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Indirect comparisons of treatment-specific outcomes across separate
studies often inform decision making in the absence of head-to-head ran-
domized comparisons. Differences in baseline characteristics between study
populations may introduce confounding bias in such comparisons. Matching-
adjusted indirect comparison (MAIC) (Pharmacoeconomics 28 (2010) 935–
945) has been used to adjust for differences in observed baseline covariates
when the individual patient-level data (IPD) are available for only one study
and aggregate data (AGD) are available for the other study. The approach
weights outcomes from the IPD using estimates of trial selection odds that
balance baseline covariates between the IPD and AGD. With the increasing
use of MAIC, there is a need for formal assessments of its statistical prop-
erties. In this paper we formulate identification assumptions for causal esti-
mands that justify MAIC estimators. We then examine large sample proper-
ties and evaluate strategies for estimating standard errors without the full IPD
from both studies. The finite-sample bias of MAIC and the performance of
confidence intervals based on different standard error estimators are evaluated
through simulations. The method is illustrated through an example comparing
placebo arm and natural history outcomes in Duchenne muscular dystrophy.

1. Introduction. Indirect comparisons refer to comparisons of treatment-specific out-
comes across different studies, as opposed to direct comparisons of treatments-specific out-
comes within a single study. This frequently arises in clinical, economic and regulatory eval-
uations of new treatments (Altman et al. (2005), Sutton et al. (2008), Wells et al. (2009),
Jansen et al. (2011)). Even when a new treatment has been compared with a standard of care
in a randomized trial, for example, it is often important for decision-makers to contextual-
ize expected outcomes with other treatments and external data sources. The need for indirect
comparisons is also especially acute in settings where direct randomized comparisons are un-
ethical or infeasible, such as in late-stage oncology trials (Adjei, Christian and Ivy (2009)),
rare disease trials and evaluations of long-term outcomes in open-label extension trials. Indi-
rect comparisons also inform the design of trials by providing reasonable prior estimates of
effect sizes for power calculations and noninferiority margins (Snapinn and Jiang (2011)).

Since indirect comparisons involve comparisons between studies for which assignment
to different studies is not randomized, the resulting treatment effect estimates may be con-
founded by cross-study differences in baseline characteristics. Such differences may exist
even when treatment groups within each study have been randomized. In practice, a host of
differences in the design and setting of each study can bias indirect comparisons. It is es-
sential to consider, with clinical input, definitions and assessment methodologies for the out-
come measure, patient selection criteri and background care, along with other issues (Pocock
(1976), FDA (2001), Phillippo et al. (2016)). A nonexhaustive list of considerations is pro-
vided in Table 1. Although a wide range of issues may introduce bias, there are many cases
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TABLE 1
Study design features that may vary across studies and bias indirect comparisons. Differences in observed

baseline characteristics, the final category, are addressed by the adjustment methods described in this paper

Aspect of study design

Outcome assessment:
Clinical, imaging or laboratory methods used to process and measure outcomes.
Outcome definitions, including timing of assessments.
Event ascertainment or adjudication procedures.
Completeness of follow-up, reasons for drop-out.

Patient selection:
Inclusion and exclusion criteria.
Recruitment process (e.g., motivation, consent process, distance of site to patient).
Disease diagnostic criteria.

Background treatments and care settings:
Time period and geography, and associated standards of care.
Range of nonstudy treatment options available.
Concomitant medications.

Baseline patient characteristics:
Demographics.
Comorbidities.
Treatment history.
Severity and duration of medical condition.
Biomarkers.

in which separate studies are found, after careful evaluation, to be sufficiently similar for an
indirect comparison. Registrational trials conducted for different treatments within the same
indication during similar time periods, for instance, often share a high degree of similarity.
In this paper we assume that trials are sufficiently similar in design such that attention can be
focused on addressing bias that stems from differences in baseline characteristics.

When individual patient-level data (IPD) are available for both studies, the pooled data can
essentially be regarded as observational data with a nonrandomized treatment assignment. In
this case methods for estimating treatment effects with nonrandomized treatment based on
outcome regression and propensity score approaches are well established (Lunceford and
Davidian (2004), Kang and Schafer (2007)). Conducting indirect comparisons with full IPD
can also be viewed as generalizing estimates from one study to a different target study pop-
ulation (Stuart et al. (2011), Hartman et al. (2015), Nie et al. (2013), Zhang et al. (2016))
which has a long history of application in regulatory settings in the form of studies with his-
torical controls (FDA (2001), EMA CHMP (2006)). Access to full IPD should always be the
preferred approach to comparative analyses, when possible.

In practice, however, many indirect comparisons are conducted in settings where the full
IPD are not available for both study populations. When only aggregate data (AGD) consist-
ing of summary statistics (e.g., means and standard errors from publications) for outcomes
and baseline covariates are available, Bucher et al. (1997) introduced a widely used method
to compare treatment effects on an appropriate scale of contrast (e.g., log odds ratio, risk
difference, etc.) relative to a common comparator group. But, as we discuss in Section 3, this
method requires a common comparator arm between studies and does not eliminate the risk
of bias. If AGD from a large number of studies are available, mixed treatment comparisons
generalize methods from meta-analysis and Bucher et al. (1997) to allow for comparisons of
treatments within a network of randomized trials that are linked by common comparators (Lu
and Ades (2004), Nixon, Bansback and Brennan (2007)). These approaches rely on “con-
sistency” or “exchangeability” assumptions, requiring treatment effects to be constant across
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trials on a specified scale of contrast. These assumptions are typically violated when study
populations differ in baseline characteristics, particularly those that modify treatment effects
on the chosen contrast scale.

It is often the case that IPD are available for one study whereas only AGD are available for
others. This can occur, for example, when researchers can access IPD from a study they con-
ducted but cannot directly access IPD underlying published AGD from other studies. When
IPD are available for only one study and AGD are available for another, two general ap-
proaches have been used. The simulated treatment comparison (STC) method estimates an
adjusted mean outcome under the IPD treatment by fitting an outcome regression model to
the IPD and plugging in baseline covariates from the AGD (Caro and Ishak (2010), Ishak,
Proskorovsky and Benedict (2015)). Indirect comparisons can be obtained by contrasting the
predicted value with observed mean outcomes in the AGD. If a nonlinear regression model
is used, such as a logit link in a logistic regression model or a log link in a proportional
hazards model, this method incurs bias because expectations do not commute with nonlinear
functions. Addressing this requires parametric assumptions about the full joint distribution
of covariates from the AGD. STC could also be biased when the postulated outcome regres-
sion model is misspecified. An additional method is matching-adjusted indirect comparison
(MAIC) (Signorovitch et al. (2010)), which estimates mean outcomes for the IPD in the
population represented by the AGD by estimating trial selection odds through a method of
moments approach and reweighting the IPD. This avoids issues that arise from regression
modeling, though it still generally assumes correctly specified models for the trial selection
odds. MAIC is similar in spirit to a number of other reweighting methods that seek to bal-
ance covariates between treatment groups to estimate causal effects (Zubizarreta (2015), Li,
Morgan and Zaslavsky (2018)) and identical to the covariate balancing propensity score used
to estimate average treatment effects on the treated (Imai and Ratkovic (2014)) and entropy-
balancing (Hainmueller (2012), Zhao and Percival (2017)) when a logistic regression model
is assumed for the trial assignment model (see Section 2.2). However, these other methods
are largely motivated by concerns about the balancing performance of propensity scores esti-
mated from parametric models and focus on estimation and inference in other settings where
IPD are fully observed.

Although MAIC has been successfully applied in health technology assessments, in pub-
lished outcomes research studies (Signorovitch et al. (2012, 2013), Phillippo et al. (2016),
Swallow et al. (2016)) and in clinical regulatory evaluations (EMA CHMP (2018)), few for-
mal evaluations of its underlying assumptions and statistical properties exist. We aim to partly
address this gap. Specifically, we formalize the problem in the framework of counterfactual
outcomes and formulate identification assumptions for causal estimands in the setting where
IPD is available for only one study in Sections 2.1 and 2.2. We then study the large sample
properties of the MAIC estimator in Section 2.3 and discuss strategies to estimate the stan-
dard error in the absence of IPD from the AGD trial in Section 2.4. An investigation of the
finite sample performance of the MAIC estimator and standard error estimators is reported in
Section 3. We illustrate the method through an application to Duchenne muscular dystrophy
in Section 4 and conclude with some further discussion in Section 5. Proofs are deferred to
Appendix D.

2. Method.

2.1. Problem setup and notation. For each individual i in either the IPD or AGD study,
let Yi denote a continuous or binary outcome and Xi a p-dimensional vector of baseline co-
variates belonging to covariate space X . Let Zi ∈ {0,1,2} denote treatment assignment to
either a common comparator (Zi = 0) or a treatment studied only in the IPD or AGD trial
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(Zi = 1 or Zi = 2, respectively) which is randomized within each trial. Let Ti ∈ {1,2} denote
trial assignment to the IPD trial (Ti = 1) or AGD trial (Ti = 2). A common comparator is
assumed to be available here to facilitate some parts of the subsequent exposition, but it is
not strictly needed for MAIC. In cases with single arm studies, the common comparator data
is omitted and Zi = Ti . The IPD, in general, thus consists of independent and identically
distributed (i.i.d.) observations DIPD = {(Yi,Zi,Xi) : Ti = 1}. The AGD consists of data
summaries DAGD = {Ȳ2z, X̄2z, S

2
Y,2z,S2

X,2z,N2z : z = 0,2}, where Ntz = ∑
Ti=t I (Zi = z),

X̄tz = ∑
Ti=t XiI (Zi = z)/Ntz and Ȳtz = ∑

Ti=t YiI (Zi = z)/Ntz. Among arm z of trial t ,
the sample variance of the outcome is S2

Y,tz = ∑
Ti=t (Yi − Ȳtz)

2I (Zi = z)/(Ntz − 1) and of

all covariates is S2
X,tz = ∑

Ti=t (Xi − X̄tz)
�2I (Zi = z)/(Ntz − 1), with � denoting elemen-

twise exponentiation. The sample covariance matrix for X is not fully available since the
covariance between covariates is, typically, not reported in publications. Let the total size
between trials be N = ∑

t,z Ntz.
The goal of an indirect comparison is to conduct a “fair” comparison of the mean outcomes

under treatment 1 to treatment 2, ideally accounting for differences in outcomes due to dis-
crepancies in the distribution of X between studies. When IPD on both baseline covariates
X and outcomes Y are available for a group of patients, it is potentially possible to reesti-
mate their mean outcomes while adjusting the distribution of X to more closely match that
of another population with sufficiently overlapping support. As IPD is available for patients
treated with treatment 1, we can adjust their mean outcomes to more closely match the dis-
tribution of X of those who received treatment 2, that is, the T = 2 population, but not vice
versa, since only AGD is available for patients who received treatment 2. Let Yi(z) denote the
counterfactual outcome had patient i been treated with treatment z. With these considerations
in mind, we take the target estimand to be

(1) � = E
{
Y(1)|T = 2

} − E
{
Y(2)|T = 2

}
.

This is the average treatment effect on the treated (ATT) among those assigned to treatment
2. When a different scale for the treatment effect contrast is of interest, we can consider a
generalization,

�g = g
(
E

{
Y(1)|T = 2

}) − g
(
E

{
Y(2)|T = 2

})
,

where g(·) is a given link function. For example, when Y is binary, taking g(u) = log{u/(1 −
u)} specifies that �g is on the log odds ratio scale (LOR). Regardless of the scale of contrast,
the main challenge will be to identify and estimate E{Y(1)|T = 2}. We will focus on � as
the target parameter for conciseness and note that a transformation can be applied to obtain
�g .

2.2. Identification. As � is defined in terms of unobserved counterfactual outcomes, we
consider the following assumptions required for identification:

ASSUMPTION 2.1. Random treatment within trial: Z ⊥⊥ {X, Y (1), Y (0)}|T = 1 and
Z ⊥⊥ {X, Y (2), Y (0)}|T = 2.

ASSUMPTION 2.2. Consistency: Y = Y(Z) with probability 1.

ASSUMPTION 2.3. Positivity of trial assignment: P(T = 1|X = x) ≥ εT |X for all x ∈ X ,
for some εT |X > 0.

ASSUMPTION 2.4. Ignorability of trial assignment for the outcome under treatment 1:
T ⊥⊥ Y(1)|X.
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The first assumption refers to the independence of treatment assignment with covariates
and counterfactual outcomes within each trial due to randomization. This assumption would
be omitted in the case of single-arm studies. The consistency assumption states that the ob-
served outcome coincides with the counterfactual outcome under the treatment received,
which excludes settings with interference and different versions of a treatment. The posi-
tivity assumption indicates patients are not assigned to the AGD trial using a deterministic
or nearly deterministic rule in X. This is a nontrivial assumption that could be violated, for
instance, when inclusion/exclusion criteria are such that the AGD trial includes patients who
are excluded from the IPD trial. In such cases the underlying trial populations are not similar
enough to conduct an indirect comparison with any method without extrapolating beyond the
population of the available IPD. Conversely, the assumption allows for P(T = 2|X = x) = 0
for some x ∈ X so that there may be patients enrolled in the IPD trial who would be excluded
from the AGD trial. In theory, such patients can simply be excluded to achieve balance in the
distribution of X between studies. We offer some more discussion on the effects of violating
this assumption in practice in Section 5. The trial assignment ignorability assumption states
that we observe sufficient covariates X such that trial assignment is unrelated to the coun-
terfactual outcome under treatment 1 within strata of X. This is plausible when the patient
populations between the two trials are similar enough such that conditioning on the observed
covariates X is enough to control for the differences between study populations that could
lead to confounding bias. As adjustments for the the distribution of X is applied to only the
IPD estimates, ignorability is required only for treatment 1 and not for treatment 2.

Based on these assumptions, the second term of � can be identified as E{Y(2)|T = 2} =
E(Y |Z = 2, T = 2) using Assumptions 2.1 and 2.2. The first term of � can be identified as

(2)

E
{
Y(1)|T = 2

} = E
[
E

{
Y(1)|X, T = 2

}|T = 2
]

= E
[
E{Y |X,Z = 1, T = 1}|T = 2

]
= E

{
P(T = 1)

P (T = 2)

P (T = 2|X)

P (T = 1|X)
E(Y |T = 1,X,Z = 1)|T = 1

}

= E

{
I (Z = 1)

P (Z = 1|T = 1)

I (T = 1)

P (T = 2)
ω(X)Y

}
= E

{
I (Z = 1, T = 1)ω(X)Y

}
/E

{
I (Z = 1, T = 1)ω(X)

}
,

where ω(X) = P(T = 2|X)/P (T = 1|X) denotes the odds of trial assignment given X. We
used Assumptions 2.1, 2.2, 2.4 in the second equality, 2.3 in the third and fourth equalities
and 2.1 in the fourth and final equalities. This suggests that � can be identified if ω(X) can
be identified. Even if ω(X) could not be identified exactly, the last equality shows it would
be sufficient if ω(X) could be identified up to a constant due to the ratio of terms involving
ω(X).

Before proceeding, we first discuss an alternative to Assumption 2.4 that leverages the
common comparator arm when data on it is available:

ASSUMPTION 2.5. Ignorability of trial assignment for the counterfactual difference:
T ⊥⊥ {Y(1) − Y(0)}|X.

To make use of this assumption, the target parameter can be written � = E{Y(1) −
Y(0)|T = 2} − E{Y(2) − Y(0)|T = 2}, where E{Y(2) − Y(0)|T = 2} is straightforward to
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identify due to randomization of treatment within trial. The first term can be identified by

(3)

E
{
Y(1) − Y(0)|T = 2

} = E
[
E

{
Y(1) − Y(0)|X, T = 2

}|T = 2
]

= E
[
E

{
Y(1) − Y(0)|X, T = 1

}|T = 2
]

= E
[
E{Y |X,Z = 1, T = 1} − E{Y |X,Z = 0, T = 1}|T = 2

]
= E

{
I (Z = 1)

P (Z = 1|T = 1)

I (T = 1)

P (T = 2)

P (T = 2|X)

P (T = 1|X)
Y

}

− E

{
I (Z = 0)

P (Z = 0|T = 1)

I (T = 1)

P (T = 2)

P (T = 2|X)

P (T = 1|X)
Y

}
,

where we use Assumption 2.5 in the second equality and Assumptions 2.1 and 2.2 in the
third equality. The final steps proceed, as in (2), which uses Assumptions 2.3 and 2.1. This
alternative assumption could be easier to justify in some cases. For example, suppose the
outcome model can be specified by

E(Y |Z,X) = β0 + β1I (Z �= 0) + βT
2X + βT

3I (Z �= 0)XM + β4I (Z = 2),

where XM ⊆ X is a subset of the prognostic covariates that modify the treatment effect of the
active treatments and the components of β3 are not exactly the negative of the components
of β2 corresponding to the same covariate in XM . In such cases it suffices to adjust only for
the treatment effect modifiers XM rather than the full set of X that may differ in distribution
between trials (Phillippo et al. (2016)). This approach can also be used to identify �g for a
nonlinear g(·) by writing E{Y(1)|T = 2} = E{Y(1) − Y(0)|T = 2} + E{Y(0)|T = 2}. The
second term can be easily identified from randomization within trial. This approach offers
an alternative identification strategy but still relies on strong assumptions about the form of
the conditional mean of Y and assumes covariates are known not to be effect modifiers on
the additive scale. Despite its appeal, Assumption 2.5 is not necessarily weaker than 2.4 and
should be evaluated based on clinical input to the extent possible in practice.

It now remains for us to identify ω(X) from the observed data. Had IPD been available
for both trials, then this would be straightforward. In the absence of the full IPD, under
Assumption 2.3, ω(X) is a solution in h(X) to the integral equation

(4) E
{
h(X)I (T = 1)

−→
X

} − μ∗−→
X 2

P(T = 2) = 0,

where
−→
X = (1,XT)T and μ∗−→

X 2
= E(

−→
X |T = 2). If h∗(X) is a solution to this equation and the

solution is unique, then it must be that h∗(X) = ω(X). In general, without any restrictions on
h(X), there may not be a unique solution. However, h(X) can be reasonably parameterized
such that there exists a unique solution. For example, suppose the trial assignment follows a
logistic regression model,

(5) logitP(T = 2|X) = αT−→X ,

for some α = (α0,α
T
1)

T. Then under this model, ω(X) = exp(α∗T−→
X ), where α∗ is the true

value of α. Restricting h(X) = ω(X;α) = exp(αT−→X ), (4) admits a unique solution because
Q(α) = E{ω(X;α)I (T = 1)} − αTμ∗−→

X 2
P(T = 2) is strictly convex in α (Signorovitch et al.

(2010)).
Other moment conditions can also be used. Since ω(X) needs only to be identified up to a

constant, an alternative condition is

(6) E
{
h
(
X − μ∗

X2

)
I (T = 1)

(
X − μ∗

X2

)} = 0,
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where μ∗
X2

= E(X|T = 2). Under model (5), α1 can be identified by similar arguments by
restricting h(X − μX2

) = ω(X − μX2
;α1) = exp{αT

1(X − μX2
)}. This approach identifies

ω(X) up to a scalar constant and avoids estimation of an additional intercept parameter that
is not needed for estimating �. Another potentially useful condition is

(7) E
{
h(X)I (T = 1)t(X)

} − E
{
t(X)|T = 2

}
P(T = 2) = 0,

where we take t(X) = (1,X1, . . . ,Xp,X2
1, . . . ,X

2
p)T to be elements of X and their squares.

In contrast to conditions (4) and (6), using this condition in practice would require the avail-
ability of the sample variances of the covariates in the AGD to estimate E{t(X)|T = 2}. If we
again restrict h(X) = ω(X;α†) = exp{α†Tt(X)}, where α† = (αT,αT

2)
T, then ω(X) is again

identified under the more general trial assignment model

logitP(T = 2|X) = α†Tt(X).

The model from (5) can be viewed as a submodel of this model that restricts α2 = 0. When (5)
is correct, fitting this larger model comes at the cost of finite-sample efficiency loss. However,
if this expanded model is correct, then using (4) for estimation would yield biased estimates of
ω(X) and �. Balancing the first and second moments with this expanded model thus involves
trade-off between robustness and efficiency. We next discuss estimation of ω(X) and � based
on these identification conditions.

2.3. Estimation. For the rest of the paper, except for Section 2.4, we will assume a model
where trial assignment is correctly specified by (5). We first estimate ω(X) by solving empir-
ical versions of the proposed moment conditions. For instance, let α̂1 be the solution to the
equation

(8) N−1
N∑

i=1

ω(Xi − X̄2;α1)I (Ti = 1)(Xi − X̄2) = 0,

where X̄2 = (X̄22N22 + X̄20N20)/(N22 + N20). We use the moment condition from (6) to
avoid estimating the additional intercept parameter. The following result states that α̂1 is
consistent and asymptotically linear and thus also asymptotically normal.

THEOREM 2.1. If the trial assignment model is correctly specified by (5), then α̂1
p→ α∗

1,
where α∗

1 is the true coefficient in (5). Furthermore, α̂1 is asymptotically linear such that

(9) N1/2(
α̂1 − α∗

1
) = N−1/2

N∑
i=1

ϕ
α1
i

(
α∗

1,μ
∗
X2

) + op(1),

where ϕ
α1
i (α1,μX2

) = Jα1(α1,μX2
)−1{Uα1

i (α1,μX2
) + U

μX2
i (μX2

,α1)} is a mean zero ran-
dom vector with finite variance and

Uα1
i (α1,μX2

) = (Xi − μX2
) exp

{
αT

1(Xi − μX2
)
}
I (Ti = 1),

U
μX2
i (μX2

,α1) = −E
[
exp

{
αT

1(Xi − μX2
)
}
I (Ti = 1)

]
(Xi − μX2

)
I (Ti = 2)

P (Ti = 2)
,

Jα1(α1,μX2
) = −E

[
(Xi − μX2

)(Xi − μX2
)T exp

{
α̃T

1(Xi − μX2
)
}
I (Ti = 1)

]
.

This expansion reveals two sources that contribute to the asymptotic variance. Suppressing
implicit arguments for the parameters, the Uα1

i term is contributed from estimating α1 when

μX2
is known. The U

μX2
i term is the additional contribution when μX2

is considered to be



STATISTICAL PERFORMANCE OF MAIC 1813

estimated by X̄2. Though this expansion clarifies the sources of variability, the influence
function cannot be directly used to compute the asymptotic variance since U

μX2
i involves

IPD from the AGD trial.
Following estimation of α1, � can subsequently be estimated by an empirical version of

(2), plugging in ω(X; α̂1) for ω(X). We consider identification based on (2) instead of (3)
for conciseness of presentation, but similar results will hold if (3) is used. Specifically, the
estimator can be expressed as

(10)
�̂ =

N∑
i=1

I (Zi = 1, Ti = 1)ω(Xi; α̂1)Yi/

N∑
i=1

I (Zi = 1, Ti = 1)ω(Xi; α̂1)

− Ȳ22.

The following result states that �̂ is consistent and asymptotically linear and thus also asymp-
totically normal.

THEOREM 2.2. Suppose that the identification assumptions (2.1), (2.2), (2.3) and (2.4)

hold, and the trial assignment model is correctly specified by (5). Then, �̂
p→ �∗, where �∗

is the true target parameter �. Furthermore, �̂ is asymptotically linear such that

(11) N1/2(
�̂ − �∗) = N−1/2

N∑
i=1

ϕi

(
�∗,μ∗

1,α
∗
1,μ

∗
X2

) + op(1),

where μ∗
1 = E{Y(1)|T = 2} is the true counterfactual mean for the IPD treatment in the AGD

population and ϕi(�,μ1,α1,μX2
) = ϕ

μ2
i (�,μ1)+ϕ

μ1
i (μ1,α1)+Jμ1(α1)

−1C̃1(μ1,α1)
T ×

ϕ
α1
i (α1,μX2

) is a mean zero random variable with finite variance and

ϕ
μ2
i (�,μ1) = (μ1 − Yi − �)

I (Zi = 2, Ti = 2)

P (Zi = 2, Ti = 2)
,

ϕ
μ1
i (μ1,α1) = Jμ1(α1)

−1(Yi − μ1)e
αT

1Xi I (Zi = 1, Ti = 1),

Jμ1(α1) = E
{
eαT

1Xi I (Zi = 1, Ti = 1)
}
,

C̃1(μ1,α1) = E
{
Xi (Yi − μ1)e

αT
1Xi I (Zi = 1, Ti = 1)

}
.

The first ϕ
μ2
i term accounts for estimation of μ∗

2 = E{Y(2)|T = 2} from Ȳ22. The subse-
quent terms account for estimating μ∗

1 through weighting, which can be further decomposed
into a term contributed for estimating μ∗

1 when α1 is known and another term for estimating
α1. Again, the asymptotic variance cannot be directly computed from this influence function
because ϕ

μ2
i and ϕ

α1
i involve the IPD from the AGD trial. We argue in Section 2.4 that it is

often sufficient to compensate for ignoring this term by simply incorporating the marginal
variance of Ȳ22 from the AGD trial and consider other potential strategies.

2.4. Estimation of asymptotic variance. Estimating the asymptotic variance of �̂ is com-
plicated by the fact that �̂ depends on X̄2 and Ȳ22, and the IPD is not available to estimate
contributions that account for their variability. As we discuss in Appendix C, though one can
regard μ∗

X2
= X̄2 and μ∗

2 = Ȳ22 to be fixed in the sampling scheme, this may not always be
justifiable. In the following we consider strategies to estimate the full asymptotic variance,
regarding X̄2 and Ȳ22 as random, in the absence of the full IPD. To facilitate the subsequent
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considerations, we first define the following contributions to the influence function for �̂ for
estimating α1 and μX2

:

ϕ̃
α1
i (α1,μ1,μX2

) = Jμ1(α1)
−1C̃1(μ1,α1)

TJα1(α1,μX2
)−1Uα1

i (α1,μX2
),

ϕ̃
μX2
i (μX2

,μ1,α1) = Jμ1(α1)
−1C̃1(μ1,α1)

TJα1(α1,μX2
)−1U

μX2
i (α1,μX2

).

By calculating the variance of ϕi(�
∗,μ∗

1,α
∗
1,μ

∗
X2

), the full asymptotic variance of �̂ can
now be expressed as

(12)
σ 2 = {

Var
(
ϕ

μ1
i

) + Var
(
ϕ

μ2
i

)} + {
Var

(
ϕ̃

α1
i

) + 2 Cov
(
ϕ

μ1
i , ϕ̃

α1
i

)}
+ {

Var
(
ϕ̃

μX2
i

) + 2 Cov
(
ϕ

μ2
i , ϕ̃

μX2
i

)}
,

where the arguments of the components of the influence function are suppressed but implic-
itly evaluated at their respective truth. Decomposing the variance this way, the first two terms
constitutes the asymptotic variance had α1 been known. The second two terms are contributed
from estimating α1 had μX2

been known, and the final two terms account for estimating μX2
.

It is generally not possible to fully estimate σ 2 without further assumptions, as ϕ
μ2
i and

ϕ̃
μX2
i involve IPD from the AGD trial. However, it may still be possible to obtain reasonable

approximations. The following lemma further clarifies the form of the additional contribu-
tions from estimating α1 and μX2

under correct identification and modeling assumptions:

LEMMA 2.1. Let identification assumptions (2.1), (2.2), (2.3) and (2.4) be satisfied, and
the trial assignment model be correctly specified by (5). The terms contributed from estimat-
ing α1 from (12) can be simplified as

Var
(
ϕ̃

α1
i

) = P(T = 2)−1CT
1 Var(X|T = 2)−1,

E
{(

X − μ∗
X2

)(
X − μ∗

X2

)T
ω(X)|T = 2

}
Var(X|T = 2)−1C1,

Cov
(
ϕ

μ1
i , ϕ̃

α1
i

) = −P(T = 2)−1CT
1 Var(X|T = 2)−1,

E
{(

Y(1) − μ∗
1
)(

X − μ∗
X2

)
ω(X)|T = 2

}
,

where C1 = Cov{Y(1),X|T = 2}. Moreover, the terms contributed for estimating μX2
from

(12) can be simplified as

Var
(
ϕ̃

μX2
i

) = P(T = 2)−1CT
1 Var(X|T = 2)−1C1,

Cov
(
ϕ

μ2
i , ϕ̃

μX2
i

) = −P(T = 2)−1CT
1 Var(X|T = 2)−1C2,

where C2 = Cov{Y(2),X|T = 2}.

As long as there are no strong interactions between X and the treatment, it can be expected
that C1 ≈ C2. In this case, if, additionally, the trial assignment model is at least approxi-
mately correctly specified, then Var(ϕ̃

μX2
i )+2 Cov(ϕ

μ2
i , ϕ̃

μX2
i ) ≈ −CT

1 Var(X|T = 2)C1 < 0.
Omitting the contributions from estimating μX2

when estimating σ 2 thus tends to produce
conservative standard errors. By bounding ω(X), a similar phenomenon occurs for terms con-
tributed from estimating α1 so that Var(ϕ̃α1

i )+2 Cov(ϕ
μ1
i , ϕ̃

α1
i ) < 0 when the trial assignment

model is correct and the lower and upper bounds for ω(X) are not too extreme. These results
suggest that omitting contributions for estimating both α1 and μX2

can yield conservative
standard errors in scenarios where the trial assignment model is correctly specified.
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A simple approach to estimating σ 2 is thus to estimate only Var(ϕμ1
i ) and Var(ϕμ2

i ), fully
omitting contributions for α1 and μX2

, as in

(13) σ̂ 2
f o = V̂ar

{
ϕ

μ1
i (μ̂1, α̂1)

} + V̂ar
{
ϕ

μ2
i (�̂, μ̂1)

}
,

where μ̂1 is the weighted average from the IPD as in the first term of (10), V̂ar{ϕμ1
i (μ̂1, α̂1)}

is the sample variance of ϕ
μ1
i (μ̂1, α̂1) and V̂ar{ϕμ̃2

i (�̂, μ̂1)} = S2
Y,22/(N22/N). Previous

approaches to estimating standard errors for MAIC using robust sandwich estimators
(Signorovitch et al. (2010), Phillippo et al. (2016)), which are sometimes utilized in prac-
tice, are similar to this approach in that they ignore the variability from estimating α1 and
μX2

. Instead of fully ignoring the contributions for both α1 and μX2
, another approach is to

partially omit only the contribution for μX2
, as in

(14) σ̂ 2
po = V̂ar

{
ϕ

μ1
i (μ̂1, α̂1) + ϕ̃

α1
i (α̂1, μ̂1, μ̂X2

)
} + V̂ar

{
ϕ

μ2
i (�̂, μ̂1)

}
,

where μ̂X2
= X̄2. This is still feasible, as ϕ̃

α1
i does not involve IPD from the AGD trial. A

final approach is to attempt to fully estimate σ 2. Without any further assumptions, Var(ϕ̃
μX2
i )

can be approximated by

V
μX2 = −E{eα∗T

1 (Xi−μ∗
X2

)
I (Ti = 1)}

Jμ1(α∗
1)

2P(Ti = 2)
C̃1

(
α∗

1
)TJα∗

1
(
α∗

1,μ
∗
X2

)−1
C̃1

(
α∗

1
)
,

which partially simplifies Var(ϕ
μ̃X2
i ) under correct trial selection model to obviate the need

for IPD from the AGD trial. The covariance term Cov(ϕ
μ2
i , ϕ̃

μX2
i ) can be bounded by the

Cauchy–Schwartz inequality. This suggests estimating σ 2 by

(15)
σ̂ 2

cs = V̂ar
{
ϕ

μ1
i (μ̂1, α̂1) + ϕ̃

α1
i (α̂1, μ̂1, μ̂X2

)
} + V̂ar

{
ϕ

μ2
i (�̂, μ̂1)

}
+ V̂

μX2 + 2
[
V̂ar

{
ϕ

μ2
i (�̂, μ̂1)

}
V̂

μX2
]1/2

,

where V̂
μX2 is an empirical version of V

μX2 . Among these proposed approaches, we expect
σ̂ 2

f o to be more conservative than σ̂ 2
po, as it potentially omits negative contributions to the

asymptotic variance when underlying assumptions are satisfied. We will see in the simula-
tion results of Section 3 that this conservativeness of σ̂ 2

f o tends to improve its accuracy in

approximating the true standard error in small samples, when both σ̂ 2
f o and σ̂ 2

po tend to un-
derestimate, without paying a large price in terms of overestimation in large samples. Such
underestimation in small samples has also been observed for sandwich variance estimators
in other settings (Kauermann and Carroll (2001), Fay and Graubard (2001)). σ̂ 2

cs can be ex-
pected to be the most conservative, as it uses a very conservative bound for covariance. This
estimator could be potentially useful in situations when conservative confidence intervals and
hypothesis tests are prioritized over efficiency considerations.

3. Simulations. We performed simulations to assess the finite sample bias of MAIC
and alternative estimators. In particular, we sought to identify scenarios where proposed
approaches fail to provide reliable inferences. We also assessed the coverage and relative
length of CIs based on the proposed variance estimators. Besides the estimator �̂ (MAIC-
NAB), which is based on (2), we also consider an anchored MAIC approach (MAIC-ACB),
based on (3), �̂ACB = �̂ − {∑N

i=1 I (Zi = 0, Ti = 1)ω(Xi; α̂1)Yi/
∑N

i=1 I (Zi = 0, Ti =
1)ω(Xi; α̂1) − Ȳ20}. Additionally, we consider the method of Bucher et al. (1997) (BUC)
and the basic formulation of simulated treatment comparisons of Ishak, Proskorovsky and
Benedict (2015) (STC). To be consistent in the scale of contrast with other methods, we im-
plement BUC on the risk difference scale as �̂BUC = (Ȳ11 − Ȳ10) − (Ȳ22 − Ȳ20). As such,
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BUC would require that E(Y |Z,X) be linear in X to be unbiased, where X are covariates
that satisfy Assumption 2.5. We also considered simulations for contrasts on the log odds
ratio scale for all methods in Appendix B. For STCs we assume a logistic regression model
for E(Y |Z = 1,X),

m1(X;γ ) = g
(
γ T−→X )

,

where g(·) denotes the inverse-logit link function for binary outcomes in the simulations.
This model is fit using data from active arm in the IPD trial with the estimator denoted
by γ̂ . It is then used to extrapolate the mean outcome had individuals in the AGD trial
received treatment Z = 1 by �̂STC = m1(X̄2; γ̂ ) − Ȳ22. This approach would be unbi-
ased if the model for E(Y |Z = 1,X) is correctly specified with g(·) being linear. But
even if m1(X;γ ) is correctly specified and X satisfy the identification assumptions, still
E{Y(1)|T = 2} = E{E(Y |Z = 1,X)|T = 2} �= E{Y |Z = 1,X = E(X|T = 2)} = m(μX2

;γ )

when g(·) is nonlinear which results in bias.
We simulated data jointly for both the IPD and AGD trials in the case with binary Y

and continuous X. In all scenarios, independent observations were simulated according to
X ∼ N(0,0.8Ip + .2), T |X ∼ Ber{P(T = 2|X)} + 1, Z ∼ Ber(0.5) · T and Y |X,Z,T ∼
Ber{E(Y |X,Z,T )}, where

(16)
logitP(T = 2|X) = α0 + αT

1X,

logitE(Y |X,Z,T ) = β0 + {
βT

1 + βT
3I (Z > 0)

}
X + β2I (Z > 0) + I (Z = 2)β4,

with α0 = 0 β0 = −1, β2 = 0.1 and β4 = .5. For P(T = 2|X), α1 �= 0 induces imbalance in
the distribution of X in the IPD and AGD trial populations. Any imbalance in a subvector
of X that also has a nonzero coefficient in β3 subsequently induces confounding when com-
paring outcomes between trials. β3 �= 0 results in treatment effect heterogeneity on the logit
scale between active and placebo treatments. We considered scenarios with no confounding,
moderate confounding and severe confounding, with the parameters

None: α1 = (
0.251T

4,0T
p−4

)T
, β1 = 0pβ3 = 0p,

Moderate: α1 = (
0.251T

4,0T
p−4

)T
, β1 = (

0.151T
4,0T

p−4
)T

, β3 = (
0.11T

4,0T
p−4

)T
,

Severe: α1 = (
0.301T

4,0T
p−4

)T
, β1 = (

0.251T
4,0T

p−4
)T

, β3 = (
0.151T

4,0T
p−4

)T
.

This setup leads to a standardized mean difference (Cohen (2013)) of approximately −0.38
for the first four covariates and −0.18 for the remaining covariates in the none and moderate
settings and −0.45 and −0.22 in the severe setting. To get a sense of the treatment effect
heterogeneity, the standard deviation of the true differences in the outcome probability for
active vs. placebo treatments in the IPD and AGD trials are 0 and 0 for the none setting,
0.05 and 0.07 for the moderate setting and 0.07 and 0.09 for the severe setting. We initially
generated a large sample {(Yi,Zi, Ti,Xi) : i = 1, . . . ,N∗} and then randomly subsampled
by arm in each trial, as described in Appendix C, to include a fixed number of n patients
in all arms in the final sample. We also provide arguments there to justify that the proposed
procedures for inference are still valid under this modified sampling scheme.

In each replicate of the data, we calculated the four estimators for �, as well as the four
estimators for σ 2 discussed in Section 2.4. Besides σ̂ 2

f o, σ̂ 2
po and σ̂ 2

cs , we also implemented

an estimator σ̂ 2
sw based on a sandwich estimator for regression coefficients when �̂ is im-

plemented through a weighted linear regression, using the sandwich package in R with
default options (Zeileis (2004)). The approach has been previously considered for �̂ACB

(Phillippo et al. (2016)) and is essentially a direct calculation of the variance of �̂, treat-
ing the weights ω(Xi ) and treatment assignment Ti as fixed and plugging in estimators for
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the variance of Yi that allow for heteroskedasticity. For benchmarking purposes we also cal-
culated an estimator of σ 2 using the full influence function, the estimator that would typ-
ically be computed had the IPD from all trials been available. The true � was calculated
through simulating a large sample and calculating the mean difference of counterfactual out-
comes had patients in the AGD population received treatment Z = 1 and Z = 2, accord-
ing to E(Y |X,Z,T ) in (16). The percent bias for each estimator was then calculated as
R−1 ∑R

r=1(�̂
(r) − �)/�, where �̂(r) denotes an estimator calculated from data in the r th

replicate. The bias simulations were repeated over the different confounding scenarios for
sample sizes ranging n = 25 to n = 500 per arm and p = 5,10,15. The CI coverage was cal-
culated as R−1 ∑R

r=1 I [� ∈ {�̂(r) ±z0.975N
−1/2σ̂ (r)}], where z0.975 denotes the .975 quantile

of a standard normal and σ̂ (r) denotes an estimator of the asymptotic variance estimated from
data observed in the r th replicate. Relative CI length was calculated as R−1 ∑R

r=1 σ̂ (r)/σ̂emp,
where σ̂ 2

emp = (R − 1)−1 ∑R
r=1{�̂(r) − R−1 ∑R

r=1 �̂(r)}2 is the empirical variance of �̂(r)

over all repetitions. The coverage simulations were conducted under the moderate confound-
ing scenario for n = 25 to n = 500 per arm with p = 5,15. For each set of simulations, we ran
R = 5000 replicates to well approximate the tail probabilities when evaluating CI coverage.

3.1. Simulation results. The results for the bias simulations are presented in Figure 1.
Both MAIC estimators generally exhibited negligible bias across the scenarios considered.
The bias of BUC increases with the degree of confounding and results from the nonlinear
link function for E(Y |X,Z,T ) and interaction between X and Z in (16). Similar results
hold even when considering contrasts on the log odds-ratio scale in Appendix B. STC also
incurred bias that increases with the degree of confounding due to the nonlinear link. STC,
however, generally had lower bias than BUC for larger n. Extrapolation based on fitting
m1(X;γ ) appears to outperform placebo adjustment in BUC in large samples. The bias of
STC in small samples also appears to be more sensitive to increasing p than MAIC and BUC.

Results from the coverage simulations are presented in Figure 2. CIs based on σ̂ 2
f o and

σ̂ 2
sw generally achieve close to nominal coverage for n ≥ 50 per arm. They are only slightly

conservative in terms of both coverage and length, relative to empirical estimates, in large
samples. Approximating the behavior of CIs based on the full influence function, CIs based
on σ̂ 2

po also achieve close to nominal coverage for n ≥ 150 per arm when p = 5 but exhibits
slight undercoverage for smaller n and when p = 15. This could be related to underestimation
observed for sandwich estimators in small samples as discussed in Section 2.4 and can be
expected with larger number of parameters. Still, in large samples both still show excellent
performance. For all the approaches considered, there appears to be a drop in coverage for
n = 25. CIs for studies with such small samples should be interpreted with caution. The
CI based on σ̂ 2

cs is consistently conservative, achieving coverage of around 97% in most
scenarios and exhibiting a length around 5–10% longer than CIs based on empirical estimates
of the standard error.

In the Supplementary Material (Cheng, Ayyagari and Signorovitch (2020)), we also pro-
vide an extended set of simulation results on both bias and coverage for a range of data
settings, including for both binary and continuous Y , to further elucidate when MAIC and its
standard error estimators are or are not reliable.

4. Data application. Duchenne muscular dystrophy (DMD) is a rare neuromuscular dis-
order in which patients experience progressive muscle degeneration that often leads to loss of
ambulation during adolescence, respiratory and cardiac dysfunction in early adulthood and,
eventually, premature mortality (Emery, Muntoni and Quinlivan (2015)). Due to the rarity
of the disease, recruitment of DMD patients into clinical trials can be challenging. There is
strong interest in adopting single-arm designs for future DMD trials and using natural history
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FIG. 1. Percent bias of estimators by degree of confounding, sample size per arm (n) and number of covariates
(p).

(NH) data for external controls. Such external control groups have previously informed drug
approval in other rare diseases (ICH (2000), FDA (2006, 2017)). However, indirect compar-
isons to external controls is subject to the risk of bias due to potential differences in patient
baseline characteristics, along with other factors such as those in Table 1.

To illustrate MAIC, we considered a “negative control” study to assess whether a NH
cohort from a prospective noninterventional study (DMD-PRO-01), provided by Cure-
Duchenne, a 501(3)c patient foundation, are sufficiently comparable to the placebo arm of
a phase III DMD trial for tadalafil (PBO), provided by Eli Lilly, using IPD from DMD-PRO-
01 and AGD from the PBO trial. If the NH setting is sufficiently comparable to the trial, mean
outcomes between the studies should be similar after adjustment for differences in observed
characteristics. The data were accessed through the Collaborative Trajectory Analysis Project
(cTAP), a collaboration aiming to improve clinical trial design and interpretation in DMD.

We focused on a binary outcome for clinically significant worsening of the North Star
Ambulatory Assessment (NSAA), defined as decrease of ≥ 3 units from baseline to week
48 after study initiation (Ricotti et al. (2016)). We implemented MAIC-NAB, in addition to
STC and a naïve comparison that directly contrasted mean outcomes between the two stud-
ies without adjustment for baseline characteristics. Comparisons were conducted on the log
odds-ratio scale. For instance, MAIC-NAB estimates are obtained as �̂g = g(μ̂1) − g(Ȳ22)

with g(u) = log{u/(1 − u)}. For MAIC and STC, we include baseline characteristics from
Table 2 in X. These characteristics were selected based on studies evaluating prognostic fac-
tors for ambulatory outcomes in DMD and were thought to be important confounding factors
(Mazzone et al. (2016), Goemans et al. (2016)). Data on other potential confounding factors
such as genetic markers, were not available from both studies, and interpretations of the re-
sults should bear in mind that other unknown or unobserved factors could still bias the results
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FIG. 2. Coverage and relative length of 95% CI’s for �̂ by size per arm (n) and number of covariates (p) in the
moderate confounding scenario. Some points and bars for n = 25 are omitted if they take values beyond the axis
limits. σ̂ 2

f o and σ̂ 2
sw achieve close to nominal coverage for n ≥ 50 and only slightly conservative in length.

after adjustment. Estimators of the asymptotic variance on the log odds ratio scale based on
strategies discussed in Section 2.4 were obtained (detailed in Appendix A). We report SEs
based on σ̂ 2

f o, which we chose since the sample size is not small. For the naïve compari-
son, we use the usual SE estimator for log odds ratios based on the delta method (Bland and
Altman (2000)). Only the point estimate is available for STC. Two-sided p-values were also
reported from Wald tests for the null hypothesis that there is no difference in the proportion
of patients with NSAA worsening between studies. Comparisons were repeated with and
without application of the inclusion/exclusion criteria from the tadalafil trial to DMD-PRO-
01 (age 7–14 years, steroid duration ≥ six months, baseline six min walk distance 200–400
meters).

Table 2 reports the key characteristics available in both cohorts. Patients in the NH cohort,
on average, were younger, had better ambulatory function and rise time and shorter dura-
tion of steroid treatment. The indirect comparison results are reported in Table 3. A naïve
comparison of outcomes suggests that there were significant differences in NSAA worsen-
ing, with odds of worsening about 40% lower in NH vs. PBO (OR = 0.58; 95% CI: 0.34 to
0.99, p = 0.04). After MAIC adjustment, the magnitude of differences attenuated and was
no longer statistically significant (OR = 1.14, 95% CI: 0.64 to 2.04, p = 0.66). The standard
error increased slightly on the log odds scale from 0.27 to 0.30 after adjustment with MAIC.
Results were similar for STC (OR = 1.20). Findings were also similar after applying the trial
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TABLE 2
Baseline characteristics of patients from DMD-PRO-01 (NH) and tadalafil trial (PBO)

Baseline characteristics NH (n = 152) PBO (n = 90)

Age (years) 8.8 9.3
NSAA score 24.4 22.6
Six min walk distance (meters) 374.3 348.5
Rise time ≥ five seconds 50.0% 74.4%
Steroid duration ≥ 12 months 70% 90%
Height (cm) 122.1 125.5
Weight (kg) 28.2 30.6

NSAA: North Star Ambulatory Assessment.

inclusion/exclusion criteria. These results suggest that NH data is comparable to trial data
after appropriate adjustment for baseline characteristics.

5. Discussion. As with any nonrandomized treatment comparison, indirect comparisons
through MAIC can be biased by differences in unobserved confounders. Researchers ought to
include covariates X such that Assumptions 2.4 or 2.5 are satisfied as much as possible and
recognize the limitations of indirect comparison when confounders are unobserved. In the
literature on estimating average treatment effects, it is well known that including covariates
associated with only the outcome increases efficiency, while covariates associated with only
the exposure decreases efficiency (Lunceford and Davidian (2004), Brookhart et al. (2006),
Rotnitzky, Li and Li (2010), de Luna, Waernbaum and Richardson (2011)). The same results
are expected to hold when estimating the weights for MAIC, viewing trial selection as the
“exposure.” It is thus generally advisable to include in X observed covariates that are known
or suspected to be associated with outcomes, even if their imbalance between trials is minor
(Rubin abd Thomas (1996), Lunceford and Davidian (2004), Stuart (2010)). As discussed in
Section 2.2, with anchor-based MAIC there are cases where it is not necessary to adjust for
covariates in X that are not effect modifiers. However, it is generally difficult to be certain
that any covariate is not an effect modifier, especially for novel therapies. A simple objective
approach to covariate selection is to include all covariates available for both the IPD and
AGD that cannot be ruled out as having no associations with outcomes. Known prognostic
covariates that are unobserved should be noted among the limitations. Sensitivity analyses on
the impact of adding or removing covariates from X can also be informative.

Even when all confounders are observed, MAIC still relies on the trial assignment model
from (5) being at least approximately correct for a given X to make appropriate adjustments.

TABLE 3
Indirect comparison of NSAA worsening between NH vs. PBO cohorts

Method OR 95% CI Log OR SE p-value

No inclusion/exclusion criteria applied Naive 0.58 (0.34, 0.99) −0.54 0.27 0.04
STC 1.20 – 0.19 – –
MAIC-NAB 1.14 (0.64, 2.04) 0.13 0.3 0.66

With inclusion/exclusion criteria applied Naive 1.78 (0.95, 3.34) 0.58 0.32 0.07
STC 1.75 – 0.56 – –
MAIC-NAB 1.42 (0.69, 2.92) 0.35 0.37 0.34

Naive: Unadjusted comparison, STC: Simulated treatment comparison, MAIC-NAB: Nonanchor-based MAIC.
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It is important for researchers to consider its specification, such as whether higher-order poly-
nomial or interaction terms are plausible and the corresponding requisite AGD, such as stan-
dard errors or correlations, are available. Other parametric models besides logistic regression
could also be used, but the estimating equation that balances trial covariates, as in (4), must
admit a unique solution for the model parameters.

Beyond unobserved confounding and model specification, Assumption 2.3 is also an im-
portant assumption. When P(T = 1|X = x) is close to 0 for some x ∈ X , there exist some
subpopulation in the AGD population that does not have strong overlap with the IPD pop-
ulation. This leads some observations in the IPD to receive extreme weights and domi-
nate the reweighted sample, resulting in poor performance in point and standard error es-
timation. A useful diagnostic tool for lack of overlap is the effective sample size, defined
by Ñ1z = {∑Ti=1,Zi=z ω(Xi; α̂1)}2/

∑
Ti=1,Zi=z ω(Xi; α̂1)

2 for weighted samples from arm
z = 0,1 of the IPD. Ñ1z is an approximation from importance sampling that downweights the
sample size by the approximate relative efficiency between a sample average using data from
a target distribution and a weighted average from a proposal distribution (Kong (1992)). Vio-
lations or near-violations of Assumption 2.3 would tend to inflate some ω(Xi; α̂1) and deflate
Ñ1z, signaling poor overlap. In simulations, coverage in cases when Ñ11 ≤ p ranged 68–88%
for CIs based on σ̂ 2

f o, in the small sample scenario with n = 25, p = 5,15, and moderate

confounding. This suggests that inferences based on �̂ are suspect in real datasets when Ñ11
is less than or close to p. While Ñ1z is termed the “effective sample size” for arm z = 0,1, it
has no direct bearing on statistical inferences, including standard error and CI estimation and
should be viewed as a rough indicator only. Poor performance in estimation can also result
when p is large or covariates in X are heavily correlated which yields large standard errors
for α̂1. One possible remedy would be to add a regularization term to (8).

As illustrated in Section 4, it is possible to consider a nonefinitive test for the adequacy
of Assumptions 2.1–2.4 and specification of trial selection model using data from a common
comparator arm, if available, provided the studies are deemed to be sufficiently similar in
other aspects. Let

�̂0 =
N∑

i=1

I (Zi = 0, Ti = 1)ω(Xi; α̂1)Yi/

N∑
i=1

I (Zi = 0, Ti = 1)ω(Xi; α̂1)

− Ȳ20

denote the difference in outcomes under the common comparator after weighting. Un-

der the null that these assumptions hold, N1/2�̂0
d→ N(0, σ 2

0 ), where σ 2
0 is analogous to

σ 2 for outcomes under the common comparator. Consequently, a test that rejects when
N1/2|�̂0|/σ̂0 > z1−α/2 is a level α test, where σ̂ 2

0 is an estimator of σ 2
0 that can be con-

structed using similar strategies as in Section 2.4. The type I error may be conservative if a
conservative strategy for estimating σ 2

0 is used. Rejection in such a test suggests violation of
some assumption, but failure to reject does not verify the assumptions. For instance, there
may be unobserved confounders that impact outcomes in the active treatment arms but not
for the placebo arm.

MAIC enables estimation of causal contrasts between studies when IPD is available for
one study and only AGD is available for other studies. This is a common occurrence for
researchers who have access to data from their own study but only published AGD from
other studies. However, we are keen to emphasize that appropriate sharing of IPD is the pre-
ferred approach, when possible, as it offers important advantages over settings where IPD
is available only from some studies. With the full IPD, the pooled data can be regarded
as observational data for which the wide array of methods developed for causal inference
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can be applied. In particular, while MAIC only enables estimation of causal contrasts in the
AGD population, having the full IPD offers additional flexibility in allowing for estimation of
treatment contrasts in other target populations. This not only provides insight into treatment
effect heterogeneity between populations but can also help circumvent issues with violations
or near-violations of study assumptions discussed above. For example, if one study enrolled
a more inclusive patient population than the other, that study can be considered as the T = 1
study so that it would be more plausible for Assumption 2.3 to be satisfied. Similarly, if one
study collected a richer set of baseline prognostic covariates in X, that study can be set as the
T = 1 study to more convincingly satisfy Assumption 2.4. Access to full IPD also enables
diagnostic assessments of the goodness of fit and calibration of the propensity score model
which is a standard for propensity score analyses.

Another direction of future research will be to consider efficient estimation of �. In partic-
ular, it would be of interest to consider whether any estimator with only AGD available in one
trial can still achieve the known semiparametric efficiency bound for � (Hahn (1998)). Re-
cently, entropy balancing, a method that estimates causal effects via weights that minimize
the relative entropy with the distribution of covariates in the control population, has been
shown to be locally semiparametric efficient if the logit of the propensity scores and mean
outcomes in the treated population are both linear in the covariates X (Zhao and Percival
(2017)). Moreover, it was be also shown to be doubly robust in that it is consistent if either
the logit propensity score or outcome model is linear in X. Since entropy-balancing coin-
cides with �̂ when a logistic regression model is used for trial assignment, this immediately
indicates that MAIC is also locally semiparametric efficient and doubly robust in the same
sense. It would be of interest to consider whether doubly robust and efficient estimators are
available for more general models when full IPD has been withheld for one treatment group.
Developments of extensions for MAIC along these lines are underway.

APPENDIX A: INFERENCES ON NONLINEAR SCALE

When the treatment effect on a different scale of contrast is of interest, �g can be estimated
by first estimating E{Y(1)|T = 2} and E{Y(2)|T = 2} and then applying a specified g(·)
transformation. The same considerations for identification and estimation of E{Y(1)|T = 2}
and E{Y(2)|T = 2} applies as in Sections 2.2 and 2.3. The estimator in this case would then
be

(17) �̂g = g(μ̂1) − g(Ȳ22),

where μ̂1 is the weighted average for treatment 1 using the IPD.
Applying the delta method, when g(u) is differentiable and nonzero valued at u = μ1 and

u = μ2, the influence function for �̂g is given by

N1/2(�̂g − �g) = N−1/2
N∑

i=1

ψ
μ2
i

(
�∗,μ∗

1
) + ψ

μ1
i

(
μ∗

1,α
∗
1
)

+ ψ̃
α1
i

(
α∗

1,μ
∗
1,μ

∗
X2

) + ψ̃
μX2
i

(
α∗

1,μ
∗
1,μ

∗
X2

) + op(1),

where

ψ
μ2
i (�,μ1) = ϕ

μ2
i (�,μ1)g

′(μ1 − �),

ψ
μ1
i (μ1,α1) = ϕ

μ1
i (μ1,α1)g

′(μ1),

ψ̃
α1
i (α1,μ1,μX2

)

= Jμ1(α1)
−1C̃1(μ1,α1)

TJα1(α1,μX2
)−1Uα1

i (α1,μX2
)g′(μ1),
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ψ̃
μX2
i (α1,μ1,μX2

)

= Jμ1(α1)
−1C̃1(μ1,α1)

TJα1(α1,μX2
)−1U

μX2
i (α1,μX2

)g′(μ1),

are modifications of the original influence function with g′(u) = ∂
∂u

g(u). In parallel to (12),
the asymptotic variance of �̂g can be expressed as

(18)
σ 2

g = {
Var

(
ψ

μ1
i

) + Var
(
ψ

μ2
i

)} + {
Var

(
ψ̃

α1
i

) + 2 Cov
(
ψ

μ1
i , ψ̃

α1
i

)}
+ {

Var
(
ψ̃

μX2
i

) + 2 Cov
(
ψ

μ2
i , ψ̃

μX2
i

)}
,

where the arguments of the components of the influence function are suppressed but implic-
itly evaluated at their respective truth. Based on similar considerations, the three proposed
estimators for σ 2

g are

(19)

σ̂ 2
g,f o = V̂ar

{
ψ

μ1
i (μ̂1, α̂1)

} + V̂ar
{
ψ

μ2
i (�̂, μ̂1)

}
,

σ̂ 2
g,po = V̂ar

{
ψ

μ1
i (μ̂1, α̂1)

} + V̂ar
{
ψ̃

α1
i (α̂1, μ̂1, μ̂X2

)
} + V̂ar

{
ψ

μ2
i (�̂, μ̂1)

}
,

σ̂ 2
g,cs = V̂ar

{
ψ

μ1
i (μ̂1, α̂1) + ψ̃

α1
i (α̂1, μ̂1, μ̂X2

)
} + V̂ar

{
ψ

μ2
i (�̂, μ̂1)

}
,

+ V̂
μX2 g′(μ̂1)

2 + 2
[
V̂ar

{
ψ

μ2
i (�̂, μ̂1)

}
V̂

μX2 g′(μ̂1)
2]1/2

.

As in Section 2.4, σ̂ 2
g,f o tends to outperform σ̂ 2

g,po in small samples, whereas σ̂ 2
g,cs provides

a conservative estimate.

APPENDIX B: SIMULATION RESULTS ON LOGIT SCALE

We repeated the simulations to assess the bias of the corresponding estimators modified to
estimate the treatment effect on the logit scale, that is, �g with g(u) = log{u/(1 − u)}. This
has previously been the recommended scale for binary outcomes HTA applications (Phillippo
et al. (2016)). The performance of CIs for MAIC-NAB based on the modified estimators of
the asymptotic variance were also assessed. The same simulation settings as those in Section 3
were used throughout. MAIC-ACB was calculated based on �̂ACB

g = �̂g − g{∑N
i=1 I (Zi =

0, Ti = 1)ω(Xi; α̂1)Yi/
∑N

i=1 I (Zi = 0, Ti = 1)ω(Xi; α̂1)} + g(Ȳ20).
The bias results are reported in Table 4. Similar patterns of bias occur as when estimating

�. BUC and STC incur substantial bias in scenarios with confounding, whereas MAIC has
negligible bias except with extremely low sample size case with n = 25 per arm where no
method is reliable. The CI performance results are presented in Figure 3. CIs based on σ̂ 2

g,f o

and σ̂ 2
g,sw achieve near nominal coverage when n ≥ 50 per arm and their lengths do not

surpass those based on the empirical estimate by more than 5% for most n. CIs based on
σ̂ 2

g,po exhibit good coverage when sample size is large relative to p but tend to undercover
when n is relatively small. CIs based on σ̂ 2

g,cs are the most conservative.

APPENDIX C: ALTERNATIVE SAMPLING SCHEMES

When estimating the standard error of �̂, a way to avoid the issue of the lack of full IPD is
to consider μ∗

X2
and μ∗

2 as fixed parameters. That is, one may consider μ∗
X2

= X̄2 or μ∗
2 = Ȳ22.

Under either of these assumptions, the asymptotic variance σ 2 would exclude terms involving
either ϕ̃

μX2
i or ϕ

μ2
i , respectively. Inference based on these assumptions clearly then would not

acknowledge sampling variability from estimating these parameters which may or may not
be justified depending on the context of the problem. In this article we primarily focus on the
more difficult case where estimates from the AGD are considered to be random.
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TABLE 4
Percent bias of estimators of �g by degree of confounding, total size (N ) and number of covariates (p)

No confounding Moderate confounding Severe confounding

Size Estimator p = 5 p = 10 p = 15 p = 5 p = 10 p = 15 p = 5 p = 10 p = 15

n = 25 BUC 5% 3% 2% 36% 32% 41% 50% 45% 53%
STC 1315% 11,064% 3752% 1816% 9903% 3392% 2498% 9066% 2951%
MAIC-NAB 14% 27% 365% 20% 24% 322% 23% 41% 362%
MAIC-ACB 0% −7% −122% 4% −11% −44% −3% 2% −173%

n = 50 BUC 3% 2% 0% 28% 32% 33% 44% 42% 47%
STC 31% 146% 10,724% 42% 346% 11,908% 53% 702% 11,294%
MAIC-NAB 4% 8% 6% 7% 9% 15% 7% 10% 10%
MAIC-ACB 3% 0% −4% 0% 4% 7% −1% −2% 0%

n = 100 BUC 3% 2% −1% 30% 29% 28% 44% 46% 46%
STC 14% 28% 66% 23% 38% 101% 33% 45% 209%
MAIC-NAB 3% 3% 2% 3% 4% 4% 6% 3% 6%
MAIC-ACB 3% 1% −1% 2% 2% 1% 1% 2% 2%

n = 250 BUC 1% 2% 1% 29% 29% 27% 42% 44% 46%
STC 6% 10% 21% 17% 21% 29% 23% 29% 39%
MAIC-NAB 2% 2% 2% 2% 2% 1% 0% 2% 2%
MAIC-ACB 1% 2% 0% 1% 2% 0% −2% 1% 2%

n = 500 BUC 0% 0% 1% 28% 27% 28% 41% 43% 44%
STC 3% 5% 9% 14% 16% 21% 21% 25% 29%
MAIC-NAB 1% 1% 1% 1% 0% 1% −1% 1% 2%
MAIC-ACB 0% 0% 1% 0% −1% 1% −2% 0% 1%

BUC: Method of Bucher et al. STC: Simulated treatment comparison, MAIC-NAB: Nonanchor-based MAIC,
MAIC-ACB: Anchor-based MAIC.

A related issue regarding sampling is that the allocation of patients among trials, in prac-
tice, may be constrained such that each trial and arm enrolls a fixed, or nearly fixed, num-
ber of patients. While formally this sampling scheme differs from the problem setup, which
does not assume any sample size constraints, it can be accommodated as a simple extension
that does not impact the asymptotic analysis. In particular, one could consider patients to be
subsampled by trial and arm to meet size constraints after initially being sampled without
constraint from the super-population. Under the assumptions on the initial sample required
when sampling without constraint, the proposed procedures for inference about � based on
�̂ would still be valid using the subsampled data as long as the subsampling was random by
trial and arm.

More concretely, suppose N∗ total patients were initially sampled without constraint. Let
Ri ∈ {0,1} for i = 1, . . . ,N∗ be an indicator of whether each patient is subsampled into the
final sample. If a fixed ntz number of patients were enrolled into arm z of trial t , the constraint
on the subsampling is that

∑N∗
i=1 RiI (Ti = t,Zi = z) = ntz, for t = 1,2 and z = 0,1,2. If

subsampling was random by trial and arm, then

(20) R ⊥⊥ {
X, Y (0), Y (1), Y (2)

}|T ,Z.

When Assumption 2.1 holds in the initial sample, then we also have that R ⊥⊥ {X, Y (0), Y (1),

Y (2)}|T . But under this independence,

E
{
Y(2)|T = 2

} = E
{
Y(2)|T = 2,R = 1

}
and

E
{
Y(1)|T = 2

} = E
{
Y(1)|T = 2,R = 1

}
.
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FIG. 3. Coverage and relative length of 95% CI’s for �̂ by size per arm (n) and number of covariates (p) in the
moderate confounding scenario. Some points and bars for n = 25 are omitted if they take values beyond the axis
limits.

Moreover, Assumptions 2.1–2.4 can be shown to still hold conditional on R = 1, provided
they hold in the initial sample. The same arguments to identify � from Section 2.2 thus hold
under distributions that are conditional on R = 1. �̂ will then be consistent for � when the
subsampled data is used, if ω(X) among the subsampled data can be identified and estimated.
But if trial assignment among the initial sample follows a logistic regression model as in (5),
then

logitP(T = 2|X,R = 1) = αT
T

−→
X ,

where αT = (α0,T ,α1). That is, the trial assignment among the subsample still follows a lo-
gistic regression model with a possibly different intercept α0,T . This is analogous to the result
that the probability of an outcome given covariates among those sampled in a case-control
study still follows the same logistic regression with a different intercept when the prospective
model is logistic regression (Prentice and Pyke (1979)). The arguments for identification of
ω(X) in Section 2.2 are thus also still valid, and estimation can proceed from solving (8)
among the subsampled data.

APPENDIX D: PROOFS OF THEOREMS

D.1. Proof of Theorem 2.1. Let the estimating equation from (8) be denoted

(21) Uα1
N (α1,μX2

) = N−1
N∑

i=1

exp
{
αT

1(Xi − μX2
)
}
(Xi − μX2

)I (Ti = 1).
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We will first outline the consistency of α̂1 for α∗
1. It can be shown that there exists a CN =

Op(1) such that

(22)
sup
α1

∥∥Uα1
N (α1, μ̂X2

) − Uα̃1,1
N

(
α1,μ

∗
X2

)∥∥ ≤ CN

∥∥μ̂X2
− μ∗

X2

∥∥
= op(1),

by using that Uα1
N (α1,μX2

) is continuously differentiable in μX2
, the parameter space for

(αT
1,μT

X2
)T, denoted by �, is compact and μ̂X2

is a consistent estimator for μ∗
X2

. Let �α1 be
the parameter space for α1. Moreover, it can be shown that there exists a DN = Op(1) such
that, for any ˜̃α1, α̃1 ∈ �α1 ,

(23)
∥∥Uα1

N

(˜̃α1,μ
∗
X2

) − Uα1
N

(
α̃1,μ

∗
X2

)∥∥ ≤ DN‖˜̃α1 − α̃1‖,
using that Uα1

N (α1,μ
∗
X2

) is continuously differentiable in α1 and �α1 is compact. Let

Uα1(α1,μX2
) = E[exp{αT

1(Xi − μX2
)}(Xi − μX2

)I (Ti = 1)]. Since Uα1
N (α1,μ

∗
X2

)
p→

Uα1(α1,μ
∗
X2

) pointwise for each α1 ∈ �α1 , we have

(24) sup
α1

∥∥Uα1
N

(
α1,μ

∗
X2

) − Uα1
(
α1,μ

∗
X2

)∥∥ = op(1)

using Lemma 2.9 of Newey and McFadden (1994). This verifies that

(25)

sup
α1

∥∥Uα1
N (α1, μ̂X2

) − Uα1
(
α1,μ

∗
X2

)∥∥
≤ sup

α1

∥∥Uα1
N (α1, μ̂X2

) − Uα1
N

(
α1,μ

∗
X2

)∥∥ + sup
α1

∥∥Uα1
N

(
α1,μ

∗
X2

) − Uα1
(
α1,μ

∗
X2

)∥∥
= op(1).

Now, since E[exp{αT
1(Xi − μX2

)}I (Ti = 1)] is strictly convex in α1, Uα1(α1,μX2
) has a

unique solution in α̃1 for a given μX2
. Hence, α̂1

p→ α∗
1 by Theorem 5.9 of van der Vaart

(1998). We now turn to obtaining the influence function for α̂1. Let U
α1
N,j (α1,μX2

) denote the

j th component of Uα1
N (α1,μX2

), for j = 1, . . . , p. An expansion of U
α1
N,j (α̂1, μ̂X2

) around
(α∗

1,μ
∗
X2

) yields

(26)

U
α1
N,j (α̂1, μ̂X2

)

= U
α1
N,j

(
α∗

1,μ
∗
X2

) + ∂

∂αT
1

U
α1
N,j

(
α∗

1,μ
∗
X2

)(
α̂1 − α∗

1
)

+ ∂

∂μT
X2

U
α1
N,j

(
α∗

1,μ
∗
X2

)(
μ̂X2

− μ∗
X2

) + ∂2

∂α⊗2
1

U
α1
N,j

(
α̃1,μ

∗
X2

)(
α̂1 − α∗

1
)⊗2

+ ∂2

∂μ⊗2
X2

U
α1
N,j (α̂1, μ̃X2

)
(
μ̂X2

− μ∗
X2

)⊗2

+ ∂2

∂α1∂μX2

U
α1
N,j

(˜̃α1,μ
∗
X2

)(
α̂1 − α∗

1
)(

μ̂X2
− μ∗

X2

)
,

where α̃1 and ˜̃α1 are intermediates on the line segment between α̂1 and α∗
1, and μ̃X2

is an
intermediate between μ̂X2

and μ∗
X2

. Using that U
α1
N,j (α1,μX2

) is continuously differentiable
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in (αT
1,μ

T
X2

)T and � is compact,

(27)

∂2

∂α⊗2
1

U
α1
N,j

(
α̃1,μ

∗
X2

) = Op(1),
∂2

∂μ⊗2
X2

U
α1
N,j (α̂1, μ̃X2

) = Op(1),

∂2

∂α1∂μX2

U
α1
N,j

(˜̃α1,μ
∗
X2

) = Op(1).

Moreover, we have

(28)

∂

∂αT
1

U
α1
N,j

(
α∗

1,μ
∗
X2

)
= E

[
exp

{
α∗T

1
(
X − μ∗

X2

)}(
Xj − μ∗

X2,j

)(
X − μ∗

X2

)T
I (T = 1)

] + op(1)

= −J
α1
j

(
α∗

1,μ
∗
X2

) + op(1),

∂

∂μT
X2

U
α1
N,j

(
α∗

1,μ
∗
X2

) = −E
[
exp

{
α∗T

1
(
X − μ∗

X2

)}
I (T = 1)1T

j

] + op(1),

where Xj and μX2,j denote the j th element of X and μX2
and 1j denotes a p × 1 vector that

is 1 in the j th position and 0 in the other positions. We also used that α∗
1 is the solution to

Uα1(α1,μ
∗
X2

) = 0.
Now, for each j = 1, . . . , p, since U

α1
N,j (α̂1, μ̂X2

) = 0, rearranging from above yields

(29)

{−J
α1
j

(
α∗

1,μ
∗
X2

) + op(1)
}
N1/2(

α̂1 − α∗
1
)

= −N1/2U
α1
N,j

(
α∗

1,μ
∗
X2

)
− ∂

∂μT
X2

U
α1
N,j

(
α∗

1,μ
∗
X2

)
N1/2(

μ̂X2
− μ∗

X2

) + op(1),

where we use that μ̂X2 is N1/2-consistent. Considering the p components simultaneously
yields

(30)

{−Jα1
(
α∗

1,μ
∗
X2

) + op(1)
}
N1/2(

α̂1 − α∗
1
)

= −N1/2Uα1
N

(
α∗

1,μ
∗
X2

)
+ E

[
exp

{
α∗T

1
(
X − μ∗

X2

)}
I (T = 1)1T

p×p

]
N1/2(

μ̂X2
− μ∗

X2

) + op(1).

Since μ̂X2
= {∑N

i=1 XiI (Ti = 2)}/{∑N
i=1 I (Ti = 2)}, its influence function is given by

(31) N1/2(
μ̂X2

− μ∗
X2

) = N−1/2
N∑

i=1

(
Xi − μ∗

X2

) I (Ti = 2)

P (Ti = 2)
+ op(1).

Finally, since Jα1(α∗
1,μ

∗
X2

) is nonsingular,

N1/2(
α̂1 − α∗

1
)

= Jα1
(
α∗

1,μ
∗
X2

)−1

(
N1/2Uα1

N

(
α∗

1,μ
∗
X2

)

− E
[
exp

{
α∗T

1
(
X − μ∗

X2

)}
I (T = 1)

]
N−1/2

N∑
i=1

(
Xi − μ∗

X2

) I (Ti = 2)

P (Ti = 2)

)
+ op(1)(32)
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= N−1/2
N∑

i=1

Jα1
(
α∗

1,μ
∗
X2

)−1{
Uα1

i

(
α∗

1,μ
∗
X2

) + U
μX2
i

(
α∗

1,μ
∗
X2

)} + op(1)

= N−1/2
N∑

i=1

ϕ
α1
i

(
α∗

1,μ
∗
X2

) + op(1).

D.2. Proof of Theorem 2.2. Let the estimating equation associated with �̂ be

(33) U�
N (�,μ1) = N−1

N∑
i=1

(μ1 − Yi − �)I (Ti = 2,Zi = 2).

We will directly identify the influence function expansion for �̂, which implies that �̂
p→

�∗, when the identification assumptions hold and the trial assignment is correctly specified.
First, we decompose U�

N (�̂, μ̂1):

U�
N (�̂, μ̂1) = U�

N

(
�∗,μ∗

1
) + U�

N

(
�̂,μ∗

1
) − U�

N

(
�∗,μ∗

1
) + U�

N (�̂, μ̂1) − U�
N

(
�̂,μ∗

1
)

= U�
N

(
�∗,μ∗

1
) + N−1

N∑
i=1

−I (Ti = 2,Zi = 2)
(
�̂ − �∗)

(34)

+ N−1
N∑

i=1

I (Ti = 2,Zi = 2)
(
μ̂1 − μ∗

1
)
.

Since U�
N (�̂, μ̂1) = 0, rearranging from above,

(35)

N1/2(
�̂ − �∗) = N1/2

{
U�

N

(
�∗,μ∗

1
) + N−1

N∑
i=1

I (Ti = 2,Zi = 2)
(
μ̂1 − μ∗

1
)}

/{
N−1

N∑
i=1

I (Ti = 2,Zi = 2)

}

= N−1/2
N∑

i=1

(
μ∗

1 − Yi − �∗) I (Zi = 2, Ti = 2)

P (Zi = 2, Ti = 2)

+ N1/2(μ̂1 − μ1) + op(1).

Now, let the estimating equation for μ̂1 be denoted

(36) U
μ1
N (μ1,α1) = N−1

N∑
i=1

(Yi − μ1) exp
(
αT

1Xi

)
I (Ti = 1,Zi = 1).

We can decompose U
μ1
N (μ̂1, α̂1) as

U
μ1
N (μ̂1, α̂1)

= U
μ1
N

(
μ∗

1,α
∗
1
) + U

μ1
N

(
μ̂1,α

∗
1
) − U

μ1
N

(
μ∗

1,α
∗
1
) + U

μ1
N (μ̂1, α̂1) − U

μ1
N

(
μ̂1,α

∗
1
)

= U
μ1
N

(
μ∗

1,α
∗
1
) − N−1

N∑
i=1

exp
(
α∗T

1 Xi

)
I (Ti = 1,Zi = 1)

(
μ̂1 − μ∗

1
)

(37)

+ ∂

∂αT
1

U
μ1
N

(
μ∗

1,α
∗
1
)(

α̂1 − α∗
1
) + ∂2

∂α⊗2
1

U
μ1
N (μ̂1, α̃1)

(
α̂1 − α∗

1
)⊗2
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+ ∂

∂μ1

∂

∂αT
1

U
μ1
N

(
μ̃1,α

∗
1
)(

α̂1 − α∗
1
)
(μ̂1 − μ1),

where α̃1 and μ̃1 are such that ‖α̃1 − α∗
1‖ ≤ ‖α̂1 − α∗

1‖ and ‖μ̃1 − μ∗
1‖ ≤ ‖μ̂1 − μ∗

1‖. Now,
using that U

μ1
N (μ1,α1) is twice continuously differentaible and � is compact, it can be shown

that

(38)
∂2

∂α⊗2
1

U
μ1
N (μ̂1, α̃1) = Op(1) and

∂

∂μ1

∂

∂αT
1

U
μ1
N

(
μ̃1,α

∗
1
) = Op(1).

Since U
μ1
N (μ̂1, α̂1) = 0, rearranging yields

(39)

{
N−1

N∑
i=1

exp
(
α∗T

1 Xi

)
I (Ti = 1,Zi = 1) + op(1)

}
N1/2(

μ̂1 − μ∗
1
)

= N1/2
{
U

μ1
N

(
μ∗

1,α
∗
1
) + ∂

∂αT
1

U
μ1
N

(
μ∗

1,α
∗
1
)(

α̂1 − α∗
1
)} + op(1).

Now, substituting the influence function expansion from Theorem 2.1 yields that

(40)
N1/2(

μ̂1 − μ∗
1
) = N−1/2

N∑
i=1

Jμ1
(
α∗

1
)−1(

Yi − μ∗
1
)

exp
(
α∗T

1 Xi

)
I (Ti = 1,Zi = 1)

+ Jμ1
(
α∗

1
)−1

C̃1
(
μ∗

1,α
∗
1
)T

ϕ
α1
i

(
α∗

1,μ
∗
X2

) + op(1).

Returning to (39), we conclude that

(41)

N1/2(
�̂ − �∗) = N−1/2

N∑
i=1

ϕ
μ2
i

(
�∗,μ∗

1
) + ϕ

μ1
i

(
μ∗

1,α
∗
1
)

+ Jμ1
(
α∗

1
)−1

C̃1
(
μ∗

1,α
∗
1
)T

ϕ
α1
i

(
α∗

1,μ
∗
X2

) + op(1)

= N−1/2
N∑

i=1

ϕi

(
�∗,μ∗

1,α
∗
1,μ

∗
X2

) + op(1).

D.3. Proof of Lemma 2.1. From direct calculation,

Var
{
ϕ̃

α1
i (α1,μ1,μX2

)
}

= Jμ1(α1)
−2C̃1(μ1,α1)Jα1(α1,μX2

)−1

× Var
{
Uα1

i (α1,μX2
)
}
Jα1(α1,μX2

)−1C̃1(μ1,α1)

= Jμ1(α1)
−2C̃1(μ1,α1)

TJα1(α1,μX2
)−1

× E
{
(Xi − μX2

)(Xi − μX2
)Te

2αT
1(Xi−μX2

)
I (Ti = 1)

}
× Jα1(α1,μX2

)−1C̃1(μ1,α1),

Cov
{
ϕ

μ1
i (μ1,α1), ϕ̃

α1
i (α1,μ1,μX2

)
}

= Jμ1(α1)
−2C̃1(μ1,α1)

TJα1(α1,μX2
)−1

× E
{
Uα1

i (α1,μX2
)(Yi − μ1)e

αT
1Xi I (Zi = 1, Ti = 1)

}
= Jμ1(α1)

−2C̃1(μ1,α1)
TJα1(α1,μX2

)−1e
αT

1μX2(42)
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× E
{
(Xi − μX2

)(Yi − μ1)e
2αT

1(Xi−μX2
)
I (Zi = 1, Ti = 1)

}
,

Var
{
ϕ̃

μX2
i (μX2

,μ1,α1)
}

= Jμ1(α1)
−2C̃1(μ1,α1)Jα1(α1,μX2

)−1

× Var
{
U

μX2
i (α1,μX2

)
}
Jα1(α1,μX2

)−1C̃1(μ1,α1)

= E[eαT
1(Xi−μX2

)
I (Ti = 1)]2

Jμ1(α1)2P(Ti = 2)
C̃1(μ1,α1)

TJα1(α1,μX2
)−1

× Var(Xi |Ti = 2)Jα1(α1,μX2
)−1C̃1(μ1,α1),

Cov
{
ϕμ2(�,μ1), ϕ̃

μX2
i (α1,μ1,μX2

)
}

= E[eαT
1(Xi−μX2

)
I (Ti = 1)]

Jμ1(α1)P (Ti = 2)

× C̃1(μ1,α1)
TJα1(α1,μX2

)−1C̃2.

In the case where (2.1), (2.2), (2.4) and (2.3) hold and (5) is correctly specified, note that

(43)

C̃1(μ1,α1) = E
{
Xi(Yi − μ1)ω(Xi)e

−α0I (Zi = 1, Ti = 1)
}

= E
{
Xi

(
Yi(1) − μ1

)
P(Ti = 2|Xi )

}
e−α0P(Zi = 1|Ti = 1)

= C1e
−α0P(Zi = 1|Ti = 1)P (Ti = 2),

Jα1(α1,μX2
) = −E

[
(Xi − μX2

)(Xi − μX2
)Tω(Xi)e

−α0−αT
1μX2 I (Ti = 1)

]
= −E

[
(Xi − μX2

)(Xi − μX2
)TP(Ti = 2|Xi )

]
e
−α0−αT

1μX2

= −Var(Xi |Ti = 2)P (Ti = 2)e
−α0−αT

1μX2 ,

and

(44)

E
[
e
αT

1(Xi−μX2
)
I (Ti = 1)

] = E
[
ω(Xi )e

−α0−αT
1μX2 I (Ti = 1)

]
= P(Ti = 2)e

−α0−αT
1μX2 ,

Jμ1(α1) = E
{
ω(Xi )I (Zi = 1, Ti = 1)

}
e−α0

= P(Ti = 2)P (Zi = 1|Ti = 1)e−α0 .

Consequently, under these assumptions after evaluating parameters at the truth and simplifi-
cation,

(45)

Var
(
ϕ̃

α1
i

) = P(Ti = 2)−1CT
1 Var(Xi |Ti = 2)−1

× E
{(

Xi − μ∗
X2

)(
Xi − μ∗

X2

)T
ω(Xi )|Ti = 2

}
Var(Xi |Ti = 2)−1C1,

Cov
(
ϕ

μ1
i , ϕ̃

α1
i

) = −P(Ti = 2)−1C1 Var(Xi |Ti = 2)−1

× E
{(

Xi − μ∗
X2

)(
Yi(1) − μ∗

1
)
ω(Xi)|Ti = 2

}
,

Var
(
ϕ̃

μX2
i

) = P(Ti = 2)−1CT
1 Var(Xi |Ti = 2)−1C1,

Cov
(
ϕ

μ2
i , ϕ̃

μX2
i

) = − P(Ti = 2)−1CT
1 Var(Xi |Ti = 2)−1C2.
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SUPPLEMENTARY MATERIAL

The statistical performance of matching-adjusted indirect comparisons (DOI: 10.
1214/20-AOAS1359SUPP; .zip). The Supplementary Materials report an extended set of sim-
ulation results on both bias of various indirect comparison estimators and coverage of pro-
posed standard error estimators for MAIC. The results include settings for both binary and
continuous Y as well as different combinations of the level of confounding bias and magni-
tude and direction of effect modification. The simulations in each setting were repeated for
sample sizes ranging from n = 25 to n = 500 per arm and p = 5,10,15,20.
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