
The Annals of Applied Statistics
2020, Vol. 14, No. 3, 1535–1556
https://doi.org/10.1214/20-AOAS1357
© Institute of Mathematical Statistics, 2020

LOG-CONTRAST REGRESSION WITH FUNCTIONAL COMPOSITIONAL
PREDICTORS: LINKING PRETERM INFANTS’ GUT MICROBIOME

TRAJECTORIES TO NEUROBEHAVIORAL OUTCOME

BY ZHE SUN1,*, WANLI XU2,‡, XIAOMEI CONG2,§, GEN LI3 AND KUN CHEN1,†

1Department of Statistics, University of Connecticut, *zhe.sun@uconn.edu; †kun.chen@uconn.edu
2School of Nursing, University of Connecticut, ‡wanli.xu@uconn.edu; §xiaomei.cong@uconn.edu

3Department of Biostatistics, Columbia University, gl2521@cumc.columbia.edu

The neonatal intensive care unit (NICU) experience is known to be one
of the most crucial factors that drive preterm infants’ neurodevelopmental
and health outcome. It is hypothesized that stressful early life experience
of very preterm neonate is imprinting gut microbiome by the regulation of
the so-called brain-gut axis, and, consequently, certain microbiome mark-
ers are predictive of later infant neurodevelopment. To investigate, a preterm
infant study was conducted; infant fecal samples were collected during the
infants’ first month of postnatal age, resulting in functional compositional
microbiome data, and neurobehavioral outcomes were measured when in-
fants reached 36–38 weeks of postmenstrual age. To identify potential micro-
biome markers and estimate how the trajectories of gut microbiome compo-
sitions during early postnatal stage impact later neurobehavioral outcomes of
the preterm infants, we innovate a sparse log-contrast regression with func-
tional compositional predictors. The functional simplex structure is strictly
preserved, and the functional compositional predictors are allowed to have
sparse, smoothly varying and accumulating effects on the outcome through
time. Through a pragmatic basis expansion step, the problem boils down to
a linearly constrained sparse group regression, for which we develop an effi-
cient algorithm and obtain theoretical performance guarantees. Our approach
yields insightful results in the preterm infant study. The identified micro-
biome markers and the estimated time dynamics of their impact on the neu-
robehavioral outcome shed lights on the linkage between stress accumulation
in early postnatal stage and neurodevelpomental process of infants.

1. Introduction. Over the past decade, advances in neonatal care have contributed to a
dramatic increase in survival among very preterm birth infants (born before 32 weeks’ gesta-
tion) from 15% to over 90% (Fanaroff, Hack and MC (2003), Stoll, Hansen and Bell (2010)).
With this cheerful gain in survival, recent research has shifted focus to the investigation of
the increase in neurological morbidity and long-term adverse outcomes related to immature
neuroimmune systems and stressful early life experience (Mwaniki et al. (2012)). In particu-
lar, the neonatal intensive care unit (NICU) experience is found to be one of the most crucial
factors that drive preterm infant neurodevelopmental and health outcomes. Accumulated in-
fant stress at NICU arises from numerous causes, such as repeated painful procedures, daily
clustered care, maternal separation, among others. Mwaniki et al. (2012) showed that these
neonatal insults were associated with a much escalated risk of long-term neurological mor-
bidity, for example, 39.4% of NICU survivors had at least one neurodevelopmental deficit.
However, the onset of the altered neuroimmune progress induced by infant stress/pain is of-
ten insidious, and the mechanism of this association, which holds the key for reducing costly
health consequences of prematurity, remain largely unclear. Expanding research evidence
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supports that a functional communication exists between the central nervous system and gas-
trointestinal tract, the brain-gut axis, in which the gut microbiome plays a key role in early
programming and later responsivity of the stress system (Dinan and Cryan (2012)).

As such, a central hypothesis is that the stressful early life experience of very preterm
neonates is imprinting gut microbiome by the regulation of the brain-gut axis, and, con-
sequently, certain microbiome markers are predictive of later infant neurodevelopment. To
investigate, a study was conducted in a NICU in the northeast of the U.S., where stable
preterm infants were recruited. Infant fecal samples were collected daily, when available,
during the infant’s first month of postnatal age. Bacterial DNA were isolated and extracted
from each stool sample and through sequencing and processing, resulted in gut microbiome
data. Gender, delivery type, birth weight, feeding type, among others, were also recorded for
each infant. Infant neurobehavioral outcomes were measured when the infant reached 36–38
weeks of postmenstrual age, using the NICU Network Neurobehavioral Scale (NNNS). More
details on the study and the data are provided in Section 2. The above scientific hypothesis
can then be approached through a statistical analysis, by examining how the microbiome
compositions collected over the early postnatal period predict or impact on the later NNNS
score, after adjusting for the effects of relevant infant characteristics.

The gut microbiome data were processed and operationalized as compositions, as com-
monly done in the microbiome literature (Bomar et al. (2011), Cong et al. (2017)). Composi-
tional data analysis is not an unfamiliar territory to statisticians. Data consisting of percent-
ages or proportions of certain composition are commonly encountered in various scientific
fields, including ecology, biology and geology. One unique attribute of compositional data is
the unit-sum constraint, that is, the components of a composition are nonnegative and always
sum up to one; this entails that the data live in a simplex and thus renders many statistical
methods that comply with Euclidean geometry inapplicable. Much foundational work on the
statistical treatment of compositional data was done by John Aitchison (Aitchison (1982),
Aitchison and Bacon-Shone (1984)); see Aitchison (2003) for a thorough survey on the sub-
ject. Of particular interest to us is regression with compositional predictors, for which the
log-contrast models (Aitchison and Bacon-Shone (1984)) have been very popular. A promi-
nent feature of the model is that it enables the regression analysis to obey the so-called prin-
ciple of subcompositional coherence, that is, the compositional data should be analyzed in
a way that the same results can be obtained regardless of whether we analyze the entire
composition or only a subcomposition (Aitchison and Egozcue (2005)). Recently, Lin et al.
(2014) studied a sparse linear regression model with compositional covariates, extending the
log-contrast model to high dimensions. The problem was nicely formulated as a constrained
lasso regression (Tibshirani (1996)) with a zero-sum linear constraint on the regression coef-
ficients. Shi, Zhang and Li (2016) further extended the sparse regression model to the case
of multiple linear constraints for the analysis of microbiome subcompositions. A debiased
procedure was adopted to obtain an asymptotically unbiased estimator of the regression co-
efficients and its asymptotic distribution; see Li (2015) for a recent comprehensive review on
microbiome compositional data analysis. However, to our knowledge, regression method on
handling high-dimensional compositional trajectories or series is still lacking.

Motivated by the needs in identifying potential microbiome markers and estimating how
the trajectories of microbiome compositions along early postnatal stage impact later neu-
robehavioral outcome, we propose a sparse log-contrast regression model with functional
compositional predictors. In our approach detailed in Section 3, longitudinal microbial com-
positions are treated as functional compositional predictors with time-varying effects on the
outcome. We build a scalar-on-function regression model for the log-transformed predictors
which naturally connects to the log-contrast regression. We particularly focus on the iden-
tification of important microbes using a sparsity-inducing regularization method. Section 4
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concerns the computational issues. Some theoretical properties of the proposed estimator that
are of practical concern are discussed in Section 5. In Section 6 simulation studies showcase
the superior performance of the proposed approach over several competing methods. The
data analysis of the preterm infant study is presented in Section 7. The identified microbiome
markers are justifiable based on existing literature, and the estimated dynamic trajectories
of their impact on the outcome shed new lights on the functional linkage between the ac-
cumulation of prenatal stress and neurodevelpoment of infants. Some concluding remarks
are given in Section 8. We have implemented the proposed methods and relevant tools in a
user-friendly R package called Compack (Sun and Chen (2020)), which has been released
to The Comprehensive R Archive Network (R Core Team (2020)) and can be downloaded at
https://cran.r-project.org/web/packages/Compack/.

2. Preterm infant study and problem setup. Data were collected at a Level IV NICU
in the northeast region of the U.S. (Level IV NICUs provide the highest level, the most acute
care.) Fecal samples of preterm infants were collected daily when available, mainly during the
infant’s postnatal age (PNA) of five to 28 days (t ∈ [5,28]). Bacterial DNA were isolated and
extracted from each stool sample (Bomar et al. (2011), Cong et al. (2017)); the V4 regions of
the 16S rRNA gene were sequenced using the Illumina platform and clustered and analyzed
using QIIME (Cong et al. (2017)), resulting in microbiome count data. Since the number of
sequencing reads varied a lot across samples, we further normalize the data by calculating the
ratio of each microbe in each sample. As a result, we obtain a compositional data matrix. To
conduct log transformation in our model, following the convention in the literature we replace
zeros by the maximum rounding error (i.e., 0.5) to avoid singularity (Aitchison (2003), Lin
et al. (2014)). Due to the limited sample size, we mainly focus on p = 22 categories at the
order level of the taxonomic ranks as a proof of concept. (We also perform a confirmative
analysis at the genus level which has more than 60 categories.) Taxonomic rank is the relative
level of a group of organisms in a taxonomic hierarchy in biological classification; the major
ranks are species, genus, family, order, class, phylum, kingdom and domain. More details
on the microbiome data are provided in Section 3 of the Supplemental Material (Sun et al.
(2020)). In this study infants with less than five fecal samples were excluded which resulted
in n = 34 infants. There was a total of 414 fecal samples, so the average number of daily
fecal samples collected for each infant was 12.2. Figure 1(a) shows the histogram of the
number of samples collected from each infant, and Figure 1(b)–(d) show examples of the
observed profile of the time-varying compositions along the postnatal age for three different
infants.

Infant neurobehavioral outcomes were measured when the infant reached 36–38 weeks
of postmenstrual age or prior to hospital discharge, using the NICU Network Neurobehav-
ioral Scale (NNNS). The NNNS is a standardized assessment of neonatal neurobehavioral
outcomes that provides an appraisal of neurological integrity and behavioral function of the
normal and at-risk/preterm infant. In particular, the stress/abstinence subscale (NSTRESS)
measures signs of stress and includes 50 items. Each sign of stress/abstinence is scored as
present or absent, and the composite NSTRESS score ranges between 0 and 1. A higher
NSTRESS score demonstrates a more stressful behavioral performance. Cong et al. (2017)
showed that the composite NSTRESS score is positively associated with painful/stressful
experience in preterm infants. Other variables about birth and characteristics of an infant
included gender, delivery type, premature rupture of membranes (PROM), score for Neona-
tal Acute Physiology–Perinatal Extension-II (SNAPPE-II), birth weight and percentage of
feeding with mother’s breast milk (%MBM).

To formulate the statistical problem, let y = [y1, . . . , yn]T ∈ R
n be consisting of the ob-

served neurobehavioral outcomes of the preterm infants, that is, their NNNS scores. Let

https://cran.r-project.org/web/packages/Compack/
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FIG. 1. (a) Histogram of the number of samples collected from each infant. (b)–(d) Example profiles of time–
varying compositional data along postnatal age from three infants.

xi (t) = [xi1(t), . . . , xip(t)]T ∈ S
p−1 be the gut microbiome compositions from the ith in-

fant at time t . Here, we let Sp−1 = {[x1, . . . , xp]T ∈ R
p;xj > 0,

∑p
j=1 xj = 1.}, to denote the

(p − 1)-dimensional positive simplex lying in R
p . Let X(t) = [x1(t), . . . ,xn(t)]T ∈ R

n×p

be the matrix of the functional predictors at time t . The observed gut microbiome compo-
sitions during the early postnatal period can then be viewed as discrete observations from
X(t). Also define Zc ∈ R

n×pc , formed by data from the aforementioned time-invariant infant
characteristics, for example, gender, delivery type, among others.

As the main objective is to identify the microbiome markers that are predictive of later
infant neurodevelopment, we need to perform a regression analysis to examine how the out-
come y, the NNNS score, is associated with X(t), the gut micorbiome trajectories, while
controlling for the infant characteristics collected in Zc. The fact that X(t) is both functional
and compositional makes the problem very challenging.
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3. Regression with functional compositional predictors.

3.1. Linear log-contrast model. We first briefly review the existing regression ap-
proaches for dealing with a single set of compositional predictors. Suppose we observed
n independent observations of a response variable yi ∈ R and a compositional predictor
xi = [xi1, . . . , xip]T such that xi ∈ S

p−1. Denote y = [y1, . . . , yn]T ∈ R
n as the response vec-

tor and X = [x1, . . . ,xn]T ∈ R
n×p as the design matrix.

Ignoring the simplex structure of X would lead to parameter identifiablity issue in the
linear regression of y on X. One naive “remedy” is to exclude an arbitrary component of
the compositional vector in the regression, which, however, leads to a method that is not
invariant to the choice of the removed component since it affects both of prediction and
selection and, consequently, makes proper model interpretation and inference difficult. Ever
since the pioneer work by John Aitchison (Aitchison (1982, 2003), Aitchison and Bacon-
Shone (1984)) on the statistical treatments of compositional data, the so-called log-contrast
model has gained much popularity in a variety of regression problems with compositional
predictors. The main idea is to perform a log-ratio transformation of the compositional data,
such that the transformed data admit the familiar Euclidean geometry in R

p−1. Specifically,
for each i = 1, . . . , n, let z̃ij = log(xij /xir ), where r ∈ {1, . . . , p} is a chosen reference level,
and j = 1, . . . , r − 1, r + 1, . . . , p, resulting in Z̃r̄ = [̃zij ] ∈ R

n×(p−1). Also define zij =
log(xij ) and Z = [zij ] ∈ R

n×p . The linear log-contrast regression model is expressed as

y = β∗
0 1n + Z̃r̄ β

∗̄
r + e,(1)

where β∗
0 is the intercept, β ∗̄

r ∈ R
p−1 is the regression coefficient vector and e ∈ R

n is the
random error vector with zero mean. Interestingly, although it appears that the model in (1)
depends on the choice of the reference level, it in fact admits a symmetric form. By simple
algebra, model (1) can be equivalently expressed as

y = β∗
0 1n + Zβ∗ + e s.t.

p∑
j=1

β∗
j = 0,(2)

where β∗ is the regression coefficient vector for design matrix Z, and e and β∗
0 are the same

as in model (1). It can be showed that β ∗̄
r ∈ R

p−1 is a subvector of a regression coefficient
vector β∗ ∈R

p by removing its r th component β∗
r .

Consequently, in classical regression setups the least squares estimation under model (1)
is equivalent to the constrained least squares estimation under model (2). However, in high-
dimensional scenarios, that is, when p is much larger than n, the two model formulations
could lead to discrepancies in regularized estimation. For example, the two corresponding
lasso criteria (Tibshirani (1996)) are no longer equivalent:

min
β0,βr̄

{
1

2n
‖y − β01n − Z̃r̄ βr̄‖2 + λ‖βr̄‖1

}
,(3)

min
β0,β

{
1

2n
‖y − β01n − Zβ‖2 + λ‖β‖1

}
s.t.

p∑
j=1

βj = 0,(4)

where ‖·‖, ‖·‖1 denote the �2, �1 norms, respectively, and λ is a tuning parameter controlling
the amount of regularization. Although (3) is simpler to compute, clearly its solution and,
hence, its variable selection depend on the choice of the reference component. In contrast,
(4) remains to be symmetric in all the p components. Lin et al. (2014) proposed and studied
(4) and showed that the estimator admits many desirable properties (Aitchison (2003)).
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3.2. Sparse functional log-contrast regression. In the preterm infant study the composi-
tional predictors are observed over a continuous domain, that is, time, and thus they should
be treated as functional compositional data. Recall from Section 2 that y ∈ R

n is the re-
sponse vector, X(t) ∈ R

n×p the matrix of the functional and compositional predictors at t and
Zc ∈ R

n×pc the matrix of time-invariant control variables. Here, to focus on the main idea,
we assume X(t) is completely observed for t ∈ T, and the discussion about handling discrete
time data is deferred to Section 4.2. Similar as in Section 3.1, we define Z̃r̄ (t) ∈ R

n×(p−1),
for r = 1, . . . , p, and Z(t) = log(X(t)) ∈ R

n×p .
Motivated by model (2), we propose a functional log-contrast regression model,

(5) y = β∗
0 1n + Zcβ

∗
c +

∫
t∈T

Z(t)β∗(t) dt + e s.t. 1T
pβ∗(t) = 0,∀t ∈ T,

where β∗
0 is the intercept, β∗

c ∈ R
pc is the regression coefficient vector corresponding to the

control variables, β∗(t) = [β∗
1 (t), . . . , β∗

p(t)]T ∈ R
p is the functional regression coefficient

vector as a function of t and the remaining terms are defined the same as in model (2). The
proposed model allows the compositional predictors to have potentially different effects on
the response through β∗(t), and their aggregated effects on the response is then given by the
integral of Z(t) weighted by β∗(t) over time. Following Lin et al. (2014), here we adopt the
symmetric form of the log-contrast model, in which the zero-sum constraints preserve the
simplex structure over time while all the compositional components are treated equally.

To address the problems in the preterm infant study, we consider both sparsity and smooth-
ness of β∗(t). First, as it is believed that only a few compositional components are relevant
to the prediction of the outcome, we assume the true coefficient curves are sparse, that is,
s∗ = |S| � p, where S is the index set of the nonzero coefficient curves

S = {
j ;β∗

j (t) �= 0 for some t ∈ T, j = 1, . . . , p
}
.

This sparsity assumption is the basis of component selection and is widely applicable, espe-
cially when p, the number of compositional components, is large. Second, since the effects of
gut microbiome compositions on preterm infant’s neurodevelopment evolves gradually over
the postnatal period, we assume the coefficient curves are smooth over t and adopt a truncated
basis expansion approach (Ramsay and Silverman (2005)) to bring the infinite dimensional
problem to finite dimensions. Specifically, we assume

β∗(t) = B∗�(t),(6)

where B∗ = [β∗
1 , . . . , β∗

p]T ∈ R
p×k is a coefficient matrix, and �(t) = [φ1(t), . . . , φk(t)]T ∈

R
k consists of basis with Jφφ = ∫

t∈T �(t)�T(t) dt being a positive definite (p.d.) matrix.
Here, for simplicity, the same set of basis functions is used in the expansion of each βj (t),
j = 1, . . . , p, which usually suffices in practice, and the extension to use different basis for
different βj (t) is straightforward. There are many choices of the basis functions, for example,
Fourier basis, wavelet basis and spline basis; see Ramsay and Silverman (2005) for a detailed
account on the truncated basis expansion approaches in functional regression.

Some discussions on the number of basis functions are in order. In classical least squares
types of estimation, the choice of k usually boils down to a bias-and-variance tradeoff. That is,
while larger values of k can lead to a better in-sample estimation at the risk of potential over-
fitting, smaller values of k result in simpler estimators at the expense of missing interesting
local oscillations. The issue can be resolved by echoing regularization, that is, taking a suffi-
ciently large k to ensure the flexibility of the model and performing regularized estimation to
avoid overfitting. From a theoretical perspective we allow k to grow with the sample size n,
that is, the complexity of the functional curves that the method can potentially capture may
increase when more data become available; see Section 5 for details. We also remark that, for
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a nonparametric treatment, one can assume β∗(t) satisfies the Hölder condition (Tsybakov
(2009)) to control the approximate error induced by the basis truncation.

The functional sparsity in β∗(t) now amounts to the row-sparsity of the coefficient ma-
trix B∗ in (6). The zero-sum constraint on β∗(t), that is, 1T

pβ∗(t) = 0 for all t ∈ T, is now
equivalent to B∗T1p = 0. To see this, note that 1T

pβ∗(t) = 0 leads to∫
t∈T

1T
pB∗�(t)�(t)T(1T

pB∗)T dt = 1T
pB∗Jφφ(1T

pB∗)T = 0;

it follows that B∗T1p = 0 as Jφφ is p.d. (The other direction holds trivially.) Further, the
integral part in the model becomes∫

t∈T
Z(t)β∗(t) dt =

∫
t∈T

Z(t)B∗�(t) dt

=
{∫

t∈T
Z(t)

(
Ip ⊗ �(t)T)

dt

}
vec

(
B∗T) = Zβ∗,

where, with some abuse of notations, we redefine β∗ = [β∗T
1 , . . . , β∗T

p ]T = vec(B∗T) ∈ R
pk

and

Z =
∫
t∈T

Z(t)
(
Ip ⊗ �(t)T)

dt = [Z1, . . . ,Zp] ∈R
n×(pk).(7)

Each β∗
j ∈ R

k and Zj ∈ R
n×k correspond to the coefficient vector and the covariate matrix

for the j th compositional component, respectively. We remark that Z is usually not exactly
computed since Z(t) may not be fully observed; we defer the discussion to Section 4.2.

The functional model in (5) then becomes a constrained sparse linear regression model

(8) y = β∗
0 1n + Zcβ

∗
c + Zβ∗ + e s.t.

p∑
j=1

β∗
j = 0,

where β∗ is expected to be sparse accordingly to the row-sparsity of B∗. To enable the selec-
tion of the compositional components, we therefore propose to conduct model estimation by
minimizing a linearly constrained group lasso criterion (Yuan and Lin (2006)),

min
β0,βc,β

{
1

2n
‖y − β01n − Zcβc − Zβ‖2 + λ

p∑
j=1

‖βj‖
}

s.t.
p∑

j=1

βj = 0,(9)

where λ is a tuning parameter controlling the amount of regularization. We remark that the
group lasso penalty is imposed on the coefficients for each microbiome category to encourage
microbe selection.

The proposed estimator possesses several desirable invariance properties (Aitchison
(2003), Lin et al. (2014)):

(I) Scale invariance: The estimator is invariant to the transformation X(t) → SX(t) where
S = diag(s) is a diagonal matrix with diagonal elements s = [s1, . . . , sn]T and all si > 0. That
is, it does not matter whether the data vectors are scaled to have a unit sum; the method
only cares about the relative proportions. This is simply because Z(t)β(t) = {log(X(t)) +
log(s)1T

p}β(t) = log(X(t))β(t), due to the zero-sum constraints. In fact, this scale invariance
continues to hold when the scaling factor s changes in time.

(II) Permutation invariance: Results of the analysis do not depend on the sequence by
which the components are given or labeled.

(III) Subcomposition coherence: If we know in advance that some βj (t) curves are zero,
the analysis is unchanged if we apply the procedure to the subcompositions formed by the
components of X(t) corresponding to the other βj (t) curves. To see this, suppose βj (t) ≡ 0
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for j ∈ Sc, where Sc is the complement of a set S on {1, . . . , p}. Let s(t) = {XS(t)1|S|}−1 ∈
R

n be a scaling factor in which the inversion is entrywisely applied, so that diag(s(t))XS(t)

gives the subcompositions formed by the components in S . Then, we have

log
(
X(t)

)
β(t) = {

log
(
XS(t)

) + log
(
s(t)

)
1T|S|

}
βS(t)

= log
(
diag

(
s(t)

)
XS(t)

)
βS(t).

In particular, when there are only two nonzero components, for example, β1(t) �= 0, β2(t) �= 0
and βj (t) = 0 for j = 3, . . . , p, it is necessarily true that β1(t) = −β2(t) due to the zero-sum
constraint. This is neither an unpleasant artifact nor a limitation of the proposed method. This
special case can be understood from the above property of subcomposition coherence: the
analysis becomes the same as using the subcompositions formed from the first two compo-
nents of X(t); consequently, the two possible log-ratios are exactly opposite to each other, so
do their corresponding coefficient curves. Therefore, this feature is consistent with the data
structure, as in two-part componsitional data; either part carries exactly the same information.

4. Computation.

4.1. Solving and tuning constrained group lasso. The problem in (9) is convex, and we
solve it by an augmented Lagrangian algorithm (Boyd et al. (2011)). To save space, details
are provided in Section 1 the of Supplementary Material (Sun et al. (2020)).

A general way to select the tuning parameters, that is, the basis dimension k and the group
penalty level λ, is the K-fold cross-validation (Stone (1974)) which is based on the predictive
performance of the models. However, it is well known that the best model for prediction may
not coincide with that for variable selection, and, in fact, the former often leads to overse-
lection. This phenomenon under our model is revealed in Section 5, where it is shown that
consistent component selection shall be based on the zero pattern of a thresholded estimator.
Following Fan and Tang (2013) and Lin et al. (2014), we thus also experiment with minimiz-
ing a generalized information criterion (GIC) for model selection, which favors more sparse
models,

GIC(λ, k) = log
(
σ̂ 2(λ, k)

) + (
s(λ, k) − 1

)
k log

(
max{pk + 1 + pc,n}) log(logn)

n
,

where σ̂ 2(λ, k) is the mean squared error define as ‖y − β̂0(λ, k)1n − Zcβ̂c(λ, k) −
Zβ̂(λ, k)‖2/n with β̂0(λ, k), β̂c(λ, k) and β̂(λ, k) being the regularized estimators of re-
gression coefficients and s(λ, k) is the number of nonzero coefficient groups in β̂(λ, k).

4.2. On discrete time observations. So far we have treated the integrated design matrix Z,
defined in (7), as given. In practical situations, however, the functional compositional predic-
tors are most often not observed continuously but at discrete points, so Z can not be computed
exactly. It is preferable that the induced uncertainty is considered in statistical modeling. In
functional regression with a scalar response, Ramsay and Silverman (2005) discussed using
truncated basis expansions for both the functional predictor and the functional coefficient
curve to convert the infinite dimensional problem to finite dimensional, where truncation can
be viewed as a type of regularization. Integrals were approximated by finite Riemann sums
with discrete observations. The subsequent methodological development in functional regres-
sion has mainly followed along this general strategy with various choices of basis functions
and associated regularization approaches (Morris (2015)). For example, a functional predic-
tor could be expanded by its eigenbasis via a functional principal component analysis, and
the coefficient function could be expanded either by the same eigenbasis or by other basis,
such as wavelet or spline.
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Due to the nature of the compositional data, ideally the functional compositions shall be
expanded by a multivariate basis that preserves the simplex structure under truncation or other
types of regularization which, however, to the best of our knowledge is not yet available. In
essence, a multivariate functional principal component analysis for compositional data, or a
joint modeling approach of both the functional compositions and the regression, is needed
which is beyond the scope of the current work.

For the preterm infant study we take a pragmatic way of lifting the discrete-time data
to continuous time. In this study stool sample of each baby was collected daily whenever
available; this resulted in a good coverage rate with, on average, 12.2 daily samples for each
infant over a 24-day study period. Also, biologists believe that the gut microbiome composi-
tions change continuously over time. As such, we simply apply linear interpolation to obtain
continuous time compositional curves. It can be readily seen that the linear interpolation ap-
proach amounts to compute Z, defined in (7), using the trapezoid rule.

Specifically, suppose for each i = 1, . . . , n, we observe xi (t) = [xi1(t), . . . , xip(t)]T at
discrete time points ti,v ∈ T = [T1, T2], for v = 1, . . . ,mi . That is, different subjects may be
observed at different sets of time points in T. Correspondingly, we have

zi (t) = [
zi1(t), . . . , zip(t)

]T
, t = ti,1, . . . , ti,mi

, i = 1, . . . , n.

Recall that Z = ∫
t∈T Z(t)(Ip ⊗ �(t)T) dt ∈ R

n×(pk). Let Z = [Z1, . . . ,Zp] ∈ R
n×(pk) with

Zj = [zij l]n×k ∈ R
n×k for j = 1, . . . , p. Adopting linear interpolation, the entries of Z are

computed using the trapezoid rule as follows:

zij l =
mi∑

v=2

(
φl(ti,v−1)zij (ti,v−1) + φl(ti,v)zij (ti,v)

) ti,v − ti,v−1

2

+ φl(ti,1)zij (ti,1)(ti,1 − T0) + φl(ti,mi
)zij (ti,mi

)(T1 − ti,mi
),

(10)

for l = 1, . . . , k. In what follows, unless otherwise noted, the integrals in the case of discrete
data are computed using the above trapezoid rule.

5. Theoretical perspectives. Here, we attempt to provide some theoretical perspectives
of two questions of practical concerns: (1) whether it is indeed beneficial to use the linearly
constrained formulation rather than a naive baseline formulation, which chooses an arbitrary
reference component to perform the log-ratio transformation of the compositional predictors
and then proceeds with an unconstrained group lasso regression, and (2) whether the proposed
method can accurately identify the relevant compositional predictors.

We first describe the setup. Our analysis is under the setting when the basis expansion in (6)
holds and the integrated design matrix Z is available. The results are nonasymptotic, where
both the number of functional predictors p and the degrees of freedom of the basis func-
tions k are allowed to grow with the sample size n. For any β = [βT

1 , . . . , βT
p ]T ∈ R

pk , define

βr̄ ∈ R
(p−1)k as a subvector of β by removing its r th component βr , for each r = 1, . . . , p.

Let J ⊂ {1, . . . , p} be an index set, and denote βJ be a subvector of β consisting of
βj , j ∈ J . Denote J c as the complement of J . Recall that X(t) = [x1(t), . . . ,xn(t)]T ∈
R

n×p , Z(t) = [zij (t)] ∈ R
n×p with zij (t) = log(xij (t)), and Z̃r̄ (t) = [̃zij (t)] ∈ R

n×(p−1)

with z̃ij (t) = log(xij (t)/xir (t)) for each r = 1, . . . , p. Moreover, due to (6), we define
Z̃r̄ = ∫

t∈T Z̃r̄ (t)(Ip ⊗ �(t)T) dt ∈ R
n×(p−1)k and Z = ∫

t∈T Z(t)(Ip ⊗ �(t)T) dt ∈ R
n×(pk)

as in (7). Write Z̃r̄ = [Z̃r̄,1, . . . , Z̃r̄,r−1, Z̃r̄,r+1, . . . , Z̃r̄,p] with each Z̃r̄ ,j ∈ R
n×k . Write Z =

[Z1, . . . ,Zp] with each Zj ∈ R
n×k . Let �r̄,j = Z̃T

r̄ ,j Z̃r̄ ,j /n, for r = 1, . . . , p, j = 1, . . . , p

and j �= r . It boils down to analyze the constrained linear model with grouped predictors in
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(8). For simplicity, we omit the intercept and the control variables and write the model as

y = Zβ∗ + e s.t.
p∑

j=1

β∗
j = 0,

where β∗ = [β∗T
1 , . . . , β∗T

p ]T ∈R
pk . Recall that S = {j ;β∗

j (t) �= 0, j = 1, . . . , p.} = {j ;β∗
j �=

0, j = 1, . . . , p.} and s∗ = |S| � p.
The proposed constrained group lasso estimator is

β̂ = arg min
β

{
1

2n
‖y − Zβ‖2 + λ

p∑
j=1

‖βj‖
}

s.t.
p∑

j=1

βj = 0.(11)

This estimator satisfies that β̂r = −∑p
j �=r β̂j . Therefore, it holds true that for any r =

1, . . . , p,

β̂r̄ = arg min
βr̄

{
1

2n
‖y − Z̃r̄ βr̄‖2 + λ

p∑
j �=r

‖βj‖ + λ

∥∥∥∥∥
p∑

j �=r

βj

∥∥∥∥∥
}
.

On the other hand, as to the baseline method, when the r th component is choosing as the
reference level, the estimator is given by

β̃r̄ = arg min
βr̄

{
1

2n
‖y − Z̃r̄ βr̄‖2 + λ

p∑
j �=r

‖βj‖
}
.(12)

Our analysis follows and extends the work by Lounici et al. (2011) on group lasso to the
case of constrained group lasso in (11) arising from functional compositional data analysis.
All the proofs are provided in Section 2 of the Supplementary Material (Sun et al. (2020)).

ASSUMPTION 1. The error terms e1, . . . , en are independently and identically distributed
as N(0,1) random variables.

ASSUMPTION 2 (Restricted Eigenvalue Condition (RE)). There exists κ > 0, such that

min

{ ‖Z	‖√
n‖	J ‖ : |J | ≤ s∗,	 ∈R

pk �= 0,

p∑
j=1

	j = 0,

∑
j∈J c

‖	j‖ + min
j

‖	j‖ ≤ 3
∑
j∈J

‖	j

}
≥ κ.

THEOREM 1 (Error Bounds). Suppose Assumptions 1–2 hold. Choose

λ ≥ min
r

max
j �=r

2σ√
n

√
tr(�r̄,j ) + 2σmax(�r̄,j )

(
2q log(p − 1) +

√
kq log(p − 1)

)
.

Then, with probability at least 1 − 2(p − 1)1−q , the constrained group lasso estimator β̂ in
(11) satisfies that

1

n

∥∥Z
(
β̂ − β∗)∥∥2 ≤ 16λ2s∗

κ2 ,

p∑
j=1

∥∥β̂j − β∗
j

∥∥ + min
j

∥∥β̂j − β∗
j

∥∥ ≤ 16λs∗

κ2 .
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It is interesting to compare with the baseline approach in (12) for which, once a baseline
r is chosen, its theoretical property mimics that of the regular group lasso model with p −
1 groups (Lounici et al. (2011)). Due to the linear constraints, the restricted set of 	 in
Assumption 2 for which the minimum is taken is smaller than that of the regular group lasso
estimator. As such, the condition for the constrained model becomes weaker in general. Also,
in Theorem 1 the choice of λ, which directly impacts the final estimation error rate, is taken
as a minimal value over r , the choice of the baseline. Therefore, in view of the RE condition
and the choice of λ, our results reveal that the proposed method is capable of achieving the
best possible performance of the baseline method under a possibly weaker condition.

ASSUMPTION 3 (β-min Condition). Choose the same λ as in Theorem 1. Assume that

min
j∈S

∥∥β∗
j

∥∥ >
16λs∗

κ2 .

COROLLARY 2 (Selection Consistency). Suppose Assumptions 1–3 hold. Let

Ŝ =
{
j : ‖β̂j‖ >

8λs∗

κ2

}
.

Then, with probability at least 1 − 2(p − 1)1−q , we have that Ŝ = S .

Corollary 2 reveals the “overselection” phenomenon due to convex penalization; see, for
example, Wei and Huang (2010). That is, the proposed constrained group lasso estimator in
general does not miss important variable groups/components, albeit overselecting some ir-
relevant ones. As such, a thresholding operation is preferred in order to recover the correct
sparsity pattern exactly. However, the theoretical threshold is not available in practice, as it in-
volves unknown quantities such as σ 2 and κ . Nevertheless, the results provide guarantee that
using the original estimator can avoid false negatives at the expense of some false positives
which is acceptable in many applications.

6. Simulation. We conduct simulation studies to compare the performance of our pro-
posed sparse functional log-contrast regression via constrained group lasso (CGL) in (9), the
baseline approach in the form of (12) via group lasso (BGL) in which the reference level is
chosen randomly, the naive approach of group lasso (GL) in which the zero-sum constraints
are ignored in (9), cross-sectional method (I) of taking average of observations along time
(Average) and cross sectional method (II) of considering the snapshot of the most significant
time point (Snapshot).

The compositional data are generated as follows. We first generate M time points within
the interval [0,1], that is, 0 = t1 < · · · < tM = 1. For inducing dependence between time
points, we consider an autoregressive correlation structure, 
T = [ρ|μ−ν|

T ]M×M , where
1 ≤ μ,ν ≤ M ; for inducing dependence between compositions, we consider a compound

symmetry correlation structure, 
X = [ρI (j=j ′)
X ]p×p , where 1 ≤ j, j ′ ≤ p and I (·) is the

indicator function. The “nonnormalized” data for each subject i, i = 1, . . . , n, are then gener-
ated from multivariate normal distribution as wi = [wi(t1)

T, . . . ,wi(tM)T]T ∼ N(0, σ 2
X(
T ⊗


X)), where each wi (tν) ∈ R
p for ν = 1, . . . ,M . Finally, the compositional data are ob-

tained as xij (tν) = exp(wij (tν))/
∑p

j=1 exp(wij (tν)), for i = 1, . . . , n, j = 1, . . . , p and
ν = 1, . . . ,M . The regression curves β∗(t) are generated as B∗�(t), where �(t) is from
a set of cubic spline basis computed using the bs function in the R package splines
with t ∈ {t1, . . . , tM} and degrees of freedom set to 5. The first three rows of B∗ are set
as [1,0,1,0,−0.5], [0,0,−1,0,1] and [−1,0,0,0,−0.5], respectively, and the rest are
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set to zero. The intercept is set to be β∗
0 = 1, and, for simplicity, we do not consider ad-

ditional control. The error terms are generated as independent N(0, σ 2) random variables
where σ 2 is set to control the signal to noise ratio (SNR). Finally, the response y is gen-
erated by model (5), where the integral is computed as in (10). We have experimented
with (n,p) ∈ {(50,30), (100,30), (100,100), (100,200)} and parameter settings M = 20,
σ 2

X = 9, ρT ∈ {0,0.6}, ρX = {0,0.6} and SNR = {2,4}. The simulation is repeated 100 times
under each setting.

The prediction error (Pred) is measured by ‖yte −Zteβ̂‖2/nte, computed from an indepen-
dently generated test sample (yte;Xte(t), t ∈ {t1, . . . , tM}) of size nte = 500. The estimation
error (Est) is measured by

∑p
j=1(

∫
[0,1] |β̂j (t)−β∗

j (t)|2 dt)1/2/p. For variable selection of the
compositional components, we report the false positive rate (FPR) and the false negative rate
(FNR), based on the sparsity patterns of β̂(t) and β∗(t). We have experimented with both
10-fold cross-validation (CV) and GIC to select from a grid of (k, λ) values. As shown in
Corollary 2, a thresholding of the estimator is preferred for the purpose of variable selection,
although the ideal threshold is not available in practice. Here, with the same spirit and based
on empirical evidence, we define the selected index set Ŝ based on the relative magnitudes of
the p estimated coefficient curves,

Ŝ =
{
j ;

(∫
[0,1]

β̂2
j (t) dt

)1/2/{ p∑
j=1

(∫
[0,1]

β̂2
j (t) dt

)1/2
}

≥ 1/p, j = 1, . . . , p

}
.

That is, we only count the components whose relative “energy” exceeds the average 1/p as
selected.

The simulation results for (n,p) = (50,30) and (n,p) = (100,200) with SNR = 4 are re-
ported in Tables 1–2. The two naive methods, Average and Snapshot, perform much worse in
prediction than other methods; they tend to miss important variables, as seen from their high
FNR values. To save space, we do not show the results of Average and Snapshot with GIC
tuning, and we omit the results on the estimation errors as they deliver very similar message as
the prediction errors. In general, CGL shows better predictive and selection performance than
both GL and BGL, and in some cases the improvement can even be substantial. We have also
tried the unpenalized least squares estimator which fails miserably in prediction and, hence,
is omitted. The BGL method performs the worst among the three. The two tuning methods,
CV and GIC, show quite different behaviors: the former generally yields larger false positive
rates and much smaller false negative rates than the latter. Indeed, this is consistent with the
theoretical results in Section 5 that the proposed convex regularized estimation approach has
a screening property when tuned based on optimizing predictive performance, that is, with
high probability the method does not miss any important variables but, consequently, it has a
tendency of overselection. Nevertheless, the CV-tuned estimators rarely miss important com-
ponents and perform much better in prediction compared to their GIC-tuned counterparts.
Therefore, CV may be preferable in practice when one cares more about prediction and can
afford some false alarms for the capture of all the relevant signals.

Figure 2 shows boxplots of prediction errors from CV tuning for various simulation set-
tings. We do not include Average and Snapshot methods as they perform much worse; more
detailed results of SNR = 2 is reported in Section 4 of the Supplementary Material (Sun et al.
(2020)). The performance of all methods deteriorates when the SNR becomes smaller, the
between-component correlation becomes smaller or the between-time correlation becomes
stronger. Small between-component correlation causes the presence of a few dominating
compositional components due to the unit-sum constraints, while large between-time cor-
relation makes the functional compositions smooth over time and, consequently, makes it
hard to distinguish the relevant components from the others.



FUNCTIONAL LOG-CONTRAST REGRESSION 1547

TABLE 1
Simulation results for (n,p) = (50,30) and SNR = 4. Reported are the average values over 100 simulation runs

with the standard deviations in parentheses. For better presentation, the values of Pred are multiplied by 10

(ρX,ρT ) Criterion Method Pred FPR (%) FNR (%)

(0,0) CV BGL 0.39 (0.01) 28.85 (1.28) 0.00 (0.00)
GL 0.39 (0.01) 27.48 (1.35) 0.00 (0.00)
CGL 0.34 (0.01) 29.22 (1.43) 0.00 (0.00)
Average 2.03 (0.03) 12.00 (1.37) 66.00 (3.45)
Snapshot 2.11 (0.05) 16.74 (1.77) 53.00 (3.45)

GIC BGL 1.46 (0.06) 4.04 (0.19) 48.00 (3.33)
GL 1.44 (0.05) 0.19 (0.08) 52.67 (2.69)
CGL 1.24 (0.05) 1.63 (0.24) 20.00 (2.37)

(0,0.6) CV BGL 1.27 (0.04) 30.70 (1.48) 0.33 (0.33)
GL 1.21 (0.03) 29.04 (1.40) 0.00 (0.00)
CGL 1.13 (0.03) 29.67 (1.43) 0.00 (0.00)
Average 5.58 (0.14) 19.67 (1.96) 34.00 (3.45)
Snapshot 5.31 (0.10) 23.44 (1.60) 22.67 (1.83)

GIC BGL 4.61 (0.16) 3.74 (0.16) 52.67 (2.60)
GL 3.93 (0.12) 0.11 (0.06) 51.67 (2.39)
CGL 3.91 (0.17) 1.52 (0.24) 23.67 (2.19)

(0.6,0) CV BGL 0.15 (0.01) 29.26 (1.35) 0.00 (0.00)
GL 0.16 (0.00) 29.93 (1.42) 0.00 (0.00)
CGL 0.14 (0.00) 29.07 (1.22) 0.00 (0.00)
Average 0.80 (0.01) 14.63 (1.70) 57.33 (3.52)
Snapshot 0.85 (0.02) 16.70 (1.73) 57.00 (3.29)

GIC BGL 0.65 (0.02) 3.81 (0.19) 56.33 (2.67)
GL 0.62 (0.02) 0.19 (0.08) 59.33 (2.25)
CGL 0.54 (0.02) 1.63 (0.22) 22.67 (2.22)

(0.6,0.6) CV BGL 0.53 (0.02) 33.52 (1.38) 0.33 (0.33)
GL 0.49 (0.02) 30.22 (1.31) 0.00 (0.00)
CGL 0.45 (0.01) 30.37 (1.44) 0.00 (0.00)
Average 2.02 (0.04) 22.81 (1.89) 26.33 (2.81)
Snapshot 2.10 (0.03) 22.85 (1.60) 25.67 (1.76)

GIC BGL 1.85 (0.06) 3.81 (0.15) 53.67 (2.59)
GL 1.69 (0.05) 0.11 (0.06) 57.67 (2.00)
CGL 1.52 (0.06) 1.74 (0.23) 25.00 (2.24)

As suggested by a referee, we also perform a simulation example to better mimic the real
data from the preterm infant study, in which the observed compositional data matrix from the
preterm infant study is directly used as the design matrix to generate data, the sample size is
the same as the real data (n = 34, p = 22) and the SNR is set as comparable to the real data
(SNR = 1.5). The nonzero coefficients of the taxa are either set the same as those used in the
other simulation examples or those estimated from CGL on the real data. The simulation is
repeated 100 times. The average scaled prediction error is 3.10 (0.03), 3.10 (0.03) and 2.99
(0.02) in the first setting and 1.88 (0.02), 1.37 (0.01) and 1.33 (0.01) in the second setting, for
BGL, GL and CGL tuned by CV, respectively. This result further confirms that CGL can lead
to slightly improved model performance while maintaining the simplex geometry for ease of
model interpretation.

7. Linking microbiome trajectories to neurobehavioral outcomes. Recall that our
main objective is to identify the microbiome markers that are predictive of later infant neu-
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TABLE 2
Simulation results for (n,p) = (100,200) and SNR = 4. The layout is the same as in Table 1

(ρX,ρT ) Criterion Method Pred FPR (%) FNR (%)

(0,0) CV BGL 0.31 (0.01) 15.28 (0.48) 0.00 (0.00)
GL 0.31 (0.01) 15.27 (0.48) 0.00 (0.00)
CGL 0.29 (0.00) 15.57 (0.51) 0.00 (0.00)
Average 1.98 (0.03) 3.04 (0.41) 73.33 (3.11)
Snapshot 1.99 (0.03) 4.82 (0.64) 59.33 (3.20)

GIC BGL 1.45 (0.05) 0.51 (0.01) 44.00 (3.07)
GL 1.33 (0.05) 0.01 (0.01) 46.33 (2.88)
CGL 1.13 (0.05) 0.19 (0.03) 11.67 (1.73)

(0,0.6) CV BGL 1.02 (0.02) 16.26 (0.51) 0.00 (0.00)
GL 0.97 (0.02) 15.62 (0.52) 0.00 (0.00)
CGL 0.94 (0.02) 16.32 (0.50) 0.00 (0.00)
Average 5.41 (0.10) 7.17 (0.70) 27.00 (2.71)
Snapshot 5.14 (0.10) 6.57 (0.56) 27.67 (1.26)

GIC BGL 4.15 (0.16) 0.51 (0.01) 43.00 (3.01)
GL 3.44 (0.12) 0.01 (0.01) 42.67 (2.92)
CGL 3.57 (0.15) 0.10 (0.02) 16.00 (1.92)

(0.6,0) CV BGL 0.12 (0.00) 14.78 (0.49) 0.00 (0.00)
GL 0.12 (0.00) 15.44 (0.61) 0.00 (0.00)
CGL 0.12 (0.00) 15.07 (0.55) 0.00 (0.00)
Average 0.80 (0.01) 5.14 (0.68) 58.33 (3.80)
Snapshot 0.81 (0.01) 4.30 (0.49) 61.67 (2.82)

GIC BGL 0.55 (0.02) 0.53 (0.01) 39.00 (3.39)
GL 0.47 (0.02) 0.02 (0.01) 36.33 (3.22)
CGL 0.41 (0.02) 0.15 (0.03) 9.67 (1.79)

(0.6,0.6) CV BGL 0.41 (0.01) 16.21 (0.50) 0.00 (0.00)
GL 0.40 (0.01) 15.30 (0.55) 0.00 (0.00)
CGL 0.39 (0.01) 15.59 (0.50) 0.00 (0.00)
Average 2.03 (0.03) 7.35 (0.63) 16.67 (2.25)
Snapshot 2.09 (0.04) 7.62 (0.67) 27.33 (1.29)

GIC BGL 1.76 (0.06) 0.52 (0.01) 48.33 (2.93)
GL 1.46 (0.05) 0.01 (0.01) 47.33 (2.73)
CGL 1.40 (0.06) 0.15 (0.03) 17.00 (1.98)

rodevelopment as measured by NNNS. This predictive association, if proven true, can provide
supporting evidence to the claim that the stressful early life experience of preterm infants is
imprinting gut microbiome by the regulation of the brain-gut axis. We tackle the problem
with the functional log-contrast regression model in (5), in which the composite NSTRESS
score serves as the response variable, the gut microbiome observed during the early postnatal
period serves as the functional compositional predictors and the infant characteristics listed
in Table 3 below serve as the time-invariate control variables. We apply the proposed CGL
approach for model estimation and compositional component selection. The cubic spline ba-
sis is used, and the tuning of the degrees of freedom k as well as the sparsity parameter λ is
done using cross-validation.

After controlling for the effects of several infant characteristics, our approach is able to
identify four bacteria categories at the order level that are associated with the neurobehav-
ioral outcome of infant. (GIC tuning selects exactly the same four taxa.) Before we discuss
the selected microbiome markers, let’s first focus on the effects of the control variables. Ta-
ble 3 shows the estimated coefficients of the control variables along with some descriptive
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FIG. 2. Boxplots of prediction errors for various simulation settings. The dark grey, light grey and white colors
correspond to three different estimation methods BGL, GL and CGL, respectively.

statistics. It is seen that the neurobehavioral outcome is better (i.e., NSTRESS is small) for
infants with larger birth weight, smaller SNAPE-II score and more mother’s breast milk for
feeding. Regarding the delivery of infant, vaginal delivery and the absence of premature rup-
ture of membranes are associated with better neurobehavioral development. These interesting

TABLE 3
Descriptive statistics of infant characteristics and their estimated

coefficients from fitting the sparse functional log-contrast regression.
Values of estimated coefficient are multiplied by 100

Numerical variable Mean (sd) Estimated coefficient

Birth weight (in gram) 1451.7 (479.3) −0.003
SNAPE-II 9.3 (10.6) 0.107
%MBM 61.8 (29.9) −9.272

Binary variable Mean

Gender (female = 1) 50.0% −0.064
PROM (yes = 1) 44.1% 2.761
Delivery type (vaginal = 1) 35.3% −5.105
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FIG. 3. Estimated effects of the four selected bacteria categories at the order level over infant’s postnatal age
(PNA) of five to 28 days. In each subgraph the upper panel shows how this category changes over time for three
clusters of infants. For each category the clusters are based on the percentiles of its partial residuals, obtained by
subtracting the estimated effects of the control variables and other selected bacteria categories from the observed
NSTRESS scores. The curve with its 90% confidence band is shown in red for the high group, in blue for the
medium group and in green for the low group.

and intuitive results are consistent with existing literature (Neu and Rushing (2011), Feldman
and Eidelman (2003)). The analysis also shows that female infants tend to perform slightly
better than male, after accounting for other effects.

The estimated functional effects of the four selected bacteria categories are shown in the
four panels of Figure 3, respectively. In each panel the lower part shows the estimated func-
tional effects of a category over time (between five and 28 days of postnatal age), and the
upper part attempts to show, directly from raw data, how this category changes over time for
infants with high, medium or low “adjusted” NSTRESS score, obtained by subtracting the
estimated effects of the control variables and other selected bacteria categories from the ob-
served NSTRESS scores. Specifically, we construct smoothed curves of log-compositions of
each selected category for three clusters of infants (using locally weighted scatterplot smooth-
ing). For each category the clusters are based on the percentiles of its “adjusted” NSTRESS
score. The curve with its 90% confidence band is shown in red for the high group, that is,
infants with the upper one-third of the adjusted scores, in blue for the medium group, that
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FIG. 4. Selection results from 100 bootstrap samples. (a) Proportions of the signs of the estimated coefficients
of the control variables. Proportions of positive signs are shown as black blocks to the right, and those of negative
signs are shown as light gray blocks to the left. (b) Proportions of selecting the 22 bacteria categories at the order
level. The bars of the four selected categories from fitting the original data are colored in black.

is, infants with the middle one-third of the adjusted scores and in green for the low group,
that is, infants with the lower one-third of the adjusted scores. As an example, for category 1
the red curve increases in the beginning to be above the other two curves and then becomes
mostly below them in the later stage. This suggests that the time-varying effect of category
1 on the NSTRESS score is first positive and then negative, which is clearly reflected by the
estimated functional effects. Similarly, for the other three selected categories the patterns of
the estimated effects agree well with those of the observed data. This verifies visually that
our proposed model and the estimation approach yield sensible results.

To access the stability of the results, we have generated 100 bootstrap samples and used the
same cross-validation procedure to select the best models. The results are show in Figure 4.
The signs of the coefficients of the control variables are quite stable, except for the gender
and SNAPE-II variables; this shows that these two variables may not have much effect on the
outcome when conditioning on other terms in the model. For each control variable the sign
with the higher proportion among its 100 bootstrap estimates agrees with that of the estimate
from fitting the original data, except for the gender. Furthermore, the top four categories with
the highest proportions of being selected in bootstrap coincide with the categories selected
from fitting the original data. Categories 10 and 19 are selected about 90% of the times, while
9 and 1 are selected more than 70% and 60% of the times, respectively.

Category 10 consists of Clostridiales, which are an order of bacteria belonging to the phy-
lum Firmicutes. Studies showed that infants fed with mother’s milk had significantly higher
abundance in Clostridiales (Cong (2016)). Clostridiales are generally regarded as hallmarks
of a healthy gut; it can be a sign of infection when their subtypes such as Eubacteria die
off in the large intestine. Our results show that controlling for other effects in the model,
the effect of Clostridiales on the stress score switches from negative to positive during the
postnatal days from five to 28. Category 9 consists of Lactobacillales, or lactic acid bacte-
ria (LAB), another order of bacteria belonging to the phylum Firmicutes. These bacteria are
usually found in decomposing plants and milk products; they are considered beneficial and
produce organic acids, such as lactic acid from carbohydrates. Our analysis shows that con-
trolling for the other effects in the model, higher LAB proportions are associated with higher
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stress scores for a period of time during the early postnatal days. Both Clostridiales and LAB
belong to phylum Firmicutes, which make up the largest portion of the human gut micro-
biome, and the abundance of Firmicutes has been shown to be associated with inflammation
and obesity (Boulangé et al. (2016), Clarke et al. (2012)). Category 19 consists of Enterobac-
teriales, an order of gram-negative bacteria. They are responsible for various infections, such
as bacteremia, lower respiratory tract infections, skin infections, etc. Category 1 consists of
other unclassified bacteria. The functional regression analysis presented here may lead to a
better understanding of how the trajectories of gut microbiome during early postnatal stage
impact neurobehavioral outcomes of infants through the gut-brain axis.

We also repeat the analysis on a lower level taxon, that is, the genus level. Five out of
p = 62 genera are selected, and their estimated functional effects are shown in the five panels
of Figure 5. The tendency of the estimated effects adequately reflects those of the observed
data, and the results are consistent with previous study on the order level. In particular, the
five selected genera all belong to the four selected order categories; see Table 4. Genus 38
comprises genus Veillonella, belonging to the order Clostridiales. Veillonella have been im-
plicated as pathogens; they are often associated with oral, central nervous system and various
soft tissue infections. Our results show that controlling for the other effect in the model,
the effect of Veillonella on the stress score works similarly to that of Clostridiales, switch-
ing from negative to positive. Genus 20 consists of Enterococcus which is an large genus
of bacteria belonging to the order LAB. In humans, E. faecalis and E. faecium are the most
abundant species of this genus found in fecal content, comprising up to 1% of the adult in-
testinal microbiota. Although utilization of Enterococci as probiotics has been under contro-
versial discussion, enterococcal strains such as E. faecium SF68 and E. faecalis Symbio-flor
have been marketed as probiotics for decades without incidence and with very few reported
adverse events (Franz et al. (2011)). On the other aspect, Enterococci is also important noso-
comial pathogens that cause bacteraemia, endocarditis and other infections. Same as LAB,
controlling for the other effect in the model, our results show that higher Enterococcus pro-
portions are associated with higher stress scores for a period of time during the early postnatal
days. Genus 55 is Shigella, belonging to the order Enterobacteriales. Shigella is considered
as pathogen causing shigellosis. The main sign of shigella infection is diarrhea which of-
ten is bloody. However, shigellosis rarely affects infants during the first month of life. Even
in highly endemic areas, neonatal shigellosis is exceedingly uncommon (Haltalin (1967)).
Our analysis shows that controlling for the other effects in the model, the effect of Shigella
changes from positive to negative during early postnatal days. Genus 48 consists of other
unclassified genera of bacteria that belong to the order Enterobacteriales. Genus 1 consists of
other unclassified bacteria.

Lastly, we compare the three functional estimation methods BGL, GL and CGL in this real
data analysis. Recall that using full data, CGL selected orders 1, 9, 10 and 19. In contrast, GL
selected orders 9, 10 and 19 but missed order 1. The selected taxa using BGL varied dras-
tically with different choices of the baseline taxon; for example, it selected order 10 when
order 1 was used as the baseline, it selected 9, 10, 14, 15 and 17 when order 12 was used
as the baseline and it failed to select any taxon when order 2 was used as the baseline. To
objectively compare the three methods, we have also performed an out-of-sample random
splitting procedure. Specifically, we randomly divide the data into a training sample of 90%
subjects to fit the models and a testing sample of 10% patients to evaluate the out-of-sample
performance of the models. This procedure is repeated 100 times, and the results are av-
eraged. For the order level analysis, the average scaled prediction errors are 0.213 (0.478),
0.136 (0.123) and 0.127 (0.095), for BGL, GL and CGL, respectively. The results confirm
that CGL is preferred in practice due to its improved predictive performance and its validity
in maintaining the log-contrast model interpretation and avoiding arbitrary selection of the
baseline. Indeed, here the baseline method, BGL, performs much worse than the other two
methods and exhibits a much larger variation in selection.
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FIG. 5. Estimated effects of the five selected bacteria categories at the genus level over infant’s postnatal age
(PNA) of five to 28 days. The layout is the same as in Figure 3.
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TABLE 4
Comparison of selection of microbiome markers between order level and genus level

Order level Genus level

1: Others 1: Others

9: Lactobacillales
Produce organic acids such as lactic acid from
carbohydrates.

20: Enterococcus
It’s used as probiotics in humans;
It’s considered as pathogens that cause bacteraemia,
endocarditis and other infections.

10: Clostridiales
It’s generally regarded as hallmarks of a healthy gut;
It’s a sign of infection when their subtypes such as
Eubacteria die off in the large intestine.

38: Veillonella
It’s implicated as pathogens;
It’s associated with oral infections and various soft
tissue infections.

19: Enterobacteriales
It’s responsible for various infections such as
bacteremia, lower respiratory tract infections, skin
infections, etc.

55: Shigella
It’s considered as pathogen causing shigellosis;
Shigellosis is exceedingly uncommon for infants
during the first month of life
48: Others

8. Discussion. We have attempted a functional log-contrast regression approach to iden-
tify trajectories of gut microbiome components during early postnatal stage that are associ-
ated with later neurobehavioral outcomes of preterm infants. There are several directions for
future research to address the limitations of the current work.

Our results on order and genus levels give a general idea of how the microbial communities
effect health outcomes; to fully decipher their roles, further analysis on species level or even
operational taxonomic unit (OTU) is needed. However, the problem of choosing microbiome
resolution (or taxonomic rank) in data analysis is both biologicial and statistical. In this work
our choices are made based on both the interest of the biologists and by taking into consid-
eration of the limited sample size of n = 34; while we focus on the order level with p = 22,
the additional analysis on the genus level, which has a much larger number of predictors,
provides a sanity check. We suggest the practitioners to do the same. For the compositional
data on microbiomes, there is clearly a trade-off between data quality and data resolution—
the lower the rank, the higher the data resolution (there are more taxa) but the sparser the
data (there are more zeros and each composition is converted from a smaller count). More
generally, as microbiomes admit a taxonomic hierarchy, a fundamental statistical problem is
how to search for the taxonomic rank or ranks that which best predicts an outcome of interest.

The data analysis can benefit from extending the model to consider potential interactions
between the control variables and the gut microbiome, as it is possible, for example, that
the effects of certain microbiome markers differ for male and female infants. Our method
is based on constrained and regularized estimation, with which it is not straightforward to
produce valid confidence intervals. It is thus pressing to tackle this postselection inference
problem (Shi, Zhang and Li (2016), Taylor and Tibshirani (2015)) in the context of func-
tional regression. Extensions to binary outcome or mixture model setup are interesting and
could be widely applicable; indeed, it is of interest to see whether there exists a subgroup
structure among the preterm infants. To take into account the uncertainty due to discrete ob-
servations, it is urgent to develop smoothing or dimension reduction methods, such as mul-
tivariate functional principal component analysis for compositional data observed discretely
over time. A joint modeling approach of both the regression and the functional compositions
themselves may also be fruitful.
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SUPPLEMENTARY MATERIAL

Supplement to “Log-contrast regression with functional compositional predictors:
Linking preterm infant’s gut microbiome trajectories to neurobehavioral outcome”
(DOI: 10.1214/20-AOAS1357SUPP; .pdf). We provide details of the computational algo-
rithm in Section 4, proofs of Theorem 1 and Corollary 2, more details on the microbiome
data in the preterm infant study, and additional simulation results.
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