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Modern climate models pose an ever-increasing storage burden to com-
putational facilities, and the upcoming generation of global simulations from
the next Intergovernmental Panel on Climate Change will require a substan-
tial share of the budget of research centers worldwide to be allocated just for
this task. A statistical model can be used as a means to mitigate the storage
burden by providing a stochastic approximation of the climate simulations.
Indeed, if a suitably validated statistical model can be formulated to draw
realizations whose spatiotemporal structure is similar to that of the original
computer simulations, then the estimated parameters are effectively all the
information that needs to be stored. In this work we propose a new statisti-
cal model defined via a stochastic partial differential equation (SPDE) on the
sphere and in evolving time. The model is able to capture nonstationarities
across latitudes, longitudes and land/ocean domains for more than 300 mil-
lion data points while also overcoming the fundamental limitations of current
global statistical models available for compression. Once the model is trained,
surrogate runs can be instantaneously generated on a laptop by storing just 20
Megabytes of parameters as opposed to more than six Gigabytes of the orig-
inal ensemble.

1. Introduction. Across the past decades many fields of environmental and geophysical
science have been increasingly relying on computer models which simulate the Earth system
or parts thereof. These climate models allow a wide range of scientific investigations in Earth
sciences: they detect and attribute climate change, spatially resolve information in poorly
monitored areas and provide physically consistent projections of future climate.

Advances in the understanding of the dynamics of the Earth system, along with the ex-
ponential increase in availability of computational power, have prompted the development
of increasingly more realistic models, with integration of more physical processes as well as
higher spatial and temporal resolution. While these models are increasingly faithful, they are
always an approximation of the Earth system which depends on multiple inputs, and every
study relying on them is sensitive with respect to their choice. In order to achieve robust
scientific conclusions, a collection (ensemble) of simulations is, therefore, necessary. While
generating an ensemble is a computationally demanding task, the share of cost for storage has
gradually become the most pressing issue for computing centers. The 2012 climate projec-
tions of the Intergovernmental Panel on Climate Change (IPCC) Assessment Report 5 relied
on an ensemble, the Coupled Model Intercomparison Project Phase 5 (CMIP5), whose size
was in the range of 1–3 Petabytes (Taylor, Stouffer and Meehl (2012)). Nowadays, modern
global models can generate as much as one Terabyte of data per computing day (Small et al.
(2014)), and the data volume for the upcoming Coupled Model Intercomparison Project Phase
6 (CMIP6, Meehl et al. (2014)) is expected to exceed 10 Petabytes (Eyring et al. (2016)).

Compression for climate models has been investigated in recent work, and studies have
been performed to assess the impact of traditional compression algorithms to model output
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(Baker et al. (2014)). Lossy methods with compression rates of 5 : 1 to 20 : 1 (depending on
the variable one wishes to compress) produce good results for one particular climate model
(Baker et al. (2016)) and do not impact the overall scientific conclusions as the compression
effects are mitigated in the postprocessing steps following the data generation. Baker et al.
(2017) performed a comprehensive study of different compression methods for individual
variables and argued that no single algorithm is ideal for all variables at all resolutions. The
aforementioned works have acknowledged the value of compression for climate model output
as well as the need of higher compression rates to accommodate the size of current and future
ensembles.

Only very recently have statistical models been formulated with the goal of compression.
A conditional approach has been proposed, predicated on storing what must be stored, and
model the rest, conditionally. Guinness and Hammerling (2018) proposed a half spectral
model (Stein (2005)) to store a spatial subset of low frequencies in time and their spatial
dependence and decompress conditionally on this information. The approach allows com-
pression of daily temperatures with a rate comparable to traditional methods. To achieve
higher compression rates, an unconditional approach has been proposed based on the as-
sumption that no information other than the statistical parameters is to be stored, so that the
goal is not to compress and decompress an individual simulation but rather to characterize its
distribution (Castruccio and Genton (2016)). While the application of a statistical model for
compression is a new concept, the idea of using environmental data to estimate a sampling
distribution and then produce more surrogate samples, in other words, the use of stochastic
weather generators (SWGs) for observational data or emulators for interpolation in some cli-
mate model input space has a long history. The only substantial difference between classical
approaches and the presented method is the emphasis on storage rather than availability of
more realizations for SWGs, or computation bottleneck for emulators.

Statistical models for unconditional compression, or stochastic generators (Jeong et al.
(2018, 2019), SGs henceforth), have been developed for atmospheric variables of global cli-
mate models (e.g., temperature, wind and precipitation) by proposing discrete spectral mod-
els across longitude and an autoregressive model across latitude for frequencies. By virtue of
the spectral representation of the likelihood, sparsity is achieved for the spectral matrix, and
inference can be performed for billions of data points.

While SGs have the potential to aid geoscientists to preserve space for future generations
of climate models (Castruccio et al. (2019)), their substantial reliance on discrete spectral
methods implies several fundamental limitations that hamper their usability to practitioners:

1. SGs currently rely on spectral methods only defined on a discrete latitude/longitude grid
and with no continuous underlying process. Therefore, interpolation and simulation cannot be
performed at a spatial scale smaller than the native grid of the climate model. In geoscience,
local impact assessment is performed by linking in-situ monitoring data with coarse (global or
regional) simulations interpolated at the same point (statistical downscaling), and without a
continuous process this can only be performed with ad hoc methods such as nearest neighbor
attribution or inverse distance weighting.

2. The restriction of spectral models on a regular latitude × longitude grid limits its appli-
cability to global variables in the atmospheric domain of a climate model. While adaptations
of spectral methods to irregular grids have been proposed (Fuentes (2007)), they imply a loss
in computational efficiency which cannot be acceptable in this setting given the consider-
able data size. Therefore, presently available SGs cannot be applied to variables solved on
nongridded domains such as sea surface temperature, land use or ice cover.

3. A Fourier transform across longitudes implies that spatial frequencies at different lati-
tudes correspond to different physical distances; hence, actual correlation as implied by the
spectral model is forced to change across latitude. This is particularly problematic for data
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near the poles, where the physical distance is small and leads to instabilities (Castruccio and
Genton (2016)). Further, every model expressed in latitude-longitude coordinate must pro-
vide more-or-less restrictive regularity conditions at the poles (Jun and Stein (2007)), and
the spectral transformation across longitude allows for a wide range of flexible SGs which
naturally account for nonstationarities occurring at a given latitude but not across latitudes.

It is, in principle, possible to formulate a continuous version of the discrete spectral ap-
proach by extending the spectral density to higher frequencies and unaliasing the frequencies
defined at the observed wavenumbers. However, in order to allow a practically useful and
computationally convenient solution for high compression rates, this work proposes a funda-
mental change in perspective by defining a broad and general class of SGs based on a stochas-
tic partial differential equation (SPDE) approach (Lindgren, Rue and Lindström (2011)). The
SPDE approach is a computationally affordable, scalable and very popular solution to ap-
proximate Gaussian processes via a discrete model on a triangulation over the domain. In
this setting the global process is described as a solution of an SPDE equation on the sphere
with white noise forcing. Computational scalability is ensured by the use of finite element, or
finite volume methods, for the discretization of the SPDE solution. The dependence only on
neighboring triangles in the discretization implies sparsity of the precision matrix, and, hence,
a Gaussian Markov random field (Rue and Held (2005)). A stationary version of the SPDE
on the sphere has been used in Guinness and Hammerling (2018) for temporal frequencies in
conditional compression, and several methods have been recently proposed to achieve non-
stationarity based on this approach. Most noticeably, stationarity has been relaxed by adding
covariates (Ingebrigtsen, Lindgren and Steinsland (2014), Ingebrigtsen et al. (2015)), using
spline penalties (Fuglstad et al. (2015a, 2015b)) or modifying the operator itself (Bolin and
Lindgren (2011)). This work proposes a nonstationary covariance structure that is described
through a spatially varying metric tensor (Fuglstad et al. (2019)) over the sphere. This allows
the dependence structure across land and ocean to vary in a manner that is reminiscent of the
deformation method (Sampson and Guttorp (1992)), the Euclidean space.

In this work we focus on a large ensemble of monthly global surface temperature, com-
prising a total of more than six Gigabytes. Monthly temperature is a variable with strong
nonstationarities generated by the energy imbalance across latitude, land/ocean dynamics as
well as local effects such as trade winds. Our work shows how the SPDE approach is able
to capture all these spatial features in just 20 Megabytes of space and can generate new
surrogate simulates almost instantaneously on a common laptop. Further, the availability of
an underlying continuous process allows a comparison between the global simulations with
in situ measurements: the model simulations for two locations in the United States will be
compared with ground observations.

The work proceeds as follows. In Section 2 the data set is presented. The spatiotemporal
model is introduced in Section 3, and inference is discussed in Section 4. In Section 5 we
perform a comprehensive diagnostics of the new model assumptions and compare it against
well-established alternatives. Section 6 presents the application of the method to the dataset
and discusses results and their implications. Section 7 concludes with a discussion.

2. Data. Throughout this work, we rely on the Large ENSemble experiment (LENS,
Kay et al. (2015)), a collection of 40 runs from the Community Earth System Model (CESM)
version 1 developed at the National Center for Atmospheric Research. We use all runs for
cross-validation, but our model is envisioned as a tool for compressing ensembles, such as
the CMIP5, which comprises only three to six runs per model (with fixed scenario). There-
fore, we consider only a random sample of R runs and provide a comprehensive discussion
about the choice of R = 5 in the diagnostic in Section 5. We focus on monthly surface tem-
perature (at a reference height of two meters above the ground level). Aggregation at this
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temporal resolution for this data set ensures Gaussianity, as shown in the diagnostic in Sec-
tion 5. Atmospheric temperature is resolved on a regular N × M grid over the sphere, each
grid cell being approximately one degree in size, where N = 288 and M = 192 is the number
of longitude and latitude bands, respectively. The LENS consists of a historical part from
1920 to 2005, where all runs are identical, except for a small perturbation applied to the ini-
tial temperature field for each ensemble member. The scenario forcing is the Representative
Concentration Pathway 8.5 (RCP 8.5, van Vuuren et al. (2011)), a high greenhouse gases con-
centration trajectory from 2006 to 2100, for a total of T = 95 years. The label 8.5 represents
the forcing of 8.5 W/m2 radiative forcing achieved by 2100. For this work the historical part
is not considered, so the data set comprises N × M × 12T × R ≈ 315 million data points
for a total of 6.2 Gigabytes. In Section 6.2 we also consider observational data for statisti-
cal downscaling. We consider monthly observations of temperatures from January 2008 to
December 2018, provided by the NOAA’s National Centers for Environmental Information
(gis.ncdc.noaa.gov).

Throughout this work we denote the LENS monthly temperature by y
(r)
t (si), for realization

r = 1, . . . ,R and time point t = 1, . . . ,12T , where the location si ∈ S
2 = {x ∈R

3 : ‖x‖ = 1}.
The index i = 1, . . . ,MN denotes the spatial locations with columnwise stacking. Hence-
forth, we also denote by y(r)

t = (y
(r)
t (s1), . . . , y

(r)
t (sMN))�, the vector of all spatial obser-

vations for realization r and time t , and let y(r) = (y(r)
1 , . . . ,y(r)

12T ) and μ = (μ1, . . . ,μ12T ),

where μt = E(y(r)
t ) represents the temperature climatology.

3. The spatiotemporal model. The model assumes that the temperature is Gaussian
with a mean μ independent of the realization. Therefore, we have that y(r) = μ + ε(r), where
ε(r) = (ε

(r)
1 , . . . ,ε

(r)
12T ) is a centered spatiotemporal process for the Gaussian errors for real-

ization r . Different subsections are dedicated to the description of the different parts of the
model. The diagnostics are deferred to Section 5 and are not discussed here.

3.1. Mean structure. For every location si ∈ S
2, we first provide a model for the mean

structure μ(si ) = (μ1(si), . . . ,μ12T (si )). A strong seasonal effect is expected due to intraan-
nual variability; a smooth, slow multidecadal change is expected due to global heating from
increased greenhouse gases in the RCP 8.5 scenario. We, therefore, decompose the mean with
a periodic basis function on yearly scale with slowly varying amplitudes,

(3.1) μt(si ) =
p1∑

j=0

tj

(
αj,i +

p2∑
j ′=1

{
γj,j ′,i cos

(
j ′ωt

) + δj,j ′,i sin
(
j ′ωt

)})
,

where δj,6,i = 0 when p2 = 6 to avoid colinearity in the basis, as given 12 parameters for
monthly temperature, every additional parameter would necessarily be a linear combina-
tion of the others. We also have t = 1,2, . . . ,12T , while ω = π/6 denotes the annual fre-
quency. The parameters γj,j ′,i and δj,j ′,i capture the site-specific intraannual seasonal vari-
ation with harmonics up to order p2 in the polynomial trend. p2 = 0 provides no intraan-
nual seasonal variation, and p2 = 6 provides full flexibility. Figure S5 in the Supplemen-
tary Material (Fuglstad and Castruccio (2020)) shows the map of the estimated parameters
when j = 0: the strong variation in the map indicates how it is necessary to have a spatially
varying mean. The parameter vector for the mean dependence θmean comprises N × M vec-
tors of (p1 + 1)(2p2 + 1) site-specific parameters θmean,i , in other words θmean = {θmean,i ,

i = 1, . . . ,MN}, with θmean,i = {(αj,i , γj,j ′,i , δj,j ′,i), j = 0, . . . , p1, j
′ = 1, . . . , p2}.

http://gis.ncdc.noaa.gov
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3.2. Temporal structure. We assume that the temporal evolution of the process can be
described through a vector autoregressive process of order P (VAR(P )),

(3.2) y(r)
t − μt =

P∑
j=1

�j

(
y(r)
t−j − μt−j

) + Sε
(r)
t , t = P + 1, . . . ,12T , r = 1, . . . ,R.

The matrices �j are MN × MN diagonal with the coefficients for each grid cell φj,i on the
diagonal (see the diagnostics section for a complete discussion about this assumption), and
S is an MN × MN diagonal matrix with diagonal elements given by the marginal standard
deviations σi , for i = 1, . . . ,MN . In the diagnostics section we show that P = 6 is sufficient,
that is, there is partial autocorrelation of the detrended mean temperature up to six months
lag. The innovations ε

(r)
t ∼ N (0,C) are independent and identically distributed both across

r and t , and C = C(θ space) is a MN × MN correlation matrix describing the spatial depen-
dence structure of the innovations through the parameter vector θ space, as will be described
in the following section. In the Supplementary Material (Fuglstad and Castruccio (2020)) it
is proved that the temporal model (3.2) is separable if and only if φj,i = φj , i = 1, . . . ,NM ,
that is, if the temporal parameters are the same across all locations. The temporal dependence
can then be described through θ time = {θ time,i}, i = 1, . . . ,MN , which consists of MN site-
specific P + 1 dimensional vectors θ time,i = {(φ1,i , . . . , φP,i, σi)}.

3.3. Spatial dependence. The spatial correlation structure of ε
(r)
t , that is, the correlation

matrix C = C(θ space), must be specified. Given the large size of the spatial data sets (M ×
N ≈ 55,000 points), an explicit definition of a correlation function would result in a matrix
that could not be stored and, hence, the likelihood could not be computed. Instead of focusing
directly on the correlation, we use a model which is built using sparse conditional dependence
structure. It can be seen from the spectral representation of a Matérn covariance function with
smoothness ν = 1 and range ρ that the resulting two-dimensional Gaussian random field u(·)
has a spatial Markov property, that is, two locations are independent conditional on a set
of locations that separates them so that they cannot be reached from each other (Rozanov
(1977)). Whittle (1954) proved that u(·) can be regarded as the solution of the following
SPDE:

(3.3)
(
1/ρ2 − �

)
u(s) =W(s), s ∈ R

2,

where � = ∂
∂x

2 + ∂
∂y

2
, ρ is the range of the correlation and W(s) is a Gaussian white

noise process. More recently, Lindgren, Rue and Lindström (2011) proposed to use this
link as a modeling tool for random fields. While this relationship was established over a
two-dimensional Euclidean space, the same work also proposed to adapt the aforementioned
SPDE to S

2 by finding a solution u of

(3.4)
(
1/ρ2 − �S2

)
u(s) = W(s), s ∈ S

2,

where �S2 is the Laplacian (Laplace–Beltrami operator) on the two-dimensional sphere. The
operator is inspired from the Matérn function, but an explicit form for the correlation function
on the sphere is presently not available.

The SPDE approach is a powerful way of modeling Gaussian fields, but (3.4) is limited
to stationary and isotropic processes. Fuglstad et al. (2019) introduced a more general con-
struction in terms of metric tensors that induces a nonstationary model by allowing a spatially
varying SPDE operator. Practically, we keep the same SPDE but introduce a spatially vary-
ing metric tensor G(·) that deforms the distance between points. Here, we provide a similar
constructive approach to the metric tensor adapted to global nonstationary data, and, hence-
forth, we work with its inverse G−1(·), as the range is related to the inverse of the distance.
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Assume a location on the sphere is described through (L, 
), where L is the angle with the
x-axis in the xy-plane (latitude), and 
 is the angle with negative z-axis (longitude). For any
location which is neither of the poles, the derivative is described with respect to these coor-
dinates in the directions of increasing L and 
. We then introduce a spatially varying vector
field v(·) = (v1(·), v2(·))�, described in the same coordinate system and a positive-valued
function ρ(·), and define the inverse tensor metric as

(3.5) G(s)−1 = ρ(s)2 I2 + v(s)v(s)T√
1 + ‖v(s)‖2

, s ∈ S
2.

The tensor G(·) is a spatially varying positive-definite matrix-valued function that scales local
distances, so that the length of a line element on the sphere dl = (dL,d
) at location s is

dl�dl = [
dL d


]
G(s)

[
dL

d


]
= 1

ρ(s)2

[
dL d


](
I2 + v(s)v(s)T√

1 + ‖v(s)‖2

)−1 [
dL

d


]
.

This implies that, at location s, the original infinitesimal distance is multiplied by 1/ρ(s), and
the nondiagonal term (

I2 + v(s)v(s)T√
1 + ‖v(s)‖2

)−1

adds anisotropy to the metric tensor. One can show that the distances along the direc-
tion of v(s) are scaled by 1/(ρ(s)(1 + ‖v(s)‖2)1/4, so that the effective range would be
ρ(s)(1 + ‖v(s)‖2)1/4. In the direction orthogonal to v(s), instead, the distance is scaled by
(1 +‖v(s)‖2)1/4/ρ(s), so that the effective range would be ρ(s)/(1 +‖v(s)‖2)1/4. Moreover,
this implies that the geometric average of the range in the direction of v(s) and its orthogonal
direction is ρ(s). Therefore, the spatially varying ρ(·) controls the geometric average of the
strength of dependence in the two principal directions, and v(·) determines the direction and
strength of the anisotropy.

Once the vector field v(·) and ρ(·) are specified, the spatially varying metric tensor G(·)
can be obtained from (3.5), and the SPDE in (3.3) no longer describes a stationary spatial
field but rather a nonstationary process which is the solution of the following SPDE:

(3.6)
[∣∣G(s)

∣∣1/2 − ∇ · ∣∣G(s)
∣∣1/2G(s)−1∇]

u(s) = ∣∣G(s)
∣∣1/4W(s), s ∈ S

2.

The details of the derivation are deferred to the Supplementary Material (Fuglstad and Cas-
truccio (2020)), and it can be shown that the stationary case in (3.4) is retrieved by assuming
G(·) ≡ 1/ρ2I2, where ρ > 0 is a constant. The choice of defining a new SPDE by deform-
ing distances in the original space automatically translates into spatially varying coefficients
for the SPDE but drastically improves interpretability of the parameters compared to directly
parametrizing coefficients in an SPDE. The above SPDE induces some spatial variation in the
marginal standard deviations, but, for slowly changing ρ(·) and v(·), the marginal standard
deviation is close but not exactly 1. We make the separation between correlation structure
and marginal variance exact at each location s by considering ũ(s) = u(s)/σscale(s), where
σscale(s) is calculated as the marginal standard deviations resulting from the choice of metric
tensor. The resulting process ũ(·) has marginal variance 1.

3.3.1. Parametrization of the metric tensor. The fields ρ(·) and v(·) can be described
through some (scalar or vector) basis decomposition such as spherical harmonics and spher-
ical vector harmonics, respectively. This approach does not, however, account for different
behavior in the spatial structure across land and ocean. Indeed, simple diagnostics (not shown,
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see Castruccio and Guinness (2017) for a complete discussion) shows a strong spatial depen-
dence across ocean and only a weak correlation across land. Allowing for a changing de-
pendence structure across these two geographical descriptors while still preserving positive
definiteness of the implied covariance and parameter interpretability is a modelling chal-
lenge. Castruccio and Guinness (2017) approached the problem from a spectral perspective
by allowing an evolutionary spectrum across the two domains.

In this work we propose a buffer area around the coastlines, using a triangulated mesh
which will be discussed in the inference section (see Figure S3 in the Supplementary Material
(Fuglstad and Castruccio (2020))), with a separate parameter that defines a multiplicative
drop in the strength of correlation in the buffer area. The buffering approach was proposed in
a different context by Bakka et al. (2019) and, in the context of this paper, leads to

(3.7) log
{
ρj (s)

} =
L∑

l=0

l∑
m=−l

α
j
mlY

m
l (s),

where α
j
ml are real-valued coefficients and Ym

l (s) are Laplace’s spherical harmonic of degree
l and order m. Moreover,

(3.8) vj (s) =
L∑

l=1

l∑
m=−l

{
E

(1,j)
lm ∇Y l

m(s) + E
(2,j)
lm r̂(s) × ∇Y l

m(s)
}
,

where r̂ is the unit vector in the positive radial direction, E
(1,j)
lm and E

(2,j)
lm are real coeffi-

cients, and L is the highest order included in the bases. Finally, j = {land, sea}, depending
on whether s is over land or sea.

If s is instead in the buffer zone, we have a parameter d such that ρ(s) = dρj (s), whereas
v(s) = vj (s). The parameter d acts a multiplicative drop in the land correlation and allows
for a controlled transition between the two domains. The proposed construction requires two
locally defined processes over land and ocean, linked with a buffer zone which assumes a
multiplicative drop in the land correlation. This construction allows for a well-defined Gaus-
sian process as the SPDE construction guarantees the existence of a solution, even in the
spatially varying metric tensor case.

3.3.2. Subgrid variation. The spatial field will be assumed to be piecewise constant on
a triangulation of the sphere, as is shown in Section 4. Since the triangulation is of coarser
resolution than the distance among data locations, small-scale variation cannot be captured,
and we include a nugget effect to absorb the data variability within each triangle when esti-
mating the spatial structure. We use separate variances for the nugget effect on land and sea
since the drastically different spatial ranges induce different levels of subgrid variation. This
means two extra parameters, τ 2

land and τ 2
sea, denoting the nugget variances on land and sea,

respectively.
In summary, the covariance matrix of ε

(r)
t is described through the parameters in the

6(L+ 1)2 + 3 dimensional vector

θ space = ({
α

j
ml,E

(1,j)
lm ,E

(2,j)
lm | l = 0, . . . ,L,m = −l, . . . , l, j = {land, sea}},{

τ 2
j , j = {land, sea}}, d)

,

where E
(1,j)
0,m = E

(2,j)
0,m = 0 for m = 0 and j = 1,2, but are included for convenience of nota-

tion.
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4. Inference. Our model encourages sparsity in the spatiotemporal dependence struc-
ture and is, therefore, computationally efficient, but performing inference for such a large
data set simultaneously over the entire parameter space is not a feasible task. Instead, we rely
on inference conditionally in a stepwise fashion. We initially estimate θ time, then θmean and,
finally, the spatial parameters θ space. This stepwise approach results in an asympotically con-
sistent estimation (Edwards, Hammerling and Castruccio (2019)). Further, while uncertainty
and bias propagation have been shown not to play a significant role in the final estimates
for similar models (Castruccio and Guinness (2017)), the same work discussed intermediate
steps to control for both that will not be implemented here. Further, more recent work on
(spatially aggregated) monthly temperature of the LENS (Castruccio et al. (2019)) showed
that assuming parameters fixed does not produce any sensible change in the results. Our dis-
cussion on inference is divided into the three subsections describing each of the steps.

4.1. Step 1: Estimating the temporal structure. Inference on the temporal structure is
performed separately at each site assuming an AR(P ) structure, as implied by (3.2), with
P = 6 (see diagnostics Section 5). θ time,i can be estimated without specifying the mean, given
the availability of R independent realizations. Castruccio and Stein (2013) showed that the
restricted likelihood can be written in terms of the difference field D(r)(si ) = y(r)(si )− ȳ(si ),
where ȳ(si ) = 1

R

∑R
r=1 y(r)(si ). If we denote by D(si ) = (D(1)(si ), . . . ,D(R)(si )) and by Q =

Q(θ time,i) the (sparse) precision matrix implied by the AR(P ) model, then the restricted
loglikelihood can be written as

(4.1) 

(
θ time,i | D(si )

) = const + (R − 1) log |Q| −
R∑

r=1

D(r)(si)
�QD(r)(si ),

where const is a generic constant. Inference can be performed by maximizing (4.1), indepen-
dently (in parallel) for every location. Henceforth, we denote by �̂j the MN ×MN diagonal
matrix with entries φ̂j,i , for j = 1, . . . ,P and D̂ the MN × MN diagonal matrix with en-
tries σ̂i .

Figure 1 shows the map of the estimated temporal parameters. In panels (a)–(b) we show
�̂1, �̂2, respectively, as indicated in (3.2) (the parameter estimates for j = 3, . . . ,P = 6 are
shown in Figure S1). In panel (c) we show results for Ŝ, and in panel (d) we show the expected
temperature anomaly in January 2100 against the January average of 2013–2043, the same
time window used in the reference publication of the LENS (Kay et al. (2015)). �̂1 is larger
over ocean than land, as the ocean warming rate is slower due to the ocean heat uptake and
deep oceanic convection. �̂2 is particularly large and negative in the equatorial Pacific and is
partly attributable to the El-Niño oscillation. Ŝ is highest at the poles, and lower over ocean
than land. The January anomaly highlights how the winter warming is expected to be more
dominant at the poles and across land.

4.2. Step 2: Estimating the mean structure. The mean structure is estimated by further
smoothing the ensemble mean at each site ȳ(si ) (as defined in the previous section) with
the basis function proposed in (3.1). We denote by X, the design matrix generated by (3.1)
at each location with p1 = 3 and p2 = 6 (see diagnostics section for the choice of these
parameters). We estimate θmean,i conditional on the inference in the previous step, that is, on
θ̂ time,i . Once the temporal parameters have been estimated, the precision matrix for the time
series at location si is computed by Q̂ = Q(θ̂ time,i). The mean parameters are then obtained
by the generalized least squares

θ̂mean,i = (
X�Q̂X

)−1X�Q̂ȳ(si ).
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FIG. 1. Global maps of estimates of (a)–(c) temporal parameters from (3.2) and (d) �TJan, defined as the
difference between the expected value for January 2100 and the average values of the expected values of Januaries
in 2013–2043 in ◦C, the reference time period used in past work related to the same data set.

As in the previous step, this estimation can be performed independently for each site, hence
allowing an easily parallelizable inference. The vector of estimated means for all time points
for location si is given by Xθ̂mean,i , and henceforth we denote by μ̂t,i the t th element of

Xθ̂mean,i . Further, we let μ̂t = (μ̂t,1, . . . , μ̂t,MN).

4.3. Step 3: Estimation of spatial covariance structure. Given θ̂mean, θ̂ time, the spatial
correlation matrix C of (3.2) can be estimated by considering the innovations ε

(r)
t of the

VAR(P ) process in (3.2). We first standardize, detrend and temporally decorrelate:

(4.2) ε̂(r)
t = Ŝ−1/2

{
y(k)
t − μ̂t −

P∑
j=1

�̂j

(
y(k)
t−j − μ̂t−j

)}
.

For the SPDE model, we must estimate two nugget parameters, one buffer parameter, 73
parameters for nonstationarity on sea and 73 parameters for nonstationarity on land, for a
total of 149 parameters. These parameters are estimated by maximum likelihood, assuming a
triangulation of the globe as described in Lindgren, Rue and Lindström (2011) and attributing
every location to the corresponding triangle. In this paper we use a triangulation with 15,392
triangles, with a land/ocean buffer to allow for changes across these two domains, as shown in
Figure S3. We do not use the finite-element approach for solving the SPDE on the sphere as
in Lindgren, Rue and Lindström (2011) but rather a finite volume approach on each triangle,
similar to what was done in Fuglstad et al. (2015a), Fuglstad et al. (2015b) for a regular grid.
The formal derivation of the sparse precision matrix C−1 is provided in the Supplementary
Material (Fuglstad and Castruccio (2020)); here, we provide the general idea. The SPDE (3.6)
is integrated over a generic triangle Ti , and we require equality in distribution jointly for all
triangles, [∫

Ti

1

ρ(s)2 − ∇ · H(s)∇
]
u(s)dV

d=
∫
Ti

1

ρ(s)
W(s)dV,
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where dV is the surface measure on the triangles. The use of several approximations of this
equation and the divergence theorem ensure that the previous equation leads to a set of linear
equations for a Gaussian vector assumed constant across each triangle.

5. Diagnostics. The proposed model relies on assumptions that this section will ex-
plore and discuss in detail. Henceforth, we refer to four locations which exemplify
different dependence structure across the globe: one in the Atlantic Ocean (Atlantic,
15◦W,8.95◦S), one in the Pacific Ocean (Pacific, 111.25◦W,7.07◦S), one in Oklahoma, US
(USA, 97.5◦W,35.34◦N) and one in the Central African Republic (CAR, 17.5◦E,4.24◦N), as
indicated by the crosses in Figure 3. Here, we report the results for diagnostics of the training
set size, mean structure and spatial structure. In the Supplementary Material (Fuglstad and
Castruccio (2020)) we also validate independence conditional on climate, temporal structure
and Gaussianity.

5.1. Training set size and mean structure. The training set size R must be chosen so
that the precision of the parameter estimates is balanced with the implied benefits of the
SG. A small R would lead to unstable parameter estimates, while a large R would imply a
large ensemble, an impractical scenario in many applications. Indeed, for the vast majority
of ensembles such as the CMIP5 mentioned in the Introduction, R ranges between 3 and 6
for the end-of-century, multidecadal projections. The mean structure in (3.1) is also spatially
dependent, as discussed in the Supplementary Material (Fuglstad and Castruccio (2020)) and
also shown in Figure S5, and requires a choice of p1 and p2. Both coefficients must be
large enough to capture the temporal and site-specific evolution of the climatology but also
small enough to reduce the amount of parameters to be stored. In the Supplementary Material
(Fuglstad and Castruccio (2020)) we provide a comprehensive discussion about how to assess
the fit and how the fit changes as a function of R, p1 and p2. The different panels of Figure S6
show a diminished return in goodness of fit in increasing R and (p1,p2) and justify the choice
of R = 5, p1 = 3 and p2 = 6.

The fit can be also qualitatively assessed by comparing the LENS mean with the estimated
mean from the SG. Figure 2 shows this comparison for two sites, CAR and Atlantic, each
representative of land and ocean behavior, in terms of intra- and interannual variability. In
panels (a)–(c). the fitted mean structure in (3.1), the ensemble mean for the R members of
the training set as well as the full LENS mean is compared. Panels (a)–(b) represent the
intraannual comparison for CAR over land point and Atlantic over the ocean, for a sample
time period between 2030 and 2036, expressed as anomaly with respect to the average over
2013–2043. For CAR in panel (a), it is apparent how the training set mean and the ensemble
mean are generally well aligned, and the fitted model is able to capture the overall monthly
climatology well. For Atlantic in panel (b), the same comparison is performed, and it is ap-
parent how the annual cycle resembles the seasonal behavior of the ocean temperatures. In
this setting both ensemble means are generally well aligned, and the mean structure in (3.1)
is able to capture the pattern. Panel (c) presents a comparison of the multidecadal variability
for the entire simulation period and the same two locations. Ensemble annual mean for both
training set and full LENS is compared with the implied annual structure from the model. At-
lantic shows an overall slower warming rate against CAR, as expected by higher ocean heat
capacity. The assumed polynomial increase with temperature is flexible enough to capture
the different rates of increase, resulting in a satisfactory fit. Figure S7 in the Supplementary
Material (Fuglstad and Castruccio (2020)) also shows similar results for the two points at the
Arctic and Antarctic pole.
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FIG. 2. Comparison of the SG (fitted mean), the LENS based on R = 5 (training set) and 40 runs (full LENS) for
(a)–(b) intra- and (c) interannual variability. The comparison is performed for the locations CAR and Atlantic in
panels (a) and (b), respectively, while panel (c) shows the results for both. The locations are mapped in Figure 3.

5.2. Spatial structure. The use of spatially varying coefficients in the SPDE operator as
well as the use of buffers to allow for different land/ocean behavior allows for an increase in
flexibility. There is a clear, strong difference in spatial structure between land and sea (diag-
nostics not shown), and in order to assess the extent of the improvement of our nonstationary
SG, we compare it a SG which is stationary across the both domains, that is, with constant
but different SPDE coefficients over land and sea. Figure 3 shows the contour plot of the
correlation function for the decorrelated residuals in time, as defined in (4.2) for the four ref-
erence points. Panel (a) shows the LENS correlation, that is, the empirical correlation across
all times and realizations of the ensemble, and compares it with the correlation implied by the
stationary SG in panel (b) as well as the proposed nonstationary SG in panel (c). The limita-
tion of the stationary SG are easily detectable, as both the Atlantic and Pacific locations show
a long range correlation which cannot be captured by a model with no preferred direction
of dependence. The proposed nonstationary model is instead able to capture this dependence
considerably more adequately, as the contour map is deformed to match the shape of the
LENS correlation.

To quantify the extent of the improvement of the proposed nonstationary SG, we also
perform a simulation study to test the interpolating ability of the model. We focus on four
regions centered in the reference points (see Figure S11), and after temporally detrending,
we fit the stationary and nonstationary SG and compute the difference in BIC between them.
We also perform cross-validation to each time and each of the R runs and average the results.
We choose two sampling schemes for cross-validation: (1) leave out the full areas shown in
Figure S11, and (2) leave out only one point for each of the areas. In both cases RMSE, as
well as Continuous Ranked Probability Score, (CRPS) is computed. The results are shown
in Table S1. The results confirm the visual intuition of Figure 3: Atlantic and Pacific show a
larger improvement when considering a nonstationary SG in terms of BIC and better interpo-
lation performances for both sampling schemes and measures. CAR and USA show an overall
smaller BIC improvement and a consistently better performance only when the entire area is
removed for cross-validation.
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FIG. 3. Estimated correlation between reference points marked with blue crosses and all other locations. Multi-
ple locations are shown in the same plot. (a) LENS estimate, (b) stationary SG and (c) nonstationary SG. Negative
values have been set to 0 for the ease of visualization.

The assumption of a constant spatial dependence structure across time was investigated
through independent fits for 10-year windows (diagnostics not shown have demonstrated ro-
bustness with respect to the choice of the length of the time window). We observed that
parameters of the stationary SG display some variability which compared to their absolute
value is negligible; see Figure S13. This behavior is also displayed by the nonstationary
model. Indeed, Figure S14 shows the contour plot of the correlation for the four reference
points across the 10 temporal windows. It can be seen how the contours are visually indis-
tinguishable across time, thus further indicating that the spatial structure does not sensibly
change across years. We have further evaluated the contour plots of the correlation structure
for each month in Figure S15 and, while overall the spatial structure was still found to be
constant, we observe some small changes due to seasonality in the Atlantic reference point
for the months of August–November.

6. Unconditional compression and downscaling of the large ensemble. Once infer-
ence is performed for the R = 5 LENS members in the training set (out of the 40 members)
as detailed in Section 4, we apply this model to act both as a SG, that is, a means to un-
conditionally compress the climate model ensemble, as well as a statistical downscaler by
performing spatial interpolation.

6.1. Unconditional compression. The model’s ability to capture the LENS variability
implies that only five runs are necessary for the monthly mean temperature. Therefore, the
full LENS, which is 6.2 Gb, can be effectively replaced by 20 Mb of disk space for the
estimated parameters, and allows the SG to be downloaded from a common laptop. The
simulations are obtained following a three-step approach: (1) generate ε

(r)
t from the SPDE

model (3.6), (2) temporally correlate the error with the VARMA(P ) model (3.2) and (3) add
the trend (3.1). A single realization can be generate in less than 30 seconds per simulation
and would scale linararly with the number of simulations.

In this section we simulate 40 new runs from the SG and compare them with the LENS
members in terms of their generated uncertainty. Since the SG aims at characterizing the
distribution generating the data and not the data themselves, we do not perform a comparison
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FIG. 4. Comparison of LENS and SG internal variability, expressed as red and blue boxplots, respectively.
(a) Temperature anomaly from 2013–2043 for the four reference locations mapped in Figure 3 (coordinates are
provided in Section 5). (b) Temperature anomaly of seven representative years for CAR.

in terms of RMSE or other pointwise measures. Instead, a fair comparison focuses on the
ability of the SG to capture the uncertainty implied by the LENS. Since the different ensemble
members only differ by an atmospheric perturbation and not by the forcing or physics, the
uncertainty is usually referred to as unforced or internal variability (Nikiema and Laprise
(2011), Torn (2016), Yoshimori et al. (2005)).

Figure 4 shows a comparison of the internal variability for the four reference points in the
diagnostic Section 5. The red and blue boxplots represent the variability according to the SG
and LENS, respectively. In panel (a) the temperature change from 2013–2043 (the reference
period for the LENS diagnostics in Kay et al. (2015)) for all four points is shown, and the
overall mean, as well as the uncertainty, is well reproduced by the SG. The four locations
have very different variability depending on latitude and domain, for example, the CAR tem-
perature is expected to be relatively stable due to its geographical position in the tropics,
whereas the climate of the USA location is mostly continental and more subject to variabil-
ity due to possible changes in intensity and occurrence of jet streams. Panel (b) focuses on
the CAR location from 2013 to 2050, and shows the uncertainty in the temperature anomaly
across seven representative years. Overall, the SG is able to capture the mean trend in time
as well as the internal variability. Therefore, the parameters of the SG are able to generate
approximately the same uncertainty for multidecadal temperature change than the full LENS
with less than 1% of the storage space required.

A comparison of the internal variability between the SG and LENS among sites justifies
the use of a marginal model but does not, however, justify the need of a spatial model. In-
deed, if one is only interested in site-specific or aggregated temperature, similar results can
be obtained with a simple time series model (Castruccio et al. (2019)). A spatial model is,
however, necessary in order to produce physically consistent maps. Indeed, a SG with no
spatial dependence would produce nonsensical maps, as the simulated monthly temperature
evolution at one site would not be influenced by nearby values. Movie S1 in the Supplemen-
tary Material (Fuglstad and Castruccio (2020)) compares the same simulations as in Figure 4
with a model with the same temporal structure as in this work but with spatially indepen-
dent innovations for 2006–2009, the first four years of simulations. A spatially independent
simulation is clearly unsuitable for any type of scientific investigation. Figure 5 shows a com-
parison for one LENS and one SG simulation for January and July, a (Boreal) winter and a
summer month in 2050. The maps have the same large scale patterns, as is apparent from the
figures, and local behavior has already been compared in the diagnostics Section 5, where the
nonstationary SG has been shown to have good interpolation performance.

6.2. Statistical downscaling. The availability of an underlying continuous model allows
to generate SG simulations at an arbitrarily fine resolution. Figure 6 shows an example of
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FIG. 5. Comparison of one LENS and one SG simulation in January (a)–(b) and July 2050 (c)–(d). Panels
(a), (c) show the temperature maps for the LENS, while (b), (d) show the same maps for the SG.

the 2050 temperature maps in January and July, according to one LENS member (panels
(a), (c)), against one downscaled SG (panels (b), (d)), with a 288 × 192 resolution in the
domain shown. The coarse features of the LENS are readily apparent at this level of detail
for both the Boreal winter and summer. Instead, the downscaled SG allows for smoother
spatial fields and can simulate temperature at any spatial location, hence allowing a fair
comparisons with in situ measurements. The extent of the improvement in smoothness from
the LENS to the downscaled SG can be measured by regridding the LENS at high reso-
lution via a nearest neighborhood approach and comparing the roughness of the map, de-
fined as R(j)(t) = ∫ ‖�f (j)(t)‖2 dx dy, where j = 1,2 for the LENS and the downscaled
SG, respectively, at time t with the integral over the domain in Figure 6. If we define by
R̄(j) = 1

12T

∑12T
t=1 R(j)(t) the average roughness in time, the downscaled SG resulted in a 10-

fold decrease in roughness, that is, R̄(2)−R̄(1)

R̄(1) = −0.91. The decrease in roughness also 93%
and 79% for January (panels (a), (c)) and July (panels (b), (d)), respectively.

We choose two locations indicated by the red crosses in panels (a)–(d): one near Chicago
(Chicago Aurora Municipal Airport) and one near San Antonio (Hondo Municipal Airport).
We consider monthly temperatures from January 2008 to December 2018, provided by the
NOAA’s National Centers for Environmental Information (NCEI, gis.ncdc.noaa.gov). The
two sites were chosen to exemplify two different types of climate (continental and subtrop-
ical) and also based on the availability of a continuous 10-year record of observations. We
perform R = 100 SG simulations on the U.S. domain in panels (a)–(d) and consider the un-
certainty of the simulated temperature profiles against the observations. Panels (e)–(f) show
the internal variability at the two sites for the entire time period in the form of a functional
boxplot (Sun and Genton (2011)). The purple band represents the functional interquartile
range, while the blue lines are the outlying bands and the dashed black line represents the
observational data. The intraannual variability of the station in Chicago (e) is very strong due
to continental climate and a sharp winter-summer transition. The downscaled SG highlights
a larger seasonal uncertainty in these two seasons compared to the relatively short springs
and falls in the Midwest. Noticeably, the observational record is well within the functional
interquartile range for all months except January 2014, where a polar vortex across Canada,
the Midwest and the Great Plains generated temperatures 10 degrees Celsius below average
for a few days, thus resulting in a smaller monthly average than the usual climate.

http://gis.ncdc.noaa.gov


556 G.-A. FUGLSTAD AND S. CASTRUCCIO

FIG. 6. (a), (c) January and (b), (d) July 2050 monthly U.S. temperatures for one LENS member (panels (a), (b))
and one downscaled SG simulation (panels (c), (d)). The two red crosses are the sites near Chicago and San
Antonio chosen for comparison. (e)–(f) functional boxplot of the internal variability for R = 100 downscaled SG
of monthly temperature (from January 2008 to December 2018) against the ground observations near Chicago
(e) and San Antonio (f).

For the station near San Antonio, the humid subtropical climate, as well as its adjacency
with the Gulf of Mexico, mitigates the intraannual variability and results in milder springs
and falls. The aforementioned polar vortex recorded in January 2014 in Chicago did not
impact the temperatures at this latitude, so the observations are all well within the functional
interquartile range and with no noticeable outlier.

7. Discussion. We proposed a new approach to climate model compression with a space-
time statistical model whose global structure is derived from a solution of a SPDE. The pro-
posed approach is able to store the information for a climate model ensemble of more than
six Gigabytes in less than 20 Megabytes, and the generation of new simulations is an in-
stantaneous task that can be performed on a laptop. Our method overcomes the fundamental
limitations of spectral-based approaches and represents a significant advance toward the de-
velopment of a usable, simple-to-use tool based on statistical models. The SPDE model is
able to jointly capture different land/ocean behaviors by allowing a buffer zone between the
two domains as well as a multiplicative coefficient describing the drop in correlation. Once
the model parameters are estimated, they are stored and used to simulate surrogate climate
model runs in order to assess the internal variability of the ensemble and to compare the
downscaled output with observational data. While we focused on a global model at ∼1 de-
gree resolution, the induced sparsity in the precision matrix would make this model scalable
to considerably higher spatial resolutions, for example, ∼25km as in the Coupled Model
Intercomparison Project Phase 6 (CMIP6, Eyring et al. (2016)).

The SPDE approach represents a considerable improvement from currently available
methods. First, the proposed model allows for an underlying continuous process, hence al-
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lowing for both conditional simulation and statistical downscaling at arbitrarily high spatial
resolution. In contrast, discrete spectral methods can only be used for simulation at the na-
tive grid, a limitation which considerably hampers its practical use. Second, the SPDE ap-
proach does not depend on the sampling geometry, and it can be applied to any variable, even
the ones whose observational domain is not a regular grid, such as sea surface temperature.
Third, as also observed by Guinness and Hammerling (2018) for an SPDE stationary model,
the triangulation implies no numerical stability issues at the poles due to latitude/longitude
parametrization and sampling geometry (i.e., more points at very high or low latitudes) and
allows to naturally model nonstationarity across latitudes. Finally, the use of a metric tensor
with spatially varying deformation in the SPDE framework allows to retain a well-defined
model with an intuitive interpretation of the parameters. The proposed approach is also com-
putationally convenient. We can achieve inference for more than 300 million data points by
means of the sparsity in the precision matrix implied by the finite volume approach used to
discretize the SPDE and a vector autoregressive structure in time.

The main limitation of the proposed method is its focus on Gaussian processes. While this
is not a significant shortcoming for multidecadal ensembles with end-of-century projections,
this could be an issue to practitioners interested in compressing ensembles of short, high
resolution and possibly regional simulations where hourly and daily output is of interest. Our
proposed approach can however be generalized to the non-Gaussian setting by proposing a
latent Gaussian model. More specifically, the SPDE approach can be used as a latent process
in a hierarchical Bayesian model setting with a non-Gaussian distribution at data level.

SUPPLEMENTARY MATERIAL

Supplementary document (DOI: 10.1214/20-AOAS1340SUPPA; .pdf). A document pro-
viding additional technical details and supplementary details.

Movie (DOI: 10.1214/20-AOAS1340SUPPB; .zip). A movie demonstrating the need for
spatial structure when generating surrogate climate model runs.
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