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Currently in the United States, lung transplantations are allocated to can-
didates according to each candidate’s lung allocation score (LAS). The LAS
is an ad hoc ranking system for patients’ priorities of transplantation. The
goal of this study is to develop a framework for improving patients’ life ex-
pectancies over the LAS based on a comprehensive modeling of the lung
transplantation waiting list. Patients and organs are modeled as arriving ac-
cording to Poisson processes, patients’ health status evolving a waiting time
inhomogeneous Markov process until death or transplantation, with organ
recipient’s expected post-transplant residual life depending on waiting time
and health status at transplantation. Under allocation rules satisfying min-
imal fairness requirements, the long-term average expected life converges,
and its limit is a natural standard for comparing allocation strategies. Via the
Hamilton–Jacobi–Bellman equations, upper bounds for the limiting average
expected life are derived as a function of organ availability. Corresponding to
each upper bound is an allocable set of (state, time) pairs at which patients
would be optimally transplanted. The allocable set expands monotonically as
organ availability increases which motivates the development of an allocation
strategy that leads to long-term expected life close to the upper bound. Sim-
ulation studies are conducted with model parameters estimated from national
lung transplantation data. Results suggest that, compared to the LAS, the pro-
posed allocation strategy could provide a 7.7% increase in average total life.
We further extend the results to the allocation and matching of multiple organ
types.

1. Introduction.

1.1. The lung allocation score (LAS). Lung transplantation was first performed in 1963
and has evolved over the years to become a standard treatment for patients with advanced
lung diseases (Kotloff and Thabut (2012)). There are not enough organs available for trans-
plantation to meet the need of patients waiting for lungs, and efficient allocation of lung
transplantations to patients is vital.

Currently in the United States, patients in need of lung transplantation are registered to
waiting lists managed by the United Network for Organ Sharing (UNOS). As lungs become
available for transplant, they are allocated to candidates on waiting lists on the basis of age,
geography, blood type (ABO) compatibility and the lung allocation score (LAS). The LAS
was first implemented in 2005, aiming to reduce the risk of on-waiting-list mortality and to
prolong post-transplant residual life of organ recipients (Valapour et al. (2017)). The LAS
is calculated as 100 · (PTAUC − 2 · WLAUC + 730)/1095, where WLAUC is the estimated
on-waiting-list life expectancy during an additional year if not transplanted and PTAUC is the
estimated post-transplant life expectancy during the first year. Both on-waiting-list and post-
transplant survivals are computed using proportional hazards models given current values of
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relevant characteristics of patients. The expected numbers of days of survival are calculated
by integrating the areas under the covariate-specific survival curves within the first year, under
the assumption that a patient’s health status would remain constant. When organs become
available, patients on the waiting list are ranked according to their LAS values. Candidates
with higher LAS values are given higher priorities for transplantation (UNOS (2017)).

The LAS is recognized to be imperfect. In February 2015, the Organ Procurement and
Transplantation Network (OPTN), managed by UNOS, implemented a revision of the LAS.
Modifications were made to the covariates and their weights in the calculation to better predict
patients’ survival (Valapour et al. (2017)).

There are other concerns about the LAS besides the selection of covariates. Studies have
demonstrated that the emphasis on reducing the risk of on-waiting-list mortality in the LAS
calculation may have the effect of increasing post-transplant mortality, since patients with
the highest LAS are often in the worst conditions and subject to high post-transplant risk
of death (Liu et al. (2010), Russo et al. (2010, 2011), Merlo et al. (2009)). And, hence, the
question of whether the patients prioritized by the LAS are those who would benefit the most
from transplantation. Studies also suggested that the LAS focused on the one-year survival
and failed to assess the long-term benefit of lung transplantation for the recipients. Results in
Maxwell et al. (2014) showed that the five-year survival had in fact slightly decreased after
the implementation of the LAS.

1.2. Previous studies on organ transplantation. Organ allocation has been studied from
the policy maker’s perspective. The goal is generally characterized as assignments of or-
gans to patients on the waiting list that optimize expected outcomes. Early works can be
traced back to Derman, Lieberman and Ross (1972, 1975), Albright and Derman (1972) and
Righter (1989), in which the authors solved for the optimal solution for allocating sequen-
tially arrived resources to a finite number of subjects. The focus of these studies was on
general resource allocation problems, and, for this purpose, the modeling was simplified and
not tailored specifically to the organ transplantation problem.

Recent studies have involved increasing model complexity in studying the organ allocation
problem. Zenios (1999) and Zenios, Chertow and Wein (2000), Zenios, Wein and Chertow
(1999) modeled the waiting list for kidney transplantation with a deterministic fluid model:
patients and organ donors were categorized into classes based on their demographic, immuno-
logical and physiological characteristics and different categories of patients and organs flow
in and out of the waiting list at class-specific rates. An optimal allocation rule was derived un-
der the standard of a linear combination of quality-adjusted life expectancy and equity. Akan
et al. (2012) modeled the waiting list for donated livers with a fluid model, in which patients
were categorized into multiple classes according to their health status. Patients in one class
were assumed to be able to flow only into adjacent categories with deterministic rates. Opti-
mal allocation strategies were developed under a standard combining expected total number
of on-waiting-list deaths and quality-adjusted total life expectancy.

Organ allocation had also been studied from an individual patient’s perspective by, for
example, Ahn and Hornberger (1996), Hornberger and Ahn (1997), Su and Zenios (2004,
2005, 2006), Alagoz et al. (2004, 2007a, 2007b)) and Ata, Ding and Zenios (2018). These
studies focused on optimal patient strategies for accepting or rejecting offers of organs.

Aspects of the organ transplantation problem, other than organ allocation, have also been
studied. For example, the impact of available cadaveric kidneys on the number of candidates
on the waiting list (Ruth, Wyszewianski and Herline (1985)), kidney exchange programs
(Roth, Sönmez and Utku Ünver (2004), Roth, Sönmez and Utku Ünver (2005), Ashlagi et al.
(2011, 2012), Cechlárová and Lacko (2012)), the design of policies that meet fairness con-
straints chosen by the policy maker (Bertsimas, Farias and Trichakis (2013)) and comparing
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the efficiency and fairness of three proposed heart allocation policies via simulation studies
(Hasankhani and Khademi (2017)). In one of the few studies on lung transplantation, Vock
et al. (2013) evaluated the survival benefit of lung transplantation with the LAS from a causal
inference perspective.

1.3. Overview of model and results. Relative to the richness of the literature on kidney
and liver transplantation, few attempts have been made to study organ allocation in lung
transplantation. Yet models for kidney and liver transplantation waiting lists cannot be appro-
priated wholesale in the service of modeling lung transplantation as several characteristics
distinguish the transplantation of lungs from the transplantation of other organs. Here, we
propose a model for the lung transplantation waiting list based on common characteristics
shared by different organ types and on the characteristics unique to lungs.

A waiting list for lung transplantation consists of patients added at random calendar times
with different characteristics such as diagnosis, demographics and health indicators. Here, pa-
tient arrivals are modeled by a calendar time homogeneous Poisson process. Patients’ initial
states upon arrival are modeled as sampled randomly from a finite state space.

Patients’ states, especially their health status, may change during their sojourn on the
waiting list. As patients’ states change, their hazards for on-waiting-list death and expected
post-transplant residual life change, accordingly, which in turn affect patients’ priorities for
transplantation. Given the significant implications of changes in patients’ states on allocation
decisions, it is crucial to model the trajectory of patients’ states accurately and comprehen-
sively.

Here, we model counterfactual patient health status trajectories, that is, trajectories would
be observed without transplantations, as independent and identically distributed continuous-
time Markov processes. The model proposed here reflects UNOS practice and that patients
evolve in continuous time; it differs from those in the previous studies, in that a patient’s
health status trajectory is indexed by the waiting time since the patient arrives, and the change
in health status is assumed to be inhomogeneous with respect to waiting time. Waiting time
since listing is an important indicator for a patient’s functional age which is increasingly ac-
cepted in predicting potential outcomes (Kotloff and Thabut (2012)). The inhomogeneous
assumption enables the model to capture changes in the health status transition rate as wait-
ing time increases. A scenario that would benefit from the proposed modeling, for instance,
would be when patients experience accelerated deterioration in health after waiting for a
long period in a serious condition. In addition, instead of only allowing transitions between
adjacent states, the proposed model allows the consideration of more complex patterns of
transitions in patients’ health status.

Organs, either from deceased or living donors, also become available at random calendar
times. Here, organ arrivals are modeled as a homogeneous Poisson process that is independent
of patient arrivals and transitions in health status. When an organ becomes available, a patient
on the waiting list is selected for transplantation. Due to the short time between when an organ
becomes available and when the organ is no longer viable for transplantation, available organs
are transplanted almost instantly to the selected patient. An organ recipient’s health status
at the time of transplantation affects the post-transplantation residual life (UNOS (2011)).
Candidates who are not transplanted will remain in the waiting list for future transplantation
opportunities. Except in rare circumstances, patients leave the waiting list only in case of
transplantation or death.

In contrast to the case of kidney and liver transplantation, living donor transplantation
is extremely rare in lung transplantation: according to UNOS (2011), 8674 patients were
on the waiting list from year 2009 to 2011, 5172 received deceased donor transplant and
only two received living donor transplant. Therefore, our focus here is on deceased donor
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transplantation only. Statistics in UNOS (2011) also show that from 2009 to 2011 only 20
patients out of 5192 refused the transplantation offer, indicating patient choice is practically
negligible in modeling lung transplantation. Therefore, we ignore the possibility of organ
refusal and focus on the policy maker’s perspective in studying lung allocation.

The policy maker uses allocation rules to determine which patient in the current waiting
list is selected for transplantation when an organ is available. Allocation rules may make use
of any information of the current state or history of the patients in the waiting list. There
are ethical issues to be considered regarding fairness or equity. Zenios, Chertow and Wein
(2000) defined absolute equity with which the discrepancies in the outcome across patient
groups would be eliminated and relative equity in which the first-come-first-transplanted pol-
icy was used as the golden standard. Su and Zenios (2006) and Ata, Ding and Zenios (2018)
defined equity as equal chances of receiving an organ for all patient groups. Akan et al. (2012)
suggested to remove factors such as age, gender and race in making allocation decisions.

In our study, allocation rules that are not consistent over time or that are affected by fac-
tors other than waiting times and relevant health characteristics of patients are viewed as
inequitable. Relevant health characteristics are those that predict outcomes by which allo-
cation rules are compared, such as the current and future hazards for death and/or post-
transplantation survival. Fair allocations should depend on waiting times and health char-
acteristics of the patients on the waiting list at the time of organ arrivals and possible inde-
pendent randomizations. Allocation rules obtained by defining an index as a function of a
patient’s waiting time and relevant characteristics and allocating to the patient in the list with
the highest index value (or randomly among patients tied for the highest value) are guaranteed
to be fair.

Some standards for comparing allocation rules that have been considered may be char-
acterized in terms of expectations. Defining a standard in terms of an expectation, however,
does not unambiguously define an optimization problem. Such a definition begs the question
of which patients’ expectations are to be maximized. Implicitly, such standards refer to the
long-term averages of life quantities of patients on the waiting list as time goes to infinity.

Here, we take the expected total life (on-waiting-list life plus post-transplant life) averaged
over all patients as calendar time increases as the metric for evaluating allocation strategies.
We show that, under the minimal fairness constraints, the waiting list has a unique limiting
distribution. On average, patients entering the waiting list are transplanted according to a
unique allocation-rule-specific limiting transplantation rate which is a function of waiting
time and health status. The long-term average of patients’ total life exists and is a functional
of the limiting transplantation rate. The method used here can be extended readily to include
the long-term average of essentially any aspect of patient expectation.

It is also shown that the expected proportion of transplanted patients is bounded by the
ratio of the intensity of organ arrivals to that of patient arrivals and that the transplantation
rate satisfies boundedness constraints related to the counterfactual transition rates. We begin
the search for the optimal fair allocation rule by solving for the limiting waiting time and
health status specific transplantation rate that optimizes the long-term average life subject to
the boundedness constraints.

The Hamilton–Jacobi–Bellman equations are used to characterize the form of the optimal
limiting transplantation rate. The optimal rate is nonzero whenever the difference between
the expected residual life with an immediate transplant and the expected residual life without
an immediate transplant is greater than one minus the probability of future transplantations,
scaled by a penalty parameter associated with the ratio of organ arrival rate to patient arrival
rate.

Not every transplantation rate satisfying the constraints is a limiting rate for some al-
location strategy. In particular, the rate corresponding to the optimal solution may not be
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achievable, as patients on the waiting list that are alive and not transplanted do not necessar-
ily include those at waiting times and states where the optimal rate is nonzero when an organ
arrives.

Here, we propose an allocation strategy that is designed so that the corresponding waiting
time and health status specific transplantation rate is close to the rate given by the optimal
solution. The proposed allocation strategy relies on a critical monotonicity property: as the
penalty parameter associated with organ availability decreases, combinations of waiting time
and health state become allocable with nonzero optimal transplantation rate in a monotonic
manner, and the order of each combination becoming allocable makes a natural index of
transplantation priority.

A comprehensive simulation study is conducted with model parameters estimated from the
national lung transplantation data provided by UNOS to examine the effect of the proposed
strategy comparing to the current LAS system. Results suggest that the proposed allocation
strategy can provide a gain of at least 7.7% in expected average total life relative to the LAS.

We further extend the single-organ-type results to the case of multiple organ types. The op-
timal transplantation rates for all organ types are derived, and an allocation strategy to match
and allocate organs of each type to patients is developed based on monotonicity properties of
the optimal allocation rates.

We would also like to note that, although our focus in this article is on lung transplantation,
the model and methods developed can be applied to a wide range of applications, including
the transplantation and matching of other organ types and allocations of scarce (medical)
resources to candidates in complex transitions of states in general.

In what follows, Section 2 introduces notation in modeling the lung transplantation wait-
ing list. Section 3 characterizes the comparison of allocation rules in terms of a constrained
optimization problem and states the optimal solution. Section 4 proposes a practical alloca-
tion strategy in terms of an allocation index based on the optimal solution. Section 5 extends
the results to the multiple-organ-type case. Section 6 compares average total life of patients
with the proposed allocation strategy and the LAS in simulation studies. Section 7 provides
further numerical results of the multiple organ type scenario. Proofs of the theoretical results
are postponed to the Appendix and Supplementary Material (Zou, Lederer and Rabinowitz
(2020)).

2. The waiting list. Let τ < ∞ denote the intensity of the Poisson process of patient
arrivals to the waiting list, and let 0 < T1 < T2 < · · · denote the patients’ arrival times. For
convenience, let Nt denote the number of patient arrivals up to calender time t . Let ρ < ∞
denote the intensity of the Poisson process of organ arrivals, and let 0 < S1 < S2 < · · · denote
the arrival times of organs. Let Ot denote the number of organ arrivals up to calendar time t .
Assume organ arrivals are independent of patient arrivals. We are interested in settings when
ρ < τ , as, otherwise, the supply of organs would generally meet the demand, and there would
be no need for an allocation rule.

Let X = {0,1, . . . , n} denote the finite set of possible patient health status in which 0 de-
notes the absorbing state corresponding to death. Let {X(s) : s ≥ 0} denote a generic health
status trajectory indexed by waiting time since arrival. Suppose X(s) is sufficiently detailed
that {X(s) : s ≥ 0} is a càdlàg Markov process. Denote the transition kernel of the process
by ps,t (i, j) and the infinitesimal generator by qij (s) = limt↓s(ps,t (i, j)− I (i = j))/(t − s),
where I (·) denotes the indicator function. Relative to the granularity of measurements of pa-
tient health status, there are no patient states that lead inevitably to sudden transitions, so it
may safely be assumed that the max total transition rate,

∑
j �=i qij (s) < ∞. In addition, the

expected number of transitions in any finite waiting time interval is finite, for which a suffi-
cient condition might be

∫ T
0 qij (s) ds < ∞ for any i, j ∈ X . Let the vector p = (p1, . . . , pn)
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denote the distribution of patients’ initial states upon arrival, where pi = P(X(0) = i) for
each i ∈ X . As patients must enter the waiting list alive,

∑n
i=1 pi = 1. Let T be the upper

bound of a patient’s waiting time, that is, P(X(s) = 0) = 1 for all s ≥ T .
The effect of allocation to a patient is measured by the difference between the patient’s

expected residual life with a transplant and expected residual life without a transplant.
Let R(s) denote a generic post-transplant residual life, if transplantation occurs at waiting
time s ≥ 0. Assume that the characterization of patient health states is sufficiently infor-
mative such that for any s ≥ 0, R(s) and σ({X(u) : u < s}) are conditionally independent
given X(s). Since post-transplant residual life is nonnegative and bounded, R(s) ≥ 0 and
sups≥0,i∈X E(R(s) | X(s) = i) < ∞.

Let {(X(k)(s),R(k)(s)) : s ≥ 0} denote the counterfactual health status trajectories and
post-transplant residual life processes of the kth arriving patient. {(X(k)(s),R(k)(s)) : s ≥
0, k ∈ N} are independent and identically distributed copies of the generic pair {(X(s),R(s)) :
s ≥ 0} and are independent of {Ti, Sj : i, j ∈ N}.

An allocation sequence {aj : j = 1,2, . . . } is a random sequence of patient indices, where
aj is the index of the recipient of the j th organ. Organs are allocated promptly after being
retrieved to keep their functionality, and the short delay in allocation after organ arrival is
omitted. For each j , Taj

≤ Sj , X(aj )(Sj − Taj
) �= 0, and aj �= ak , if j �= k, which reflects that

patients who receive transplantation must have entered the waiting list before the organ and
must be alive at the moment of allocation and that patients exit the waiting list upon receiving
a transplant.

Let T
(k)
T denote the kth patient’s waiting time at transplantation, that is, T

(k)
T = Sj − Tk if

aj = k and T
(k)
T = ∞ if k /∈ {aj : j ∈ N}. Let (n + 1) denote the post-transplant state, and let

X0 = X ∪ {n + 1} denote the augmented patient state space. Denote the kth patient’s actual
trajectory by {X̃(k)(s) : s ≥ 0}, so that

(1) X̃(k)(s) = X(k)(s) · I (
s < T

(k)
T

) + (n + 1) · I (
s ≥ T

(k)
T

)
,

and X̃(k)(s) is a càdlàg process on X0.
To formulate the waiting list, we first define a filtration that describes the information

relevant to events in the waiting list up to time t , including patient and organ arrivals, patients’
counterfactual health state transitions and allocation decisions,

(2) Ft = σ
(
Tk, Si, ai,

{
X(k)(s) : s ∈ [0, t − Tk]} : Tk, Si ∈ [0, t]).

At any time the current waiting list consists of waiting time and health status of patients who
have arrived and have neither died nor transplanted. Let w0 denote the state of no patient
in the list. On W = ⋃∞

d=1([0, T ] × X )d ∪ {w0} and its Borel σ -algebra B(W), define the
waiting list process

(3) Wt = {(
t − Tk, X̃

(k)(t − Tk)
) : Tk ≤ t, X̃(k)(t − Tk) /∈ {0, n + 1}}.

{Wt : t ≥ 0} is adapted to {Ft }. Since discontinuities of {Wt : t ≥ 0} can only be a result of
patient or organ arrivals or transitions in health status, which are all càdlàg, Wt is càdlàg.

We define another filtration generated by events in the waiting list up to time t but exclud-
ing events associated with the allocation decision at t ,

(4) Gt = σ
(
Tk, Si,

{
X(k)(s) : s ∈ [0, t − Tk]} : Tk, Si ∈ [0, t]) ∨ σ(ai : Si < t).

Denote the waiting list before potential allocation at calendar time t by

W ′
t = {(

t − Tk,X
(k)(t − Tk)

) : Tk ≤ t, k /∈ {ai : Si < t},X(k)(t − Tk) �= 0
}
.(5)

For any j ∈ N, Sj is a {Gt }-stopping time. Let GSj
= {A : A ∩ {Sj ≤ t} ∈ Gt ,∀t ≥ 0}, then

W ′
Sj

is measurable with respect to GSj
as W ′

s is progressively measurable.
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Allocation sequences should satisfy fairness requirements. Our definition of fairness re-
quires that, given the waiting list up to the moment of allocation, the choice of the organ
recipient should only depend on waiting time and health status of patients who are currently
alive and not transplanted and a randomization that is conditionally independent, given the
current state of the waiting list and of the history of the waiting list. In formal terms:

DEFINITION 2.1. An allocation sequence {a1, a2, . . . } is termed fair, if there exists a
function �(·, ·) such that:

1. for any x ∈ [0, T ] × X , �(x, ·) is a measurable function on (W,B(W)), and for any
w ∈W\{w0}, �(·,w) a probability measure on {x : x ∈ w},

2. for any j ∈N and A ∈ B(W),

(6) P
((

Sj − Taj
,X(aj )(Sj − Taj

)
) = x | GSj

) = �
(
x,W ′

Sj

)
.

In the above definition, � is the allocation rule that determines the probabilities of allo-
cating an available organ to patients on the current waiting list. Note the definition implies
that, given the waiting times and health status of patients in the current waiting list, the allo-
cation probabilities are invariant to patient indices and consistent with respect to the calendar
time.

Moreover, only realistic fair allocation rules that are noninformative of patients’ post-
transplant residual life and future events in the waiting list are considered, and, thus,

P
((

Sj − Taj
,X(aj )(Sj − Taj

)
) = x |

W ′
Sj

, {Si, Tk : i, k ∈ N}, {
X(k)(s),R(k)(s) : s ≥ 0, k ∈ N

})
(7)

= �
(
x,W ′

Sj

)
.

The effect of an allocation rule � is measured by the long-term average expected total life,
including life on waiting list and post-transplantation, of all patients ever to enter the waiting
list. The kth patient’s total life is equal to

(8) inf
t≥0

{
X(k)(t) = 0

} ∧ T
(k)
T + ∑

i∈X

∫ T

0
R

(k)
i (s) dÑ

(k)
i,n+1(s),

where dÑ
(k)
i,n+1(s) = 1 if T

(k)
T = s and dÑ

(k)
i,n+1(s) = 0, otherwise.

It is shown in Zou (2015) that (8) can be rewritten as

(9)
n∑

i=1

∫ T

0
R̃(k)(s) dÑ

(k)
i,n+1(s) + inf

t≥0

{
X(k)(t) = 0

}
,

where R̃(k)(s) = R(k)(s) − (inft≥0{X(k)(t) = 0} − s) denotes the difference between the kth
patient’s residual life with transplantation at time s and residual life if never transplanted.
Note that the last term in (9) is invariant to allocation rules, and, therefore, the expected
long-term average total life is equal to the long-term average of expected life gain from trans-
plantation

(10) lim
t→∞

1

Nt

E

[
Ot∑

j=1

R̃(aj )(Sj − Taj
)

]
,

plus a constant that is invariant to allocation rules. For simplicity of notation, we will use (10)
as the objective function in searching for optimal allocation rules.
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3. Optimizing the average expected life gain.

3.1. Formulation of the optimization problem. In studying the effect of allocation rule
� on the long-term average expected life gain, a pivotal quantity is the long-term average
occupancy of health state i for i ∈ X ,

(11) πi(s) = lim
t→∞

1

Nt

Nt∑
k=1

I
(
X̃(k)(s) = i

)
.

The long-term average of expected life gain can be expressed as a function of the long-term
occupancy, and the occupancy can be shown to satisfy certain constraints so that an upper
bound for the long-term expected life gain may be found by maximizing over the long-term
occupancy, subject to the constraints.

A proof is outlined in Zou (2015) for the proposition that, with any fair allocation rule, the
limit in (11) exists so that πi(s) is well defined for all i ∈ X and s ∈ [0, T ]. The existence of
the limit follows from the fact that, with a fair allocation rule, the waiting list process {Wt :
t ≥ 0} is strong Markov with respect to filtration {Ft } and is positive recurrent. Therefore,
by the ergodic theory there exists a finite invariant measure σ and πi(s) can be expresses in
terms of σ .

For any fair allocation rule there exists a corresponding long-term transplantation rate,

(12) d�s = πs−Qs ds − dπs,

where Q = {qij } is the matrix of counterfactual rate of transition in health status. The trans-
plantation rate is the difference between the rate of evolution that would occur absent or-
gan allocation and the rate of the evolution of occupancy with allocation. For s = 0, let
πi(s−) = P(X(0) = i). For achievable long-term occupancies, πi(s) is smooth. The defini-
tion may be extended to the nonsmooth case, which is relevant at the upper bound, by taking
�i({s}) = πi(s−) − πi(s) and allowing �i({s}) > 0.

The effect of an allocation rule on the long-term average of expected life gain (10) can be
expressed in terms of the long-term transplantation rate. Let μ̃i(s) = E(R̃(s) | X(s) = i), and
denote μ̃s = (μ̃1(s), . . . , μ̃n(s)). The result is stated formally in the following theorem.

THEOREM 3.1.

(13) lim
t→∞

1

Nt

E

[
Ot∑

j=1

R̃(aj )(Sj − Taj
)

]
=

∫ T

0
d�sμ̃s .

While each fair allocation rule has a corresponding transplantation rate � , not every � can
be traced back to an allocation rule. � and π that correspond to fair allocation rules satisfy at
least the following constraints. First, the total allocation rate has an upper bound associated
with the rate of organ arrivals relative to the rate of patient arrivals,

(14)
∫
[0,T ]

d�s1n ≤ ρ

τ
,

where 1n is the vector of length n in which all elements equal to 1. Essentially, the left side
of (14) is the limiting proportion of patients who receive transplantation.

Second, let {·}i denote the ith element of a vector, then, for all s ∈ [0, T ] and i ∈ X :

PROPOSITION 3.2.

1. πi(s) ∈ [0, πi(s−)], dπi(s) ∈ (−∞, {π s−Qs ds}i],
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2. �i({s}) ∈ [0, πi(s−)], d�i(s) ∈ [0,∞),
3. dπi(s) ∈ [0, {π s−Qs ds}i], d�i(s) ∈ [0, {π s−Qs ds}i], if πi(s−) = 0.

An upper bound for long-term average expected life is given by maximizing (13) with
respect to � and π subject to (14) and Proposition 3.2.

3.2. The optimal allocation rate. This section focuses on the characterization of the op-
timal π and � that maximizes the objective while satisfying the constraints. The primal-dual
framework is used here to convert the constrained primal problem to an unconstrained dual
problem in which a penalty parameter c associated with the constraint on the limiting pro-
portion of transplanted patients is introduced. Then, we apply the Hamilton–Jacobi–Bellman
equations to the unconstrained problem and recursively solve for the optimal transplantation
rate given any value of c. Dual-primal duality can be shown for this problem, given the con-
vexity of the objective and the constraints, so that the primal problem is ultimately solved by
finding the c corresponding to the bound in the constraint.

Consider the unconstrained objective

(15)
∫
[0,T ]

d�sμ̃s − c

∫
[0,T ]

d�s1n

with a penalty parameter c ≥ 0. Denote the � that maximizes (15) while satisfying the bound-
edness constrains in Proposition 3.2 by �c. The following result characterizes �c in a recur-
sive manner.

THEOREM 3.3. For all s ∈ [0, T ] and i ∈ X ,

(16) �c
i

({s}) = I
(
ϕc

i (s) > c
) · πi(s−),

if πi(s−) > 0 and

(17) d�c
i (s) = I

(
ϕc

i (s) > c
) · ∑

j∈X
πj (s−)qji(s) ds

if πi(s−) = 0. Here,

(18) ϕc
i (s) = μ̃i(s) − ηc

i (s+)

1 − γ c
i (s+)

,

where ηc
i (s+) is the ith element of the vector

(19) ηc(s+) =
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�c) · d�c

t μ̃t ,

and γ c
i (s+) is the ith element of the vector

(20) γc(s+) =
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�c) · d�c

t 1n,

where d�c
s is a diagonal matrix with the ith diagonal element defined as d�c

i (s) =
d�c

i (s)/πi(s−), if πi(s−) �= 0 and �c
i ({s}) = d�c

i (s)/{π s− dQs}i if πi(s−) = 0. The sym-
bol � indicates the product integral operator as defined in Gill and Johansen (1990).

REMARK. Using the product integral � here enables a unified expression of the tran-
sition probability of the Markov process, whether � is absolutely continuous, singular or a
mixture of both. For details on the application of � to the waiting list with allocations, see
Zou (2015).
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Here is a heuristic interpretation of Theorem 3.3. Imagine a scenario in which optimal
allocation for a value ρ of the organ arrival rate has been in place. The optimal allocation
is characterized by d�c where c is associated with the allocation allowance ρ. Suppose we
are now allowed an increase in the allocation rate to ρ + dρ. It is shown in the Appendix
that ηc

i (s+) is, in fact, the conditional expected life gain for a patient in state i at time s past
arrival, if not transplanted immediately but subject to future transplantation, and γ c

i (s+) is
the corresponding probability of future allocation. If we choose to apply our dρ of allocation
to subjects reaching state i at time s, we will further free up γ c

i (s+) dρ more allocation that
could be applied at state i and time s, further freeing up (γ c

i (s+))2 dρ, . . . Ultimately, there
would be a dρ/(1 − γ c

i (s+)) increase in allocation at state i and time s and an expected
life again of μ̃i(s) − ηc

i (s+) per unit of increase in allocation. This suggests that optimal
allocation occurs at those i and s such that

ϕc
i (s) = μ̃i(s) − ηc

i (s+)

1 − γ c
i (s+)

is large.

4. Allocation strategy. Theorem 3.3 suggests an upper bound of the long-term average
of the expected life gain can be achieved by allocating organs to patients in state i at time s

if and only if ϕc
i (s) > c, where c is selected such that

∫
[0,T ] d�c

s1n = ρ/τ .
In reality, however, this upper bound cannot be reached, as when an organ is available for

transplantation, there might not be any patient in the optimal state and waiting time in the
current waiting list. Since the organ can only be preserved for a limited time before losing
its functionality, the transplantation cannot be delayed for patients in the optimal state and
waiting time to appear. One of the patients available on the waiting list, though in subopti-
mal states and waiting times, has to be selected for transplantation. Therefore, an allocation
strategy is needed to prioritize patients in all possible states and waiting times.

Here, we propose an allocation strategy motivated by the form of the optimal transplanta-
tion rate. The proposed strategy is developed based on three monotonicity results. First, the
total transplantation rate is a monotone function of the penalty parameter c.

PROPOSITION 4.1. Suppose c1 > c2 ≥ 0, then

(21)
∫
[0,T ]

d�c1
s 1n ≤

∫
[0,T ]

d�c2
s 1n.

Second, the long-term average expected life gain from transplantation is a monotone func-
tion of c.

PROPOSITION 4.2. Suppose c1 > c2 ≥ 0, then

(22)
∫
[0,T ]

d�c1
s μ̃s ≤

∫
[0,T ]

d�c2
s μ̃s .

Third, the optimal set of state and waiting time pairs for transplantation is monotone with
respect to c. Formally, for each value of c ≥ 0, define the corresponding allocable set

(23) Ac = {
(i, s) ∈ X × [0, T ] : ϕc

i (s) > c
}
,

which consists of state and waiting time pairs with nonzero transplantation rate in the optimal
solution given by Theorem 3.3. The following result states that Ac expands monotonically as
c decreases.
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THEOREM 4.3. Suppose c1 > c2 ≥ 0, then

(24) Ac1 ⊆ Ac2 .

Based on the monotonicity results, a full-order priority ranking of all state and waiting time
pairs can be obtained with the following algorithm outlined in the pseudo code Algorithm
1: start with a large enough value of c such that Ac = ∅, then the value of c is gradually
decreased, representing increasing organ availability, and the order in which each state and
waiting time pair enter the allocable set Ac as c decreases is recorded. A binary search is
used to find each value of c when a new pair of (i, s) enters Ac. Pairs that enter the allocable
set earlier are given higher priorities for transplantation, as they are selected for allocation
to prolong the long-term average expected total life when the availability of organs is more
stringent and remain allocable when more organs are available. The sensitivity parameter α

in Algorithm 1 is a small positive number needed in the algorithm to avoid infinite loops.
Smaller α leads to higher precision in ranking all waiting time and state combinations. Nsteps
is the maximal number of steps allowed in calculating the ranks of (i, s) combinations.

Algorithm 1 Priority ranking for transplantation
1: procedure RANK({(i, s) : i ∈ X , s ∈ [0, T ]})
2: Select c > 0 � Start with an arbitrary value of c

3: if Ac �= ∅ then � Increase c to ensure Ac = ∅

4: while Ac �= ∅ do
5: c ← c + 1
6: c0 ← c; L ← 0 � Define upper and lower bounds for c

7: for step = 1 to Nsteps do
8: cu ← cstep−1; cl ← L; cprev ← L; c ← (cu + cl)/2 � Initialize binary search
9: while |cprev − c| > α do � Find largest c < cstep−1

10: if Ac \Acprev �= ∅ then � s.t. Ac \Acstep−1 �= ∅

11: cl ← c; cprev ← c; c ← (cu + cl)/2
12: else
13: cu ← c; c ← (cu + cl)/2
14: if Ac \Acprev = ∅ then
15: c ← cprev

16: cstep ← c; rank(i, s) ← step for all (i, s) ∈ Acstep \Acstep−1

17: return rank

Once the rank of state and waiting time pairs is determined, whenever an organ is retrieved,
patients available in the current waiting list can be instantly ranked based on their state and
waiting time. The patient with the highest rank will be selected for transplantation. The re-
sulting long-term average expected total life using this strategy is expected to be close to the
upper bound, as patients are ranked according to their potential contributions to the limiting
average total life considering the limited availability of organs. This allocation strategy satis-
fies the fairness requirement, as the allocation decisions are solely determined by states and
waiting times of patients on the current list.

5. Matching of multiple organ types. Now, we generalize the allocation problem with
single organ type to multiple organ types. Suppose there are No > 1 types of organs with cor-
responding arrival rates {ρ(w) : w = 1, . . . ,No}. The interesting case is when

∑No

w=1 ρ(w) < τ

which reflects the reality that there are not enough organs to meet the need of the patients.
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For any w ∈ {1, . . . ,No}, let μ̃
(w)
i (s) denote the expected gain in residual life for a patient

in state i and waiting time s with immediate transplantation with a type w organ comparing
to never transplanted. Note μ̃

(w)
i (s) is a function of both the state and waiting time, providing

the flexibility to model the benefit of transplantation with each organ type as depending on
the compatibility of the organ with the patient and possibly varying with waiting time. In
addition to factors that are usually taken into account in matching donors and recipients, such
as blood type, patients’ health states can include factors that are found to be significantly
related to the benefits of different organ types. For example, studies (Oto et al. (2004), Bonser
et al. (2012), Shigemura et al. (2013) and Kopp et al. (2015)) have found that, while the post-
transplant survival is worse with organs from donors with a smoking history, certain recipient
characteristics could make a difference in the benefit of transplantation with a smoking-donor
organ.

5.1. The optimal transplantation rate for multiple organ types. It can be shown, as in the
single organ type case, that with any allocation rule that satisfies fairness requirements for
each organ type there exists a limiting transplantation rate �(w)

s for each w = 1, . . . ,No, with
which the limiting averaged life gain can be represented by

No∑
w=1

∫ T

0
d�(w)

s μ̃(w)
s .

Moreover, for each w the constraint

(25)
∫
[0,T ]

d�(w)
s 1n ≤ ρ(w)

τ

must hold, as the limiting proportion of patients transplanted with organ type w is bounded
by the ratio of type w organ arrival rate to the patient arrival rate. Each �(w)

s must also satisfy
the first condition in Proposition 3.2 and the following constraints:

(26)
No∑

w=1

�
(w)
i

({s}) ∈ [
0, πi(s−)

]
and

No∑
w=1

d�
(w)
i (s) ∈ [0,∞) if πi(s−) �= 0

and

(27)
No∑

w=1

d�
(w)
i (s) ∈ [

0, {π s− dQs}i] if πi(s−) = 0,

as a patient can only be transplanted with one organ type at a time.
As in the single organ type case, the optimal allocation rates can be solved by first consid-

ering the penalized objective

(28)
No∑

w=1

(∫
[0,T ]

d�(w)
s μ̃s − c(w)

∫
[0,T ]

d�(w)
s 1n

)
,

where each c(w) ≥ 0 is a penalty parameter associated with the constraint (25), indicating the
availability of type w organs. Let c = (c(1), . . . , c(No)) denote the vector of penalty parameters
for all organ types. The following result characterizes the optimal allocation rates for (28)
given any fixed value of c.
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THEOREM 5.1. For all s ∈ [0, T ] and i ∈ X , the transplantation rates {�(w),c
i : w =

1, . . . ,No} that maximize (28) are given by

�
(w),c
i

({s}) = I

(
μ̃

(w)
i (s) − c(w) >

No∑
w=1

[
η

(w),c
i (s+) − c(w)γ

(w),c
i (s+)

]
,

μ̃
(w)
i (s) − c(w) > μ̃

(v)
i (s) − c(v),∀v �= w

)
· πi(s−)

(29)

if πi(s−) > 0, and

d�
(w),c
i (s) = I

(
μ̃

(w)
i (s) − c(w) >

No∑
w=1

[
η

(w),c
i (s+) − c(w)γ

(w),c
i (s+)

]
,

μ̃
(w)
i (s) − c(w) > μ̃

(v)
i (s) − c(v),∀v �= w

)
· ∑
j∈X

πj (s−)qji(s) ds

(30)

if πi(s−) = 0, where η
(w),c
i (s+) is the ith element of the vector

(31) η(w),c(s+) =
∫
(s,T ] �

(s,t)

(I + dQ)

(
I −

No∑
l=1

d�(l),c

)
· d�

(w),c
t μ̃

(w)
t ,

and γ
(w),c
i (s+) is the ith element of the vector

(32) γ(w),c(s+) =
∫
(s,T ] �

(s,t)

(I + dQ)

(
I −

No∑
l=1

d�(l),c

)
· d�

(w),c
t 1n,

where each d�(w),c
s is a diagonal matrix with the ith diagonal element being d�

(w),c
i (s) =

d�
(w),c
i (s)/πi(s−) if πi(s−) �= 0 and �

(w),c
i ({s}) = d�

(w),c
i (s)/{π s− dQs}i if πi(s−) = 0.

Theorem 5.1 indicates that the optimal allocation rates for multiple organ types in the
heavy traffic setting can be achieved by allocating all of patients’ occupancy in state i at
waiting time s to the transplanted state with type w organs if both of the following conditions
are satisfied: first, the difference between the post-transplant residual life gain and the organ-
type-specific penalty, if immediately transplanted, is the largest when transplanted with a type
w organ comparing to other organ types, which makes type w the “designated” organ type
for (i, s); and, second, the difference between the post-transplant residual life gain and the
organ-type-specific penalty parameter, if transplanted with a type w organ immediately, is
larger than the expected difference between the residual life gain and the penalty parameter
if the patient is not transplanted immediately but open to future transplantation opportunities
with any type of organ.

5.2. Allocation strategy for multiple organ types. In practice, as in the single organ type
case, the optimal transplantation rates usually cannot be reached, as when a type w organ
becomes available, there may not be any patient in the optimal state and waiting time for this
specific organ type on the waiting list. Consequently, an allocation strategy is needed to rank
patients’ priorities of transplantation with each organ type.
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Theorem 5.1 motivates a natural allocation strategy. Given the form of the optimal trans-
plantation rate, for each w ∈ {1, . . . ,No}, the allocable set of state and waiting time combi-
nations for type w organs is denoted by

A(w)
c =

{
(i, s) ∈ X × [0, T ] : μ̃(w)

i (s) − c(w) >

No∑
w=1

[
η

(w),c
i (s+) − c(w)γ

(w),c
i (s+)

]
,

μ̃
(w)
i (s) − c(w) > μ̃

(v)
i (s) − c(v),∀v �= w

}
,

in which c indicates the availability of each type of organs. If each A(w)
c expands monotoni-

cally when c decreases to reflect more organs becoming available, then a priority ranking for
transplantation with each organ type can be obtained by comparing the order of each (i, s)

entering the {A(w)
c } as c decreases. Pairs that enter A(w)

c earlier are given higher priorities for
transplantation with type w organ.

The monotonicity of {A(w)
c }, however, generally does not hold when c decreases freely. In

fact, the monotonicity in the multiple organ type case only holds in a weaker sense, that is,
when the decreasing of c follows special “paths” with constraints on changes in each c(w).
The following results describe two types of weak monotonicity properties. First, when all
of the {c(w)} decrease by the same amount, the allocable set for each organ type expands
monotonically. Second, when fixing all the c(v) where v �= w and decreasing only c(w), the
allocable set for type w organs expands monotonically.

PROPOSITION 5.2. If c
(w)
1 − c

(w)
2 is a positive constant independent of w, then A(w)

c1 ⊆
A(w)

c2 for all w ∈ {1, . . . ,No}.

PROPOSITION 5.3. If c
(w)
1 > c

(w)
2 and c

(v)
1 = c

(v)
2 for all v �= w, then A(w)

c1 ⊆A(w)
c2 .

Following the above paths of decreasing c, the priority rankings for all organ types can be
obtained using a three-stage algorithm:

1. The value of c such that the active constraints (25) are satisfied, at least approximately
so, are calculated via a multiple variable gradient descent algorithm. This step guarantees that
c reflects the practical relative availability of each organ type.

2. Given the calculated value of c, increase c by a constant so that the new A(w)
c is empty

for each w. Then, decrease c by the same amount as in Proposition 5.2 and rank the priorities
for type w organ transplantation according to the order of each (i, s) pair entering A(w)

c .
When decreasing each c(w) by the same amount, the designated organ type w for each (i, s)

that maximizes μ̃
(w)
i (s) − c(w) remains the same. Consequently, when c is small enough for

each (i, s) to be allocable, each (i, s) has a designated organ type and the space of X ×[0, T ]
is partitioned into disjoint subsets indexed by the designated organ types.

3. For each w, decrease c(w) further, while keeping all other c(v), v �= w constant as in
Proposition 5.3, until all (i, s) ∈ X ×[0, T ] are ranked for type w organs. This step guarantees
that for each organ type there is a complete ranking of combinations in X × [0, T ]. This step
is necessary since, in practice, when an organ of type w arrives, there might not be any patient
in the subset of X × [0, T ] with type w as the designated organ type. An allocation decision
still needs to be made, since there cannot be a delay in transplantation due to the time limit
for the organ to keep its functionality, and patients who are currently in the waiting list might
still benefit from the transplantation. Complete rankings of X × [0, T ] for each organ type
ensures an allocation decision can be made to select the patient who would benefit the most
when an organ becomes available.
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6. Comparison of allocation strategies. This section focuses on the application of the
proposed allocation strategy in the single-organ-type scenario in the context of realistic mod-
els for health state transitions of patients in the lung transplantation waiting list. Waiting lists
are simulated based on parameters estimated from the United Network for Organ Sharing
(UNOS) lung transplantation data, and the proposed strategy is compared to the Lung Allo-
cation Score (LAS) system by its performance in extending life when applied to the simulated
waiting lists.

6.1. The united network for organ sharing (UNOS) data. The data used are the waiting
list, transplant and follow-up UNOS Standard Transplant Analysis and Research files, which
contain information of heart, lung, and simultaneous heart-lung registrations and transplants
that were listed or performed in the United States and reported to the Organ Procurement
and Transplantation Network (OPTN) from October 1, 1987 to December 31, 2012. In the
data the first transplantation with the LAS occurred on May 5, 2005. Before June 11, 2013,
only patients at least 12 years of age received priority for deceased donor lung offers based
on the LAS, and, thus, we only include patients at least 12 years of age in the data analysis.
There were 16,049 such patients registered in the above time period, with 129,881 records
of medical measurements updated sporadically at different times for different patients during
their tenure on the waiting list. Among the 16,049 candidates, 64.6% received transplantation,
18.4% died while waiting in the list and the remaining were still waiting at the end of the
study period or censored by loss of follow-up. Among patients who received transplantation,
37.8% died and 62.2% were still alive at the end of the study period or were censored due to
loss of follow-up.

6.2. Parameter estimation from the UNOS data. We fit two separate proportional hazards
regression models with time varying covariates to estimate the time-on-waiting-list specific
hazards for on-waiting-list and post-transplant deaths. This serves two purposes: (1) to cal-
culate the LAS given a patient’s current covariates values, and (2) to characterize patients’
health states.

Covariates in the proportional hazard regressions are those used in the calculations in the
revised LAS system by UNOS (for details of covariates used in the LAS calculation, see
UNOS (2017)), whenever they are available in the data, so that no advantage is gained from
an improved variable selection when comparing the proposed strategy to the LAS. Note,
in estimating the hazard for on-waiting-list death, transplantation leads to censoring in the
data. The censoring by transplantation can be treated as censoring at random, nevertheless,
as the selection of organ recipients was based on patients’ LAS calculated with the same
covariates used in estimating the hazard for on-waiting-list death and, thus, can be treated
as conditionally independent of future survivals given the observed covariates. See Tables 3
and 4 in the Appendix for lists of covariates and coefficient estimates in the two proportional
hazards regressions. More details, including estimated baseline survival curves, can be found
in the Supplementary Material (Zou, Lederer and Rabinowitz (2020)).

6.3. Defining patients’ health states. Patients’ health states are characterized in terms of
the linear combinations of the covariates in the proportional hazards models, with the esti-
mated regression coefficients being the weights associated with the covariates. Each patient’s
health state at waiting time s is defined as the pair (Swl(s), Sμ(s)), where Swl(s) and Sμ(s)

are, respectively, values of the linear combinations of covariates at s in the proportional haz-
ards models for on-waiting-list and post-transplant survivals.

Characterizations of transitions in health states are based on observations from exploratory
analysis of the data. Covariates relevant to waiting list and post-transplant survivals are cat-
egorized into deterministic and stochastic variables. Deterministic variables are those which



EFFICIENCY IN LUNG TRANSPLANT ALLOCATION STRATEGIES 1103

FIG. 1. Linear dependence between β1X(s) and β̃1X(s).

remain mostly constant or are deterministic functions of waiting time. Covariates such as
age, diagnosis group and detailed diagnosis fall into this category. Stochastic variables are
those that change randomly while patients are waiting for transplants. Examples of stochastic
variables include BMI, functional assistance status, ventilation status, creatinine, oxygen and
six minute walk distance.

In the LAS calculation (UNOS (2017)), the set of the stochastic covariates for estimating
post-transplant survival is a subset of the stochastic covariates used in estimating the on-
waiting-list survival. Therefore, the set of stochastic covariates can be partitioned further into
two subcategories: covariates used in both proportional hazards models for on-waiting-list
survival and post-transplant survival, and covariates used only for on-waiting-list survival.
As a result, the linear combinations Swl(s) and Sμ(s) can be written as

Swl(s) = β1 · X1(s) + β2 · X2(s) + β3 · X3(s),

Sμ(s) = β̃1 · X1(s) + β4 · X4(s),
(33)

where X1 represents stochastic covariates included in both models, X2 represents stochastic
covariates for Swl only, X3 represents deterministic covariates for Swl and X4 represents de-
terministic covariates for Sμ. See Tables 3 and 4 in the Appendix for detailed categorizations
of the covariates into each of the five X categories.

β1X1(s) and β2X2(s) are characterized as following conditionally independent compound
jumping processes whose jumping intensities and magnitudes depend on the current waiting
time and health state (Swl, Sμ). The jumping hazards are estimated with proportional hazards
regressions for recurrent events, while the jumping magnitudes (in logarithmic scale) are es-
timated with linear regressions. It was observed from the data that estimates of corresponding
coefficients in β1 and β̃1 are approximately proportional (Figure 1). Therefore, the transition
in β̃1X1(s) can be approximated by the transition in β1X1(s) scaled by the estimate of their
ratio and vice versa.

The transition probabilities in (Swl(s), Sμ(s)) can be derived from the transition proba-
bilities of β1X1(s) and β2X2(s) and the deterministic trajectories of β3X3(s) and β4X4(s).
Specifically, for any U,V ⊂ R,

P
(
Swl(s + s) ∈ U,Sμ(s + s) ∈ V | Swl(s) = x,Sμ(s) = y

)
=

∫
Vβ4X4(s)

P
(
β2X2(s) ∈ Ul(ỹ)+β3X3(s) | Swl(s) = x,Sμ(s) = y

)

· dP
(
β̃1X1(s) = ỹ | Swl(s) = x,Sμ(s) = y

)
,

(34)

where Vx denotes the interval V shifted by −x, l(β̃1X1(s)) = β1X1(s) is the linear func-
tion approximating the linear relationship between the changes in β1X(s) and β̃1X(s) and
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each conditional probability in the right side of (34) is calculated using the estimated jumping
intensities and magnitudes described earlier. The distribution of initial states (Swl(0), Sμ(0))

is estimated with the empirical distribution of patients’ states upon arrival on the waiting list.

6.4. Discretization of patients’ health states. For the purpose of efficiency in computa-
tion, we discretize waiting time to periods of 30 days and (Swl, Sμ) to a 4 × 4 finite state
space. Each of Swl and Sμ, which were originally in continuous scales, are partitioned into
four intervals, where the first and last cut-off points of the intervals are the 1/4 and 3/4 empiri-
cal quantiles of the original variables defined in (33) and the rest of the cut-off points are such
that the intervals have equal lengths. As a result, there are four states, {1,2,3,4} for each of
Swl and Sμ, and the overall discretized patient state space is defined as the cross product of
the discretized state spaces of Swl and Sμ.

The corresponding discrete transition probabilities among states are calculated from the
estimated continuous transition probabilities. Specifically, at each waiting time s, the tran-
sition probability from state i = (i1, i2) to j = (j1, j2) as waiting time increases by s is
approximated with (34), in which x and y are the middle points (medians in case of the first
and last intervals) of the i1th interval of Swl and i2th interval of Sμ, and U and V are the j1th
interval of Swl and j2th interval of Sμ, respectively. We first estimate the single-day transition
probabilities with s = 1, and then, the cumulative transition probabilities for the discretized
waiting time intervals with s = 30 are calculated as the product of the single-day transition
probabilities using the Markov property.

We also experimented with different fineness levels in the discretization of waiting time
and health states as well as different models for transitions in health states; simulation results
were robust to different settings. See the Supplementary Material for another example from
Zou (2015), in which waiting time was discretized into 90-day periods and (Swl, Sμ) was
discretized into a 3× 3 state space and the transition probabilities of the discretized (Swl, Sμ)

was estimated with a multinomial regression model.

6.5. Calculation of priority rankings of different allocation strategies. Given the defined
health states, allocation strategies can be formulated as priority rankings of all combinations
of waiting time and health state. Here, we compare our proposed allocation strategy with the
LAS and the refined LAS-type method. First, the LAS currently used by the UNOS is LAS =
100 · (PTAUC − 2 · WLAUC + 730)/1095, where WLAUC is the estimated on-waiting-list
life expectancy during an additional year and PTAUC is the estimated post-transplant life
expectancy during the first year, given the patient’s current waiting time and state (Swl, Sμ).
Patients with higher LAS have more priorities of transplantation. Specifically, the two life
expectancy measures are calculated as follows:

WLAUC =
364∑
t=0

F̄wl(t), PTAUC =
364∑
t=0

F̄tx(t),

where F̄wl(t) is the on-waiting-list survival function at time t (treating current waiting time as
time 0) and F̄tx(t) is the post-transplant survival function at time t (treating time at transplant
as time 0).

It is observed from the data that patients’ on-waiting-list and post-transplant life are usually
much longer than one year. Studies showed the emphasis on one-year survival by the LAS
might have led to worse long-term survival; see, for example, Maxwell et al. (2014) for
detailed statistics. Moreover, it is implicitly assumed in the LAS calculation that the on-
waiting-list survival functional F̄wl(t) is invariant to the patient’s current waiting time which
may not be case. Here, we also calculate a refined LAS without the one-year constraint on
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FIG. 2. Transplantation priorities of waiting time and health state combinations with the proposed strategy.

the life expectancy measures and without assuming the invariance to current waiting time.
Due to heavy censoring of organ recipients with post-transplant residual life longer than five
years, in the refined LAS we calculated the median of the covariate-specific post-transplant
survival, as it is less sensitive to missing values comparing to the mean as the post-transplant
life measure.

The priority ranking of all waiting time and health-state combinations in our proposed
allocation strategy is calculated with the following procedure. Given parameters estimated
from the UNOS data, for a fixed value of the penalty parameter c, whether (s, i), in which
s is the waiting time and i is the value of the health state (Swl, Sμ) is allocable is decided
by whether the optimal transplantation rate for this combination is nonzero. The optimal
transplantation rate can be calculated with formula (17) which in turn is decided by ϕc

i (s) in
(18). The calculation of ϕc

i (s) requires the estimation of μ̃i(s), ηc
i (s+), and γ c

i (s+). μ̃i(s)

is calculated as the difference between the estimated post-transplant residual life and the
estimated on-waiting-list life if never transplanted, where both residual life are estimated with
proportional hazards models given the current waiting time and health state. The estimated
ηc

i (s+) and γ c
i (s+) are calculated using formulae (19) and (20), in which the counterfactual

transition matrix Q is estimated from the data with the method described in Sections 6.3 and
6.4 and d�c is calculated backward in an iterative manner from the upper bound T of waiting
time. Finally, based on the monotonicity of the allocable sets Ac in Theorem 4.3, a full order
ranking of transplant priorities for combinations of waiting times and states is obtained by
comparing the order of their entries to Ac when c decreases, as described in Algorithm 1.

See Figures 2, 3 and 4 for a comparison of priority rankings with the proposed allocation
strategy and the two LAS-type methods. In each of the graphs, numbers 1–100 floating on the
gray background indicate the discretized waiting time periods of 30 days. Each mosaic pattern
under the waiting time title contains the 4 × 4 state space of (Swl, Sμ), where the x-axis
indicates the states of Swl and the y-axis indicates the states of Sμ. Larger index of the states
corresponds to shorter life. Therefore, each small rectangle in the graph shows the priority
of a combination of waiting time and health states, where blue indicates higher priority for
transplantation, while red indicates lower priority. For example, the rectangle on the very
top-left of Figure 2 is in deep red, demonstrating that with the proposed allocation strategy,
patients that are in the first 30-day waiting time period and with (Swl, Sμ) = (1,4) have very
low priority of transplantation. This is reasonable, since Swl = 1 indicates a prediction of
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FIG. 3. Transplantation priorities of waiting time and health state combinations with the original LAS.

long on-waiting-list residual life while Sμ = 4 predicts a short post-transplant residual life
and, thus, low benefit of transplantation, especially given the fact that these patients are new
to the waiting list and are less urgent in receiving transplants.

6.6. Comparison of policy performances via simulation results. Finally, we simulate
waiting lists with parameters estimated from the UNOS data. Specifically, patient and or-
gan arrivals are simulated according to independent homogeneous Poisson processes. The
organ arrival rate ρ and the patient arrival rate τ are estimated with average numbers of pa-
tient arrivals and organ arrivals per 30-day period after year 2006: ρ̂ = 104, τ̂ = 173. At
the end of each waiting time period, counterfactual transitions in patients’ health states are
simulated according to the estimated transition probabilities. Using priority rankings of the
proposed allocation strategy and the two LAS methods, organs, whenever available, are al-
located to patients with the highest ranked combinations of waiting times and states on the

FIG. 4. Transplantation priorities of waiting time and health state combinations with the refined LAS without
one-year constraint and without the waiting-time-invariance assumption.
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TABLE 1
Means and standard deviations (SD) of averaged life outcomes (in days) with different allocation strategies over

200 independent simulations

Average Total Life (SD) Average Life on Waiting List (SD) Average Life Post-Transplant (SD)

Proposed 1839 (19) 489 (21) 1349 (20)
LAS 1708 (20) 554 (20) 1155 (15)
Refined LAS 1723 (21) 561 (21) 1162 (16)
Randomized 1612 (26) 469 (21) 1143 (30)

current waiting list. Patients who are not selected for transplants remain on the waiting list
with possibilities of future counterfactual transitions and transplantations. At the end of the
simulation, the total life, life on the waiting list and post-transplant life, averaged over all
patients ever entered the waiting list, are counted in days for each of the allocation strategies.

Table 1 reports the means and standard deviations of averaged life outcomes of 200 in-
dependent simulations. In each of the 200 simulation runs, a waiting list containing 1605
patients was generated, and 973 organs were allocated to the patients with each allocation
strategy. In addition to the above mentioned strategies, we consider a random allocation strat-
egy in which patients are chosen for transplantation randomly. In each simulation run the
generated waiting list is copied four times to apply each of the allocation strategies in ques-
tion. The averaged total life under each allocation strategy in Table 1 is also compared to the
model upper bound of 1881 days.

By applying the proposed allocation strategy, the averaged total life increased by 7.7%
comparing to the result with the LAS. The gain in total life came from a much improved post-
transplant life: it increased by 16.8% comparing to the post-transplant life under the LAS.
Meanwhile, the average time on waiting list for patients (including those who never received
transplantation and the organ recipients) was shortened by 11.7%. Applying the refined LAS
without the one-year constraint in the LAS calculation and without the assumption that the
waiting-list survival is invariant to the current waiting time slightly improves the averaged
total life. As expected, the purely random allocation had a much worse performance than the
proposed strategy and the LAS methods.

Figure 5 shows the box plots of the averaged life outcomes with each allocation strategy.
From left to right the averaged total life with the model upper bound of 1881 (red dashed
line), the averaged life on waiting list, and the averaged life post-transplant are displayed. An

FIG. 5. Average life with different allocation strategies.
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TABLE 2
Comparison of average waiting time with different allocation strategies

Average waiting time (untransplanted) (SD) Average waiting time (transplanted) (SD)

Proposed 234 (14) 256 (18)
LAS 267 (14) 286 (17)
Refined LAS 242 (15) 318 (20)
Randomized 213 (17) 257 (22)

interesting observation is that, while the randomized strategy resulted in a larger variance,
especially in post-transplant life, which is expected given that organ recipients were selected
randomly, the mean post-transplant life of patients under the random strategy was not sub-
stantially different from those under the LAS methods. This observation might indicate the
current LAS system still has much space to improve, especially in extending patients’ post-
transplant lives.

Regarding patients’ average lives on the waiting list with each allocation strategy, Table 2
and Figure 6 show detailed average waiting time for organ recipients and patients who never
received transplantation.

For patients who died while waiting for transplantation, the original LAS with one-year
constraint led to the longest on-waiting-list life, possibly due to its emphasis on on-waiting-
list survival. The LAS gives higher priority of transplantation to patients with large probabil-
ity of dying within one year. Without the one-year constraint the refined LAS allocated less
organs to those who are likely to die in one year without transplant and, hence, the shorter
average on-waiting-list life. Overall, the LAS methods emphasize more on the on-waiting-list
survival over the post-transplant survival.

On the other hand, the proposed strategy aims to optimize patients’ total lives and, thus,
patients with larger expected life extension with transplantation were given higher priority.
Since some of the patients, who were likely to die in one year without transplantation, were
also expected to have short post-transplant lives, they were not selected as organ recipients
which resulted in a shorter average waiting list lives.

For patients who received transplantation, the proposed method shortened the average
waiting time for an organ, compared to the LAS methods, which might be considered to
be an advantage by the clinicians and patients. The waiting time was shorter with the original
LAS, compared to the refined LAS, which was possibly due to allocations of organs at early
waiting time to patients who were otherwise going to die soon.

FIG. 6. Average waiting time with different allocation strategies. Left: patients died on the waiting list and never
received transplants. Right: transplanted patients.
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7. Numerical results on multiple organ type matching. Obtaining substantive results
in the multiple organ type scenario would require a comprehensive study of organ properties
from real transplantation data. Here, we demonstrate the proposed allocation strategy for
multiple organ types with a synthetic data example.

Two organ types are generated in the example. The post-transplant residual life with type-
1-organ transplantation is larger for all (i, s) combinations compared to with type-2-organ
transplantation. However, for some (i, s) combinations, the difference in the benefit between
the two organ types is less significant, modeling the situations where patients in certain states
at certain stage of the disease may have a better compatibility with type 2 organs. This exam-
ple is generated to resemble the phenomenon that patients generally have a better survival if
transplanted with nonsmoking-donor organs, but recipients with certain characteristics may
suffer less from the reduction in benefit when transplanted with smoking-donor organs.

Following the three-stage algorithm in Section 5.2 motivated by the monotonicity prop-
erties Propositions 5.2 and 5.3, the partition of the space of (i, s) combinations into disjoint
subsets by their designated organ types is obtained, and complete rankings of priorities for
each organ type are calculated. All results are calculated with

∑2
w=1 ρ(w)/τ = 104/173 and

ρ(1)/ρ(2) = 1.
Results are visualized in Figures 7–10. In each of the graphs, numbers 1–100 floating on

the gray background indicate the discretized waiting time periods of 30 days. Each mosaic
pattern under the waiting time title contains the 3 × 3 state space of (Swl, Sμ), where the
x-axis indicates the states of Swl and the y-axis indicates the states of Sμ.

Figure 7 shows the partition of (i, s) combinations by designated organ type. The majority
of (i, s) combinations have color blue, indicating type 1 (nonsmoking donor) organ is the des-
ignated organ type. However, for some (i, s) combinations the designated organ type is type 2
(smoking donor) organ. This partition comports with the differences between post-transplant
residual life with type 1 and type 2 organs visualized in Figure 8. In particular, positions of
the white rectangles in Figure 7 match those of the dark gray rectangles in Figure 8 which
are (i, s) combinations that suffer less from the reduction in post-transplant residual life with
type 2 organs.

Figures 9 and 10 visualize the priority rankings of (i, s) combinations for transplantation
with type 1 and type 2 organs, respectively. In Figure 9 it is expected that the priority is
lowest whenever the color is white in the partition in Figure 7, as those (i, s) combinations
have designated organ type 2 and will only be considered for type-1-organ transplantation
if no patients in (i, s) colored blue, indicating type 1 as designated organ type, are available
in the current waiting list when a type 1 organ arrives. Among those (i, s) combinations
with designated organ type 1, the priority ranking of transplantation generally resembles the
ranking in the single-organ case: (i, s) with longer estimated post transplant residual life
and shorter on-waiting-list residual life, such as the bottom-right rectangle in each mosaic,
generally has higher priority of transplantation. Similar phenomena can be observed in the
priority ranking of type 2 organ transplantation in Figure 10.

However, the priority rankings in the multiple organ type scenario do not always follow
those in the single organ type case. “Flips” of the priorities are observed: some (i, s) combi-
nations with high priorities in the single organ type case now have lower priorities compared
to other combinations. Examples of such flips include the bottom row of mosaic Number 83
and mosaics Numbers 87 and 88 in Figure 9. This phenomenon of flips echoes our discussion
on the monotonicity in Section 5.2: the priority ranking for one organ type is affected by
the relative availability of all organ types, represented by c, and the strong monotonicity of
priorities usually does not hold when c decreases freely.

Overall, the above results demonstrate that multiple organ type allocation and matching is
not a trivial extension of the single organ type problem. The ranking of (i, s) combinations
for each organ type depends on the partition of (i, s) combinations by their designated organ
types. Moreover, the partition and priority rankings are determined by the complex interplay
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FIG. 7. The partition of the space of health state and waiting time combinations according to their designated
organ types.

FIG. 8. Difference between post-transplant residual life with type 1 and type 2 organs for each (i, s) combina-
tion. Dark gray color indicates smaller difference while blue color indicates larger difference in residual life.

FIG. 9. Transplantation priorities of waiting time and health state combinations with the proposed strategy for
type 1 organs.
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FIG. 10. Transplantation priorities of waiting time and health state combinations with the proposed strategy for
type 2 organs.

between transitions in health states, the residual life of each state at each waiting time and
the relative availability of different organ types.

8. Concluding remarks. We have presented an approach to modeling the lung trans-
plantation waiting list and comparing allocation rules. Here, patient and organ arrivals are
modeled as independent homogeneous Poisson processes, and counterfactual patient health
status trajectories absent transplantation are modeled as independent and identically dis-
tributed inhomogeneous Markov processes. Patients’ expected post-transplantation residual
lives depend on both the health state at the time of transplantation and the waiting time at
transplantation. The model setting here is capable of capturing the randomness in patient
and organ arrivals and the complex dynamics of patients’ health characteristics and their ef-
fects on life outcomes. In practice, the researchers and policy makers can always expand the
state space of patient health state so that trajectories of the transitions of health states ap-
proximately follow the Markov property. For example, previous medical records of patients
can be included if they are believed to contain important information for predicting future
transitions.

Allocation rules are modeled as index sequences of transplanted patients. Only fair al-
location rules are considered in the comparison. Under fair allocation rules, the choice of
patients for transplantations are decided by patients’ health states and waiting times at the
time of organ arrival and a random variable that is conditionally independent of patients’ past
and future states and survivals. Allocation probabilities are also required to be invariant to
patient index and calendar time. This definition of fairness has two implications: first, unre-
alistic rules that can predict patients’ future states and survivals are not considered; second,
given patients’ health states and waiting times, the allocation decisions are independent of
other factors. Therefore, the definition of fairness here implicitly addresses the equity issue
in organ allocations.

It is shown that each fair allocation rule has a corresponding limiting transplantation rate.
Under a fair allocation rule, the average rate of transplantation to patients in any state and
waiting time converges to the corresponding transplantation rate as calendar time increases.
The limiting transplantation rate satisfies constraints that reflect the scarcity of organs. The
main constraint is that the average proportion of transplanted patients in the limit is bounded
by the ratio of organ arrivals to that of patient arrivals. The limiting average total life (or,
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equivalently, the limiting average life gain from transplantation), represented in terms of the
transplantation rate, is used as the standard in comparing fair allocation rules.

The optimal transplantation rate subject to the constraints is characterized recursively with
the Hamilton–Jacobi–Bellman equations. Then, a fair allocation strategy is developed based
on the form and monotonicity properties of the optimal transplantation rate. The allocation
strategy is to use the penalty parameter c associated with the constraint on the average pro-
portion of transplanted patients as an index to prioritize patients’ states and waiting times.

The index c is partially related to the Gittins Index (Gittins (1989)). Bertsimas and Niño-
Mora (2000) considered a setting that is close to the organ transplantation problem, in which
a fixed number of resources are to be allocated to a fixed number of subjects that are in
constant transitions of states in discrete time. Allocating resources using Gittins Index leads
to optimal or asymptotically optimal objectives in problems where subjects remain static
if not selected for allocations (Weber (1992), Whittle (1980, 1988)) and in settings where
the rates of patient and organ arrivals tend to infinity. In restless bandits problems in which
all subjects are constantly in transitions, including the problem studied here, though there
are sufficient conditions for Gittins Index to be optimal (Bertsimas and Niño-Mora (1996),
Niño-Mora (2001)), the optimality is not guaranteed in general.

Existing restless bandits models do not cover all complexities of the lung transplantation
allocation problem. These complexities include the random arrival of patients and organs to
the waiting list, random exits of patients due to death and transplantation, constraints on the
allocation when an organ becomes available due to limited availability of patients in allocable
states and fairness considerations.

In our paper we model the lung transplant problem, accounting for these complexities, and
study asymptotic properties of the waiting list. Then, we provide a heavy-traffic solution to
optimize patients’ long-term average life. The heavy-traffic optimal solution given in Sec-
tion 3 can be seen as a much generalized version of the Gittins Index: instead of having a
discrete number of jobs in the restless bandits problem, we have a continuum of “jobs” (ex-
pected occupancy of states at waiting times) and the resources are allocated to the continuum
of jobs under constraints that are also continuous. As discussed in Section 4, the heavy-traffic
optimal solution cannot be directly applied to the allocation of organs in reality, and we pro-
pose an allocation strategy motivated by the heavy-traffic solution that can lead to a long-term
average life that is close to the heavy-traffic upper bound.

In short, part of our development is tangentially related to the restless bandits problem and
the Gittins Index. The scope of the lung transplantation problem itself, however, is beyond
the idealized restless bandits model due to its complexities.

Simulation studies show it may be possible to improve the Lung Allocation Score (LAS)
currently used by UNOS and increase the average total life by as much as 7.7%. Results pro-
vided here are provisional, and a deeper understanding of the lung allocation procedure and
the optimal allocation strategy requires further effort. As discussed previously, there may be
a gap between the objective using the proposed strategy and the practical upper bound of the
objective. The gap may be a result of the lack of patients in optimal states and waiting times,
when organs are available, which may stem from the fact the constraints in the optimization
problem do not cover all practical confinements on the allocations.

In future studies we will extend the donor-recipient matching results developed here and
conduct comprehensive substantive studies using not only patients but also donor records
from UNOS. Issues related to cross-region transplantation or to other practical aspects in
lung transplantation may also require further constraints to be imposed in formulating the
optimal transplantation rate and developing allocation strategies.

APPENDIX

A.1. Coefficient estimates for on-waiting-list and post-transplant survivals.



EFFICIENCY IN LUNG TRANSPLANT ALLOCATION STRATEGIES 1113

TABLE 3
Coefficient estimates for on-waiting-list hazard for death

Covariate Group Coefficient p-value1

Age (year) 3 0.014 <2 × 10−16 (***)
Body mass index (BMI; kg/m2) 1 0.116 × (20-BMI) for

BMI less than 20 kg/m2
<2 × 10−16 (***)

Ventilation status if candidate is hospitalized 1 −0.444 if continuous
mechanical ventilation
needed

6.7 × 10−14 (***)

Creatinine (serum, mg/dL) 1 0.220 if at least 18 years
of age

<2 × 10−16 (***)

Diabetes 1 0.173 <2 × 10−16 (***)
Diagnosis Group A 3 0 NA
Diagnosis Group B 3 0.794 <2 × 10−16 (***)
Diagnosis Group C 3 1.126 <2 × 10−16 (***)
Diagnosis Group D 3 0.163 3.3 × 10−4 (***)
Detailed diagnosis: Bronchiectasis (Diagnosis
Group A only)

3 0.182 1.4 × 10−3 (***)

Eisenmenger’s syndrome (Diagnosis Group B only) 3 −1.04 <2 × 10−16 (***)
Lymphangioleiomyomatosis (Diagnosis Group A
only)

3 −0.961 1.7 × 10−13 (***)

Obliterative bronchiolitis (Diagnosis Group D only) 3 −0.416 8.3 × 10−5 (***)
Pulmonary fibrosis, not idiopathic (Diagnosis
Group D only)

3 0.014 0.70

Sarcoidosis with PA mean pressure greater than
30 mm Hg (Diagnosis Group D only)

3 −0.44 <2 × 10−16 (***)

Sarcoidosis with PA mean pressure of 30 mm Hg or
less (Diagnosis Group A only)

3 0.613 <2 × 10−16 (***)

Forced vital capacity (FVC) 2 0.188 × (80-FVC)/10 if
FVC is less than 80% for
Diagnosis Group D

<2 × 10−16 (***)

Functional Status 1 −0.287 if no assistance
needed with activities of
daily living

<2 × 10−16 (***)

Oxygen needed to maintain adequate oxygen satu-
ration (80% or greater) at rest (L/min)

2 0.111 for Group B, 0.108
for Groups A, C, and D

<2 × 10−16 (***)

PCO2 (mm Hg): current 1 0.222 if PCO2 is at least
40 mm Hg

<2 × 10−16 (***)

PCO2 increase of at least 15% 1 −0.232 if PCO2 increase
is at least 15%

9.4 × 10−15 (***)

Pulmonary artery (PA) systolic pressure (10 mm
Hg) at rest, prior to any exercise

2 0.003 for Group A if the
PA systolic pressure is
greater than 40 mm Hg,
0.016 for Groups B, C,
and D

<2 × 10−16 (***),
9.3 × 10−3 (***)

Six minute walk distance (feet) obtained while
the candidate is receiving supplemental oxygen re-
quired to maintain an oxygen saturation of 88%
or greater at rest. Increase in supplemental oxygen
during this test is at the discretion of the center per-
forming the test.

1 −0.075 × Six-minute-
walk distance/100

<2 × 10−16 (***)

1Significance level: ***p-value ≤ 0.001, **0.001 < p-value ≤ 0.01, *0.01 < p-value ≤ 0.05, ·0.05 < p-value ≤
0.1.
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TABLE 4
Coefficient estimates for post-transplantation hazard for death

Covariate Group Coefficient p-value2

Age (years) 4 4.4 × 10−3× (age-45)
if greater than 45 years
of age

2.1 × 10−5 (***)

Creatinine (serum) at transplant (mg/dL) 1 0.177 if candidate is at
least 18-years-old

0.003 (**)

Creatinine increase of at least 150% 1 0.570 if increase in cre-
atinine is at least 150%,
and the higher value de-
termining this increase
is at least 1 mg/dL

0.422

Ventilation status if candidate is hospitalized 1 −0.05 if continuous
mechanical ventilation
needed

0.710

Diagnosis Group A 4 0 NA
Diagnosis Group B 4 0.263 0.017 (*)
Diagnosis Group C 4 0.268 0.004 (**)
Diagnosis Group D 4 0.171 0.009 (**)
Detailed diagnosis: Bronchiectasis (Diagnosis
Group A only)

4 0.191 0.168

Eisenmenger’s syndrome (Diagnosis Group B
only)

4 0.745 0.297

Lymphangioleiomyomatosis (Diagnosis Group
A only)

4 −0.625 0.052 (·)

Obliterative bronchiolitis (not retransplant, Di-
agnosis Group D only)

4 0.035 0.866

Pulmonary fibrosis, not idiopathic (Diagnosis
Group D only)

4 −0.150 0.077 (·)

Sarcoidosis with PA mean pressure greater than
30 mm Hg (Diagnosis Group D only)

4 −0.230 0.078 (·)

Sarcoidosis with PA mean pressure of 30 mm
Hg or less (Diagnosis Group A only)

4 −0.043 0.801

Oxygen needed to maintain adequate oxygen
saturation (80% or greater) at rest (L/min)

4 6.6×10−3 for Group A
1.1 × 10−3 for Groups
B, C, and D

0.590, 0.845

Functional Status 1 −0.206 if no assistance
needed with activities
of daily living

0.001 (***)

Six minute walk distance (feet) obtained while
the candidate is receiving supplemental oxygen
required to maintain an oxygen saturation of
88% or greater at rest. Increase in supplemen-
tal oxygen during this test is at the discretion of
the center performing the test.

1 3.0 × 10−4× (1200-
Six minute walk dis-
tance), 0 if six-minute-
distance-walked is at
least 1200 feet

6.2 × 10−10 (***)

2Significance level: ***p-value ≤ 0.001, **0.001 < p-value ≤ 0.01, *0.01 < p-value ≤ 0.05, ·0.05 < p-value ≤
0.1.

A.2. Proofs of main technical results. Here, we outline the proofs of selected main

results. For detailed proofs of all technical results, see Zou (2015).
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Proof of Theorem 3.3. PROOF. For any i ∈ X , �i can be decomposed into (cf., e.g.,
Halmos (1974)),

�i = �ac
i + �s

i ,

where �ac
i is absolutely continuous with respect to the Lebesgue measure with density ψi

and �s
i is singular to the Lebesgue measure with support B ⊂ R.

Define the value function

(35) Vs−(π) = sup
{� t :s≤t≤T }

{∫
[s,T ]

d� t · (μ̃t − c · 1n)

}
,

where d� t = πt− dQt − dπt , in which πs− = π, πt = π · �[s,t](I + dQ)(I − d�) for any
t ∈ [s, T ].

By the dynamic programming principle (see, e.g., Fleming and Soner (2006)), for all s ∈
[0, T ] and s > 0,

Vs−(π) = sup
{� t :s≤t<s+s}

{
V(s+s)−(π(s+s)−)

+
∫
[s,s+s)

(
d�ac(t) + d�s(t)

) · (μ̃t − c · 1n)

}
,

which leads to

sup
{� t :s≤t<s+s}

{
V(s+s)−(π(s+s)−) − Vs−(πs−)

s

+ 1

s

∫
[s,s+s)

(
d�ac(t) + d�s(t)

) · (μ̃t − c · 1n)

}
= 0.

If s /∈ B ,
∫
{s} d�s

i (u) = 0 for all i ∈ X , and the Radon–Nikodym derivative ψi exists at s,
in which case the value function is a solution to the Hamilton–Jacobi–Bellman equations

(36)
∂V

∂s
+ sup

{� t :s≤t<s+s}

{
ψ sμ̃s − c · ψ s1n + ∂V

∂π
· dπ

ds

}
= 0,

where

∂V

∂π
=

∫
(s,T ] �

(s,t)

(I + dQ)(I − d�) · d�t · (μ̃t − c1n)

as πt−(I + dQt ) d�t = d� t and πt− = π · �[s,t)(I + dQ)(I − d�), and

dπ

ds
= πs− · qs − ψ s .

If s is an atomic point of �i , then πi(s−) > 0 and, letting s → 0, leads to the Hamilton–
Jacobi–Bellman equations

Vs−(π) = sup
�({s})

{
Vs

(
π

(
I − �

({s}))) + π�
({s})(μ̃s − c · 1n)

}

= sup
�({s})

{
π�

({s}) · (μ̃s − c · 1n)(37)

+
∫
(s,T ]

π · �[s,t)
(I + dQ)(I − d�) · d�t · (μ̃t − c · 1n)

}
,
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where �({s}) satisfies

0 ≤ π�
({s}) ≤ π.

We claim that, if a function V satisfies (36) and (37), depending on whether � is absolutely
continuous or singular to the Lebesgue measure at s, then V is the value function as defined
in (35) for all waiting time s ∈ [0, T ] and distribution π = (π1, . . . , πn) of initial states. To
show this, we first prove V is an upper bound of the value function. Since

V(s+s)−(π(s+s)−) = V (s−,πs−)

+
∫
[s,s+s)∩Bc

(
∂V

∂s
+ ∂V

∂π
· dπ

ds

)
ds

+ ∑
u∈[s,s+s)∩B

(
V (u,πu) − V (u−,πu−)

)
,

with (36) and (37) the left side of the above equation is no greater than

V (s−,πs−) −
∫
[s,s+s)

(
d�ac

t + d�s
t

) · (μ̃t − c · 1n)

with any � . Letting s + s = T leads to

(38) V (s−,πs−) ≥
∫
[s,T )

(
d�ac(t) + d�s(t)

) · (μ̃t − c · 1n),

which verifies that V is an upper bound of the value function.
Now, we show the equality can be achieved in (38) by providing the solution form of �

leading to V that satisfies (36) and (37) and conclude that V is indeed the value function.
From the Hamilton–Jacobi–Bellman equations (36),

−∂V

∂s
= sup

{� t :s≤t<s+s}
{
(μ̃s − ηc(s+) − c

(
1n − γc(s+)

) · ψ s

+ (
ηc(s+) − cγc(s+)

) · π(s−) · q(s)
}
,

and the supremum on the right side is obtained by taking

(39) ψc
i (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if
μ̃i(s) − ηc

i (s+)

1 − γ c
i (s+)

> c and πx(s−) > 0,

∑
x∈X

πx(s−)qx,i(s) if
μ̃i(s) − ηc

i (s+)

1 − γ c
i (s+)

> c and πx(s−) = 0,

0 if
μ̃i(s) − ηc

i (s+)

1 − γ c
i (s+)

≤ c.

Note on the right side of (37)

π�
({s}) · (μ̃s − c · 1n) +

∫
(s,T ]

π · �[s,t)
(I + dQ)(I − d�) · d�t · (μ̃t − c · 1n)

is a linear functional of π�({s}) with coefficient

μ̃s − ηc(s+) − c
(
1n − γc(s+)

)
,

indicating the optimal �c at any s ∈ [0, T ] should satisfy

(40) �c({s}) = I
(
ϕc(s) > c

)
.

Combining the absolutely continuous and singular solutions (39) and (40) gives the desired
solution form.
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Finally, we show ηc
i (s+) is indeed the expected life gain after waiting time s if the oc-

cupancy is concentrated in state i at s− and none is transplanted at s. Let ei denote the
n-dimensional vector with the ith element being 1 and all other elements being 0, then

ηc
i (s+) = ei ·

∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�c) · d�c

t · μ̃t .

Since for any t ∈ (s, T ], ei · �(s,t)(I + dQ)(I − d�c) is the limiting average occupancy at
waiting time t− if started from full occupancy of state i at s− and if none is transplanted at
s, we have the desired result. The result for γ c

i (s+) can be shown similarly. �

Proof of Theorem 4.3. PROOF. By (18), it suffices to show that for all s ∈ [0, T ] and
i ∈ X ,

{μ̃s − c11n}i >
{
ηc1(s+) − c1γ

c1(s+)
}
i

is a sufficient condition for

{μ̃s − c21n}i >
{
ηc2(s+) − c2γ

c2(s+)
}
i ,

where {·}i indicates the ith element of the vector. Note for j = 1,2,{
ηcj (s+) − cjγ

cj (s+)
}
i

= ei ·
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�cj

) · d�cj (t) · (μ̃t − cj · 1n),

where {�cj (t) : t ∈ (s, T ]} are characterized in (16) and (17).
A key observation is that, for any s ∈ [0, T ], the form of {�cj (t) : t ∈ (s, T ]} is independent

of the initial condition πs . Therefore, for any i ∈ X and s ∈ [0, T ], {�cj (t) : t ∈ (s, T ]} also
maximizes

ei ·
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�cj

) · d�cj (t) · (μ̃t − cj · 1n),

which is the objective under penalty parameter cj if only waiting time greater than s is con-
sidered and all of the occupancy is concentrated at state i at time s, and, thus,{

ηc1(s+) − c1γ
c1(s+)

}
i(41)

≥ ei ·
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�c2

) · d�c2(t) · (μ̃t − c1 · 1n).

Subtracting {ηc2(s+) − c2γ
c2(s+)}i from both sides of (41) gives{

ηc1(s+) − c1γ
c1(s+)

}
i − {

ηc2(s+) − c2γ
c2(s+)

}
i

≥ ei ·
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�c2

) · d�c2(t) · (c2 · 1n − c1 · 1n).
(42)

The term on the right side of (42) is no less than c2 − c1 as the probability of future trans-
plantation

ei ·
∫
(s,T ] �

(s,t)

(I + dQ)
(
I − d�c2

) · d�c2(t) · 1n ≤ 1.

Therefore,

ηc1(s+) + c1
(
1n − γc1(s+)

) ≥ ηc2(s+) + c2
(
1n − γc2(s+)

)
,

and the desired result follows. �
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Proof of Theorem 5.1. PROOF. The proof is similar to that of Theorem 3.3. For the
multi-organ-type objective (28) define the value function

Vs−(π) = sup
{�(w)

t :s≤t≤T ,w=1,...,No}

{
No∑

w=1

∫
[s,T ]

d�
(w)
t · (

μ̃
(w)
t − c(w) · 1n

)}
.

The corresponding Hamilton–Jacobi–Bellman equations for the absolutely continuous case
is

−∂V

∂s
= sup

{�(w)
t :s≤t<s+s,w=1,...,No}

{∑
w

ψ (w)
s

(
μ̃(w)

s − c(w)1n

) + ∂V

∂π
· dπ

ds

}
,(43)

where

∂V

∂π
=

∫
(s,T ] �

(s,t)

(I + dQ)

(
I − ∑

w

d�(w)

)
· ∑

w

[
d�

(w)
t

(
μ̃

(w)
t − c(w)1n

)]

and

dπ

ds
= πs− · qs − ∑

w

ψ (w)
s ,

and for the singular case is

Vs−(π) = sup
�(w)({s})

{
π�(w)({s}) · (

μ̃(w)
s − c(w)1n

)
(44)

+
∫
(s,T ]

π · �[s,t)
(I + dQ)

(
I − ∑

w

d�(w)

)
· ∑

w

[
d�

(w)
t

(
μ̃

(w)
t − c(w)1n

)]}
.

The forms of the optimal {ψ (w)
s : w = 1, . . . ,No} and {�(w)({s}) : w = 1, . . . ,No} can be

readily derived from the HJB equations and the constraints (26) and (27). �

Proof of Propositions 5.2 and 5.3. It suffices to show that if

μ̃
(w)
i (s) − c

(w)
1 >

No∑
w=1

[
η

(w),c1
i (s+) − c

(w)
1 γ

(w),c1
i (s+)

]
,(45)

μ̃
(w)
i (s) − c

(w)
1 > μ̃

(v)
i (s) − c

(v)
1 ∀v �= w,(46)

then

μ̃
(w)
i (s) − c

(w)
2 >

No∑
w=1

[
η

(w),c2
i (s+) − c

(w)
2 γ

(w),c2
i (s+)

]
,(47)

μ̃
(w)
i (s) − c

(w)
2 > μ̃

(v)
i (s) − c

(v)
2 ∀v �= w,(48)

where c
(w)
1 − c

(w)
2 = const > 0 for all w (Propositions 5.2) or c

(w)
1 > c

(w)
2 and c

(v)
1 = c

(v)
2 for

all v �= w (Propositions 5.3).
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It is obvious that (46) implies (48) with either condition on {c(w)}. Similar to the proof of
Theorem 4.3, we have

No∑
w=1

[
η

(w),c1
i (s+) − c

(w)
1 γ

(w),c1
i (s+)

]

≥ ei ·
∫
(s,T ] �

(s,t)

(I + dQ)

(
I − ∑

w

d�(w),c2

)

· ∑
w

d�(w),c2(t) · (
μ̃

(w)
t − c

(w)
1 · 1n

)
.

(49)

Subtracting
∑No

w=1[η(w),c2
i (s+)−c

(w)
2 γ

(w),c2
i (s+)] from both sides of (49) leads to the desired

result, as the right side of the inequality becomes

(
c
(w)
2 − c

(w)
1

) · ei

∫
(s,T ] �

(s,t)

(I + dQ)

(
I − ∑

w

d�(w),c2

)
· ∑

w

d�(w),c2(t) · 1n

≥ c
(w)
2 − c

(w)
1 .
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SUPPLEMENTARY MATERIAL

Additional technical and numerical results (DOI: 10.1214/20-AOAS1350SUPP; .pdf).
1. Details of estimated on-waiting-list and post-transplant survivals with proportional hazards
models. 2. Proofs of technical results in Section 4. 3. Another simulation study in which
the transitions in patients’ health states were modeled in a different parameter setting using
logistic models. 4. A simple example to demonstrate the strong monotonicity property does
not hold for multiple organ types.
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