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Missing attributes are ubiquitous in causal inference, as they are in most
applied statistical work. In this paper we consider various sets of assumptions
under which causal inference is possible despite missing attributes and dis-
cuss corresponding approaches to average treatment effect estimation, includ-
ing generalized propensity score methods and multiple imputation. Across
an extensive simulation study, we show that no single method systematically
outperforms others. We find, however, that doubly robust modifications of
standard methods for average treatment effect estimation with missing data
repeatedly perform better than their nondoubly robust baselines; for example,
doubly robust generalized propensity score methods beat inverse-weighting
with the generalized propensity score. This finding is reinforced in an anal-
ysis of an observational study on the effect on mortality of tranexamic acid
administration among patients with traumatic brain injury in the context of
critical care management. Here, doubly robust estimators recover confidence
intervals that are consistent with evidence from randomized trials, whereas
nondoubly robust estimators do not.

1. Introduction.

1.1. Hemorrhagic shock and traumatic brain injury in critical care management. Our
work is motivated by a prospective observational study of the causal effect of tranexamic acid
(TA), an antifibrinolytic agent that limits excessive bleeding, on mortality among traumatic
brain injury patients during their stay at the hospital (from admission to ICU and regular
care units). The beneficial effect of TA on mortality has been shown in a large random-
ized placebo-controlled study (Shakur et al. (2010)). Our interest in developing observational
study methods for assessing the effect of TA is twofold: In the long run, observational studies
will be able to incorporate data on a larger and more diverse set of patients, thus allowing us
to get a better understanding of when and for whom TA works; treatment effect estimation on
such observational studies can serve as a precursor for future randomized placebo-controlled
studies, namely, by helping to define the most interesting or promising target population be-
forehand and the associated inclusion rules.

Our study is built on top of the Traumabase® database which currently indexes around
20,000 major trauma patients.! For each patient, 244 measurements are collected both before
and during the hospital stay, including both quantitative and categorical variables. As shown
in Table 1, TA was administered to roughly 8% of traumatic brain injury patients, and among
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1Major trauma is defined as any injury that potentially causes prolonged disability or death; it is a public health
challenge and a major source of mortality and handicap around the world (Hay et al. (2017)).
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TABLE 1
Occurrence and frequency table for traumatic brain injury patients (total number: 8248)

Survived Died
TA not administered 6238 (76%) 1327 (16%)
TA administered 367 (4%) 316 (4%)

all patients 20% died before the end of their hospital stay. We also see that mortality was
much higher among patients who received TA than those who did not (46% vs. 18%). This
apparent reversal of the expected causal effect is a standard example of confounding bias
(also known as Simpson’s paradox): The effect arises because patients who appeared to be in
more severe state were more likely to be administered TA and were also more likely to die
with or without the treatment.

The goal of our observational study design is to use a subset of 37 auxiliary covariates
collected by the Traumabase group to control for confounding and identify the causal effect of
TA on mortality. This “unconfoundedness” or “selection on observables” strategy is justified
if the treatment of interest (i.e., administration of TA) is as good as random after conditioning
on covariates (Imbens and Rubin (2015), Rosenbaum and Rubin (1983)). In general, such an
unconfoundedness assumption cannot be validated from data, and needs to be built into the
observational study design.

In order to make unconfoundedness as plausible as possible, the Traumabase group chose
which covariates among the total of 244 collected covariates to incorporate in our study by so-
liciting feedback from a number experts using the Delphi method (Dalkey and Helmer (1963),
Jones and Hunter (1995)). The focus of the Delphi survey was in understanding which fac-
tors were important for understanding health trajectories of major trauma patients. Because
the decision whether or not to administer TA was performed by health professionals, it is
likely that this same set of variables is also relevant to understanding which patients were
more likely than others to be selected for treatment. A detailed list of the confounders and
predictors of the outcome, in-ICU mortality, that were chosen via the Delphi method is given
in the Supplementary Material (Mayer et al. (2020)).

As discussed further in the following section, the statistics of treatment effect estimation
under unconfoundedness are by now well understood, with literature covering a range of top-
ics from identification (Imbens and Rubin (2015), Rosenbaum and Rubin (1983)) and simple
weighted estimators (Abadie and Imbens (2016), Rosenbaum and Rubin (1984), Zubizarreta
(2012)) to semiparametrically efficient estimation in potentially high-dimensional settings
(Athey, Imbens and Wager (2018), Chernozhukov et al. (2018), Robins, Rotnitzky and Zhao
(1994), van der Laan and Rose (2011)) and optimal treatment personalization (Athey and
Wager (2017), Kitagawa and Tetenov (2018), Luedtke and van der Laan (2016), Zhao et al.
(2012)).

In the case of the Traumabase dataset, however, we have an additional complication
whereby, in Figure 1, many of the variables have missing entries. Some of the missingness is
presumably due to noninformative missingness, for example, medical staff simply forgetting
to log some numbers, but in other cases the missingness is clearly informative; in fact, the an-
alysts compiling the dataset used many different phrases to describe missing measurements,
ranging from “not made” and “not applicable” to “impossible.” The last denomination arises,
for example, in the case of blood pressure measurements for patients in cardiac arrest or with
dismemberment, as first responders simply cannot measure blood pressure for patients suf-
fering from one of these two conditions. Meanwhile, variables indicating the response to a
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FIG. 1. Percentage of missing values for a subset of variables relevant for traumatic brain injury. Different
encodings of missing values: NA (not available), not informed, not made, not applicable, impossible.

certain drug, such as the pupil contraction after the administration of a saline solution, sys-
tematically take on the value “not applicable” if the treatment has not been administered (the
latter is informed in a separate variable).

There are a handful of popular strategies for working with missing values in the context
of treatment effect estimation under unconfoundedness, ranging from generalized propensity
score methods (D’Agostino and Rubin (2000), Rosenbaum and Rubin (1984)) to multiple
imputation (Little and Rubin (2002), Rubin (1976, 1987)). However, the methodology for
treatment effect estimation with missingness is not as thoroughly fleshed out as corresponding
methods without missing data. In particular, although doubly robust and semiparametrically
efficient methods have shown considerable promise in cases without missingness (Athey,
Imbens and Wager (2018), Chernozhukov et al. (2018), Robins, Rotnitzky and Zhao (1994),
van der Laan and Rose (2011)), we are not aware of a study of doubly robust treatment effect
methods with missing covariates.

1.2. Summary of contributions and outline. In this paper we consider several popular
methods for treatment effect estimation with missing covariates that rely on various uncon-
foundedness assumptions or assumptions about the missingness mechanism. We then dis-
cuss natural doubly robust generalizations of these methods, and compare them in numerical
experiments. We find considerable variability in which methods perform best in our exper-
iments. Sometimes methods that start from generalized propensity scores do better, while
other times multiple imputation with parametric methods fit via the EM algorithm (Dempster,
Laird and Rubin (1977)) are better, whereas other times nonparametric estimators do better;
overall, the performance of each method strongly depends on the underlying confounding
mechanism. However, we systematically find our doubly robust modifications of standard
methods to outperform their baselines.

In the case of the Traumabase study, all doubly robust estimators give confidence intervals
that cover 0, indicating that we need to collect more data before we can use the observational
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study to guide clinical choices around administration of TA in the context of traumatic brain
injury. In contrast, all baseline methods result in confidence intervals that do not cover 0 and
find significantly harmful effects of TA on mortality. It thus appears that using doubly robust
estimators is needed to eliminate the selection bias seen in Table 1.

2. Methods for complete data. As a preliminary to our discussion on how to estimate
causal effects with missing attributes, we first briefly review methods that are widely used
in the easier case without missingness. Suppose we observe n independent and identically
distributed samples (X;, Y;, W;) e R? x R x {0, 1} where X; is a vector of attributes, Y; is
an outcome of interest and W; denotes treatment assignment. We define causal effects via the
Neyman—Rubin potential outcomes model under the stable unit treatment value assumption
(Imbens and Rubin (2015)). We posit potential outcomes {Y;(0), ¥;(1)} corresponding to the
outcome the ith sample would have experienced had they been assigned treatment W; =0 or
1, respectively, such that ¥; = Y; (W;). The average treatment effect is then defined as

t 2 E[Y:(1) - Y: (0)].

In order to identify 7, we further assume unconfoundedness, that is, that treatment assignment
is as good as random conditionally on the attributes X; (Rosenbaum and Rubin (1983)),

(1) {Y:(0), vi(DH} L W; | X;
and overlap, that is, that the propensity score e(-) is bounded away from 0 and 1,
2) e(X) EP[W;=1]X;=x], n<ex)<l—n,

for all x € R? and some n > 0.

In the case without any missingness in the attributes X;, the problem of average treatment
effect estimation in the above setting is well understood. Several popular and consistent ap-
proaches to estimating 7 are built around the propensity score. The analyst first estimates
the propensity score e(x) in (2) and then estimates 7, either via inverse-propensity weighting
(IPW)

LA LKWy A=Wy
® ’IPW_n,;(é(XI-) 1—a(X) )

or by matching treated and control observations with similar values of the propensity score
(Abadie and Imbens (2016), Rosenbaum and Rubin (1984), Zubizarreta (2012)).

However, when the propensity score is somewhat difficult to estimate, methods that only
rely on the propensity score are, in general, dominated by bias due to estimation error in
e(-) and methods that also model the outcomes Y; can attain a better sample complexity; see
Athey, Imbens and Wager (2018), Chernozhukov et al. (2018) and van der Laan and Rose
(2011) for references and recent results. One particularly successful approach to combining
these two approaches to modeling is via augmented inverse-propensity weighting (AIPW)
(Robins, Rotnitzky and Zhao (1994)),

n

. 1 . .
TAlPW = - Z(M(l)(xi) — ) (Xi)

) =
W,' N (1 - Wi) A
+ m(yz‘ — (X)) — T(Xi)(yi - H«(O)(Xi))>,

where () (x) L2 E[Y | X; =x, W, = w] and fapy(x) is an estimate thereof. The AIPW
estimator is often referred to as “doubly robust” because Tarpw is consistent for 7 if either the
estimated outcome functions fi(y)(x) or the estimated propensity scores é(x) are consistent.
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A key fact about doubly robust estimators as in (4) is that Ta;pw can be i/n-consistent for
t and asymptotically Gaussian even in a nonparametric setting where fi(,)(-) and é(-) are
estimated, for instance, using generic machine learning methods, at slower nonparametric
rates (Farrell (2015)). In particular, provided use “cross-fitting”, that is, we do not use the ith
datapoint itself for making the predictions (i) (X;) and e(X;), Tappw using any choice of
L) (X;), and é(X;) attains /n rates of convergence whenever the product of the root-mean
squared errors of f1(,)(X;) and é(X;) decays faster than 1/ /n (Chernozhukov et al. (2018),
van der Laan and Rose (2011)).2

3. Treatment effect estimation with missing attributes. In this paper we are interested
in a more difficult variant of the above setting where the analyst cannot always observe the
full attribute vector. Rather, we assume that there is a “mask” R; € {1, NA}? such that the
analyst observes X £ R; © X; € [RUNAJ}”. Here, © denotes an elementwise product, such
that Xl*j = X,'j if Rij =1 and Xl*j =NA if Rij =NA.J

In current empirical practice there are several approaches to treatment effect estimation
with missing attributes; but the literature studying this problem is rather scarce and most such
approaches focus on IPW-form estimators as in (3) (D’Agostino and Rubin (2000), Leyrat
et al. (2019), Mattei (2009), Rosenbaum and Rubin (1984), Seaman and White (2014)).

The main contributions of this paper consist in: (1) a dyadic classification of possible
approaches to treatment effect estimation with missing attributes, the first class relying on
a variant of the unconfoundedness assumption while the second uses the classical missing
values mechanism taxonomy; (2) the proposal of two new estimators in the first class, a
parametric and nonparametric estimator, both in an IPW and an AIPW form; (3) the extension
of previously introduced IPW estimators to the AIPW form in the second class; and (4) an
extensive comparison of these estimators. As preliminaries, below we review some paradigms
for treatment effect estimation with missing attributes.

3.1. Unconfoundedness despite missingness. Perhaps the simplest way to work with
missing attributes is to assume that the missingness mechanism does not break unconfound-
edness (1), that is, that (Rosenbaum and Rubin (1984))

) {Yi(0), Yi(D} L W; | X}
In this setting, D’ Agostino and Rubin (2000) show that matching on the generalized propen-
sity score
(6) F(x*) EP[W; =1 X} =x*]
is consistent for t. In general, the simplest way to verify (5) is to pair (1) together with one
of the two assumptions below (Blake et al. (2020), Mattei (2009)):
CIT: W; L X;|X/,R;
@) or
CIO: Y;(w) L X;|X},R; forw e{0,]1},
where CIT and CIO stand for conditional independence of treatment and conditional inde-

pendence of outcome, respectively. Given these assumptions, (5) can be directly derived from
the causal graphs shown in Figure 2 (Pearl (1995), Richardson and Robins (2013)).

20ther methods, including those based on inverse-weighting as in (3), can also sometimes achieve similarly
good asymptotic performance, but these results are generally more fragile and require considerably stronger reg-
ularity conditions than corresponding AIPW results (Hirano, Imbens and Ridder (2003)).

3This representation of the incomplete data where the missing values are treated as a special category is chosen
in view of the random forest approach handling this type of data.
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FI1G. 2. Causal graph depicting the assumptions (7).

We note that fitting (6) may appear difficult from the perspective of classical parametric
statistics; for example, in order to run logistic regression, one needs to fit a separate parameter
vector for each mask r. However, many modern machine-learning methods, including tree
ensembles and neural networks, can readily handle missing data and enable (6) to be fit
directly (Josse et al. (2019)).

3.2. Missing values mechanisms. Another choice is to make assumptions about the miss-
ingness mechanism R;. The most popular approach is to take the missingness mechanism to
be random (MAR) (Little and Rubin (2002), Rubin (1976)), that is, for each possible mask
r e {l,NA}?,

)] P(Ri=r|Xi=x,W;,Y)) =P(R; =r | (X;)r =x,, W;, ¥}),

where X, is the subset of entries of X indexed by {j : r; = 1}. Under these assumptions,
multiple imputation (Rubin (1987), van Buuren (2018)) is a popular approach to treatment
effect estimation (Qu and Lipkovich (2009), Robins and Wang (2000), Rubin (1978, 2004),
Seaman and White (2014)). Under the condition that this imputation is “proper,” that is,
that the missing attributes are simulated from the correct conditional distribution and cor-
rect model specification for the outcome and treatment, this method is consistent for IPW
estimators (Seaman and White (2014)). Note that multiple imputation does not rely on the
assumption (5) or the generalized propensity score, but it only requires the data to be MAR
as in (8).

A stronger variant of the missing-at-random assumption (8) is to assume missingness to
be completely at random (MCAR),

PR =r|X;,W;,Y))=P(R; =r),
or, equivalently,
R; L {X;,Y;, W;}.

Under this assumption, further methods become available. First, we can consistently estimate
7 using only the subset of the data with no missingness, that is, X; = X*. Of course, using
only a subset of the data results in a loss of efficiency; however, this approach is simple and
consistent. We emphasize that complete case analysis is not valid under the weaker assump-
tion (8); in that case, ignoring observations with missingness will result in bias (Little and
Rubin (2002)).

Another algorithm that has been studied under the MCAR assumption is based on matrix
completion (Kallus, Mao and Udell (2018)). Write X and X™* for the matrices with rows X;
and X7, respectively. Then, assuming that X is a potentially noisy realization of a low rank
matrix U and that unconfoundedness (1) holds with X; replaced by U;, we can approximate
U from X* using methods for low-rank matrix factorization (e.g., Candes and Plan (2010))
and then apply complete-data methods on the recovered U;. In cases where both MCAR and
the low-rank assumption hold, matrix factorization may be more efficient than complete case
analysis and simpler than multiple imputation.
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3.3. Discussion: The Traumabase study. In light of the previous discussion on the un-
derlying (additional) assumptions required in the case of missing attributes, we argue that
the Traumabase data is more likely to fall under the unconfoundedness despite missingness
assumption from Section 3.1 than the MAR assumption from Section 3.2. Indeed, the admin-
istration of TA in the context of major trauma generally takes place under time pressure (the
more blood a patient looses, the more complications can occur), and the medical staff cannot
wait too long to collect a lot of information before deciding on the treatment. Therefore, if a
value such as the evolution of the shock index level between arrival of the MICU* and arrival
at the ICU is not available because at least one measurement is missing, for instance, due to
transmission problems, the decision on the treatment will not depend on this feature. Another
example could be information about the prehospital hemoglobin level: if the patient is in a
severe state and immediate measures (such as resuscitation) are prioritized, then this mea-
surement might not be made; however, the consequently missing value is informative in the
sense that it is due to the severe state of the patient which might not necessarily be recorded
explicitly in other observed features. These examples point in favor of the unconfoundedness
despite missingness assumption as they suggest that the missing values are not only miss-
ing for the analyst but have already been missing for the physician at the time of treatment
administration.

On the contrary, the MAR assumption seems plausible only for a subset of covariates.
For instance, if the binary variable Cardiac.arrest.ph indicates that the patient needed to be
resuscitated, then this can explain the missing values for the blood pressure and heart rate
during prehospital phase. And there are other incomplete variables, such as the total quantity
of volume expanders used in pre-hospital phase, for which the missing values depend on
several other recorded variables describing the need for volume expansion. But overall—due
to the multitude of agents collecting the data in different circumstances and under important
time constraints—such statements about the plausibility of MAR are difficult to assess on the
whole of the registry.

4. IPW and augmented IPW with missing attributes. The previously discussed as-
sumptions lead to two families of methods for treatment effect estimation with missing at-
tributes. We now propose two IPW and AIPW estimators in the family derived from the un-
confoundedness despite missingness assumption (Section 3.1). In the other family that relies
on classical assumptions on the missingness mechanism (Section 3.2), we extend the existing
multiple imputation IPW estimator to a doubly robust AIPW version. For the former family
we only present details for the AIPW estimators; their [IPW counterparts can almost directly
be read off the AIPW formulation below.

4.1. Unconfoundedness despite missingness. Under assumption (5), the generalization
to incomplete attributes is direct. First, estimate the generalized propensity score e*(x*) from
(6) and, similarly, the generalized outcome model Mz"w)(x*), and then form the AIPW esti-
mator

fAIPW* == Z(M(l) /I(kO) (Xl*)
® l_lW 1-wp
+ W(Yi — iy (X7)) — T*(X;k)(y 0y (X )))-

4Mobile intensive care unit, enhanced medical care team that takes care of the patient at the scene of the
accident.



1416 I. MAYER ET AL.

There are general results about AIPW that immediately guarantee that the above estimator
Talpw* 18 /n-consistent and asymptotically normal around t given only weak regularity
conditions provided the product of the root-mean squared errors of the nuisance component
estimates decay as o(n~Y2) (Chernozhukov et al. (2018)), and these results extend directly
to the case where the X; may contain missing values. Specifically, in order to get such results
for Tapw+, it suffices to assume that

=

E[(@*(X;*)(l - X)) e XD . e*(X;“))>2]

N 241 1
x E[(&w)(X7) — uiw) (X7))]? = 0(@)»
that is, that 1} (x*) and €*(x*) are good approximations to the best predictors we could have
using on the partially observed predictors x*. Below, we instantiate the approach (9) via both
a parametric approach, based on logistic regression, and a nonparametric approach, based on
random forests.

(10)

4.1.1. Parametric estimation of nuisance components. For the parametric approach we
build on work by Jiang et al. (2020) and Schafer (1997) and logistic and linear forms, re-
spectively, for the generalized propensity score and outcome using the complete covariates x.
The functions u* and e* that take in incomplete covariates x* are then estimated via EM
(Dempster, Laird and Rubin (1977)). The exact description of this parametric procedure for
the AIPW estimator is outlined in Procedure 1; the resulting IPW and AIPW estimators will
be denoted Tgpm.

A major limitation of this approach is that, in order to justify use of the EM algorithm, one
typically needs to make further assumptions on the missing value mechanism; in particular,
it is common to make the missing at random assumption (8). In other words, although we
did not require the missing at random assumption to identify 7, this assumption is used for
consistent parametric estimation of ¢*(x*) and M?w) (x*). Below, we describe a nonparametric
alternative that only needs the identifying assumption (5) to get consistency for t.

4.1.2. Nonparametric estimation of nuisance components. As an alternative to fitting
parametric models via EM as discussed above, one can also directly estimate the functions
e*(x*) and M’(“w)(x*) nonparametric. This task may appear somewhat unusual, as the fea-
tures x* take values in the augmented space {R U NA}”. However, many popular machine
learning methods—including decision trees, kernels and neural networks—can be adapted to

Procedure 1: Parametric AIPW with generalized propensity score and generalized re-
sponse surfaces. This algorithm provides an estimation for the average treatment effect
7 via logistic and linear regressions, given incomplete covariates X*, observed treatment
assignment W and outcome Y. We assume unconfoundedness despite missingness (5) and
MAR (8):

1. Fit a logistic model on (W, X*) using the stochastic approximation EM algorithm to
obtain predictions for the generalized propensity score e*(X}").

2. Fit two separate linear models on (¥;.w,—1, X;“:W[ZI) and on (Y;.w, =0, X?:W,:O)’ respec-
tively, via an EM algorithm to obtain predictions for ,u’(kl)(X;“) and ;L’("O) (X7), respec-
tively.

3. Combine the predictions following (9) to obtain a doubly robust estimation of 7.
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Procedure 2: Nonparametric AIPW with generalized propensity score and generalized
response surfaces. This algorithm provides an estimation for the average treatment effect
7 via random forests with MIA splitting rule, given incomplete covariates X*, observed
treatment assignment W and outcome Y. We assume unconfoundedness despite missing-
ness (5):

1. Train a causal forest on the potentially incomplete features X* using MIA splitting.
2. Extract out-of-bag estimates /l}"w) (X7) and ¢*(X}) from the causal forest.
3. Combine the predictions as in (9) to obtain a doubly robust estimate 7 for .

this context, and standard arguments for verifying consistency of these methods still apply
(Josse et al. (2019)). Then, once we have estimates of ¢*(x*) and ;L’(“w) (x*), we can proceed
to estimate the treatment effect using the AIPW estimator (9) or the analogous IPW estimator.

In this paper we focus on nonparametric nuisance component estimation via (generalized)
random forests (Athey, Tibshirani and Wager (2019a), Breiman (2001)), with missing data
handled using the missing incorporated in attributes (MIA) method of Twala, Jones and Hand
(2008). The main idea of the MIA approach is, give each split additional flexibility, such
that missing values may be sent on either side of the split independently of where the split
occurred. More specifically, as outlined by Twala, Jones and Hand (2008), consider splitting
on the jth attribute and assume that, for some individuals, the value of X ; is missing. MIA
treats the missing values as a separate category or code and the considers the following splits:

o {i:X;j <torX;;ismissing} vs. {i : X;; > 1}
o {i:X;j <t}vs. {i:X;j>torX;;is missing}
e {X;; is missing} vs. {X;; is observed},

for some threshold 7. The MIA approach does not seek to model why some features are
unobserved; instead, it simply tries to use information about missingness to make the best
possible splits for modeling the desired outcome. Thus, the MIA strategy work with arbitrary
missingness mechanisms and does not require the missing data to be MAR.?

In order to estimate the average treatment effect, we use the estimator (9) with nui-
sance components extracted from a variant of the causal forests of Athey, Tibshirani and
Wager (2019a) that use MIA splitting to handle missing values.® To do so, we have
added the MIA splitting rule to the causal_forest function in grf (Tibshirani et al.
(2020)), and our proposed estimator can be computed by simply calling the function aver-
age_treatment_effect on a trained causal forest.

4.2. Standard unconfoundedness and missingness mechanisms. As discussed in Sec-
tion 3.2, multiple imputation is a solution if the missingness mechanism is MAR as defined
by (8). We propose to augment the multiple imputation approach to obtain an AIPW esti-
mator: we proceed similarly to Mattei (2009), that is, we do multiple imputation using fully
conditional equation (FCE) where we draw missing values from a joint distribution which is
implicitly defined by the set of conditional distributions; proper imputation is ensured using
a Bootstrap approach to reflect the sampling variability of the imputation models parameters.

Then, on each imputed data set m € {1, ..., M}, we compute an AIPW estimate fgﬁgw given

SWe conjecture that consistency proofs for random forests following, for example, Scornet, Biau and Vert (2015)
or Wager and Walther (2015) extend to the case of MIA splitting and missing covariates. However, formal results
of this type are not currently available.

SWe refer to Section 2.1 of Athey and Wager (2019) for a detailed discussion of how the doubly robust scores
used in (9) can be extracted from a causal forest.
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Procedure 3: AIPW with multiple imputation. This algorithm provides an estimation for
the average treatment effect T using multiple imputation, given incomplete covariates X*,
observed treatment assignment W and outcome Y. We assume unconfoundedness (1) and
MAR (8):

1. Choose number of imputations M, for instance, M = 20. Choose an imputation
method. Impute the initial data X* using an M times with the chosen imputation
method to obtain M complete data matrices (X M xMy,

2. For every imputed data matrix XM me {1,...,M}:

Option 1 Nonparametric regression:
a) Train a causal forest on the imputed features X ™.
b) Extract out-of-bag estimates () (X l.(m)) and é(X l.(m)) from the causal forest.
¢) Combine the predictions following (4) to obtain a doubly robust estimation 7 for
T.
Option 2 Parametric regression (we additionally assume logistic-linear model specifi-
cation for (e, (o), 1(1))):
a) Fit a logistic model to obtain predictions for the propensity score e(X l-(m)).

b) Fit two separate linear models on (Y;.w,=1, X z‘(?;&,:l) and on (Y;.w,=0, X l(";% —0)

respectively to obtain predictions for (1) (X l.(m) ) and (o) (X i(m)), respectively.
¢) Combine the predictions following (4) to obtain a doubly robust estimation £ ™)
for 7.

3. Aggregate the M estimations (1, ..., (M) ¢ = ﬁ >M_ 2,

m=

in (4) instead of the IPW estimate fl(l'fa, given in (3). This approach is outlined in Procedure 3.

We note that this method relies on the performance of the multiple imputation strategy; for
instance, in the case of FCE the method requires correct specification of the conditional mod-
els which can be hard to assess in practice. We refer to Carpenter and Kenward (2013) for a
discussion on imputation strategies.

Another recent solution is based on matrix factorization (Kallus, Mao and Udell (2018)) as
outlined in Procedure 4 in the Supplementary Material (Mayer et al. (2020)). Note that, unlike
with multiple imputation, we only impute each datapoint once, and consistency guarantees
are only given under MCAR.

5. Simulation study. We assess the performance of the previously introduced treat-
ment effect estimators in different scenarios, modifying the data generating process, the con-
founders’ relationship structure, the unconfoundedness hypothesis, the missingness mecha-
nism, the percentage of missing values and the sample size. The comparisons are twofold:
(1) comparisons between IPW-baseline and AIPW-type estimators, (2) comparisons w.r.t.
the assumptions on the underlying unconfoundedness and the missingness mechanism. Note
that in all simulations, we only consider the well-specified case, that is, we do not study the
(parametric) estimators’ performances in case of model misspecification. More specifically,
e(x) =o(ap+alx+e¢,) and M) (x) = Bo +,3Tx +wt +€,, where €, and €, are zero mean
and independent noise terms. All simulations are implemented in R (R Core Team (2020)).7

TThe code for reproducing the experiments presented in this work is given in the Code material (Mayer et al.
(2020)).
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TABLE 2
Methods and their assumptions on the underlying data generating process. (¥ indicates cases that can be
handled by a method, whereas X marks cases where a method is not applicable in theory; (X) indicates cases
without theoretical guarantees but with heuristic solutions)

Confounders & Missingness Unconfoun- Models for (W, Y)
Covariates dedness

Multivariate  General M(C)AR  General (D (5) Logistic-linear  Non-param.

normal
saem v X v X X v v X
grf v v v v X v v v
mice v v v X v v v x)
mf v X v X v X v X)
(on U)
mean.loglin X X X X X X X X

5.1. Methods overview. We compare our approaches gy and Tayia, denoted saem and
grf in the experiments,? to the following methods, where we summarize their assumptions in
Table 2:

e mice: Procedure 3 (and its IPW analogue detailed in the Supplementary Material (Mayer
et al. (2020))) with Option 2; we use the R package mice (van Buuren and Groothuis-
Oudshoorn (2011)) and default options.

e mf: Procedure 4 (and its [PW analogue detailed in the Supplementary Material (Mayer
et al. (2020))) with Option 2; we adapt the implementation9 of Kallus, Mao and Udell
(2018) based on the R package soft Impute (Hastie and Mazumder (2015)).

e mean.loglin: Imputation by the mean for the missing values and estimate e with logis-
tic regression on the mean imputed covariates and the two () with two separate linear
regressions.

For the parametric Tgy we use the R package misaem (Jiang (2019)). We grow forests
with missingness via the the MIA method; then, the estimator (9) is implemented in the
command average_treatment_effect. Note that it is common to concatenate the
initial or imputed data matrix X and the binary mask R for estimation or prediction, and it
is admitted that this addition can sometimes improve the analysis and, generally, does not
deteriorate the result. Hence, in this work we only report results obtained by adding R.

In all cases, we consider inference using the bootstrap (i.e., we bootstrap the original data
and repeat the whole process).

5.2. Data generation. We define different models for the generation of the confounders,
covariates, missing values, treatment assignment and outcome.

5.2.1. Confounders and covariates.

Model 1: Multivariate normally distributed confounders. We generate normally distributed
confounders X;. = [Xil...X,-p]T ~N@,%),ief{l,...,n}, for p=10, where £ =1 —
06x{—-1),X=[X;.... Xp.]T € R"*P_ Results for this model are reported in Figure 3.

8These abbreviations refer to the algorithms used for the estimation of the nuisance parameters in the presence
of missing values. For instance, saem stands for (stochastic approximation) EM algorithm.
9For details on the implementation of this last method, see https://github.com/udellgroup/causal_mf_code.
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FI1G. 3. Model 1. IPW and AIPW estimations across simulation designs described in Section 5.2. We report
results for all combinations of n € {100, 500, 1000, 5000}, missing values mechanism € {MCAR, general} and
unconfoundedness € {- despite missingness, complete data -}. Results are displayed for 100 runs of every setting.

Model 2: Latent classes model. We consider a Gaussian mixture model, that is, we first
generate class labels C from a multinomial distribution with three categories. Then, the con-
founders of observation i, X;., are sampled from the corresponding class distribution, that is,
Xi. ~N(u(e), 2(ei)|Ci = ci.

Treatment and outcome are defined using the logistic-linear model in the following
way: we define logit(e*(X7)) = (oz(Ci))TX;‘_ . This allows us to add an additional inter-
action between treatment and the latent class. Analogously, the outcome is defined as
Y, ~ N((ﬁ(Ci))TX;’f +tW;,02). The corresponding results are reported in Figure 4.

Model 3: Low rank matrix factorization. We adapt the simulation framework from Kallus,
Mao and Udell (2018) by generating U;. = [U; . Uig]t ~N(0, 1) and defining X = uvT
for some fixed matrix V € R?*¢_ with d = 3. Results for this model are reported in Figure 5.
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FIG. 4. Model 2. IPW and AIPW estimations across simulation designs described in Section 5.2. We report
results for all combinations of n € {100, 500, 1000, 5000}, missing values mechanism € {MCAR, general} and
unconfoundedness € {- despite missingness, complete data -}. Results are displayed for 100 runs of every setting.

Model 4: Hierarchical data-generating model. An alternative to defining a Gaussian mix-
ture model is to use a simplified shallow version of a deep latent variable model (DLVM,
Kingma and Welling (2014)): the codes C are sampled from a normal distribution N (0, 1).
Covariates X; are then sampled from N p(n(c), (c))|Ci = c, where

(11(c), 2(c)) = (V tanh(Wc +a) + b, exp(yT (We +a) +8)1,),

and the weights in V € R?*> and W € R>*? are, respectively, sampled from a standard
normal and a uniform distribution (and similarly for the offsets a and b). We fix d = 3.
Results for this model are reported in the Supplementary Material (Mayer et al. (2020)).
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FIG. 5. Model 3. IPW and AIPW estimations across simulation designs described in Section 5.2. We report

results for all combinations of n € {100, 500, 1000, 5000} and missing values mechanism € {MCAR, general}.
Results are displayed for 100 runs of every setting.

5.2.2. Missing values. We generate missing values either under MCAR (i.e., P(R;; =
1) = 1 — B(n) such that on average we have nnp missing values) or as informative!'® missing
values (missing values in X. 1.5 are generated depending on the quantiles of X. i.5 such that
there are about nnp/2 missing values). In the results presented here we fix n = 0.3.

5.2.3. Treatment assignment and outcome. For models 1, 3 and 4, treatment assignment
and outcome are defined under either of the unconfoundedness assumptions:

Unconfoundedness despite missingness. We define logit(e* (X)) = oo + ozTX;’" . Analo-
gously, the outcome is defined as ¥; ~ N (By + ﬂTXf + Wi, 0?).

10By informative we designate all nonignorable missingness mechanisms, where the probability of observing
missing values depends on the missing values.
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Complete data unconfoundedness. We define logit(e(X;.)) = oo+ a! X;.. Analogously, the
outcome is defined as ¥; ~ N(By + BT X;. + tW;, 02).

For model 2, treatment assignment and outcome are defined under unconfoundedness on
the latent factors U as follows: logit(e(U;.)) = ag + aTU;.. Analogously, the outcome is
defined as ¥; ~ N(Bo + BT Ui. + tW;, 0?).

We refer to the Supplementary Material (Mayer et al. (2020)) for details on how to simulate
treatment and outcome under assumption (5) (or rather (1) and (7)).

5.3. Results. We report the estimations for a fixed average treatment effect using the
previously described estimation methods. All figures in this study are generated from 100
simulations for sample sizes n € {100, 500, 1000, 5000}; we fix the proportion of missing
values at 30% throughout all experiments, and the true treatment effect 7 is reported as black
solid line. The standard unconfoundedness setting corresponds to assumption (1), while un-
confoundedness despite missingness corresponds to (5).

5.4. Take-home message from the simulation study. The results from this first simulation
study can be summarized in several general observations:

e Augmented IPW outperform their [IPW equivalents throughout all scenarios (both in terms
of variability and of bias); this behavior is analogous to the behavior in the well understood
complete data setting.

o All methods perform well if their assumptions on the underlying data generating process
are met (see Table 2).

e For multiple imputation (mice) there is a small remaining bias, even for large sample sizes.
In some cases, when the assumptions for this method are met, based on the theorem from
Seaman and White (2014) on multiple imputation with M = oo imputations, it is expected
that an increase of the number of imputations should decrease this remaining bias in these
cases.

e The tree-based estimation using the MIA splitting rule (grf) generally performs at least
as well as multiple imputation but yields unbiased results if “unconfoundedness despite
missingness” (5) holds.

e Mean imputation coupled with concatenation of the imputed data with the mask and
parametric estimation empirically performs well, provided that (5) holds. However, the
concatenation of the mask R appears necessary, since otherwise this approach is bi-
ased as soon as (5) is violated, and in this case it is outperformed by competing meth-
ods.

e The EM-based estimator (saem) performs well under correct specification (multivariate
Gaussian confounders, logistic treatment assignment, linear outcome, M(C)AR missing
data mechanism, (5) satisfied) and adding the mask to the initial data matrix yields unbi-
ased estimates even if the missing data mechanism is not ignorable. It fails, however, in
the cases where the data is not i.i.d. Gaussian.

In conclusion, the type of unconfoundedness assumption is important for the choice of the
estimation strategy. Once the type is fixed, the choices between simple and doubly robust and
between parametric and nonparametric estimation depend on the a priori on the data generat-
ing processes. However, in general, we recommend privileging the doubly robust strategy.

For a more detailed discussion of the simulation results, we refer to the Supplementary
Material (Mayer et al. (2020)).

6. Application on observational critical care management data. As announced in the
Introduction, we apply our methods to clinical data from a French observational database on
major trauma patients. The medical question we aim to answer is whether administrating the
drug TA has an effect on in-ICU mortality for patients with traumatic brain injury.
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6.1. Data and causal DAG. For our analysis we used 20,037 currently available validated
patient records, validated by the medical expert team after a first pre-treatment. The pretreat-
ment consisted in identifying outliers clearly due to erroneous inputs and recoding missing
values that are not really missing (for instance, the variable informing previous pregnancies
is evidently consistently missing, or ideally, set to false for male patients, etc.).!! Out of these
20,047 patients, 8269 are identified as having a traumatic brain injury (defined by the medical
expert team as either the presence of a brain lesion visible on the first computed tomography
(CT) scan—which is generally taken within the first three hours after the accident—or as a
head AIS score!? greater or equal 2). Additionally, we excluded a total of 21 patients among
this group coming from Trauma centers with too few observations, having joined the registry
group several years after the majority of all other Trauma centers.

The treatment of interest, TA, is an antifibrinolytic agent limiting excessive bleeding, and it
is currently used in patients suspected of developing an hemorrhagic shock, a state in which
the body is no longer able to provide vital organs with sufficient quantities of dioxygen to
sustain them. The average cost of a dose of TA lies below 10€, and the drug is generally
available immediately after the arrival of the medical first responders team at the place of the
accident. It is now recommended to administer this drug to patients at risk of developing a
hemorrhagic shock.

In order to clarify the previously raised causal question, given the data, we first establish a
causal graph in order to summarize the a priori on existing confounding and to highlight the
causal question, as suggested, for instance, by Blake et al. (2020), Lederer et al. (2019). The
causal graph in Figure 6 is the result of a two-step Delphi procedure in which six anesthetists
and resuscitators specialized in critical care first selected covariates related to either treatment
or outcome or both and second classified these covariates into confounders and predictors of
only treatment or outcome. The absence of an exact timestamp for the drug administration is
compensated by the fact that it is always given within the first three hours from the accident
and that the treatment does not have an immediate effect on variables such as blood pressure,
hemoglobin level or the Glasgow Coma Scale (GCS) which are measured at various moments
within the first three hours.

From this graph it becomes clear as well that a method that incorporates a model of the
outcome as a function of the identified potential predictors might achieve more precise results
than a method that uses the observed outcome directly. The large number of predictors of the
outcome is due both to the medical complexity of traumatic brain injury and to the ambiguous
treatment target: the assignment is made in the context of hemorrhagic shock, but recently
there is some evidence that there might also be a beneficial effect in the context of traumatic
brain injury (Hijazi et al. (2015)).

6.2. Results. First, we recall the estimand we aim at estimating in this context: we are
interested in the average treatment effect of the treatment on mortality among traumatic brain
injury patients. When adjusting for confounding using the identified confounders (nodes with
two outgoing arcs on the graph in Figure 6), using additional predictors for the outcome
model (nodes with one outgoing arc pointing to the outcome node on the graph in Figure 6),
we obtain the following estimations in Figure 7 of the direct causal effect of TA on in-ICU
mortality among traumatic brain injury patients.

UThe code for pretreatment and for estimating the treatment effect on this data are available in the Code material
(Mayer et al. (2020)).

12The head Abbreviated Injury Score indicates, on a scale from one to six, the severity of the most se-
vere observed brain lesion. This score is defined in the context of the Abbreviated Injury Scale proposed by
the American Association for Automotive Medicine. See the Supplementary Material (Mayer et al. (2020)) or
https://www.aaam.org/abbreviated-injury-scale-ais/ for more information.
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Unlike the simulations of the previous paragraph, the real-world medical data is more com-
plicated and some concessions have to be made to apply the previously discussed method.
For instance, due to an important number of outliers in the variable Medcare.time.ph that
are related with inconsistent units of the recorded values and with patient transfers from one
hospital to another, we chose to drop this variable in our analyses since, according to the prac-
titioners, its predictive power does not outweigh the potential issues related to inconsistent
recording of this variable.

Note that apart from the issue with the variable Medcare.time.ph, the estimation via ran-
dom forest with MIA splitting rule does not require any pre-processing of the data and is
therefore straightforward when using the grf package.

Here, we only consider three pairs of methods: grf and mice. We do not test saem and mf
since currently both these methods have not been derived for heterogeneous data.'* A first
observation on the results reported in Figure 7 is the concordance of the two estimators: none
of the AIPW-type estimation strategies allows to reject the null hypothesis of no treatment
effect. As discussed in Section 3.3, it can be argued which family of methods has more plausi-
ble underlying assumptions on the Traumabase data, but in our opinion the unconfoundedness
despite missingness—and therefore the grf estimations—are most suited for our specific ap-
plication. When comparing covariate balance for both methods in terms of standardized mean
differences, we note that both methods achieve similar balance on the observed values (see
results reported in the Supplementary Material (Mayer et al. (2020))), but, as expected, only
GREF additionally achieves balance on the response pattern (Figure 8). Since there is consen-
sus by the medical experts that certain missing values are not missing at random, achieving
balance on the response pattern is a relevant feature for interpreting the estimation results.
A remaining issue might consist in the overlap assumption which is generally difficult to

T
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14Concatening the mask with the data matrix does not lead to major changes in the estimations, therefore we
only report results obtained when including the mask.
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assess in most medical applications and which might be slightly violated due in part to the
heterogeneity of patient profiles, and it could be argued that, for certain patients, the prob-
ability of receiving the treatment is zero. However, the lack of a standardized protocol for
tranexamic acid administration favors the overlap assumption even for this group of patients.
A solution to handle weak overlap is the use of overlap weights (Li, Morgan and Zaslavsky
(2018)), and we give the results using this alternative to inverse propensity weights in the
Supplementary Material (Mayer et al. (2020)).

We notice a large difference between the IPW and the AIPW estimations. The AIPW
estimations seem more reasonable for two reasons: first, the medical experts have noticed
beneficial effects of TA for some of their TBI patients in practice, and a previous clinical
trial, focussing on a slightly different patient group, has also exhibited a potential benefit
from the drug for patients with TBI; moreover, the results of the clinical trial studying the
effect of the drug on all TBI patients indicate that on average there is neither benefit nor
harm in prescribing the drug (Cap (2019)); second, for the AIPW estimators, we incorporate
much more available information, namely, all identified features that are strongly related to
the outcome Y according to the expert panel (see Figure 6). Finally, the compared estimates
have similar standard errors and asymptotic confidence intervals which are also close to the
estimated bootstrap confidence intervals (the latter are not reported in Figure 7).

7. Discussion and perspectives.

7.1. Two families of treatment effect estimators handling missing attributes. We have
stressed the dyadic classification of previously exposed methods that allow treatment effect
estimation with missing attributes, both in theory and in practice. The class of methods that
relies on assumptions about the missingness mechanisms for treatment effect identifiability
is currently often used in combination with IPW-type estimators. We have also proposed an
AIPW formulation for the most popular method from the first class, namely, multiple impu-
tation. However, methods of this first class have limited applicability in practice; most impor-
tantly, they exclude informative missing data. This is a drawback of all developed methods
in this class. The second class, relying on the generalized propensity score and a different
unconfoundedness assumption, can handle arbitrary missingness mechanisms, in particular
the case where MAR does not hold, but, to the best of our knowledge, implementable and
versatile methods in this class have not been proposed so far.

In practice, if one can exclude smooth regression functions for the treatment assignment
and the outcome model, such as logistic and linear models, and if the “unconfoundedness
despite missingness” assumption is likely to hold—for more details on this, we refer to Blake
et al. (2020)—we advocate our tree-based estimator Tya in its AIPW-form and its mean-
imputation variant. If one is willing to make stronger (parametric) assumptions about the
structure of X and its relationship with W and Y, then our second estimator 7gy can also be
considered as an alternative.

7.2. Heterogeneous treatment effects and policy learning. Instead of estimating the av-
erage treatment effect T, one could be interested in the conditional average treatment effect
function, defined as t(x) = E[Y (1) — Y (0) | X = x], for several reasons. For instance, one
might be interested in estimating how treatment effects vary across subpopulations or as-
sessing whether there is heterogeneity in the population w.r.t. a given treatment. Such ques-
tions anticipate problems of learning decision rules that exploit treatment effect heterogeneity
(Athey and Wager (2017)).

In light of our medical application, heterogeneous treatment effect estimation is of particu-
lar interest because of the known existing heterogeneity among traumatic brain injury patients
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in terms of clinical presentation, pathophysiology and outcome. It is even more relevant since
to this date there is no general classification of patients with traumatic brain injury. Hence, a
causal inference approach allowing classification w.r.t. treatment heterogeneity for any given
treatment is of interest for practitioners in critical care management.

7.3. Weighted treatment effects. Throughout this paper we have focused on cases with
overlap (2), that is, where all units have a realistic chance of being randomized to both
treatment and control. In some cases, however, there may be subjects who are quasi-
deterministically assigned to one of the two treatment arms—in which case the methods
developed here may be unstable and/or have very large variance. When this happens, it
is common to shift focus away from the average treatment effect and towards alternative
weighted estimands that are more robust to lack of overlap. For example, if some units are
quasi-deterministically assigned to control (but no units are quasi-deterministically assigned
to treatment, i.e., propensity scores are uniformly bounded below 1), then estimating the av-
erage treatment effect on the treatment is a popular way to avoid overlap problems (Imbens
(2004)). Crump et al. (2009) and Li, Morgan and Zaslavsky (2018) discuss other weighted
estimands that can be used when overlap problems get more severe and propensity scores
may get arbitrarily close to both 0 and 1.

Although we do not discuss it here, the arguments developed in this paper can be applied
directly to estimators of other weighted treatment effects. We implement extensions of the
random forest based estimator described in 4.1.2 for estimating both the average treatment
effect and the overlap-weighted treatment effect of Li, Morgan and Zaslavsky (2018) in the
R package grf (Tibshirani et al. (2020)).

7.4. Further identification strategies. Although the two lines of approaches studied here
for identification of average treatment effects with missing attributes are the most prevalent
in applied work, they are far from exhaustive. For example, Yang, Wang and Ding (2019)
consider a setting with outcome-independent missingness, ¥; 1L R; | {X;, W;}, and find that T
can be identified via a set of integral equations. We expect the area of methods development
for causal inference with missing attributes to be a fruitful research area for years to come.
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SUPPLEMENTARY MATERIAL

Supplementary material: Further simulation results and details on the Traumabase
(DOI: 10.1214/20-AOAS1356SUPPA; .pdf). In this material we show additional simulation
results, including different simulation scenarios and estimators. Furthermore we provide a
glossary for the Traumabase variables and an additional analysis on this data set.

Code: Functions to replicate simulations (DOI: 10.1214/20-A0AS1356SUPPB; .zip). In
this material we provide R code (R Core Team (2020)) with functions allowing to replicate
the presented simulation results. Previous and potential future versions extending this code
will be available at https://github.com/imkemayer/causal-inference-missing.
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