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In the analysis of pooled data from multiple studies involving a
biomarker exposure, the biomarker measurements can vary across labora-
tories and usually require calibration to a reference assay prior to pooling.
Previous researches consider the measurements from a reference laboratory
as the gold standard, even though measurements in the reference laboratory
are not necessarily closer to the underlying truth in reality. In this paper we do
not treat any laboratory measurements as the gold standard, and we develop
two statistical methods, the exact calibration and cut-off calibration methods,
for the analysis of aggregated categorical biomarker data. We compare the
performance of both methods for estimating the biomarker-disease relation-
ship under a random sample or controls-only calibration design. Our findings
include: (1) the exact calibration method provides significantly less biased es-
timates and more accurate confidence intervals than the other method; (2) the
cut-off calibration method could yield estimates with minimal bias and valid
confidence intervals under small measurement errors and/or small exposure
effects; (3) controls-only calibration design can result in additional bias, but
the bias is minimal if the exposure effects and/or disease prevalences are
small. Finally, we illustrate the methods in an application evaluating the rela-
tionship between circulating vitamin D levels and colorectal cancer risk in a
pooling project.

1. Introduction. It has become increasingly common to pool biomarker data from dif-
ferent studies together to investigate biomarker-disease relationships. Examples of pooling
projects examining biomarker-disease associations include Cohort Consortium Vitamin D
Pooling Project of Rarer Cancers (Gallicchio et al. (2010)), Vitamin D Pooling Project of
Breast and Colorectal Cancer (McCullough et al. (2018)), the Breast and Prostate Cancer Co-
hort Consortium (Tsilidis et al. (2013)) and the Endogenous Hormones, Nutritional Biomark-
ers and Prostate Cancer Collaborative Group (Crowe et al. (2014), Key et al. (2015)).

There is between-laboratory variability in biomarker measurements. For instance, circu-
lating vitamin D (25(OH)D) have highly variable measurements between laboratories and
assays which may vary up to 40% (Lai et al. (2012), Snellman et al. (2010)). Many hor-
mones, such as testosterone and estrone, also have highly variable measurements between
assays and laboratories (Key et al. (2010), Tworoger and Hankinson (2006)). Under such cir-
cumstances calibration is implemented by choosing a reference laboratory and reassaying a
subset of biospecimens from each contributing study at the reference laboratory which can
be used to estimate between-study measurement variability (Sloan et al. (2019)). Owing to
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potential concerns about biomarker measurements in cases, investigators typically use only
noncases in the calibration study subsets.

This paper focuses on analyses of biomarker data pooled from multiple studies for evaluat-
ing the odds ratio (OR) representing the association of a categorized version of the biomarker
and a binary disease outcome. In previous researches the measurements from the reference
laboratory were treated as the “gold standard” measurements (Gail et al. (2016), Sloan et al.
(2019)). For example, the method in Sloan et al. (2019) assumes E(Hr |Hs) = αs + βsHs ,
where Hr and Hs are the measurements from the reference and study-specific laboratory,
respectively, and uses the estimated reference laboratory measurement, α̂s + β̂sHs , in the
place of the biomarker exposure in the logistic regression model. In reality, however, mea-
surements in reference laboratory are not necessarily closer to the underlying truth than
the measurements from other study-specific laboratories. For example, the U.S. Institute of
Medicine (IOM) recommendation for vitamin D concluded that serum 25(OH)D > 50 nmol/l
is “sufficient.” This recommendation was based on data from many laboratories. Categorizing
25(OH)D to “sufficient” vs. “insufficient,” based on the observed or calibrated measurements
from only the reference laboratory, could result in misclassification and biased odds ratio
(OR) estimates, and may not the best practice given that data from multiple laboratories are
indeed available in a pooling project.

In this paper we take advantage of the existence of measurements from multiple labo-
ratories, and the reference laboratory or any study-specific laboratory measurements are no
longer treated as the gold standard. We develop two approaches, the exact calibration method
and cut-off calibration method, for the aggregated biomarker data. The framework of this pa-
per is as follows: We present the statistical models and methods in Section 2. In Section 3 we
evaluate the methods in a simulation study. We illustrate the methods in a circulating vitamin
D and colorectal cancer example in Section 4, and we offer a theoretical adjustment when the
biomarker does not follow a normal distribution in Section 5. Finally, a concluding discussion
is presented in Section 6.

2. Methods.

2.1. Notations and models. Suppose that there are M studies, each associated with a
study-specific local laboratory j , where j = 1,2, . . . ,M . Let Xjk be the unobserved true
value of the continuous biomarker for the kth individual in the j th study and Yjk the binary
disease outcome. We assume the following logistic regression model:

(2.1) logit
(
P(Yjk = 1|Xjk,Zjk)

) = β0j +
G∑

l=2

I(gl−1 ≤ Xjk < gl)βx,l + βT
z Zjk,

where I(·) is the indicator function and Zjk represents potential confounders for the X–
Y relationship. Without further specifications all vectors are column vectors. Note that the
true biomarker measurement, Xjk , is ranged (g0, gG); g0 and gG can be 0 and ∞, re-
spectively, and categorized at cut-off points g1 <, . . . ,< gG−1. The parameter of interest
is βx = [βx,2, . . . , βx,G]T , and β0 = [β01, . . . , β0M ]T contains study-specific intercepts. As
Xjk is unavailable, we can not use the standard logistic regression to estimate βx .

Suppose there are a total of Nc individuals, with Nj individuals in the j th study. With-
out loss of generality we assume that the first nj individuals in study j are included in
the calibration subset. The calibration subset consists of a random selection of controls or
a random selection of both cases and controls. We use the terminology controls only cali-
bration study (COCS) and random sample calibration study (RSCS), respectively, to refer
to these designs. Biospecimens from individuals in the calibration subset are reassayed at
a reference laboratory. For individuals selected into the calibration subset, let Hjk,d be the
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biomarker measurement from laboratory d , where d = 0 refers to the reference laboratory
and d = j > 0 refers to the j th study’s local laboratory. Individuals who are not selected
into the calibration subset only have the local laboratory measurements Hjk,j . For brevity we
use H jk to denote all the biomarker measurements, that is, for the individuals in the calibra-
tion subset, H jk = [Hjk,0,Hjk,j ]T , and for the individuals who only have local laboratory
measurements, H jk = Hjk,j .

We assume that the measurement Hjk,d and the underlying truth Xjk follow the classic
additive measurement error model

(2.2) Hjk,d = Xjk + εjk,d ,

where εjk,d , the measurement error, is independent from Xjk and follows a mean-zero normal
distribution with a laboratory-specific variance, that is, εjk,d ∼ N(0, σ 2

d ), d = 0, j and j =
1, . . . ,M .

We assume that given variables W jk , Xjk can be modeled using the following regression:

(2.3) Xjk = μ(W jk;α0j ,τ ) + εxjk
,

where μ(W jk;α0j ,τ ) denotes the conditional mean of Xjk|W jk , μ(.) is a given function,
α0j is a unknown study-specific parameter, τ represents unknown parameters common for
all the studies and εxjk

is the error term following N(0, σ 2
x ). Typically, we can use the linear

regression model Xjk = α0j + τT W jk + εxjk
, where α0j is a study-specific intercept. If W jk

is null, the conditional mean, μ(W jk;α0j ,τ ), degenerates to α0j .

2.2. Likelihoods. The likelihood function corresponding to the logistic regression model
in Model (2.1) is

L = ∏
j

∏
k

exp{Yjk(β0j + ∑G
l=2 I(gl−1 ≤ Xjk < gl)βx,l + βT

z Zjk)}
1 + exp{β0j + ∑G

l=2 I(gl−1 ≤ Xjk < gl)βx,l + βT
z Zjk}

.

This likelihood, however, cannot be computed because Xjk is not available. In fact, the con-
tribution of a conditional likelihood from an individual can be shown as

Ljk = P(Yjk|H jk,Zjk)

=
∫

P(Yjk|Xjk,H jk,Zjk)f (Xjk|H jk,Zjk)dXjk.
(2.4)

We make the surrogacy assumption that, conditional on Zjk , the laboratory measurement
H jk does not contain additional information about Yjk if the true biomarker value is known,
that is, P(Yjk|Xjk,H jk,Zjk) = P(Yjk|Xjk,Zjk). Let W jk contain the variables in Zjk that
could be associated with Xjk ; that is, we assume P(Xjk|H jk,Zjk) = P(Xjk|H jk,W jk). It
follows that the likelihood contribution Ljk can be written as

Ljk =
∫

P(Yjk|Xjk,Zjk)f (Xjk|H jk,W jk)dXjk

=
∫ exp{Yjk(β0j + ∑G

l=2 I(gl−1 ≤ Xjk < gl)βx,l + βT
z Zjk)}

1 + exp{β0j + ∑G
l=2 I(gl−1 ≤ Xjk < gl)βx,l + βT

z Zjk}
× f (Xjk|H jk,W jk)dXjk

=
G∑

l=2

exp{Yjk(β0j + βx,l + βT
z Zjk)}

1 + exp(β0j + βx,l + βT
z Zjk)

P (gl−1 ≤ Xjk < gl|H jk,W jk),

(2.5)

which is a function of our parameter of interest, βx .
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In practice, there could be variables, denoted as W ∗
jk , that are informative about the

biomarker exposure Xjk , but not be part of Zjk , a variable in the dataset. To take advan-
tage of the availability of these variables, hereafter, we use W jk to denote the collection of
available variables that could be informative about Xjk , possibly including variables not in
Zjk . With this extended definition of W jk , the conditional likelihood contribution is now
Ljk = P(Yjk|H jk,Zjk,W

∗
jk) which can still be written as in (2.5). A discussion about the

potential benefit of including the additional variables W ∗
jk is in Section 2.7.

Next, we derive the analytic forms of P(gl−1 ≤ Xjk < gl|H jk,W jk).

2.3. Conditional distribution of the unknown true biomarker value. Although Xjk is un-
observable, we can derive the conditional distribution of Xjk given H jk and W jk . Specifi-
cally, based on models (2.2) and (2.3), (Xjk|W jk,Hjk,0|W jk,Hjk,j |W jk)

T follows the mul-
tivariate normal distribution below:

(2.6)

⎛⎝ Xjk|W jk

Hjk,0|W jk

Hjk,j |W jk

⎞⎠ ∼ MVN

⎛⎜⎝
⎛⎜⎝μXjk |W jk

μXjk |W jk

μXjk |W jk

⎞⎟⎠ ,

⎛⎜⎝σ 2
x σ 2

x σ 2
x

. σ 2
x + σ 2

0 σ 2
x

. . σ 2
x + σ 2

j

⎞⎟⎠
⎞⎟⎠ ,

where μXjk |W jk
is the abbreviation of μ(W jk;α0j ,τ ) in (2.3). It follows that, for individuals

who only have local laboratory measurements,

(2.7) Xjk|H jk,W jk ∼ N
(
ρjHjk,j + (1 − ρj )μXjk |W jk

, ρjσ
2
j

)
,

where ρj = σ 2
x

σ 2
x +σ 2

j

, and, for individuals in the calibration subset,

(2.8) Xjk|H jk,W jk ∼ N
(
ρ∗

j

(
wjHjk,j + (1 − wj)Hjk,0

) + (
1 − ρ∗

j

)
μXjk |W jk

, ρ∗
j wjσ

2
j

)
,

where ρ∗
j = σ 2

x /(σ 2
x + σ 2

j wj ) and wj = σ 2
0 /(σ 2

j + σ 2
0 ). Hereafter, we use μjk and sjk to

denote the mean and standard deviation of Xjk|H jk,W jk . Next, we describe the procedures
for estimating the parameters involved in the conditional mean, μjk .

2.4. Estimation of parameters in the conditional mean. Let θ = [α01, α02, . . . , α0M,τT ]T
and σ 2 = [σ 2

x , σ 2
0 , σ 2

1 , . . . , σ 2
M ]T denote the unknown parameters in the means and variances

of (2.7) and (2.8). Combining models (2.2) and (2.3), we have

Hjk,d = μ(W jk;α0j ,τ ) + δxjk,d ,

where δxjk,d ∼ N(0, σ 2
x + σ 2

d ) is the laboratory-specific error term. Note that the outcomes
Hjk,d are not always independent since each individual in the calibration subset has two
correlated measurements, Hjk,0 and Hjk,j . We propose the following estimating equations
for θ and σ 2:

(2.9)

�θ =
M∑

j=1

nj∑
k=1

d

dθ

[
μ(W jk;α0j ,τ )

μ(W jk;α0j ,τ )

]T
[
σ 2

x + σ 2
0 σ 2

x

σ 2
x σ 2

x + σ 2
j

]−1 [
ejk,0
ejk,j

]

+
M∑

j=1

Nj∑
k=nj+1

dμ(W jk;α0j ,τ )

dθ

(
σ 2

x + σ 2
j

)−1
ejk,j = 0,

�σ 2 =
M∑

j=1

nj∑
k=1

d

dσ 2

⎡⎢⎣σ 2
x + σ 2

0
σ 2

x

σ 2
x + σ 2

j

⎤⎥⎦
T ⎡⎢⎣e2

jk,0 − (
σ 2

x + σ 2
0
)

ejk,0ejk,j − σ 2
x

e2
jk,j − (

σ 2
x + σ 2

j

)
⎤⎥⎦

+
M∑

j=1

Nj∑
k=nj+1

d(σ 2
x + σ 2

j )

dσ 2

(
e2
jk,j − (

σ 2
x + σ 2

j

)) = 0,
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where ejk,d = Hjk,d − μ(W jk;α0j ,τ ). For example, if μ(W jk;α0j ,τ ) = α0j + τT W jk ,
μ(W jk;α0j ,τ ) can be written as CT

jkθ , where Cjk = [DT
jk,W

T
jk]T , Djk is a M × 1 vector

with one on j th element and zeros elsewhere. Note that �θ = 0 is a first-order estimating
equation for θ with σ 2 treated as known, and �σ 2 = 0 is a second-order estimating equation
for σ 2 with θ considered known.

We adopt a two-stage iteration method (Lanzkron, Rose and Szyld (1991)) to estimate
θ and σ 2. We start the procedure by setting σ̂ 2(0) = [σ̂ 2(0)

x , σ̂
2(0)
0 , σ̂

2(0)
1 , . . . , σ̂

2(0)
M ]T with

σ̂
2(0)
x = 0, σ̂

2(0)
0 = σ̂

2(0)
j = 1 for j = 1, . . . ,M ; that is, the working variance-covariance ma-

trix in the first stage estimating equation is set to the identity matrix as the starting value.
Specifically, the two stages in the mth iteration are:

• First stage: fix σ 2 = σ̂ 2(m) and obtain θ̂
(m)

by solving �θ = 0.

• Second stage: fix θ = θ̂
(m)

and obtain σ̂ 2(m+1) by solving �σ 2 = 0.

The iteration continues until convergence. The convergence criteria can be based on both

relative differences ‖θ̂ (m+1)−θ̂
(m)‖

‖θ̂ (m)‖
and ‖σ̂ 2(m+1)−σ̂ 2(m)‖

‖σ̂ 2(m)‖ , where ‖ · ‖ denotes the Euclidean norm.

One or more elements in the variance estimates (σ̂ 2) above could be negative, which is
unlikely to happen if the calibration sample size is sufficient. However, when the calibration
subset sample size is small and some laboratories’ measurement errors are close to zero, the
negative variance problem is more likely to happen. The negative-estimates problem of vari-
ance components has been discussed in previous literatures (Fletcher and Underwood (2002),
Leithy, Wahed and Abdallah (2016), Thompson (1962)). Here, according to the suggestion
in Rao (1972), we use a restriction method to solve this problem. Specifically, in the second
stage above, instead of solving �σ 2 = 0, we minimize the following sum of squares:

(2.10)

Lσ 2 =
M∑

j=1

nj∑
k=1

⎡⎢⎣e2
jk,0 − (

σ 2
x + σ 2

0
)

ejk,0ejk,j − σ 2
x

e2
jk,j − (

σ 2
x + σ 2

j

)
⎤⎥⎦

T ⎡⎢⎣e2
jk,0 − (

σ 2
x + σ 2

0
)

ejk,0ejk,j − σ 2
x

e2
jk,j − (

σ 2
x + σ 2

j

)
⎤⎥⎦

+
M∑

j=1

Nj∑
k=nj+1

(
e2
jk,j − (

σ 2
x + σ 2

j

))2
,

subject to the condition that σ 2 ≥ 0. If the roots of �σ 2 = 0 are all nonnegative, this re-
striction method leads to the same calibration parameter estimates as the unrestricted one.
We conducted a simulation study to investigate the impact on βx when using this restriction
method in the presence of negative variance; see Section 3, Appendix E and Tables S7–S9 in
the Supplementary Material (Cheng and Wang (2020)).

2.5. Exact calibration method. This section focuses on a likelihood-based method
for the estimation of exposure effects using aggregated data. Denoting P(gl−1 ≤ Xjk <

gl|H jk,W jk) as pjk,l (l = 2,3, . . . ,G) and following the distribution of Xjk|H jk,W jk in
(2.7) and (2.8), we have

(2.11) pjk,l = 	

(
gl − μjk

sjk

)
− 	

(
gl−1 − μjk

sjk

)
,

where 	(.) is the standard normal cumulative density function. We plug the estimators θ̂ and
σ̂ 2 in Section 2.4 into pjk,l in (2.11), leading to p̂jk,l . The likelihood contribution in (2.5)



ANALYSIS OF COMBINED CATEGORICAL BIOMARKER DATA 1151

with pjk,l replaced by p̂jk,l becomes

(2.12) L̃jk =
G∑

l=2

exp{Yjk(β0j + βx,l + βT
z Zjk)}

1 + exp(β0j + βx,l + βT
z Zjk)

p̂jk,l .

Let β = [βT
0 ,βT

x ,βT
z ]T , which contains the coefficients in model (2.1), and π = [θT ,σ 2T

,

βT ]T , which includes all the unknown parameters. Estimates of β can be obtained by max-
imizing the pseudolikelihood L̃ = 
j,kL̃jk . We name this method as Exact Calibration

Method (ECM) and denote the β-estimator from ECM as β̂
(E)

.
We define joint estimating equation �(π) = [�T

θ ,�T
σ 2,�

T
β ]T = 0, where �θ and �σ 2 are

defined in (2.9) and �β is the score function based on L̃ (see Appendix A in the Supple-
mentary Material (Cheng and Wang (2020)) for the derivation of �β ). The β estimates from

solving this joint estimating equation is identical to β̂
(E)

obtained by maximizing L̃. We
consider the following two approaches to obtain variance estimates of β̂:

• Approach 1, standard sandwich method: var(π̂) ≈ Q̂
−1

Û(Q̂
−1

)T , where Q̂ =∑M
j=1

∑Nj

k=1[
dψπ ,jk

dπ |π=π̂ ], Û = ∑M
j=1

∑Nj

k=1[ψπ̂ ,jkψπ̂ ,jk
T ] and ψπ ,jk is the piece in �π

corresponding to the kth individual of the j th study.
• Approach 2, pseudolikelihood hessian matrix method: Estimate the variance of β̂

through calculating the hessian matrix for L̃, that is, var(β̂) ≈ [∑M
j=1

∑Nj

k=1 −d2 ln L̃jk

dβ2 |β =
β̂]−1. For the variance of θ̂ , we have var(θ̂) ≈ [d�θ

dθ |θ = θ̂ ,σ 2 = σ̂ 2]−1.

The standard sandwich method takes into account variation due to estimating θ̂ , σ̂ 2 in the
variance estimator of β̂ . By contrast, the pseudolikelihood hessian matrix method assumes
θ̂ and σ̂ 2 are fixed values in estimating var(β̂). Therefore, the estimated variance of β̂ by
standard sandwich method is expected to be a little larger than that from the pseudolikelihood
hessian matrix method.

2.6. Cut-off calibration method. Alternatively, the regression coefficients in (2.1) can be
estimated by maximizing the following approximate likelihood:

(2.13) L̃(c) = ∏
j

∏
k

exp{Yjk(β0j + ∑G
l=2 I(gl−1 ≤ X̂jk < gl)βx,l + βT

z Zjk)}
1 + exp(β0j + ∑G

l=2 I(gl−1 ≤ X̂jk < gl)βx,l + βT
z Zjk)

,

where X̂jk is the estimated value for Xjk with X̂jk = μ̂jk . We name it Cut-off Calibration
Method (CCM), as it categorizes the estimated biomarker values directly, and we denote the

estimates from the CCM as β̂
(C)

x .
As shown in Supplementary Material Appendix B (Cheng and Wang (2020)), the CCM

performs best when σ 2
d , d = 0,1, . . . ,M , are small and/or the association between Yjk and

Xjk is not too strong. The approach for estimating var(β̂
(C)

x ) is similar to that in Section 2.5;
see Supplementary Material Appendix C (Cheng and Wang (2020)) for more details.

2.7. Calibration study designs. Under the RSCS design, since �θ and �σ 2 are unbiased
estimating functions, the calibration parameter estimates, (θ̂ , σ̂ 2

), in Section 2.4 are consis-
tent as nj → ∞ for j = 1, . . . ,M (Godambe (1991)). As a result, p̂jk in (2.12), μ̂jk in (2.13)

and β̂
(E)

in Section 2.5 are also consistent estimates. Note that this consistency property
holds whether or not W jk includes the additional variables W ∗

jk . Under the linear regression



1152 C. CHENG AND M. WANG

model μ(W jk;α0j ,τ ) = α0j + τT W jk , including W ∗
jk in W jk typically increases the preci-

sion of θ̂ and reduces σ 2
x (Robinson and Jewell (1991)) and, thus, may increase the precision

of the resulting β-estimators.
Under the COCS design, p̂jk and μ̂jk are typically asymptotic biased due to the following

reasons. First, under the COCS design, the calibration subset data can be used to estimate
the parameters in model E(Hjk,d |W jk, Yjk = 0) = α0j,co + τT

coW jk , where the subscript
co denotes controls only enrollment and α̂0j,co and τ̂ co are not consistent estimates for α0j

and τ . Second, the conditional distribution of Xjk that can be estimated in the calibration sub-
set is actually P(Xjk|H jk,W jk, Yjk = 0) which is also not identical to P(Xjk|H jk,W jk)

in (2.5). However, under certain conditions we can show that α0j,co ≈ α0j , τ co ≈ τ and
P(Xjk|H jk,W jk, Yjk = 0) ≈ P(Xjk|H jk,W jk). The conditions include: (i) small expo-
sure effect (i.e., βx ≈ 0) and/or (ii) rare disease prevalence (see Supplementary Material Ap-
pendix D (Cheng and Wang (2020)) for more details). Under these conditions the calibration
parameter estimates under the COCS design are typically less biased.

3. Simulation studies.

3.1. Simulation setup and results. In this section we first describe how the unob-
served biomarker Xjk , local and reference laboratory measurements Hjk,0 and Hjk,j

and the binary disease outcome Yjk were generated. For simplicity, we set Wjk to fol-
low one-dimensional normal distribition with mean 0 and variance 1. We generated
(Xjk|Wjk,Hjk,0|Wjk,Hjk,j |Wjk)

T according to the multivariate normal distribution in (2.6)
with μ(W jk;α0j ,τ ) = α0j + τWjk , where α0j ’s were generated from N(6,0.05) and τ was
set as 2. We assumed there were five studies, that is, M = 5, each with 1000 individuals. We
first assumed a sample size of 100 for each calibration subset. For each study we considered
disease prevalences of 5%, 25% and 50%. The calibration subsamples were randomly se-
lected from both cases and controls for the RSCS calibration design and randomly selected
from controls for the COCS design. In the variance-covariance matrix, we set σ 2

x = 3 and as-
sumed σ 2

d ∼ Unif(1.5,2.5), where d = 0,1, . . . ,5. Note that the Intra-laboratory Correlation

Coefficient (ICC), which is σ 2
x

σ 2
x +σ 2

d

for laboratory d , in the design above is from 55% to 67%.

The binary outcome Yjk’s were generated based on

(3.1) logit
(
P(Yjk = 1|Xjk)

) = β0j +
5∑

l=2

I(gl−1 ≤ Xjk < gl)βx,l,

where the regression coefficients across the biomarker categories are linearly increasing, that
is, βx,2 = 1

2βx,3. We considered four values of βx,3, including log(1.2), log(1.5), log(2) and
log(3). The cut-off points used in (3.1) were 33% and 66% percentiles of Xjk . Note that
we assumed there is a single variable W ∗

jk(=Wjk) that is correlated with Xjk , but not the
outcome Yjk , in our simulation study.

At each βx,3 and prevalence considered, we completed 1000 simulation replicates and
compared the ECM and CCM with regard to the following operating characteristics: mean
percent bias, mean squared error (MSE), empirical and estimated standard errors (SE and ŜE)
and coverage rate of 95% confidence interval. For purpose of comparison, we considered a
naive method as a benchmark, which replaced Xjk in model (2.1), with the average of Hjk,0
and Hjk,j if Hjk,0 was available and with Hjk,j , otherwise, and fitted this regression model
to obtain βx .

We first considered the COCS design (Table 1). The naive method performed poorly for
percent bias at every OR and prevalence considered, and, as the prevalence and OR increased,
the coverage rates were more different from 95%. Both ECM and CCM reduced the percent
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TABLE 1
Comparison of operating characteristics under a COCS design for the naive (β̂(N)), cut-off calibration (β̂(C))

and exact calibration (β̂(E)) methods

Disease
prevalence

Percent bias MSE SE × 100 (ŜE × 100) Coverage rate

βx,2 β̂
(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 (β̂(E)

x,2 ,β̂(E∗)
x,2 ) β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(E∗)
x,2

5% 1
2 log(1.2) −33.4 −5.6 −3.1 0.028 0.026 0.079 16.4 (16.5) 16.2 (16.2) 28.0 (28.0,27.8) 95.2 94.8 96.3 96.3
1
2 log(1.5) −25.2 −13.1 −2.5 0.033 0.029 0.085 17.3 (16.8) 16.9 (16.5) 29.2 (29.0,28.8) 95.1 93.9 96.3 96.2
1
2 log(2) −25.5 −11.4 −1.1 0.037 0.032 0.090 17.2 (17.1) 17.3 (16.8) 30.1 (30.0,29.8) 92.5 94.9 95.6 95.6
1
2 log(3) −22.2 −13.6 −3.8 0.049 0.038 0.104 18.6 (17.6) 17.9 (17.2) 32.1 (31.8,31.6) 88.1 91.9 96.4 96.3

25% 1
2 log(1.2) −36.1 −5.6 4.9 0.008 0.007 0.019 8.1 (8.2) 8.1 (8.0) 13.7 (13.7,13.6) 92.7 95.4 96.0 95.9
1
2 log(1.5) −30.3 −13.2 −2.6 0.011 0.007 0.019 8.3 (8.3) 8.0 (8.0) 13.8 (14.0,13.8) 88.0 93.4 95.0 94.9
1
2 log(2) −26.1 −13.8 −0.4 0.015 0.009 0.019 8.5 (8.4) 8.4 (8.2) 13.8 (14.3,14.1) 80.6 89.8 96.2 95.8
1
2 log(3) −24.6 −13.1 −0.2 0.026 0.012 0.022 8.6 (8.6) 8.5 (8.4) 14.8 (14.8,14.6) 66.1 86.3 94.9 94.4

50% 1
2 log(1.2) −42.3 −4.8 2.9 0.006 0.005 0.014 6.9 (7.1) 6.9 (6.9) 11.6 (11.7,11.5) 92.7 95.3 95.4 94.9
1
2 log(1.5) −33.6 −12.1 −1.4 0.009 0.005 0.012 6.7 (7.1) 6.7 (6.9) 11.0 (11.7,11.5) 85.5 93.9 97.3 97.2
1
2 log(2) −28.3 −13.7 0.1 0.015 0.007 0.013 7.1 (7.1) 6.9 (6.9) 11.5 (11.8,11.6) 71.1 89.3 95.5 95.3
1
2 log(3) −26.8 −15.5 0.5 0.027 0.012 0.014 7.0 (7.1) 6.7 (6.9) 11.8 (12.0,11.7) 45.9 77.3 95.6 95.2

Disease
prevalence

Percent bias MSE SE × 100 (ŜE × 100) Coverage rate

βx,3 β̂
(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 (β̂(E)

x,3 ,β̂(E∗)
x,3 ) β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(E∗)
x,3

5% log(1.2) −23.3 −15.7 2.1 0.026 0.027 0.035 15.7 (15.6) 16.3 (16.3) 18.7 (19.1,19.0) 94.3 95.1 96.2 96.1
log(1.5) −23.8 −17.1 0.9 0.035 0.033 0.038 15.9 (15.7) 16.7 (16.4) 19.4 (19.3,19.3) 90.0 93.3 95.1 95.0
log(2) −24.3 −17.3 0.7 0.053 0.044 0.041 15.6 (15.7) 17.2 (16.4) 20.2 (19.9,19.8) 81.1 87.0 94.9 94.8
log(3) −24.7 −18.1 −0.2 0.100 0.068 0.044 16.1 (16.0) 16.9 (16.6) 21.0 (21.3,21,2) 57.7 75.7 95.5 95.3

25% log(1.2) −20.8 −14.3 3.8 0.007 0.007 0.009 7.7 (7.8) 8.1 (8.2) 9.4 (9.5,9.5) 93.0 93.5 95.3 95.3
log(1.5) −24.1 −16.9 0.1 0.016 0.012 0.009 7.9 (7.8) 8.4 (8.2) 9.7 (9.6,9.5) 77.8 86.2 93.7 93.6
log(2) −24.7 −17.9 −0.6 0.037 0.023 0.011 8.6 (7.9) 9.0 (8.3) 10.5 (9.9,9.8) 42.4 67.2 93.4 93.1
log(3) −24.7 −17.5 0.1 0.080 0.044 0.011 8.3 (8.0) 8.6 (8.3) 10.4 (10.3,10.1) 8.1 37.1 94.7 94.0

50% log(1.2) −25.7 −19.1 −2.9 0.007 0.006 0.007 6.6 (6.8) 7.0 (7.1) 8.1 (8.2,8.2) 89.9 92.8 95.5 95.5
log(1.5) −24.2 −17.2 −0.6 0.014 0.010 0.007 6.6 (6.8) 7.0 (7.1) 8.1 (8.2,8.2) 70.8 83.5 95.5 95.3
log(2) −23.7 −16.9 0.3 0.032 0.019 0.008 7.0 (6.8) 7.4 (7.2) 8.7 (8.4,8.3) 33.5 62.8 93.6 93.3
log(3) −24.3 −17.5 −0.0 0.076 0.042 0.008 6.8 (6.9) 7.3 (7.2) 8.7 (8.7,8.6) 3.1 24.6 95.4 95.0

NOTE: Percent bias and MSE were computed by averaging (β̂ − β)/β and (β − β̂)2 over 1000 simulations. Em-
pirical standard error (SE) is the square root of the empirical variance over all replicates. Coverage rate represents
the coverage of a 95% confidence interval. We used the sandwich variances for the ŜE’s and confidence intervals
of the naive and cut-off calibration methods. For the exact calibration method, we applied both the sandwich and
hessian matrix approaches for estimating the variances in the coverage rate and estimated standard error evalu-
ation, denoting by β̂(E) and β̂(E∗) in the “Coverage Rate” columns, respectively. In the SE × 100 (ŜE × 100)
section, the numbers in the brackets denote the average estimated standard error (ŜE) of β̂ over all replicates; for
the exact calibration method, the first and second number denote the ŜE by standard variance and pseudolikelihood
hessian matrix methods, respectively.

bias, and the ECM typically minimized the percent bias. For βx,2, the CCM typically halved
the percent bias of the naive estimates, but, for βx,3, its percent bias still exceeded −15%. The
CCM typically minimized the MSEs of β̂x,2, while MSEs of the ECM estimates were one or
two times larger than those of the CCM estimates; however, the ECM minimized the MSEs of
β̂x,3 in most simulation scenarios. The estimated standard errors by the naive method, CCM
and ECM were close to their corresponding empirical standard errors. For the coverage rates
of the ECM estimates, the sandwich variance and hessian matrix methods performed quite
similarly; both were close to 95% and significantly outperformed the naive method and the
CCM. For all the disease prevalences considered, the coverage rates of the CCM estimates
improved largely from the naive method estimates, especially for larger prevalences and effect
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TABLE 2
Comparison of operating characteristics under a RSCS design for the naive (β̂(N)), cut-off calibration (β̂(C))

and exact calibration (β̂(E)) methods

Disease
prevalence

Percent bias MSE SE × 100 (ŜE × 100) Coverage rate

βx,2 β̂
(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 (β̂(E)

x,2 ,β̂(E∗)
x,2 ) β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(E∗)
x,2

5% 1
2 log(1.2) −24.8 −18.8 −3.1 0.027 0.027 0.074 16.3 (16.5) 16.3 (16.2) 27.2 (27.7,27.5) 95.5 94.8 96.2 95.9
1
2 log(1.5) −21.6 −15.1 −4.2 0.031 0.027 0.086 17.0 (16.8) 16.1 (16.4) 29.3 (28.3,28.2) 94.0 95.7 94.9 94.8
1
2 log(2) −18.3 −13.3 −0.3 0.035 0.033 0.095 17.7 (17.1) 17.7 (16.8) 30.8 (29.4,29.2) 92.5 93.0 95.3 95.2
1
2 log(3) −18.6 −11.2 1.9 0.042 0.035 0.097 17.8 (17.6) 17.7 (17.2) 31.1 (31.0,30.8) 89.1 93.7 96.1 95.8

25% 1
2 log(1.2) −20.2 −14.7 1.9 0.007 0.007 0.018 8.0 (8.2) 8.2 (8.0) 13.4 (13.5,13.5) 94.5 94.3 94.9 94.8
1
2 log(1.5) −24.2 −16.1 0.6 0.010 0.007 0.017 8.5 (8.3) 7.9 (8.1) 13.2 (13.7,13.6) 90.6 94.1 95.7 95.5
1
2 log(2) −22.0 −15.5 0.6 0.013 0.010 0.021 8.4 (8.6) 8.5 (8.4) 14.5 (14.6,14.5) 84.4 88.4 94.5 94.4
1
2 log(3) −22.1 −15.5 −1.9 0.022 0.014 0.022 8.6 (8.4) 8.5 (8.4) 14.7 (14.5,14.5) 70.5 83.8 94.3 93.9

50% 1
2 log(1.2) −25.0 −16.0 1.8 0.005 0.005 0.014 7.0 (7.1) 6.9 (6.9) 11.6 (11.6,11.5) 94.2 94.4 94.9 94.7
1
2 log(1.5) −22.9 −16.0 3.1 0.007 0.005 0.012 6.8 (7.1) 6.5 (6.3) 11.1 (11.6,11.5) 91.7 93.1 95.3 95.3
1
2 log(2) −23.9 −17.3 −0.6 0.012 0.008 0.014 7.2 (7.1) 6.9 (6.9) 11.7 (11.6,11.5) 78.0 86.2 95.1 94.9
1
2 log(3) −24.6 −17.8 −0.4 0.023 0.014 0.013 7.0 (7.1) 6.8 (7.0) 11.3 (11.8,11.7) 54.2 71.5 95.4 95.2

Disease
prevalence

Percent bias MSE SE × 100 (ŜE × 100) Coverage rate

βx,3 β̂
(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 (β̂(E)

x,3 ,β̂(E∗)
x,3 ) β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(E∗)
x,3

5% log(1.2) −26.3 −18.5 −1.1 0.026 0.027 0.034 15.4 (15.6) 16.0 (16.4) 18.5 (19.0,19.0) 94.4 94.6 95.5 95.5
log(1.5) −23.1 −16.9 0.8 0.036 0.034 0.041 16.4 (15.7) 17.1 (16.5) 20.2 (19.2,19.2) 89.1 92.9 94.8 94.9
log(2) −24.2 −17.9 −0.5 0.055 0.044 0.041 16.4 (15.8) 17.0 (16.5) 20.3 (19.7,19.7) 77.8 87.3 94.8 94.6
log(3) −23.3 −16.8 1.2 0.092 0.063 0.045 16.2 (16.0) 17.1 (16.6) 21.2 (21.0,20.9) 61.9 78.2 95.5 95.4

25% log(1.2) −23.2 −17.3 −0.8 0.008 0.008 0.009 7.8 (7.8) 8.2 (8.2) 9.4 (9.5,9.4) 92.0 92.8 95.2 95.2
log(1.5) −23.9 −17.1 −0.4 0.016 0.012 0.010 8.0 (7.8) 8.4 (8.2) 9.9 (9.5,9.5) 76.1 86.5 94.3 94.3
log(2) −23.9 −17.1 −0.1 0.034 0.021 0.010 8.2 (7.9) 8.5 (8.3) 9.9 (9.7,9.7) 44.7 69.6 94.9 94.8
log(3) −24.4 −17.7 −0.4 0.078 0.045 0.010 8.2 (8.0) 8.4 (8.4) 10.2 (10.2,10.0) 9.4 36.3 94.1 94.0

50% log(1.2) −22.8 −15.7 0.5 0.006 0.006 0.007 6.8 (6.8) 7.2 (7.1) 8.3 (8.2,8.2) 90.4 92.6 94.0 94.0
log(1.5) −23.8 −17.3 −0.5 0.014 0.010 0.007 6.6 (6.8) 7.0 (6.8) 8.1 (8.2,8.2) 71.5 82.9 94.8 94.7
log(2) −24.1 −17.4 −0.5 0.033 0.020 0.007 6.8 (6.8) 7.2 (7.2) 8.2 (8.4,8.3) 31.5 60.6 96.1 95.8
log(3) −24.0 −17.3 0.1 0.074 0.041 0.007 6.9 (6.9) 7.2 (7.2) 8.6 (8.7,8.5) 3.1 25.0 94.8 94.4

NOTE: Percent bias and MSE were computed by averaging (β̂ − β)/β and (β − β̂)2 over 1000 simulations. Em-
pirical standard error (SE) is the square root of the empirical variance over all replicates. Coverage rate represents
the coverage of a 95% confidence interval. We used the sandwich variances for the ŜE’s and confidence intervals
of the naive and cut-off calibration methods. For the exact calibration method, we applied both the sandwich and
hessian matrix approaches for estimating the variances in the coverage rate and estimated standard error evalu-
ation, denoting by β̂(E) and β̂(E∗) in the “Coverage Rate” columns, respectively. In the SE × 100 (ŜE × 100)
section, the numbers in the brackets denote the average estimated standard error (ŜE) of β̂ over all replicates; for
the exact calibration method, the first and second number denote the ŜE by standard variance and pseudolikelihood
hessian matrix methods, respectively.

sizes, but were still typically less than 90%, except in the scenarios with small ORs (< 1.5).
The simulation results under RSCS were similar (Table 2).

Next, although Xjk was generated based on Wjk , when fitting model (2.3), we assumed
Xjk = α0j + εxjk

(j = 1, . . . ,5); that is, W jk was not in the analysis. As presented in Ta-
ble 3, the results were comparable to those in Table 1, but the MSEs of the CCM and ECM
were larger than those in Table 1. These results indicated that incorporating additional vari-
ables associated with Xjk into the model for Xjk could improve the precisions of the OR
estimators.

We implemented several additional simulation experiments under the COCS design; the
results are summarized as below: (I) When percentage of subjects involved in the calibration
study increased (Supplementary Material Tables S1 (Cheng and Wang (2020))), the percent
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TABLE 3
Comparison of operating characteristics under a COCS design for naive (β̂(N)), cut-off calibration (β̂(C)) and

exact calibration (β̂(E)) methods, where the model for Xjk was assumed as Xjk = α0j + εxjk , j = 1, . . . ,5

Disease
prevalence

Percent bias MSE SE × 100 (ŜE × 100) Coverage rate

βx,2 β̂
(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 (β̂(E)

x,2 ,β̂(E∗)
x,2 ) β̂

(N)
x,2 β̂

(C)
x,2 β̂

(E)
x,2 β̂

(E∗)
x,2

5% 1
2 log(1.2) −29.3 −2.2 4.6 0.029 0.025 0.100 16.8 (16.5) 15.9 (16.1) 31.6 (32.0,31.3) 93.8 95.5 96.2 96.2
1
2 log(1.5) −28.9 −14.2 −8.6 0.032 0.029 0.105 17.0 (16.8) 16.8 (16.4) 32.4 (33.0,32.1) 93.4 93.7 96.7 96.7
1
2 log(2) −22.4 −10.9 1.8 0.036 0.032 0.119 17.4 (17.1) 17.4 (16.8) 34.4 (35.2,33.3) 92.6 93.7 96.1 96.0
1
2 log(3) −23.3 −12.9 0.1 0.050 0.038 0.134 18.2 (17.6) 18.2 (17.4) 36.6 (36.9,35.7) 87.8 92.0 96.3 96.2

25% 1
2 log(1.2) −36.7 −5.7 −0.9 0.008 0.007 0.023 8.3 (8.2) 8.1 (8.0) 15.0 (15.7,15.1) 92.1 95.9 96.5 96.5
1
2 log(1.5) −27.6 −12.0 4.3 0.010 0.007 0.022 8.3 (8.3) 8.0 (8.1) 15.0 (16.1,15.3) 90.0 93.5 96.3 96.2
1
2 log(2) −26.7 −14.8 −1.5 0.015 0.009 0.024 8.2 (8.4) 8.3 (8.2) 15.5 (16.6,15.7) 81.7 90.0 95.4 95.4
1
2 log(3) −23.3 −13.9 1.6 0.023 0.013 0.025 8.3 (8.6) 8.2 (8.4) 15.8 (17.7,16.3) 69.5 85.8 95.9 95.9

50% 1
2 log(1.2) −40.9 3.4 7.6 0.006 0.005 0.016 7.1 (7.1) 6.7 (6.9) 12.5 (13.9,12.7) 92.6 96.2 96.4 96.4
1
2 log(1.5) −30.9 −9.9 1.7 0.009 0.005 0.016 7.3 (7.1) 7.0 (6.9) 12.6 (13.9,12.7) 85.9 93.5 95.4 95.4
1
2 log(2) −27.7 −13.9 0.3 0.014 0.007 0.015 7.1 (7.1) 6.8 (6.9) 12.2 (14.4,12.7) 70.9 89.5 96.0 96.0
1
2 log(3) −26.4 −16.1 0.9 0.026 0.013 0.017 7.4 (7.1) 7.0 (7.0) 12.9 (14.0,12.8) 47.6 75.7 94.4 94.4

Disease
prevalence

Percent bias MSE SE × 100 (ŜE × 100) Coverage rate

βx,3 β̂
(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 (β̂(E)

x,3 ,β̂(E∗)
x,3 ) β̂

(N)
x,3 β̂

(C)
x,3 β̂

(E)
x,3 β̂

(E∗)
x,3

5% log(1.2) −23.8 −21.0 0.8 0.027 0.031 0.043 15.9 (15.6) 17.3 (16.6) 20.9 (20.1,20.0) 93.5 92.6 94.0 94.1
log(1.5) −24.9 −21.0 −0.9 0.034 0.034 0.040 15.4 (15.6) 16.5 (16.6) 19.9 (20.4,20.1) 90.2 92.2 95.5 95.4
log(2) −22.8 −17.9 2.8 0.051 0.046 0.048 16.2 (15.7) 17.4 (16.7) 21.8 (21.9,20.8) 82.2 87.0 94.3 94.2
log(3) −25.3 −20.7 0.7 0.104 0.082 0.055 16.3 (16.0) 17.5 (17.0) 23.4 (23.7,22.6) 58.7 70.5 95.2 95.3

25% log(1.2) −25.6 −21.1 −2.6 0.009 0.009 0.010 8.0 (7.8) 8.5 (8.3) 10.2 (9.9,9.9) 89.1 91.0 95.2 95.2
log(1.5) −23.8 −19.4 0.5 0.015 0.013 0.010 7.8 (7.8) 8.3 (8.3) 10.2 (10.2,9.9) 77.4 84.1 94.4 94.3
log(2) −24.0 −19.8 0.3 0.034 0.026 0.012 7.8 (7.9) 8.4 (8.4) 10.8 (10.8,10.1) 43.2 62.1 93.7 93.7
log(3) −24.2 −19.9 0.8 0.077 0.055 0.014 7.8 (7.9) 8.4 (8.4) 11.8 (10.8,10.1) 9.6 27.0 92.8 92.8

50% log(1.2) −22.4 −18.2 1.6 0.006 0.006 0.007 6.9 (6.8) 7.2 (7.2) 8.6 (8.6,8.5) 90.3 92.8 94.5 94.5
log(1.5) −24.1 −19.9 −0.9 0.014 0.012 0.007 6.7 (6.8) 7.3 (7.2) 8.7 (8.9,8.5) 70.6 79.5 94.9 94.9
log(2) −23.0 −18.7 1.0 0.030 0.022 0.009 6.8 (6.8) 7.2 (7.2) 9.2 (9.3,8.6) 35.1 56.1 93.3 93.3
log(3) −24.1 −19.8 0.3 0.075 0.053 0.010 6.7 (6.9) 7.3 (7.3) 10.2 (10.6,8.9) 3.2 15.2 91.4 91.4

NOTE: Percent bias and MSE were computed by averaging (β̂ − β)/β and (β − β̂)2 over 1000 simulations. Em-
pirical standard error (SE) is the square root of the empirical variance over all replicates. Coverage rate represents
the coverage of a 95% confidence interval. We used the sandwich variances for the ŜE’s and confidence intervals
of the naive and cut-off calibration methods. For the exact calibration method, we applied both the sandwich and
hessian matrix approaches for estimating the variances in the coverage rate and estimated standard error evalu-
ation, denoting by β̂(E) and β̂(E∗) in the “Coverage Rate” columns, respectively. In the SE × 100 (ŜE × 100)
section, the numbers in the brackets denote the average estimated standard error (ŜE) of β̂ over all replicates; for
the exact calibration method, the first and second number denote the ŜE by standard variance and pseudolikelihood
hessian matrix methods, respectively.

bias and coverage rates of the naive estimates were worse, those of the CCM improved and
the improvement in the ECM was less noticable than the CCM. (II) When σ 2

x decreased (Sup-
plementary Material Table S2 (Cheng and Wang (2020))), the percent bias and coverage rate
of the CCM improved and those of the ECM did not change much. (III) As measurement er-
rors in all laboratories (i.e., for all σ 2

d ’s) decreased (Supplementary Material Table S3 (Cheng
and Wang (2020))), all methods improved in terms of percent biases and MSEs. Moreover,
the coverage rates of the CCM improved dramatically as the measurement errors decreased,
indicating that the CCM can be regarded as appropriate methods for small measurement er-
rors. (IV) In model (3.1) we introduced covariate Z = W with βz = 1, which indicated that
W is not only associated with X but also associated with Y directly. The simulation result
(Supplementary Material Table S4 (Cheng and Wang (2020))) showed that the percent bi-
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ases from the naive method were typically larger, and, for the CCM, the impacts varied with
βx,2 and βx,3. The result from the ECM was only slightly affected by this change which still
provided excellent point and interval estimates. (V) In the above simulation scenarios we as-
sumed α0j ∼ N(6,0.05) (j = 1, . . . ,M), where α0j among all the studies were quite similar.
In this simulation study we considered the situations where α0j were quite different from
each other. Specifically, we set α0j = 2j for j = 1, . . . ,5. As shown in the Supplementary
Material Table S5 (Cheng and Wang (2020)), the performance of the methods were similar
to the scenarios where α0j ’s were similar. (VI) We applied the Full Calibration method in
Sloan et al. (2019). Specifically, we fitted Hjk,0 = ηj + γjHjk,j + ε̃j (j = 1, . . . ,M) for
the calibration subset in each study using the ordinary least square method and obtained the
estimated reference lab value, Ĥjk,0, for all individuals. Next, we fitted the logistic regres-
sion model (2.1) by substituting Xjk with Ĥjk,0 and denote the corresponding estimates as

β̂
(F )

x . The variance of β̂
(F )

x was estimated using a sandwich variance method. As presented
in Supplementary Material Table S6 (Cheng and Wang (2020)), this method could reduce the
percent bias and improve the coverage rate in comparison with the naive method but still per-
formed worse than the CCM and ECM. (VII) The ECM showed good robustness in presence
of negative variances in term of the percent bias (see Supplementary Material Appendix E
and Tables S7–S9 (Cheng and Wang (2020))); however, we need to apply the hessian matrix
method on estimation of the confidence intervals of βx since sandwich method could sig-
nificantly overestimate the standard error of βx . (VIII) The ECM with the pseudolikelihood
hessian matrix variance and CCM showed robustness with regard to relatively small sample
sizes in both the contributed studies and the calibration subsets, regardless of whether the
negative variance happens or not. We consider 100, 200 or 500 sample size in each contribut-
ing study and 10% included in the calibration subset. In the absence of negative variance,
95% coverage rates based on the pseudolikelihood method ranged from 94.6% to 96.9%, and
those based on the sandwich method ranged from 95.1% to 98.1% (Supplementary Material
Table S10A (Cheng and Wang (2020))). In the presence of negative variance (Supplementary
Material Table S10B (Cheng and Wang (2020))), the pseudolikelihood method also presented
satisfactory results, with coverage rates ranged from 93.9% to 96.6%.

To summarize, in consideration of the percent bias and confidence interval, the ECM had
significant advantages over the CCM and naive method. Besides, for rare disease prevalence
and small effect size, the CCM could be an alternative method due to its relative accurate con-
fidence interval coverage rate, easy implementation and acceptable percent bias. In contrast,
the naive method was undesirable because it was heavily biased in most simulation scenarios.

3.2. When X does not follow a normal distribution. In the simulation study in Sec-
tion 3.1, we assumed εxjk

follows a normal distribution. In this section we compare the
three methods when Xjk (and thus H jk) does not follow a normal distribution. Specifi-
cally, we considered two specific distributions for εxjk

: (1) Uniform distribution; (2) Skew
Normal distribution (Fernández and Steel (1998)). We first generated Xjk assuming Xjk =
α0j + τWjk + εxjk

, where εxjk
followed either an uniform or a skew normal distribution, with

all the parameters adjusted to satisfying mean 0 and variance 3. For the skew normal distri-
bution, we set the skew parameter γ = 10 which makes the moment coefficient of skewness
approximates 1, and α0j , τ and Wjk are the same as those in Section 3.1. We generate Hjk,d

based on Hjk,d ∼ N(Xjk, σ
2
d ), j = 0,1, . . . ,5. All the other parameters are also same as

those in Section 3.1.
Table S11 in the Supplementary Material (Cheng and Wang (2020)) showed the simulation

results. The results were similar to the scenarios when εxjk
followed a normal distribution; the

ECM outperformed the other two methods in the aspects of percent bias and coverage rate,
and the CCM achieved relatively small percent bias under rare disease prevalences and small
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effect sizes. In Section 5 we will provide a theoretical adjustment of the proposed methods
for the scenarios when X does not follow a normal distribution.

4. Applied example. As an illustrative example, we applied our methods to investi-
gate the association between circulating vitamin D (25(OH)D) and risk of colorectal cancer.
Specifically, our example is based on the Nurses’ Health Study (NHS) (Colditz, Manson and
Hankinson (1997)) and Health Professionals Follow-up Study (HPFS) (Choi et al. (2005)),
two large cohort studies in the United States. The NHS enrolled 121,701 female nurses, aged
30 to 55 in 1976. The HPFS was established in 1986 with the enrollment of 51,529 male
health professionals, aged 40 to 75 years in 1986. From 1989 to 1995, both studies selected
a subset of participants, obtained their blood samples and then completed assays for a host
of biomarkers which included 25(OH)D. Individuals who did not have colorectal cancer out-
come or 25(OH)D measurement available were excluded from the pooling analysis. A total of
1876 subjects constituted our pooling analysis (Table 4) which was extracted from the studies
above with a nested case-control design (one to two matching). For illustrative purpose we
used the unconditional logistic regression, adjusting for the matching factors by including
them in the regression model, to evaluate the biomarker-disease association. A COCS design
was implemented by randomly select 29 controls in each study and reassaying their blood
samples at Heartland Assays, LLC (Ames, IA). We will refer these laboratory measurements
as reference laboratory measurements.

The cut-off points (<30, [30,50), [50,75), ≥75 nmol/L) used for 25(OH)D were the
IOM Standard (Gail et al. (2016)). The covariates in model (2.3) for 25(OH)D included
week of the year at blood draw (1–52), age of blood draw (ranged 43–82), physical ac-
tivity (continuous), smoking (ever/never) and BMI (greater or less than 25 kg/m2). Be-
cause 25(OH)D is influenced by seasonal variation, we also included a periodic function
τ1 sin(2πt/52) + τ2 cos(2πt/52) + τ3 sin(4πt/52) + τ4 cos(4πt/52) in model (2.3), where t

denotes week of the year at blood draw, to fit the seasonal trend (Gail et al. (2016)). Since the
association of the covariates above with 25(OH)D may change over gender, we fitted model
(2.3) separately for NHS and HPFS. For comparison, we considered two other models for
25(OH)D. The first model included study-specific intercepts, seasonal trend and physical ac-
tivity; the second model included the study-specific intercepts only. We name them Model I,
II, III for the original and two additional models, respectively.

The point estimates with standard errors for the regression coefficients in Model I, II, III are
shown in Table 5. We applied constraints σ 2

x ≥ 0, σ 2
0 ≥ 0, σ 2

1 ≥ 0 and σ 2
2 ≥ 0 to ensure pos-

itive variances. In an analysis (not showing here), without these constraints the estimates σ̂ 2
2

were negative. Finally, we applied the naive method, CCM and ECM to the pooling dataset,
adjusting for age when the case control status was determined, physical activity total (contin-
uous), family history of colorectal cancer (yes/no), smoking (ever/never), BMI (greater or less

TABLE 4
Descriptive characteristics of NHS and HPFS cohorts

Study
Cases/controls Median 25(OH)D Median age at blood

(disease prevalence) nmol/L (10–90%) draw, years (10–90%)

NHS 348/694 (34.0%) 59 (36,85) 60 (49,67)
HPFS 267/519 (33.4%) 70 (45,100) 68 (53,75)

Total 615/1213 (33.6%) 64 (40,93) 62 (50,73)

NOTE: Quantiles of 25(OH)D levels were obtained from the distribution of
local laboratory measurements.
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TABLE 5
Parameter estimates for model (2.3) in the calibration step based on the NHS and HPFS

Models Study (intercept) sin 2π
52 cos 2π

52 sin 4π
52 cos 4π

52 Physical Age (blood) Smoke BMI

Model I NHS 52.083* −5.367* −1.765 −0.407 −0.517 0.126* 0.163 −0.078* −4.279*
(5.757) (0.964) (1.038) (0.904) (1.060) (0.032) (0.101) (0.033) (1.399)

HPFS 72.296* −7.498* −6.774* 1.338 0.466 −0.049* 0.088 −0.023 −4.327*
(6.571) (1.076) (1.133) (1.089) (1.072) (0.022) (0.094) (0.043) (1.506)

Model II NHS 58.278* −5.237* −1.596 −0.569 −0.513 0.150*
(0.923) (0.957) (1.042) (0.915) (1.068) (0.031)

HPFS 65.788* −7.395* −6.816* 1.338 0.365 0.096*
(1.141) (1.072) (1.150) (1.095) (1.063) (0.022)

Model III NHS 60.860*
(0.702)

HPFS 71.871*
(0.786)

NOTE: 1 The variance estimates of Model I are σ̂ 2
x = 447.387, σ̂ 2

0 = 436.220, σ̂ 2
1 = 35.342, σ̂ 2

2 < 0.001.

2 The variance estimates of Model II are σ̂ 2
x = 453.336, σ̂ 2

0 = 452.976, σ̂ 2
1 = 37.204, σ̂ 2

2 < 0.001.

3 The variance estimates of Model III are σ̂ 2
x = 507.491, σ̂ 2

0 = 401.664, σ̂ 2
1 = 8.186, σ̂ 2

2 < 0.001.

than 25 kg/m2). Because using sandwich variance in the ECM could widen the confidence
interval when negative variance exists (see Supplementary Material Appendix E and Tables
S7–S9 (Cheng and Wang (2020))), we used the pseudolikelihood hessian matrix method to
obtain the estimated variance of β̂x . The results are displayed in Table 6. In Table 6 we also
provide the OR estimates: (i) based on the NHS and HPFS separately, where the local lab-
oratory measurements were treated as gold standard and the potential confounders that had
been adjusted were identical with those in pooled analyses, and (ii) using the CCM method
without applying the nonnegative constraint (denoted by CCM*). The OR estimates from the
pooled analyses provided narrower confidence interval due to larger sample size. All analytic
approaches, except the HPFS-specific analyses, demonstrated that increasing 25(OH)D levels
tended to have a protective effect against colorectal cancer.

5. Adjustment of methods when X does not follow a normal distribution. The nor-
mality is assumed in our analytical framework. Both the measurement errors of the local and
reference laboratories and the error term in the biomarker-covariates regression are assumed
to be normally distributed. The normality of measurement errors is typically a reasonable as-
sumption. However, the biomarker data, Xjk , may be skewed and need transformation before
performing the biomarker-covariates regression (Mitchell et al. (2014)). Under transforma-
tion, the biomarker-covariates regression (2.3) becomes

(5.1) T (Xjk) = μXjk |W jk
+ εxjk

,

where T (·) is a given transformation function satisfying regularity conditions and εxjk
∼

N(0, σ 2
x ). If the measurement error, εjk,d , is small, the transformed measurement, T (Hjk,d),

can be approximated by

T (Hjk,d) ≈ μXjk |W jk
+ εxjk

+ S(μXjk |W jk
)εjk,d ,(5.2)

where, S(·) denotes T ′T −1(·) and T ′(·) is the first derivative with respect to the function
T (.); see Supplementary Material Appendix F (Cheng and Wang (2020)) for more details
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TABLE 6
OR-estimates and 95% confidence interval for the circulating 25(OH)D–colorectal cancer relationship, based on

the NHS and HPFS, adjusting for age when the case control status was determined, physical activity total
(continuous), family history of colorectal cancer (yes/no), smoking (ever/never),

BMI (greater or less than 25 kg/m2)

Single study (naive analysis) Pooled analysis

Models ORs NHS HPFS Naive CCM CCM* ECM

Model I exp(βx,2) 0.881 (0.478,1.626) 1.114 (0.268,4.632) 0.881 (0.505,1.537) 0.857 (0.475,1.547) 0.875 (0.630,1.214) 0.771 (0.372,1.598)
exp(βx,3) 0.623 (0.343,1.131) 1.272 (0.318,5.087) 0.732 (0.427,1.255) 0.723 (0.408,1.280) 0.734 (0.538,1.002) 0.664 (0.344,1.284)
exp(βx,4) 0.615 (0.327,1.157) 0.945 (0.234,3.809) 0.629 (0.361,1.098) 0.613 (0.340,1.106) 0.678 (0.497,0.926) 0.537 (0.273,1.059)

Model II exp(βx,2) 0.881 (0.478,1.626) 1.114 (0.268,4.632) 0.881 (0.505,1.537) 0.858 (0.476,1.549) 0.919 (0.664,1.273) 0.771 (0.369,1.612)
exp(βx,3) 0.623 (0.343,1.131) 1.272 (0.318,5.087) 0.732 (0.427,1.255) 0.722 (0.408,1.279) 0.757 (0.557,1.029) 0.664 (0.341,1.291)
exp(βx,4) 0.615 (0.327,1.157) 0.945 (0.234,3.809) 0.629 (0.361,1.098) 0.615 (0.341,1.109) 0.681 (0.501,0.925) 0.537 (0.271,1.065)

Model III exp(βx,2) 0.881 (0.478,1.626) 1.114 (0.268,4.632) 0.881 (0.505,1.537) 0.917 (0.524,1.607) 0.875 (0.627,1.222) 0.821 (0.446,1.511)
exp(βx,3) 0.623 (0.343,1.131) 1.272 (0.318,5.087) 0.732 (0.427,1.255) 0.763 (0.444,1.313) 0.748 (0.558,1.018) 0.690 (0.389,1.225)
exp(βx,4) 0.615 (0.327,1.157) 0.945 (0.234,3.809) 0.629 (0.361,1.098) 0.651 (0.371,1.140) 0.642 (0.469,0.878) 0.579 (0.320,1.046)

NOTE: Model I, II and III here correspond to Table 5. The “Single Study (Naive analysis)” columns denote the
results for naive logistic model based on the NHS and HPFS separately. For the pooling analysis, the “Naive”,
“CCM”, “CCM*” and “ECM” represent the naive approach, cut-off calibration method with a nonnegative con-
straint, cut-off calibration method without a non-negative constraint and exact calibration method, respectively.

about this approximation. To ease notations, T (Hjk,d) and T (Xjk) are abbreviated as H̃jk,d

and X̃jk , henceforth. Based on models (5.1) and (5.2), (X̃jk|W jk, H̃jk,0|W jk, H̃jk,j |W jk)
T

approximately follows the multivariate normal distribution below:⎛⎜⎝ X̃jk|W jk

H̃jk,0|W jk

H̃jk,j |W jk

⎞⎟⎠ ∼̇MVN

⎛⎜⎝
⎛⎜⎝μXjk |W jk

μXjk |W jk

μXjk |W jk

⎞⎟⎠ ,

⎛⎜⎝σ 2
x σ 2

x σ 2
x

. σ 2
x + φxjk

σ 2
0 σ 2

x

. . σ 2
x + φxjk

σ 2
j

⎞⎟⎠
⎞⎟⎠ ,

where φxjk
= S2(μXjk |W jk

). Now, for individuals who only have local laboratory measure-
ments,

(5.3) X̃jk|H jk,W jk∼̇N
(
ρ̃j H̃jk,j + (1 − ρ̃j )μXjk |W jk

, ρ̃jφxjk
σ 2

j

)
,

where ρ̃j = σ 2
x

σ 2
x +φxjk

σ 2
j

, and for individuals in the calibration subset

(5.4) X̃jk|H jk,W jk∼̇N
(
ρ̃∗

j

(
wjH̃jk,j + (1−wj)H̃jk,0

)+ (
1− ρ̃∗

j

)
μXjk |W jk

, ρ̃∗
j wjφxjk

σ 2
j

)
,

where ρ̃∗
j = σ 2

x /(σ 2
x + φxjk

σ 2
j wj ). Hereafter, the mean and standard deviation of X̃jk|

(H jk,W jk) are denoted as μ̃jk and s̃jk . Given μ̃jk and s̃jk , pjk,l , in the likelihood con-
tribution Ljk can be expressed as

(5.5)

pjk,l = P(gl−1 ≤ Xjk < gl|H jk,W jk)

= P
(
T (gl−1) ≤ X̃jk < T (gl)|H jk,W jk

)
= 	

(
T (gl) − μ̃jk

s̃jk

)
− 	

(
T (gl−1) − μ̃jk

s̃jk

)
.

If we have an estimator of μ̃jk and s̃jk , we can apply the ECM and CCM in Sections 2.4
and 2.5, respectively, to obtain β̂ and var(β̂). Next, we discuss how to estimate θ and σ 2

which, as defined in Section 2.4, are unknown parameters in μ̃jk and s̃jk .
Combining (5.1) and (5.2), we have

(5.6) H̃jk,d = μXjk |W jk
+ δ̃xjk,d ,
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where δ̃xjk,d ∼ N(0, σ 2
x + φxjk

σ 2
d ). Its first- and second-order estimating equations now be-

come

(5.7)

�θ =
M∑

j=1

nj∑
k=1

d

dθ

[
μ(W jk;α0j ,τ )

μ(W jk;α0j ,τ )

]T
[
σ 2

x + φxjk
σ 2

0 σ 2
x

σ 2
x σ 2

x + φxjk
σ 2

j

]−1 [
ejk,0
ejk,j

]

+
M∑

j=1

Nj∑
k=nj+1

dμ(W jk;α0j ,τ )

dθ

(
σ 2

x + φxjk
σ 2

j

)−1
ejk,j = 0,

�σ 2 =
M∑

j=1

nj∑
k=1

d

dσ 2

⎡⎢⎣σ 2
x + φxjk

σ 2
0

σ 2
x

σ 2
x + φxjk

σ 2
j

⎤⎥⎦
T ⎡⎢⎣e2

jk,0 − (
σ 2

x + φxjk
σ 2

0
)

ejk,0ejk,j − σ 2
x

e2
jk,j − (

σ 2
x + φxjk

σ 2
j

)
⎤⎥⎦

+
M∑

j=1

Nj∑
k=nj+1

d(σ 2
x + φxjk

σ 2
j )

dσ 2

(
e2
jk,j − (

σ 2
x + φxjk

σ 2
j

)) = 0.

We propose a three-step iteration method to estimate θ and σ 2. The three steps in the mth
iteration are:

• First step: Calculate φ̂
(m)
xjk by replacing the unknown θ in S2(μXjk |W jk

) by θ̂
(m)

.

• Second step: Fix σ 2 = σ̂ 2(m) and φxjk
= φ̂

(m)
xjk , and obtain θ̂

(m+1)
by solving �θ = 0.

• Third step: Fix θ = θ̂
(m+1)

and φxjk
= φ̂

(m)
xjk , and obtain σ̂ 2(m+1) by solving �σ 2 = 0.

The initial value σ̂ 2(0) and convergence criteria can be the same as those in Section 2.4,

whereas the initial value θ̂
(0)

can be set as the Ordinary Least Square estimate of the re-
gression (5.6). The iteration continues until convergence to obtain the final θ̂ and σ̂ 2. The
estimates ˆ̃μjk and ˆ̃sjk can be obtained by plugging θ̂ and σ̂ 2 into distribution (5.3) or (5.4).

With ˆ̃μjk and ˆ̃sjk , we can obtain p̂jk,l according to (5.5), and utilize the ECM in Section 2.5

and CCM in Section 2.6 (with X̂jk = ˆ̃μjk in likelihood (2.13)) to obtain β̂ and its standard
error.

We evaluated the performance of this method in the following simulation study. We as-
sumed a natural logarithm transformation function, that is, T (·) = log(·). We first gener-
ated log(Xjk) according to log(Xjk) = α0j + εxjk

, with α0j ∼ N(4.5,0.12), σ 2
x = 0.01,

and j = 1,2 . . . ,5. Then, Hjk,d was generated from N(Xjk, σ
2
d ) with σ 2

d ∼ Unif(25,75),

j = 0, . . . ,5, which resulted in ICC, defined as var(Xjk)

var(Xjk)+σ 2
d

for laboratory d , ranging from

77% to 91%. All the other simulation parameters and procedures were identical with those
in Section 3.1—shown in Table S12A are the simulation results. Similar to the simulation re-
sults in Section 3, the ECM outperformed the naive method and CCM in terms of percent bias
and coverage rate, and the CCM produced satisfactory point and interval estimates under rare
disease prevalences and small effect sizes. In addition, we applied the regular ECM and CCM
that do not adjust for the nonnormality of X to the generated data sets used in Supplemen-
tary Material S12A (Cheng and Wang (2020)). The results are presented in Supplementary
Material Table S12B (Cheng and Wang (2020)). Comparing to the results in Table S12A,
the present bias by the original ECM and CCM was typically larger (especially for β̂x,2) and
the coverage rate also dropped more dramatically when disease prevalence or OR increased,
indicating that addressing the nonnormality can improve the point and interval estimates.
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6. Discussion. In this paper we proposed and evaluated two data analysis methods,
the CCM and ECM, for pooling biomarker data under the COCS and RSCS designs. We
focus on the population-averaged association of the underlying true biomarker categories
with disease outcome, based on the logistic regression with fixed effects. In order to es-
timate this association for true biomarker levels, calibration studies are required for each
lab/study and the between-lab/study variation is taken into account by allowing lab/study-
specific measurement error distributions. R functions for the proposed methods are available
at https://www.hsph.harvard.edu/molin-wang/software.

Different from previous researches, we do not treat the reference laboratory or any local
laboratory as the gold standard. Several practical recommendations and conclusions follow
from our work. First, both of the CCM and ECM yield less biased point estimates and more
accurate coverage rates of confidence intervals than unadjusted analysis (i.e., naive method).
Second, under both the COCS and RSCS designs, the ECM provides significantly less biased
estimates and more accurate confidence intervals than the CCM since it maximally utilizes
available information, but it tends to present larger variance than the CCM. Third, the CCM
can yield satisfactory estimates under small measurement errors and/or small exposure ef-
fects, but simulation study shows the CCM performs increasingly poorly as exposure effects
increase. Fourth, generally, the parameter estimates are asymptotically biased under a COCS
design, but the bias is minimal if the exposure effects and/or the disease prevalence are small.

The proposed methods are mainly for epidemiological researches that study disease eti-
ology. In these researches, measurement error-caused bias could lead to misleading sci-
entific conclusions, and, thus, it is crucial to obtain valid point and interval estimates
that take into account measurement errors. In clinical applications it could be of interest
to learn the relationship between the biomarker measurement from the reference or lo-
cal laboratory and the disease outcome (i.e., H–Y association). In this case, under clas-
sical additive measurement error model (2.2), the odds ratio with respect to one unit in-
crease in the biomarker measurement from study j and laboratory d , denoted as Hj,d ,

can be estimated as ÔRHj,d
(h) = [∑G

l=2 �̂j,k(h+1,l)]/[1−∑G
l=2 �̂j,k(h+1,l)]

[∑G
l=2 �̂j,k(h,l)]/[1−∑G

l=2 �̂j,k(h,l)] , where �̂j,k(h, l) =
exp{β̂0j+β̂x,l+β̂

T

z Zjk}
1+exp(β̂0j+β̂x,l+β̂

T

z Zjk)
P̂ (gl−1 ≤ X < gl|Hj,d = h,W jk), [β̂0j , β̂

T

x , β̂
T

z ]T are the estimated

parameters in logistic regression (2.1) by ECM or CCM (β̂x,1 is fixed as 0), and P̂ (gl−1 ≤
X < gl|Hj,d = h,W jk) is derived in (2.11). If the disease prevalence is low, ÔRHj,d

(h) can

be approximated by
∑G

l=2 exp(β̂x,l )P̂ (gl−1≤X<gl |Hj,d=h+1,W jk)∑G
l=2 exp(β̂x,l )P̂ (gl−1≤X<gl |Hj,d=h,W jk)

. See Supplementary Material Ap-

pendix G (Cheng and Wang (2020)) for details, including the variance estimate of ÔRHj,d
(h).

While our simulation study showed satisfactory performance of the ECM and CCM under
small calibration studies (e.g., calibration study sizes 10 and 20 in Supplementary Material
Table S10A) (Cheng and Wang (2020)), the size of the calibration subset leading to satisfac-
tory estimates of the biomarker-disease association depends on a series of factors, including
variance of the true biomarker data, variance of the measurement error, disease prevalence
and magnitude of the exposure effect. With the exposure effect decreasing or disease preva-
lence increasing, smaller calibration study may be sufficient to provide good performance.
Similarly, if the variance of the measurement error is smaller, less subjects in the calibration
study subset may be sufficient.

We need to notice that the CCM and naive method can perform quite close when measure-
ment errors are significantly smaller than the errors in the biomarker-covariates regression
(i.e., σ 2

d � σ 2
x for all laboratories). The CCM would fully present its superiority over the

naive method when the measurement errors are relatively larger than or on the same level
with the errors in the biomarker-covariates regression.

https://www.hsph.harvard.edu/molin-wang/software
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This paper focuses on the classical additive measurement error model where the local and
reference laboratory measurements are the summation of underlying true value and random
errors (e.g., Ganguli, Staudenmayer and Wand (2005), Hu and Ridder (2012), Liang et al.
(2008), Wang, Carroll and Liang (1996)). In practice, there might be laboratory-specific bias
in the local laboratory measurements. In this case one may assume Hjk,d = ξd + Xjk +
εjk,d , where ξd (d = 0, . . .,M) is a fixed laboratory-specific bias term with ξ0 = 0. It is
straightforward to extend our approaches to allow for this extra bias term. Specifically, we
can replace all μ(W jk;α0j ,τ ) in estimating equations (2.9) with ξd + μ(W jk;α0j ,τ ) to
obtain the calibration parameter estimators θ which includes ξd ’s now. Also, in formula (2.7)
and (2.8) for calculating the conditional distribution Xjk|Hjk,W jk , we will need to replace
all Hjk,d with Hjk,d − ξd . Finally, applying this new conditional distribution in Sections 2.5
and 2.6 will lead to the new ECM and CCM estimators, respectively.

To summarize, under both the RSCS and COCS designs, the ECM provides smallest per-
cent bias and most accurate confidence interval but relatively larger MSEs. Specifically, the
ECM presents significant advantages over others for larger measurement errors and stronger
biomarker-disease relationships. Besides, the CCM may be used under rare disease preva-
lences and small effect sizes. These observations could help researchers in selecting appro-
priate analyses to fulfill their goals.
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