=
) ∝ p(Yt |Xt ,ϑ)p(ϑ
|ϑ �=
),

where ϑ
 denotes each parameter group with 
 = 1,2 and 3 referring to θ , κ and γ , respec-
tively, p(ϑ
) is the prior density, and ϑ �=
 is the vector of all the model parameters except
ϑ
.

The stability condition for the ALG model under the global stationarity assumption is still
an open research problem. Fokianos and Tjøstheim (2011) stated the geometric ergodicity
condition for {Yt ,μt } in the log-linear P-INGARCH model without exogenous variable as

(3.2) |β| < 1, α > 0, |α + β| < 1 or |β| < 1, α < 0, |β||α + β| < 1.

Thus, we adopt uniform priors p(ϑj ) defined by indicators I (Cj ) for j = 1,2, where C1 and
C2 are the sets of θ and κ satisfying (3.2) and 0 ≤ ρ,ϕ < 1, respectively. This generates a flat
prior on the parameters restricted by the indicator that is nonzero inside Cj and zero outside
Cj . We also adopt a flat prior on the components of γ . These choices of priors are not the
only ones possible but are, instead, chosen to be noninformative.

The conditional posterior distributions for all ϑ
 exhibit no closed-form solution. We thus
adopt the adaptive MCMC method to generate the MC samples for parameter groups in their
respective order from the conditional posterior distributions. We combine the random-walk
Metropolis–Hastings (MH) and the independent kernel MH algorithm to draw the MCMC
iterates for θ -, κ- and γ -groups for possibly faster convergence and better mixing. We refer
to Chen and Lee (2016) for details.

We utilize the posterior mean as suggested in Chib (1995) and construct the estimate of
intensity λt by

λ̂t = 1

N − M

N∑
i=M+1

λ
(i)
t ,

where λ
(i)
t is the ith iteration of λt recursively constructed through the equation of μt in (3.1)

with each MCMC iterate of parameters denoted as θ (i), κ (i) and γ (i); N is the total number of
iterates, and M is the number of burn-in iterates. In the following sections we set N = 10,000
for the simulation study and N = 30,000 for real data analysis. We drop the first M = 5000
iterations as a burn-in sample.

To test model adequacy, we apply the standardized Pearson residuals for diagnostic check-
ing, defined as

Rt = Yt − E[Yt |(F (y)
t−1,F

(x)
t )]√

Var[Yt |(F (y)
t−1,F

(x)
t )]

.
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If the model is adequate and specified correctly, then the residuals should have zero mean,
unit variance and no significant serial correlations in the series of both residuals and squared
residuals.

3.3. Adaptive estimation. The above Bayesian procedure derives from stationarity with
constant parameters which is inappropriate if the dynamics are time dependent. In this section
we develop an adaptive estimation procedure that detects the local interval of homogeneity
in a data-driven manner in the Bayesian framework.

We assume local time homogeneity for the crime count series; that is, at a fixed time point
t there exists a local interval It = [t − mt, t] with 1 < mt < t over which all the included
observations can be aptly described by a local ALG model with approximately constant pa-
rameters, that is, ϑ t 
 constant. Simultaneously, we require that the modeling bias under this
local parametric assumption is small, that is, the small modeling bias condition (Belomestny
and Spokoiny (2007)). The length of interval It depends on time. In the estimation of model
(3.1) at a particular time t , we assume such an It exists, where we can safely use the above-
mentioned MCMC-based Bayesian method for parameter estimation. The estimated param-
eter over It , denoted as ϑ̂ t , is called the adaptive estimator.

The question now is how to determine the homogeneous interval It and obtain ϑ̂ t . In prac-
tice, the interval It is unknown and the number of possible candidates is large; for example,
as many subsamples as there are past sample periods and searching among all possible inter-
val candidates in the samples can be computationally expensive. Belomestny and Spokoiny
(2007) show that an optimal choice for the interval of local homogeneity can appear via an
adaptive procedure based on likelihood ratio testing. Likewise, we adopt sequential testing
to detect such an interval from S candidate intervals It = {I (1)

t , . . . , I
(S)
t } to alleviate the

computational burden in practice. For computational tractability, we set a common candi-
date interval set with I

(s)
t = [t − τs, t] for every time point t and s = 1, . . . , S. The intervals

are nested with increasing length, that is, I
(1)
t ⊂ · · · ⊂ I

(S)
t . To each interval there exists a

corresponding local Bayesian estimator, denoted by ϑ̃
(s)

t , which is called the weak estimator.
We present a sequential testing procedure to select the longest one from the S candidates

that does not contain any breaks. The procedure starts from the shortest interval I
(1)
t where

the local homogeneity is guaranteed. We set ϑ̂
(1)

t = ϑ̃
(1)

t which means the weak estimator
is accepted as a local homogeneous estimator. Sequentially, at each step s with 2 ≤ s ≤ S,
we test the hypothesis of local homogeneity given that at the former step the homogeneity
hypothesis of interval I

(s−1)
t has not been rejected. We define the test statistic at step s as

(3.3) T
(s)
t = ∣∣L(

I
(s)
t , ϑ̃

(s)

t

) − L
(
I

(s)
t , ϑ̂

(s−1)

t

)∣∣1/2
,

where L(I
(s)
t , ϑ̃

(s)

t ) and L(I
(s)
t , ϑ̂

(s−1)

t ) are the local conditional likelihood over interval I
(s)
t

using the weak estimator to be tested for local homogeneity in the current step and using the
adaptive estimator accepted in the previous step, respectively. Thus, the test statistic measures
the divergence of the hypothetical ALG model and the time-varying model accepted from the
previous step. Here, we define the local conditional likelihood by

L
(
I

(s)
t ,ϑ

) = ∏
j∈I

(s)
t ,Yj=0

{
ρ + (1 − ρ)e

−λ∗
j
}

· ∏
j∈I

(s)
t ,Yj>0

{
(1 − ρ)

λ∗
j (λ

∗
j + ϕYj )

Yj−1

Yj ! e
[−(λ∗

j+ϕYj )]
}
,
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where λ∗
j is computed recursively by

λ∗
j = 1 − ϕ

1 − ρ
exp

{
ω + α log(Yj−1 + 1) + β log

(
1 − ρ

1 − ϕ
λ∗

j−1

)
+ γ ′xj

}
, j ∈ I

(s)
t .

If the divergence in (3.3) is significant, then it means the model changes more than what the
sampling randomness expects, and the local homogeneity over the interval I

(s)
t is violated.

One should then terminate the procedure and select the last accepted subsample I
(s−1)
t as

the longest homogeneous interval; otherwise, one accepts the homogeneity assumption for

the current interval I
(s)
t with the updated adaptive estimator ϑ̂

(s)

t = ϑ̃
(s)

t and moves to the
next step. The procedure continues until either a change is detected or the longest candidate
interval is reached. At each time t , the algorithm runs as follows:

1. Start from the first interval I
(1)
t with ϑ̂

(1)

t = ϑ̃
(1)

t , where ϑ̃
(1)

t is the weak estimator over
I

(1)
t .

2. For s ≥ 2, calculate the weak estimator ϑ̃
(s)

t over I
(s)
t and the statistic T

(s)
t , and:

– if T
(s)
t < ζs , then we accept I

(s)
t , that is, ϑ̂

(s)

t = ϑ̃
(s)

t and set s = s + 1.
– otherwise, we reject I

(s)
t and stop the procedure. The interval I

(s−1)
t is the final selection

as the largest homogeneous interval at time t . We set ϑ̂ t = ϑ̃
(s−1)

t .

Here, ζ2, . . . , ζS are certain prescribed critical values.
3. If s < S, then increase s by one and continue with step 2; otherwise, terminate and set

ϑ̂ t = ϑ̂
(S)

t .

The sequence of critical value ζs with s = 2, . . . , S measures the significance level and plays
a crucial role in the testing procedure. With a small critical value there is a higher probability
to select short intervals everywhere, thus resulting in unnecessarily higher parameter uncer-
tainty. If the critical values are too large, then it becomes easier to accept the null hypothesis
of homogeneity, making it less sensitive to possible changes. Since the sampling distribution
of the test statistic T

(s)
t is unknown, even asymptotically, we calibrate the critical values via

Monte Carlo experiments.

3.4. Critical value calibration. We generate a globally homogeneous count series from
model (3.1) with constant parameters ϑ0 = (θ0,κ0,γ 0). We measure the bias of the weak

estimator ϑ̃
(s)

t in the homogeneous time series via the fitted log-likelihood ratio

(3.4) D
(s)
t = ∣∣L(

I
(s)
t , ϑ̃

(s)

t

) − L
(
I

(s)
t ,ϑ0

)∣∣1/2
,

for s = 1, . . . , S. Here, we numerically compute D
(s)
t with the knowledge of ϑ0.

Given any set of the critical values ζ2, . . . , ζS , one obtains an adaptive estimator ϑ̂
(s)

t at
step s by employing the sequential testing procedure in Section 3.3. At time t , we measure
the temporal divergence between the weak estimator and the adaptive estimator, denoted as
R

(s)
t , by

R
(s)
t = ∣∣L(

I
(s)
t , ϑ̃

(s)

t

) − L
(
I

(s)
t , ϑ̂

(s)

t

)∣∣1/2
.

The idea is to choose the critical values so that the adaptive estimator behaves as good as the
true underlying characteristics in the artificial homogeneous situation. The distance R

(s)
t is

required to be bounded by the ideal estimation error given the true model for s = 1, . . . , S:

(3.5) Eϑ0

[
R

(s)
t

] = Eϑ0

∣∣L(
I

(s)
t , ϑ̃

(s)

t

) − L
(
I

(s)
t , ϑ̂

(s)

t

)∣∣1/2 ≤ sD̄t ,
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where D̄t is the average of {D(s)
t , s = 1, . . . , S} and s is a hyperparameter controlling the

sensitivity of the adaptive model and is, usually, selected by experience. We set s in the
form 1 = a ∗ 1

S−1 and s = a ∗ s−1
S−1 for s > 1 to reflect the increased bias as the sample

size increases. Moreover, a is a constant factor, and our default choice is 1. Only the critical
value is unknown in (3.5). The optimal critical value is the smallest one that makes (3.5) hold
everywhere.

The calculation of critical values relies on the choice of hyperparameters (ϑ0, a) used
in MC experiments which further influence the estimation accuracy. As an illustration
our default choice is as follows. We randomly select one set of parameters ϑ0 satisfy-
ing the restrictions of each parameter. We set S = 6 with corresponding lengths It =
(30,50,70,90,120,140) and use the setup everywhere. The choice of It is, in fact, data
dependent. For example, the length of I

(1)
t should generally increase with a larger number of

unknown parameters to avoid overfitting. The nonparametric smoothing literature states that
an increase in the length of intervals leads to an increase in modeling bias and a decrease in
the estimators’ variance (see, e.g., Härdle et al. (2012)). Under the assumption that the local
homogeneous interval exists, we require the first interval I

(1)
t to be short such that the mod-

eling bias is small; that is, the local homogeneity is accepted by default and simultaneously
shows reasonable estimation accuracy.

We perform a robustness check of the hyperparameters (ϑ0, a) in Section 4. We find that
the adaptive Bayesian estimation is robust to the selection of hyperparameters, and the dif-
ference in estimate accuracy for possible misspecifications is not significant.

4. Simulation. In this section we conduct a simulation analysis under a known data
generating process from model (3.1) with a single exogenous covariate as an illustration. We
consider both homogeneous and regime-switching scenarios to investigate the finite sample
performance of the ALG model. Moreover, we perform robust analysis to the choices of the
hyperparameters ϑ0 and a as well as the choice of priors in the adaptive MCMC procedure.
Source code for simulation replication is available in the Supplementary Material (Xu et al.
(2020b)) and online at https://github.com/Xiaofei-Xu/ALG.

4.1. Homogeneous case. We generate count series in a homogeneous scenario with a set
of globally constant parameters ϑ0 = (ω0, α0, β0, ρ0, ϕ0, γ0) = (0.2,0.9,−0.2,0.2,0.1,0.5),
satisfying the condition (3.2) and 0 ≤ ρ0, ϕ0 < 1, initial count Y0 = 2 and intensity λ0 = 5.
The covariate xt is generated from the standard normal distribution. We consider two sample
sizes of n = 200 and 800 and conduct an estimation from time points t = 141 and 301,
respectively, to the end. The replication number is 500.

Figure 3 illustrates the average length of the identified local intervals and the estimated
intensity λt , with its 95% credible interval for the case of n = 800. For the interval selection
shown at the left plot, 1 refers to the shortest interval candidate with 30 observations, and 6
refers to the longest interval candidate with 140 observations. In the homogeneous scenario
where the parameters are constant throughout the whole sample, the optimal selection of
intervals should be S = 6, that is, the longest interval. The proposed approach yields a quite
stable and reasonable choice with the values closing to 5. It also shows that the ALG model
estimates the conditional expectation λt quite well, fitting the actual values of intensity of the
count series.

We use the root mean squared error (RMSE) and the mean absolute deviation (MAD) to
evaluate the estimation accuracy. For comparison, we apply the rolling window technique
with a fixed window size of 140 (length of longest candidate interval) to iteratively update
the parameter estimation. Table 2 reports the results, with the panel titled “ALG” referring
to the ALG model and “RW140” referring to the rolling window technique. It shows that

https://github.com/Xiaofei-Xu/ALG
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FIG. 3. The average index of selected intervals (left) and the ALG estimate of λt with its corresponding 95%
credible intervals (right) in n = 800 case from time index 301 to 800.

the ALG estimate of parameters is accurate, with RMSE no larger than 0.266 and MAD
smaller than 0.262 among all the parameters. The ALG model is comparable to the rolling
window technique. This is not surprising, because RW140, known as the best model in the
homogeneous scenario, always uses the longest interval.

4.2. Heterogeneous case. We design several nonstationary experiments with one or mul-
tiple parameters changing over time, while the other parameters remain constant. The first
four experiments change a single parameter, ωt , αt , ρt and γt corresponding to the level,
serial dependence, zero inflation and the exogenous variable effect, respectively. We denote
them as RS-W where the affixed notation W refers to a particularly changing parameter. The
other two designs, denoted as RS-m1 and RS-m2, shift three parameters, ωt , ρt and γt , simul-
taneously. In each of the four experiments, the single or multiple changing parameters shift
over their phases. Parameter shifts always happen at t = �n

2� and �3n
4 � for all the experiments

where �z� denotes the maximal integer that is not larger than z and n is sample size; see Ta-
ble 3 for the time-varying parameter sets. We consider two sample sizes of n = 250 and 800
and start the estimation from time t = 141 and 301, respectively, to the end. Each experiment
is replicated 500 times. The exogenous covariate xt is generated from the standard normal
distribution.

To demonstrate the dynamic process, we display the average length of selected intervals for
the cases RS-α and RS-m1 under n = 800 in Figure 4 as an illustration, and other experiments

TABLE 2
Parameter estimation accuracy for the homogeneous scenario. The adaptive estimation of ALG modeling is

compared with the rolling window technique

n = 200 n = 800

RW140 ALG RW140 ALG

True Estimate RMSE MAD Estimate RMSE MAD Estimate RMSE MAD Estimate RMSE MAD

ω0 0.20 0.197 0.125 0.115 0.189 0.183 0.153 0.198 0.181 0.191 0.186 0.266 0.262
α0 0.90 0.891 0.078 0.071 0.874 0.126 0.102 0.893 0.111 0.118 0.873 0.190 0.176
β0 −0.20 −0.200 0.066 0.060 −0.214 0.107 0.086 −0.201 0.099 0.106 −0.214 0.156 0.149
ρ0 0.20 0.204 0.034 0.031 0.211 0.048 0.041 0.201 0.050 0.053 0.209 0.069 0.070
ϕ0 0.10 0.113 0.042 0.039 0.124 0.055 0.045 0.113 0.059 0.063 0.123 0.076 0.073
γ0 0.50 0.500 0.043 0.039 0.496 0.072 0.059 0.501 0.061 0.064 0.496 0.121 0.106
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TABLE 3
Parameters in each scenario

Parameters ωt αt βt γt ρt ϕt ωt αt βt γt ρt ϕt

RS-ω RS-α
Phase-1 1 0.9 −0.2 0.5 0.2 0.1 0.6 0.4 0.4 0.5 0.2 0.1
Phase-2 0.2 0.9 −0.2 0.5 0.2 0.1 0.6 0.1 0.4 0.5 0.2 0.1
Phase-3 1 0.9 −0.2 0.5 0.2 0.1 0.6 0.4 0.4 0.5 0.2 0.1

RS-γ RS-ρ
Phase-1 0.6 0.4 0.4 0.5 0.2 0.1 0.6 0.4 −0.3 0.5 0.1 0.2
Phase-2 0.6 0.4 0.4 0.1 0.2 0.1 0.6 0.4 −0.3 0.5 0.6 0.2
Phase-3 0.6 0.4 0.4 0.5 0.2 0.1 0.6 0.4 −0.3 0.5 0.1 0.2

RS-m1 RS-m2
Phase-1 0.6 0.9 −0.2 0.5 0 0.1 −0.2 0.9 −0.2 0 0.6 0.1
Phase-2 0.2 0.9 −0.2 0.1 0.6 0.1 0.6 0.9 −0.2 0.5 0 0.1
Phase-3 0.6 0.9 −0.2 0.5 0 0.1 −0.2 0.9 −0.2 0 0.6 0.1

present a similar pattern. For both cases the ALG model provides a reasonable selection of
local intervals. The length of the selected intervals appears large before the break, quickly
drops to a very small value immediately after the break and gradually bounces back. The
quick reaction to breaks is important for an accurate estimation with changing parameters.
For practical reasons the data-driven approach selects the optimal local intervals only on the
past information, and no “future” information is utilized. This explains the systematical lag
in the plot, though with a fast update. To summarize, the ALG model selects longer intervals
for the approximately homogeneous periods to utilize as much information as possible and
reacts to changes efficiently so as to avoid modeling bias.

Figure 5 exhibits the true value and ALG estimate with corresponding 95% credible in-
tervals of λt , ωt , ρt and γt for the case RS-m1 under n = 800 as a demonstration. We see
that the estimated λt process fits the actual values quite well and only needs a short period to
adjust after the breaks happen. Specifically, the estimation of intensity is accurate at phase 2,
where the occurrence possibility of zeros is large with the true parameter ρt being 0.6. For
the individual parameters the adaptive estimates deliver similar results as λt . In conclusion,
the ALG model provides a good estimation of intensity and time-varying parameters, with

FIG. 4. The average indices of the selected intervals for RS-α and RS-m1 from time index 301 to 800.
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FIG. 5. Design RS-m1 scenario: The true value, ALG estimate, and the corresponding 95% credible intervals
of λt , ωt , ρt , and γt from time index 301 to 800.

the estimates being stable and close to the true value before the breaks, quickly adjusting to
match the true dynamics after discovering the breaks and becoming stable again thereafter.

For estimation accuracy comparison we adopt rolling window strategies to the ALG model
over the same estimation period. We consider two rolling window sizes, that is, 90 (RW90)
and 140 (RW140) corresponding to the length of candidate intervals I4 and I6, respectively,
in the ALG procedure. Table 4 summarizes RMSE and MAD of estimated intensity λt of
the three models. The best accuracy is marked in bold. In general, the ALG model is more
accurate than the rolling window technique by utilizing the adaptively selected time-varying
intervals. For example, for n = 250, the ALG model is the best for all designs, except RS-ρ,
in terms of MAD. When the sample size becomes 800, the ALG model performs better for
design RS-α, RS-γ and RS-m1, with smaller RMSE and MAD. However, for RS-ρ, ALG
is comparable to the rolling window technique under both sample sizes, perhaps because the
breaks in λt are not significant though ρt changes over three phases, which leads to a better
performance with a larger fixed window size.

TABLE 4
RMSE and MAD of the λt estimation of six designs

n = 250 n = 800

RW90 RW140 ALG RW90 RW140 ALG

RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD

RS-ω 2.890 1.589 2.692 1.580 2.798 1.528 2.136 1.047 2.181 1.099 2.149 1.053
RS-α 4.959 2.479 4.882 2.895 4.920 2.422 3.379 1.551 4.212 1.945 3.257 1.407
RS-ρ 1.144 0.721 0.845 0.537 1.281 0.771 1.217 0.799 0.739 0.445 0.997 0.568
RS-γ 5.304 2.588 6.515 3.390 4.821 2.404 3.599 1.758 4.735 2.105 3.228 1.566
RS-m1 3.414 1.799 3.752 2.236 3.470 1.799 2.387 1.066 2.849 1.227 2.331 1.036
RS-m2 2.483 1.127 3.125 1.662 2.198 0.996 2.178 0.948 2.858 1.248 2.243 0.936
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4.3. Robustness checking. Local interval selection plays an important role in the adaptive
estimation procedure which relies on the critical values calibrated based on the data generated
with some hyperparameters (ϑ0, a). The default parameter set is ϑ0 = (ω0, α0, β0,

ρ0, ϕ0, γ0) = (0.2,0.9,−0.2,0.2,0.1,0.5) and a = 1. We analyze the performance of the
ALG estimation with respect to different hyperparameter choices under two experiments:
homogeneous design at Section 4.1 and heterogeneous design RS-m2 at Section 4.2. We redo
the estimation accuracy using different critical values obtained with misspecified parameters
and various values of a.

We particularly recalibrate the critical values under six misspecified underlying parameters
ϑ∗

0 with ±20% deviation from α0 +β0, γ0, and ρ0, respectively, among others. We also study
two risk factors a deviating from 1: a∗ of 0.75 and 1.5. Note that the other hyperparameters
still take the original true values. Moreover, we investigate the sensitivity concerning the
choice of priors in the adaptive MCMC procedure. The default choice is noninformative
(uniform/flat) priors for all parameters, which are not the only ones possible. To examine the
sensitivity, as an illustration we consider setting beta distributions as the priors for parameter
κ (Chen and Lee (2016)), that is, Prior 1: ρ ∼ Beta(4,6), ϕ ∼ Beta(10,90); Prior 2: ρ ∼
Beta(60,40), ϕ ∼ Uniform(0,1). We conduct an adaptive estimation to homogeneous design
using alternative priors compared with the default case.

In each robustness experiment we redo the local interval selection and the adaptive esti-
mation with the recalibrated critical values. For prior experiments, using the critical values
computed under a default setup, we conduct an estimation with different priors. Table 5 re-
ports the parameter estimation accuracy under misspecified parameters, alternative a and
alternative priors (κ). Compared to the default case with ϑ∗

0 = ϑ0, a∗ = 1 and flat prior of
parameters, there is no significant difference under homogeneous and RS-mult2 scenarios. It
suggests that, via the adaptive and data-driven way to calibrate the critical values, the esti-
mation accuracy is generally robust with respect to possible parameter misspecifications and
alternative a. Moreover, the parameter estimation is not sensitive to the selection of priors (κ)
as well by delivering similar results to the default.

The simulation study shows stable and accurate performances of the ALG model under
both stationary and nonstationary scenarios, where the ALG model provides a reasonable
selection of local intervals, reacts quickly to structural breaks and is robust to the choice of
hyperparameters. The adaptive Bayesian estimation is robust to the selection of hyperparam-
eters ϑ0 and a as well as the choice of priors in the adaptive MCMC procedure. However,
the adaptive MCMC procedure is a bit time consuming, especially when the sample size and
replication times become larger. The R package Template Model Builder (TMB) proposed
by Kristensen et al. (2016) is designed for estimating complex nonlinear models; see, for
example, Berentsen et al. (2018) and Cui, Li and Zhu (2020). It may be used to improve
computational speed.

5. Real data analysis. In this section we apply the ALG model to investigate the time-
dependent evolution of monthly crime count time series of the six categories in Byron, NSW,
Australia, from January 1995 to December 2017 and evaluate the performance of the ALG
model.

We retain the first 140 observations as initiation and start the estimation from the 141th
observation dating in September 2006 and end at the last point dating in December 2017. We
apply the ALG model for each crime dataset, where xt includes four exogenous covariates:
monthly mean maximum temperature, unemployment rate, population and a summer season-
ality dummy. The detailed description of datasets is in Section 2. We use the same setup of
the interval candidates and the critical values as in Section 4.1.
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TABLE 5
Robustness checking: “A0.8” and “A1.2”, “R0.8” and “R1.2” and “G0.8” and “G1.2” refer to the misspecified

cases where the parameters α + β , ρ, and γ are, respectively, biased with 20% deviation from the default ϑ0,
and “a0.75” and “a1.5” represent the two factors a = 0.75 and 1.5, respectively. “Prior1” and “Prior2” refer

to two alternative priors of κ

RMSE MAD

ωt αt βt ρt ϕt γt λt ωt αt βt ρt ϕt γt λt

Hom

Default 0.17 0.15 0.12 0.06 0.14 0.10 1.24 0.11 0.11 0.09 0.04 0.09 0.06 0.54
A0.8 0.20 0.18 0.14 0.07 0.17 0.13 1.37 0.14 0.13 0.10 0.05 0.12 0.08 0.62
A1.2 0.19 0.17 0.13 0.06 0.16 0.12 1.26 0.13 0.12 0.10 0.05 0.11 0.08 0.59
R0.8 0.16 0.15 0.12 0.05 0.13 0.09 1.22 0.11 0.10 0.09 0.04 0.09 0.06 0.53
R1.2 0.19 0.17 0.13 0.06 0.16 0.12 1.38 0.13 0.12 0.10 0.05 0.11 0.08 0.61
G0.8 0.18 0.16 0.13 0.06 0.15 0.11 1.21 0.12 0.11 0.09 0.04 0.10 0.07 0.56
G1.2 0.21 0.18 0.14 0.07 0.18 0.13 1.59 0.14 0.13 0.10 0.05 0.12 0.09 0.66
a1.75 0.18 0.16 0.13 0.06 0.15 0.11 1.19 0.12 0.11 0.09 0.04 0.10 0.07 0.55
a1.5 0.21 0.18 0.14 0.07 0.18 0.13 1.53 0.15 0.13 0.10 0.05 0.13 0.09 0.66

Prior1 0.17 0.15 0.14 0.06 0.10 0.11 1.35 0.13 0.11 0.10 0.05 0.10 0.07 0.61
Prior2 0.15 0.15 0.13 0.02 0.12 0.10 1.12 0.10 0.10 0.10 0.02 0.09 0.07 0.47

RS-m2

Default 0.39 0.20 0.17 0.17 0.13 0.20 2.24 0.28 0.15 0.13 0.10 0.10 0.14 0.94
A0.8 0.42 0.22 0.18 0.16 0.15 0.21 2.12 0.30 0.17 0.14 0.09 0.11 0.16 0.92
A1.2 0.41 0.21 0.18 0.16 0.14 0.21 2.19 0.29 0.16 0.13 0.09 0.10 0.15 0.93
R0.8 0.39 0.19 0.17 0.17 0.13 0.20 2.31 0.27 0.15 0.13 0.10 0.10 0.14 0.94
R1.2 0.42 0.21 0.18 0.16 0.15 0.21 2.15 0.29 0.16 0.14 0.09 0.10 0.15 0.93
G0.8 0.40 0.20 0.17 0.17 0.14 0.20 2.22 0.28 0.15 0.13 0.09 0.10 0.15 0.93
G1.2 0.43 0.22 0.19 0.16 0.15 0.22 2.11 0.30 0.17 0.14 0.09 0.11 0.16 0.93
a0.75 0.41 0.20 0.17 0.17 0.14 0.21 2.27 0.28 0.15 0.13 0.10 0.10 0.15 0.95
a1.5 0.43 0.22 0.19 0.16 0.15 0.22 2.09 0.30 0.17 0.14 0.09 0.11 0.16 0.93

5.1. Interpretation. For space limitation we only present the results of three crime cate-
gories of MDP, LOS and ARS, representing low, medium and high levels of zero percentage
datasets; see Figures B, C and D in the Supplementary Material (Xu et al. (2020a)) for the
detailed results of ASS, TSP and AJP, respectively. Figures 6–8 illustrate the ALG estimates
of parameters from September 2006 to December 2017. Specifically, as the intensity λt , that
is, the conditional expectation of crime counts, represents the essential feature of observa-
tions, we thus display the crime counts, the adaptive estimate of λt and the corresponding
95% credible interval in the subplot (a). The subplots (b)–(j) display the estimates of the
time-varying parameters ωt , αt , βt , ρt , ϕt and the effect estimate of exogenous covariates γ t

together with their 95% credible intervals. We also display the constant estimate under the
global homogeneity as a benchmark to highlight the time-varying pattern of the adaptive es-
timates. The ALG estimate of intensity process λt above all captures the dynamics of crime
count time series very well. The estimated λt is not very dispersed, as reflected by the narrow
95% credible intervals, but does have varying dynamics. We note that closed circuit televi-
sion (CCTV) cameras are located at some council facilities to reduce crime by preventing
potential offenders and to assist police in the detection and prosecution of offenders. CCTV
cameras and extra street lighting were installed in the Byron Bay town center from August
2015, which may explain a decreasing trend in MDP after 2015. We do observe that MDP
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FIG. 6. MDP: the ALG estimate and 95% CIs (credible intervals) of λt and the parameters. (a) indicates crime
counts Yt with dashed lines. (b)–(j) indicates the constant estimate under global homogeneity with dot-dashed
lines.

series and estimated λt go to lower levels after 2015 in Figure 6(a). The count of LOS ex-
hibits a pattern of seasonality and changing level via visual inspection which is also properly
reflected by estimated λt .

The ALG model, in general, flexibly captures the dynamics of time-varying parameters
and reflects nonstationarity under different levels of zero inflation and overdispersion, while
the constant estimator under global homogeneity often over- or underestimates parameters.
For example, we find that αt is relatively stable for all these three crimes, with fluctuations
around zero for LOS and ARS. It indicates a stable and positive neighborhood effect for
MDP. The zero-inflation parameter, ρt , is generally close to zero for most types of crime
except ARS. This is reasonable as ARS has excessive zero observations. Specifically, ρt re-
veals a decreasing trend for ARS, which is consistent with the count feature, that is, lightly
increasing intensity and smaller percentage of zeros as time goes on. The dispersion param-
eter ϕt for all crimes is positive with larger value for LOS than MDP and ARS, implying an
overdispersion feature of these crime series. We find a sharp decrease of ϕt for LOS after
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FIG. 7. LOS: the ALG estimate and 95% CIs of λt and the parameters. (a) indicates crime counts Yt with dashed
lines. (b)–(j) indicates the constant estimate under global homogeneity with dot-dashed lines.

around year 2016, which might be because of the more regular and stable pattern of LOS
crime intensity between 2015–2017.

A large amount of literature has documented that higher levels of violence tend to appear
under warm temperatures (Mares and Moffett (2016)) and could exhibit certain seasonality.
Our study not only detects the effects of temperature and seasonality on the incidences of
crimes but also investigates the evolution of temperature impacts over time. We find that
LOS has a positive coefficient for the summer dummy, indicating a clear feature of higher-
level crime during summer than during other seasons, and the positive temperature effect is
also more significant in the recent two years (years 2016–2017). We also find a generally
positive summer dummy coefficient for ASS and TSP and a positive temperature coefficient
for TSP as well. This indicates that higher-level crime activities are likely to occur as a result
of anomalously warm seasons/temperatures for LOS, ASS and TSP, while the other crimes
like MDP and ARS are not sensitive to temperatures and hot seasons, with the coefficients
for both temperature and the summer dummy close to zero or fluctuating around zero.
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FIG. 8. ARS: the ALG estimate and 95% CIs of λt and the parameters. (a) indicates crime counts Yt with dashed
lines. (b)–(j) indicates the constant estimate under global homogeneity with dot-dashed lines.

After relaxing to local stationarity, we observe a diverse phenomenon of demographic fac-
tors. In particular, we find among all the six categories that five crime incidents (including the
three illustrative cases as well as ASS and TSP) are not very sensitive to either the unemploy-
ment rate or the population amount, as the estimated coefficients are generally stable with
values around 0. In other words, there is no evidence of an association between population
and unemployment rate for these crime activities. However, the two produce a certain posi-
tive effect for AJP. We find a positive coefficient of the unemployment rate at around years
2011–2016 and a positive coefficient of population after year 2013 for AJP. We also observe
an increasing trend of AJP criminals after year 2012. This indicates that a greater unemploy-
ment rate and population can be one reason for the increasing intensity in AJP since around
2012. The constant estimator under global homogeneity lacks any meaningful interpretation
on the dynamics of exogenous factors’ effects, with almost all estimates being close to zero
for all the categories.

5.2. Model selection and diagnostic checking. We use a model selection technique to
evaluate the overall impact of exogenous covariates. Specifically, we set up the dynamics of
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FIG. 9. BIC criterion results: “M0” and “M1” refer to the model that BIC criterion favors.

various crime series using the ALG model with (labeled M1) and without exogenous variables
(M0), respectively. In other words, we force γ t = 0 in model M0 at every time t . We apply
Bayesian information criterion (BIC) to choose the better model at each time.

Let Dt denote the BIC difference of M1 and M0 at time t by

Dt = log
(|It |)(k1 − k0) − 2

[
L(YIt |xIt ,ϑ t ,M1) − L(YIt |xIt ,ϑ t ,M0)

]
,

where |It | is the sample size of the detected local interval of homogeneity It at time t

and k0 and k1 are the number of parameters in models M0 and M1, respectively. Here,
L(YIt |xIt ,ϑ t ,Mi ) is the log-likelihood of model Mi over interval It for i = 0,1. Positive
Dt indicates smaller BIC for model M0, thus supporting M0 over M1 at time t . Figure 9 dis-
closes the model selection results. As shown, the BIC criterion strongly favors M1 at most
time points for ASS and LOS, while only at some points for TSP and MDP, but always
strongly supports M0 for ARS and AJP. This indicates that the effects of exogenous covari-
ates and seasonality, as a whole, are significant to crimes ASS and LOS but not for ARS and
AJP. As the variables of unemployment rate and population are observed for the whole NSW
instead of Byron, the interpretation of the test may have some limitation.

We perform diagnostic checking based on the Pearson residuals. Figure 10 exhibits the
histogram and ACF of the residuals and the ACF of the squared standardized residuals for
MDP, LOS and ARS, respectively. All ACFs are within the two standard error limits, except
for two small correlations on the boundary for the LOS dataset. The results for other crime
categories demonstrate similar performance (see Figure E in the Supplementary Material
(Xu et al. (2020a)) for details). It implies that the ALG model is adequate in describing the
dynamics of the crime datasets.

6. Conclusion. This research proposes a comprehensive model, named the Adaptive
Log-linear zero-inflated Generalized poisson integer-valued GARCH with exogenous co-
variates (ALG), to capture the dynamics of count time series with various characteristics
and, simultaneously, incorporates the influence of multiple exogenous variables in a unified
modeling framework. The ALG model enables one to handle unforeseeable structural breaks
via time-varying parameters without any predetermined information on the changing points.
We adopt an adaptive approach to detect a local homogeneous interval at each time point,
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FIG. 10. Diagnostic checking plots: MDP (upper), LOS (middle) and ARS (bottom). From left to right are
histograms of the residuals, ACF of the residuals and ACF of the squared residuals, respectively.

over which the time-dependent parameters are estimated through an adaptive Bayesian pro-
cedure based on the MCMC technique. A finite sample analysis shows stable and accurate
performances of the ALG model under both stationary and nonstationary scenarios, where
the ALG model provides a reasonable selection of local intervals, reacts quickly to structural
breaks and is robust to the choice of hyperparameters. In fact, the ALG model is general and
can be easily applied to other nonstationary integer-valued time series with the features of au-
tocorrelation, heteroscedasticity, overdispersion and excessive number of zero observations.

In real data analysis on the six crime incidents categorized as “assault: nondomestic vi-
olence related assault,” “malicious damage to property,” “theft: steal from person,” “liquor
offenses,” “against justice procedures: breach bail conditions” and “arson” in Byron, NSW,
Australia, the ALG model not only delivers persuasive estimation accuracy of stochastic in-
tensity but also provides insightful interpretations on the dynamics of intensity, effect of
seasonality (summer) and impacts of several environment and demographic factors. It is
able to flexibly capture the dynamics of changing parameters, whereas the constant model
under global homogeneity often leads to overestimation or underestimation. We find that
higher levels of the crime activities are likely to occur as a result of anomalously warm sea-
sons/temperatures for nondomestic violence related assault, liquor offenses and steal from
person with time-dependent dynamics, while this is not the case for the other three crimes.
The effects of unemployment rate and population are not significant to these six crime inci-
dents except for the crime of against justice procedures where a greater unemployment rate
and population can be one reason for the increasing intensity of AJP since around 2012.
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SUPPLEMENTARY MATERIAL

Supplement to “Adaptive log-linear zero-inflated generalized Poisson autoregressive
model with applications to crime counts.” (DOI: 10.1214/20-AOAS1360SUPPA; .pdf).
Supplement on Figures A–E.

Source code for “Adaptive log-linear zero-inflated generalized Poisson autoregressive
model with applications to crime counts.” (DOI: 10.1214/20-AOAS1360SUPPB; .zip). R
source code for the simulation design RS-m1 described in this paper and data files from this
design. Other designs can run using same codes with simple modifications at data input.
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