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Amid historically low response rates, survey researchers seek ways to
reduce respondent burden while measuring desired concepts with precision.
We propose to ask fewer questions of respondents and impute missing re-
sponses via probabilistic matrix factorization. A variance-minimizing active
learning criterion chooses the most informative questions per respondent. In
simulations of our matrix sampling procedure on real-world surveys as well
as a Facebook survey experiment, we find active question selection achieves
efficiency gains over baselines. The reduction in imputation error is hetero-
geneous across questions and depends on the latent concepts they capture.
Modeling responses with the ordered logit likelihood improves imputations
and yields an adaptive question order. We find for the Facebook survey that
potential biases from order effects are likely to be small. With our method,
survey researchers obtain principled suggestions of questions to retain and, if
desired, can automate the design of shorter instruments.

1. Introduction.

1.1. Reducing response burden in surveys. Modern surveys suffer from declining re-
sponse rates which inflate administration costs and cast doubt on the validity of inferences.
Research has long suspected that survey length plays a role. An inverse association between
length and response rate appears in several meta-analyses of mail surveys (Edwards et al.
(2002), Heberlein and Baumgartner (1978), Yammarino, Skinner and Childers (1991)). An
experiment evaluating redesigns of the U.S. Census found that shortening the questionnaire
increased response rate (Dillman, Sinclair and Clark (1993)). Another experiment showed
a sizable negative effect of completion in relation to length in web surveys (Marcus et al.
(2007)). There is disagreement about the direction and size of effect (Munger and Loyd
(1988), Sheehan (2001)), although variation in reported effect sizes may be due to the dispar-
ity of survey modes and measures of length (Fan and Yan (2010)).

In addition to nonresponse, a longer instrument may be more susceptible to measurement
error. Respondents may avoid the cognitive burden of surveys by taking mental shortcuts,
such as selecting “don’t know” or arbitrary responses, a behavior called satisficing (Krosnick
(1991)). Satisficing in the form of straight-line responding—giving identical answers to con-
secutive items—occurs more frequently on a long instrument than a short one (Herzog and
Bachman (1981)). There is also evidence that both interviewers and interviewees deliberately
shortcut interviews to reduce cognitive burden, such as answering initial questions negatively
in order to avoid follow-up questions (Tourangeau, Kreuter and Eckman (2015)).

To combat these issues, survey practitioners have suggested reducing respondent burden
by asking fewer questions (Kreuter (2013)). This idea arose in an earlier era of survey re-
search, when norms shifted from in-person to phone surveys; it became easier for contacts
to prematurely end a survey by hanging up. Researchers adapted by administering shorter
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phone surveys (Groves (2011)). Assigning a subset of questions to each respondent, otherwise
known as matrix sampling, may increase response rate and reduce the bias of nonresponse
(Munger and Loyd (1988)). Matrix sampling for the Consumer Expenditure Interview Survey
adaptively assigns respondents to subquestionnaires to achieve minimum-variance estimates
across expenditure types (Gonzalez and Eltinge (2008)). Early, Mankoff and Fienberg (2017)
propose to choose questions sequentially in order to maximize the gain of information insofar
as gain is traded off with dropout probability.

1.2. The case for imputation. These matrix sampling procedures create missingness in
the response matrix which consists of the responses to all potential questions. Estimating
marginal quantities, such as per-question population averages, is possible with the existing
responses and optional weighting adjustment. However, in order to use complete-data meth-
ods without discarding data, missing responses must be imputed. Multiple imputation is a
common approach (Reiter and Raghunathan (2007), Rubin (2004), Thomas et al. (2006)).
It has been argued that surveys should quantify information content by means of a certain
metric for imputation uncertainty rather than nonresponse rate (Wagner (2010)).

We list a few survey applications where imputation is useful:

1. Political scientists, campaigns and the media are interested in voter opinion on a variety
of issues. One such research question concerns itself with voters holding their representa-
tives accountable—whether agreement between constituent policy preferences and legislator
votes affects constituent support for legislators (Ansolabehere and Jones (2010)). This type of
analysis requires a complete set of individual responses to issue questions. A complete set of
predictions is also useful for decision making. For instance, a political campaign attempting
to persuade voters may want to be able to predict individual voter opinions from a minimum
of questions. Armed with predictions on all issues, a canvasser could then customize her text
to highlight areas of alignment between the voter and candidate.

2. Survey experiments measure the effects of treatment on survey outcomes. Whenever
responses from a baseline survey are available, they can serve as pretreatment covariates for
the estimation of heterogeneous treatment effects (Broockman, Kalla and Sekhon (2017)).
Künzel et al. (2019) estimate treatment effects that are conditional upon baseline attitudes
by way of metalearners that are built upon arbitrary supervised learning methods, such as
random forests, neural networks and lasso. Although some base learners handle missingness
natively, others require complete data. A sufficient sample size is crucial for many base learn-
ers which makes imputation more attractive than dropping incomplete cases.

3. Panel data collected from repeated surveys is prone to attrition. Chen, Felt and Huynh
(2017) use top-up refreshment samples in order to account for nonignorable attrition in the
yearly Canadian Financial Monitor which has an attrition rate of 50%. When a complete
panel dataset is required for subsequent analysis, dropping incomplete cases may create sur-
vivorship bias, and imputation may be preferable (Productivity Commission (2018)). Popular
methods for causal inference from panel data, such as the synthetic control method (Abadie,
Diamond and Hainmueller (2010), Ben-Michael, Feller and Rothstein (2018)), take complete
data as input. In fact, missingness is intrinsic to causal inference from panel data: once units
undergo treatment, their control outcomes are missing. Athey et al. (2018) use matrix com-
pletion to impute these counterfactual outcomes.

4. Designers of large administrative surveys face important tradeoffs regarding which
questions are worth asking and how to evolve surveys over time. Choosing from a large
set of potential survey questions is particularly challenging when survey data is intended
for general research usage without advance knowledge of estimands of interest. An adaptive
sampling approach combined with an imputation model provides survey practitioners with a
new design choice, a compromise between a short, incomplete survey and a long, expensive
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and burdensome one. Though there may be challenges in adapting analyses to work with im-
puted data, the flexibility of a high-dimensional and easy-to-modify survey instrument could
be worth the cost in many cases.

We focus on the first use case, measuring voter opinion across a wide spectrum of political
questions. What we are envisioning is a less burdensome survey that asks a strategic subset of
issue questions and imputes responses to the rest. The response matrix is likely to contain low-
dimensional latent structure; we would expect many questions to correlate with partisanship,
for instance. Udell and Townsend (2019) argue that this low-rank assumption is plausible for
a general class of latent variable models.

With a sparse response matrix that is approximately low rank, a natural imputation strategy
is matrix completion. Widely used in recommendation systems in order to predict user-item
preferences across thousands of items, matrix completion enjoys theoretical guarantees and
efficient algorithms. Multiple authors have suggested applying matrix completion to survey
imputation (Candès and Recht (2009), Davenport et al. (2014), Josse, Husson et al. (2016),
Klopp et al. (2015)), but published applications to real-world surveys are rare. One exception
is concurrent work by Sengupta, Srebro and Evans (2018) that examines the predictive ability
of matrix completion on survey responses collected by different elicitation strategies.

1.3. The design opportunity. With matrix factorization as the response model, we next
consider how best to prioritize survey items. The field of active learning is concerned with
selecting informative training points when label acquisition is expensive. A common but
myopic baseline is uncertainty sampling which iteratively chooses the point with greatest
predictive uncertainty. Other strategies choose the point that produces most disagreement
within an ensemble or the point that would minimize expected predictive variance in the
updated model (Settles (2009)).

Active learning for matrix factorization seeks the most informative entries in the response
matrix. In the usual setting of a movie recommendation system, one baseline strategy sim-
ply prompts for the most popular items since users are more likely to recognize them and
remain attentive (Elahi, Ricci and Rubens (2016)). Uncertainty sampling can be used with
various models of unobserved matrix entries (Chakraborty et al. (2013), Sutherland, Póc-
zos and Schneider (2013)). Influence-based strategies find the item that would produce the
greatest change in predictions (Rubens and Sugiyama (2007)) or user parameters (Karimi
et al. (2011a)). Silva and Carin (2012) maximize mutual information between selected and
unobserved instances. Under distributional assumptions about ratings, such as stationarity,
one could find the item order that directly minimizes prediction error (Golbandi, Koren and
Lempel (2010), Karimi et al. (2011b)).

Although theoretical results show active learning has lower sample complexity than pas-
sive sampling in certain settings (Settles (2009)), there are several challenges to the adoption
of active learning in practice. These include choosing a base learner and item selection strat-
egy within the label budget as well as poor discovery of rare classes (Attenberg and Provost
(2011)). In addition, datasets collected via active learning may lose their advantage over ran-
dom sampling when transferring across models (Lowell, Lipton and Wallace (2019)).

1.4. Optimal design in latent space. Active learning for matrix factorization can be re-
cast as placing respondents on latent scales with maximal precision. For our voter survey we
seek questions that are most informative for locating a respondent along latent dimensions
of opinion. The literature on item response theory has long pursued this goal. Computerized
adaptive testing (CAT) algorithms choose questions online to precisely estimate an individ-
ual’s latent ability within a fixed question budget. Montgomery and Cutler (2013) advocate
for applying CAT methods to public opinion surveys. Using an item selection strategy that
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minimizes expected posterior variance of a one-dimensional ability parameter, they shorten
a political knowledge battery by 40% while retaining measurement accuracy.

In the general case of multiple latent dimensions, optimal item selection can take different
forms. Optimal design approaches minimize the inverse Fisher information of the multidi-
mensional ability or opinion parameter. This matrix is the asymptotic variance of the maxi-
mum likelihood estimate as well as the posterior variance under a noninformative prior. The
D-optimal criterion, used by Segall (2009), minimizes the determinant of inverse information
which equivalently minimizes the size of the posterior credibility region. Mulder and van der
Linden (2009) argue that the A-optimal criterion, which minimizes the trace of inverse in-
formation, should act similarly to D-optimality since the trace includes the determinant as a
factor. Their simulations show A- and D-optimality outperform random selection, while the
E-optimal criterion of minimizing the maximum eigenvalue is worse than random.

Such optimal design criteria will guide us in shortening our survey of voter opinion. The
specific form of matrix factorization will determine the adaptivity of the survey. When we
model responses as Gaussian, we obtain an interpretable but deterministic question order.
When we model responses with a more realistic ordered logit likelihood, we obtain an adap-
tive question order, but we resort to approximate inference to handle nonconjugacy. We
demonstrate the gains of active question selection for imputing left-out questions in extensive
survey simulations. Finally, we present experimental evidence that active question selection
improves efficiency.

2. Active matrix completion.

2.1. Matrix completion methods. Given n users and k questions, let R denote the n × k

response matrix. Matrix factorization finds a low-rank decomposition of R, a set of user
factors U = [u1, . . . , un]T and question factors V T = [v1, . . . , vk] such that R ≈ UV T . Let r

be the dimensionality of latent space, typically small. Then, ui, vj ∈ R
r for all i and j .

When R is partially observed, matrix completion adapts matrix factorization to approxi-
mately reconstruct observed entries while predicting missing entries. Let I be an indicator
matrix for whether the corresponding responses in R exist. Iij = 1 implies user i responded to
question j with value Rij . Matrix completion finds U and V that minimize the reconstruction
error of uT

i vj for Rij on the set {(i, j) : Iij = 1}.
The formulation of matrix completion that enforces a hard rank constraint is nonconvex

and generally intractable (Fithian and Mazumder (2013)). It is common to work with a convex
relaxation that instead regularizes the nuclear norm or sum of singular values (Srebro, Rennie
and Jaakkola (2005)). This optimization problem seeks a matrix Z, in place of UV T , that
minimizes reconstruction error. It encourages a low-rank solution by favoring sparsity in the
singular values according to regularization parameter λ.

(1) min
Z

1

2

n∑
i=1

k∑
j=1

Iij (Rij − Zij )
2 + λ‖Z‖∗.

The nuclear norm regularized problem (1) enjoys theoretical guarantees: recovery of the
complete matrix occurs with high probability when O(npolylog(n)) entries are observed at
random, with or without noise (Negahban and Wainwright (2012), Recht (2011)). Moreover,
(1) has an efficient solution in the SoftImpute algorithm by Mazumder, Hastie and Tibshirani
(2010). SoftImpute iteratively computes the SVD of Z, soft-thresholds the singular values
and updates the entries where Iij = 0 with the prediction from the soft-thresholded SVD,
until convergence. Hence, the solution can be expressed as Z = UDV T for some matrices
U ∈ R

n×r ,D ∈R
r×r , V ∈ R

k×r .
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An alternate formulation of matrix completion, introduced by Rennie and Srebro (2005),
penalizes the Frobenius norm of U and V ,

(2) min
U,V

1

2

n∑
i=1

k∑
j=1

Iij

(
Rij − uT

i vj

)2 + λU

2
‖U‖2

F + λV

2
‖V ‖2

F .

Problem (2) is nonconvex in U and V ; it is solved via gradient descent or alternating least
squares (Hastie et al. (2015)). This formulation is useful for large-scale problems with low
rank, since it is less expensive to operate on U and V than Z. The solutions to (1) and (2)
coincide if λU = λV and the solution to (1) has rank at most r , due to an identity relating the
nuclear norm and sum of Frobenius norms (Fithian and Mazumder (2013)).

The user and question factors resulting from either optimization are point estimates, as
are the imputed survey responses. We seek a strategy for actively selecting the next survey
question based on the uncertainty reduction achieved. To quantify uncertainty over imputed
responses, we turn to probabilistic matrix factorization methods.

2.2. Probabilistic matrix factorization. Probabilistic matrix factorization (PMF) by
Salakhutdinov and Mnih (2008) models user and question factors as independently normally
distributed. Responses add zero-mean, constant-variance Gaussian noise to the inner product
of user and question factors. Following the original notation,

ui
i.i.d.∼ N

(
μU,�−1

U

)
,

vj
i.i.d.∼ N

(
μV ,�−1

V

)
,

Rij | U,V
ind.∼ N

(
uT

i vj , α
−1)

.

With zero-mean, isotropic priors, MAP estimation for PMF corresponds to solving the
Frobenius norm regularized problem (2). Specifically, for μU = μV = 0, �U = αUI and
�V = αV I , the MAP estimate of U and V conditional on R is the solution to (2) with
regularization parameters λU = αU/α and λV = αV /α.

Bayesian probabilistic matrix factorization (BPMF) places additional normal-Wishart pri-
ors on the hyperparameters μU,�U,μV ,�V (Salakhutdinov and Mnih (2008)). Posterior
inference is performed by Gibbs sampling. They derive the complete conditional for ui as
follows:

P(ui | R,V,μU,�U,α) ∝ P(ui,Ri· | V,μU,�U,α)

=
k∏

j=1

[
P

(
Rij | uT

i vj , α
−1)]Iij P

(
ui | μU,�−1

U

)
.

The complete conditional is conjugate normal with mean μ∗
i and precision �∗

i ,

ui | R,V,μU,�U,α ∼ N
(
μ∗

i ,
[
�∗

i

]−1)
,

�∗
i = �U + α

k∑
j=1

Iij vj v
T
j ,

μ∗
i = [

�∗
i

]−1

(
α

k∑
j=1

IijRij vj + �UμU

)
.

This can be recognized as the posterior for Bayesian linear regression with a Gaussian prior
and Gaussian noise: ui are the coefficients, observed rows of V form the design matrix and
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α−1 is the noise variance. The expression for μ∗
i also arises in MAP estimation for PMF

with zero-mean, isotropic priors; it is the coordinate ascent update for ui . For details, see
Section A.1 of the Supplementary Material (Zhang et al. (2020)). The complete conditional
for vj involves analogous expressions.

2.3. Active learning formulation. Assume for simplicity we have a fixed question bank
with known factors v1, . . . , vk , learned from abundant existing data. A new user i enters the
survey pool. We want to select questions optimally for learning ui .

The PMF model admits a convenient online formulation for updating our knowledge about
ui given responses from this user. Suppose, after t responses, ui is Gaussian with mean μ

(t)
i

and variance [�(t)
i ]−1. Next the user answers question j . The posterior for ui is

u
(t+1)
i | R(t+1), V ,μU,�U,α ∼N

(
μ

(t+1)
i ,

[
�

(t+1)
i

]−1)
,

�
(t+1)
i = �

(t)
i + αvjv

T
j ,(3)

μ
(t+1)
i = [

�
(t+1)
i

]−1(
αRijvj + �

(t)
i μ

(t)
i

)
.(4)

We consider how to choose question j optimally. Inspired by approaches in active learning
and item response theory, we maximize a measure of posterior information or minimize a
measure of posterior variance. We focus on the trace, the sum of posterior variance along
latent directions. To select the (t + 1)th question, we solve

(5) min
j

tr
[
�

(t+1)
i

]−1
.

Our criterion is Bayes A-optimal which corresponds to minimizing the quadratic loss of a
point estimate of user factors (Chaloner and Verdinelli (1995)). Our criterion is also related
to minimizing predictive variance. For simplicity, let μ(j) and �(j) denote the posterior
mean and variance of ui after asking question j . Suppose we draw a new question ṽ from the
uniform distribution on the unit sphere, independently of ui . Our prediction of the response,
uT

i ṽ, has variance at least r−1 tr�(j). This is shown in Section A.2 of the Supplementary
Material (Zhang et al. (2020)). Thus, A-optimality minimizes a lower bound on predictive
variance along uniform latent directions.

For more intuition, we rewrite our optimization problem, letting λ�(·) denote the �th eigen-
value of a matrix. (5) is equivalent to

min
j

r∑
�=1

λ�

([
�

(t+1)
i

]−1) = min
j

r∑
�=1

[
λ�

(
�

(t+1)
i

)]−1
.

This variance criterion penalizes small eigenvalues of the user precision, corresponding
to latent directions with least information. Information is acquired by sampling questions
whose factors lie in those directions. The optimal sampling strategy chooses questions based
on their informativeness and their contribution to less explored directions. For a spherical user
prior, provided questions are well distributed across latent directions, the strategy prefers new
questions roughly orthogonal to previous questions. See Section A.3 of the Supplementary
Material (Zhang et al. (2020)) for a more formal treatment.

Algorithm 1 summarizes our active strategy. Note some limitations of this initial version.
First, the algorithm is greedy, selecting only one question at a time. Optimal queries for a
multistep search horizon can be found with a branch-and-bound algorithm; Garnett et al.
(2012) show unbounded gains over the greedy strategy in theory but marginal gains empiri-
cally. Second, the optimal sequence of questions can be computed offline, as the objective in
(5) does not depend on response values. There is one active question order across all respon-
dents. This unrealistic property is a consequence of Gaussian modeling of responses; we will
dispense with it in Section 5.
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Algorithm 1: Active question selection for single user
Given: question factors v1, . . . , vk

prior parameters μU,�U

noise variance α−1

desired survey length T

Set unasked questions: U ← {1, . . . , k}
Set user prior: μ0 ← μU,�0 ← �U

for t ← 1 to T do
Choose next question, j ← arg min�∈U tr[(�t−1 + αv�v

T
� )−1]

Collect response Rij

Update user posterior:
�t ← �t−1 + αvjv

T
j

μt ← �−1
t (αRij vj + �t−1μt−1)

Mark question asked: U ← U \ {j}

3. Data and evaluation methods.

3.1. Datasets. We simulate active question selection on multiple datasets, summarized
in Table 1. The Facebook survey is a survey of Facebook users, administered on the app or
web interface, with a variety of questions about their experiences with the product and the
company. The Facebook on-platform survey was administered in random order.

The Cooperative Congressional Election Survey (CCES) is a national Internet survey of
U.S. adults that measures opinions about prevailing political issues and elected officials, be-
fore and after an election (Ansolabehere and Schaffner (2010)). Respondents are selected by
matching an opt-in respondent pool to a stratified random sample from the American Com-
munity Survey. Our main results use the pre-election survey from 2016, though we also obtain
results for the 2012 and 2018 surveys. We limit consideration to common content questions
that ask respondents to evaluate national issues or entities on a binary or ordinal scale. For
robustness checks, we expand the question set to include respondent demographics, party
identification and other characteristics; we refer to this as the “full” CCES dataset. We ex-
clude questions about actions in the past year and opinions of state or local representatives.
We also exclude questions that are missing a majority of responses.

For each survey question, allowable responses are rescaled to [−1,1]. Some responses will
be missing, either because they were not present in the original dataset or because we dropped
response values that violated the ordinal assumption. CCES has low overall missingness rates:

TABLE 1
Dataset characteristics. CCES 2016 (full) refers to CCES 2016 with extra covariates

Dataset Number of respondents Number of questions

Facebook on-platform survey 11,793 53
CCES 2012 54,535 29
CCES 2016 64,600 38
CCES 2016 (full) 64,600 61
CCES 2018 60,000 42
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FIG. 1. Missingness in the CCES by question and by user. There is less nonresponse in later years.

3.7% in 2012, 1.5% in 2016 and 1.2% in 2018. The missingness distributions by question and
by user are shown in Figure 1.

3.2. Simulating the active strategy. To simulate active question selection, we begin by
randomly splitting the respondent set into a training half and a simulation half. We perform
matrix factorization on the training responses to estimate question factors. We then hold out
some responses in the simulation half and simulate a hypothetical survey on the remaining
responses. In the hypothetical survey, we actively select the next question per respondent,
reveal available responses to that question and update each user posterior. We predict held-
out responses using the estimated question factors and the posterior means of user factors.
We repeat this process until all questions have been asked. Since the active strategy is greedy,
we can truncate the process at any point to obtain the actively chosen questions for a given
survey length.

We compare the active strategy to two baselines: existing question order (available for
CCES) and random question order (generated for each respondent). We focus on mean ab-
solute error (MAE) and bias of predictions. We also compute mean squared error and the
proportion of predictions with the wrong sign.

We determine the holdout set in two ways. The first method reserves a random 20% of
each user’s responses, effectively punching holes in the response matrix. We call this the
“sparse” holdout set. It allows us to evaluate error averaged over questions and make sum-
mary comparisons of question selection strategies. The sparse holdout set has drawbacks: the
artifice that the simulation procedure treats these responses as missing; and higher variability
in per-question evaluation error due to using one-fifth of responses. Thus, to evaluate predic-
tion error for individual questions, we use a second holdout method: leave-one-question-out
(LOOCV) cross-validation. For each question, we simulate the survey on the response matrix
with that column removed. LOOCV uses all available responses for a question to evaluate
its imputation error but repeats the survey once per question. As LOOCV is more computa-
tionally demanding, we rely on the sparse holdout set to evaluate variations on the simulation
procedure quickly.

3.3. Simulation settings. To estimate question factors from the training half, we use the
SoftImpute algorithm which solves the nuclear norm regularized problem (1). Empirically,
we have found that SoftImpute is efficient and produces stable estimates of V across simula-
tions. We rely on the SoftImpute implementation in the fancyimpute package (Rubinsteyn
and Feldman (2016)). The regularization parameter λ is selected by grid search with warm
starts as recommended by Mazumder, Hastie and Tibshirani (2010), based on mean absolute
error on a 20% validation set within the training half.

One variation is to estimate V by solving the Frobenius norm regularized problem (2),
as it is equivalent to MAP estimation for PMF with simple priors. However, this nonconvex
optimization yields highly variable question factors and orderings.

Our main results use a rank-4 matrix decomposition; SoftImpute solves (1) subject to this
hard rank constraint. For any rank r , we search for λ as above. Setting r = 4 results in lower
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prediction error than r = 2, while keeping the dimensionality of latent space manageable.
A higher-rank decomposition (r = 8) does not reduce prediction error further. Greater r re-
quires greater λ to avoid overfitting; this may overly shrink the highest-variance components.

In the active strategy, we set the prior mean μU and prior precision �U using empirical
Bayes. Specifically, we set μU and �−1

U to the sample mean and covariance of the rows of
UD, the implied user factors from SoftImpute. It remains to set the noise variance α−1. By
Popoviciu’s inequality and the prior rescaling of responses to [−1,1], we know α−1 ≤ 1. Our
main results use the upper bound (α−1 = 1), though we tried smaller values1.

We also allowed the active strategy to minimize measures of posterior variance other than
the trace, like the determinant and maximum eigenvalue. These optimal design criteria result
in similar overall predictive performance and active orderings.

Replication code is available in the Supplementary Material (Zhang et al. (2020)). Our
main results follow. Results for alternate simulation settings appear in Appendix E of the
Supplementary Material.

4. Results.

4.1. The most informative issue questions. The active strategy ranks questions by preci-
sion gained in the latent representation of a user. For more intuition, see Appendix B which
visualizes users and questions in two-dimensional latent space. Below we showcase the ques-
tions from the 2016 CCES that the active strategy deems most informative. The Supplemen-
tary Material includes results for the 2018 CCES (Appendix F), the 2012 CCES (Appendix G)
and the Facebook survey (Appendix H).

Active item selection produces a stable question order (Figure 2). The foremost question
is whether to repeal the Affordable Care Act (ACA). Questions about immigration, abor-
tion and environmental policies are prioritized: a 10-question active survey includes multiple
questions on each topic.

We check the robustness of the active ordering to our question inclusion criteria for the
CCES. We progressively add questions about respondent political affiliation, demographics,
education and other characteristics. Questions with categorical responses, like race, are con-
verted into indicators. Note this one-hot encoding artificially creates a separate survey ques-
tion per response value; multinomial logit modeling would be more appropriate in practice.
Appendix C contains active orderings with these additional questions.

The active ordering with augmented questions does not diverge much from the active or-
dering in Figure 2. Though questions about gender, party identification, parenthood and home
ownership slot into the first 20 positions, questions about the environment, abortion and the
ACA remain prominent. Gender and Obama approval displace immigration questions from
the top 10. The active strategy postpones questions about race and education, possibly be-
cause these one-hot-encoded covariates are not well captured by a low-rank matrix decom-
position.

4.2. The latent space of issues. We interpret the latent concepts for which the active
strategy gathers information. Figure D.5 displays question factors as loadings on these latent
concepts. The first direction broadly indicates partisanship: Democratic and Republican poli-
cies tend to have loadings with opposite sign. It makes sense that this principal component
contains most prior variance. Partisanship is highly correlated with opinions about the envi-
ronment, abortion and immigration, which explains their prominence in the active ordering.

1Preliminary probabilistic modeling of the 2016 and 2018 CCES with a rank-4 decomposition suggests that

α−1 is likely between 0.7 and 0.75.
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FIG. 2. Active ordering for 2016 CCES using a rank-4 matrix decomposition with no questions held out. The
box plot shows the rank of each question across 10 training/simulation splits. Position in the active ordering,
according to median rank, is in parentheses. The top 10 questions appear in bold. Across simulations, the active
survey leads with a question about Obamacare repeal and then cycles through questions about abortion, the
environment and immigration.

The second component seems to represent level of bipartisan support. For instance, in-
creasing prison sentences for repeat felons, requiring police to wear body cameras and en-
acting background checks for all gun purchases are broadly popular policies supported by
84%, 87% and 90% of respondents, respectively. These load highly in the negative direction.
Opposite these is a “none-of-the-above” question about immigration policies, which only 5%
of respondents supported. Similar analyses for 2018 (Figure F.8) and 2012 (Figure G.8) also
find that the two highest-variance latent directions capture partisanship and bipartisanship.

In 2016, the third principal component correlates support for greener environmental poli-
cies, support for abortion restrictions and opposition to same-sex marriage. This suggests a
group of socially conservative respondents who are concerned about the environment. The
fourth component correlates support for greener environmental policies and opposition to
abortion restrictions with support for tougher crime and immigration policies. The active
strategy doubles down on environmental, abortion and immigration questions in order to as-
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FIG. 3. Summary measures of imputation error for simulated surveys using each question selection strategy.
The training/simulation split is fixed; the source of randomness across iterations is the sparse holdout set. The
solid line in panel (b) plots the number of questions required by each strategy to attain the same level of error
in panel (a). We fit, for strategy s ∈ {random, active}, a loess smoother fs(ε) to predict the number of questions
required for error level ε. We plot (factive(ε), frandom(ε)) for the range of ε attained by both strategies. For
instance, the imputation error after five actively chosen questions is comparable to that after 10 randomly chosen
questions. Since the curve lies above the dashed 45◦ line, active sampling outperforms random.

certain membership in these groups. Going beyond two latent dimensions helps to identify
parts of the electorate that do not behave according to conventional partisan wisdom.

4.3. Efficiency gains under active selection. We now examine the imputation ability of
matrix factorization with responses revealed by active selection. On the sparse holdout set,
predictions with actively chosen questions outperform predictions with randomly or sequen-
tially chosen questions (Figure 3(a)). The active strategy attains lower imputation error, aver-
aged over questions, for simulated surveys of short or medium length. Only when two-thirds
of the questions have been asked do the strategies converge in overall performance; this error
level is the minimum achievable by low-rank matrix factorization on this dataset. This result
is consistent across error measures (Figure D.1) and optimal design criteria (Figure E.3).

Another measure of efficiency gain is sample complexity—the number of responses re-
quired by each strategy to reach a given error level. The active strategy almost always requires
fewer responses (Figure 3(b)). Suppose we ask 20 random questions of each respondent; the
active strategy reaches the same imputation quality with nearly half as many questions.

The active strategy minimizes the optimal design criterion, as Figure D.4 verifies. It is
advisable to balance exploration and exploitation when optimizing under uncertainty. We
introduce exploration with a simple ε-greedy modification to the active strategy: choose a
random question with probability ε = 0.05; otherwise choose the A-optimal question. ε-
greedy question selection does not outperform active question selection in terms of prediction
error (Figure D.6). Since our simulations treat question factors as fixed, exploration cannot
reduce their estimation error. Henceforth, we focus on the active (ε = 0) strategy, with the
caveat that some form of exploration is preferable when question factors contain nontrivial
uncertainty.
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FIG. 4. Reduction in imputation error from presurvey levels for the 2016 CCES. We show percent reduction in
mean absolute error as a distribution over questions, smoothed by kernel density estimation. Error per question is
evaluated by leave-one-out cross-validation. In short surveys a number of questions experience the greatest error
reduction under the active strategy.

4.4. Uneven error reduction across questions. Evaluation on the sparse holdout set
masks considerable heterogeneity in which questions benefit from active selection. Figure 4
plots the reduction in LOOCV error per question for various survey lengths. More questions
experience at least a 20% reduction in imputation error after five actively chosen questions,
compared to five randomly or sequentially chosen questions. The advantage of the active
strategy is apparent after a single question. As survey length increases, all strategies achieve
greater error reduction, and this advantage narrows.

The error reduction of a single actively chosen question is more notable for the 2018
CCES: at least 12% on half of that year’s question set (Figure F.3). Political preferences, at
least those captured by the CCES, have become more predictable if we know what to ask.

Figure 5 locates the questions for which the imputation abilities of active and random
selection diverge. Active selection delivers greater error reduction for questions concern-
ing abortion, immigration and the environment—the very topics front-loaded by the active
strategy. Active selection also benefits predictions of Obama approval and support for gun
restrictions. The predictive advantage of active learning comes not from covering these top-
ics exhaustively but from sampling informative items within correlated sets. Meanwhile, for
questions about crime and the economy the predictive advantage of active learning is mini-
mal.

4.5. Where imputation fails. The bounds in Figure 5 indicate what extent of error reduc-
tion is possible from knowing no responses (“presurvey”) to knowing all available responses
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FIG. 5. Mean absolute prediction error per question after a short survey using active or random question se-
lection. We simulate the survey with one question held out, reveal responses to five actively or randomly chosen
questions and predict responses to the held-out question. We repeat this for each question to produce leave-one-out
cross-validation error. 2σ confidence intervals are not visible due to the number of respondents in the simulation
half. The gray “+” bounds represent prediction error under the presurvey condition of no knowledge (right) and
the oracle condition of knowing all other responses (left). On questions where presurvey and oracle error are well
separated, active selection usually gives better imputations. On questions where little error reduction is possible,
active selection does not help.

(“oracle”). The oracle bound quantifies the irreducible error of imputing each question with
low-rank matrix factorization. Some questions are inherently harder to impute; their oracle
MAE is close to 1. Other questions have low oracle error and low presurvey error. In both
cases, whether question selection is active or random makes little difference. For intuition, on
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a binary question with possible responses {−1,1}, MAE of 1 is achievable by (i) randomly
guessing −1 or 1 with equal probability or (ii) always predicting 0.

One component of irreducible error is bias. The presurvey and oracle bias per question are
shown in Figure D.3. There is little difference between the two; bias is mostly determined
once question factors have been estimated. Low-rank matrix factorization produces small
bias relative to MAE: less than 0.1 in either direction for all questions, and less than 0.05 for
all but two questions. There is no clear relationship between questions with high irreducible
error and those with relatively high bias.

The relative irreducible errors are affected by our decision to scale all responses to [−1,1].
Questions with evenly distributed binary responses will tend to have higher irreducible er-
ror than those with lopsided binary responses or ordinal responses. The alternative of zero-
centered, unit-variance scaling would complicate interpretation, as the response values would
depend on the response distribution. Our choice of scaling balances competing goals of in-
terpretability and standardization.

With this caveat in mind, it may be ineffective to impute questions with high irreducible
error. The active strategy has little room to help. The survey researcher is advised to include
such questions in the eventual survey, regardless of their position in the active question order,
if accurate measurement of these constructs is a priority.

5. Modeling ordinal responses. In this section we adjust the model to better capture
binary and ordinal response values. We replace the Gaussian likelihood for responses with
the ordered logit likelihood. The ordered logit model, also known as the proportional odds
model, is prevalent in social science research (Fullerton and Xu (2012)). As we will see, this
change breaks the determinism of the active order; question selection will now depend on the
respondent’s previous answers.

Quantized outputs in the response matrix have been modeled with a variety of link func-
tions, including logistic, probit and multinomial logit (Cao and Xie (2015), Davenport et al.
(2014), Klopp et al. (2015)). These works formulate matrix completion as maximum likeli-
hood with nuclear norm regularization. We continue with a probabilistic matrix factorization
approach. The ordered logit model is nonconjugate; so, for posterior inference we employ
variational Bayes, also used for matrix completion in Lim and Teh (2007) and Seeger and
Bouchard (2012). We forfeit the closed-form posterior update exploited by the active strategy
for PMF, but the Laplace approximation offers a way forward.

5.1. Probabilistic matrix factorization model. Our ordered logit response model retains
the normal priors for user and question factors. Responses are integer-valued starting at 1.
We allow heterogeneity across questions: the number of response values can differ across
questions, as can response frequencies. The model becomes

ui
i.i.d.∼ N

(
μU,�−1

U

)
,

vj
i.i.d.∼ N

(
μV ,�−1

V

)
,

Rij | U,V
ind.∼ OrderedLogit

(
uT

i vj , βj

)
.

Rij takes values in {1,2, . . . ,Mj }, where Mj is the question-specific maximum response
value. Let πijm denote the probability that Rij = m. The probabilities {πij1, πij2, . . . , πijMj

}
are defined by the logistic link and a series of question-specific cutpoints βj = (βj,1, . . . ,

βj,Mj−1). For simplicity of presentation, we drop the indexing for user i and question j .
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Thus, Rij takes values in {1,2, . . . ,M} with probabilities {π1, π2, . . . , πM}, parameterized
by cutpoints β = (β1, . . . , βM−1) as follows:

logit

(
m∑

k=1

πk

)
= uT

i vj + βm (m = 1, . . . ,M − 1),

πM = 1 −
M−1∑
k=1

πk.

5.2. Inference. We perform posterior inference on U and V , once when estimating user
and question factors from the training half and again every time we expand the survey by one
question for the simulation half. Using the updated posteriors, we compute prediction error
on held-out survey responses at each iteration. The steps are detailed in Algorithm 2.

We obtain approximate posteriors for U and V given R in the above model using mean-
field variational inference. We implement this in edward (Tran et al. (2016)). Our variational
distributions are fully factorized Gaussian,

q(U) =
n∏

i=1

q(ui) =
n∏

i=1

r∏
j=1

N (μij , σij ),

q(V ) =
k∏

j=1

q(vj ) =
k∏

j=1

r∏
i=1

N (νji, τji).

Variational inference finds parameters {μij , σij , νji, τji}i,j that maximize the evidence
lower bound or, equivalently, minimize the KL divergence between the variational distri-
bution and the true posterior. We employ priors μU = μV ≡ 0 and �V = �V ≡ Ir . To obtain

Algorithm 2: Active strategy simulation for ordered logit model

Given: training responses Rtrain

cutpoints β

desired survey length T

{μij , σij , νji, τji}i,j ← approximate_U_V_posterior(Rtrain, β)

Set (v1, . . . , vk) to variational means (ν1, . . . , νk)

Set �−1
U to empirical covariance of {μ1, . . . ,μn}

Initialize record of questions per user: Oi ←∅,Ui ← {1, . . . , k} ∀i

Initialize revealed responses Rasked to empty n × k matrix
for t ← 1 to T do

Ask one question of all users:
for i ← 1 to n do

Choose next question, j ← arg minj∈U tr[�U + ∑
�∈O J �(ui;Ri�) + Ij (ui)]−1

Collect response: Rasked
ij ← Rij

Mark question asked: Oi ← Oi ∪ {j},Ui ← Ui \ {j}
{μij , σij , νji, τji}i,j ← approximate_U_V_posterior(Rasked ∪ Rtrain, β)

Set (u1, . . . , un) to variational means (μ1, . . . ,μn)

Set R
pred
ij to mean of OrderedLogit(μT

i νj , β) random variable ∀i, j

Compute prediction error of Rpred for R
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cutpoints β , we follow the inverse approach in the rstanarm package (Gabry and Goodrich
(2016)). For each question we draw from the simplex probabilities π = (π1, . . . , πM) corre-
sponding to the ordinal response values. Specifically, we draw π ∼ Dirichlet(c1, . . . , cM),
where the concentration parameters are prior counts of the response values. That is, we set
cm equal to the number of times a respondent answers m to this question in the training half.
We then apply the logit transform to all but the last entry of cumsum(π), obtaining

βm = logit

(
m∑

k=1

πk

)
(m = 1, . . . ,M − 1).

To predict Rij , we set ui and vj equal to their variational means μi and νj and compute
the mean of the resulting ordered logit random variable.

5.3. Active learning formulation. The ordered logit response model also entails changes
to our item selection strategy. Again, we treat V as fixed; we approximate V with the varia-
tional means {νj }kj=1. For now, we restrict attention to a single user in the model,

ui
i.i.d.∼ N

(
μU,�−1

U

)
,

Rij | U,V
ind.∼ OrderedLogit

(
uT

i vj , β
)
.

We seek the question j that maximizes information about ui . Since we lack a closed-form
update for the posterior of ui , we do not minimize an exact measure of posterior variance. In-
stead, we work with the variance of the Laplace approximation, or the portion of this variance
that we can control through item selection—the Fisher information. This approach follows
the optimal design literature, notably Segall (2009), who applies it to the logistic likelihood
for binary responses. Our approach is an ordered logit generalization of Segall (2009).

Fisher information is computed around a value of ui . We estimate ui with the mean of
the user variational distribution, μi , from the latest round of probabilistic matrix factoriza-
tion. Repurposing this provisional estimate of ui is more computationally efficient than the
alternative of computing a MAP estimate of ui in the single-user model.

We denote the Fisher information gained from a response to question j as Ij (ui) and the
observed Fisher information from observing response m to question j as J j (ui;m). Then,

J j (ui;m) = − ∂2

∂ui ∂uT
i

log Pr(Rij = m | ui, vj , β)

and, again letting πijm denote Pr(Rij = m | ui, vj , β),

Ij (ui) = E
[
J j (ui;Rij )

] =
M∑

m=1

πijmJ j (ui;m).

In the ordered logit model, J j (ui;m) and Ij (ui) have closed-form expressions. The Hes-
sians are computed with autodifferentiation in edward.

Let O contain the indices of past questions and U the indices of unasked questions. We
compute the sum of observed information over O and consider adding a Fisher information
term for question j ∈ U . We determine which question would contribute the most information
to ui in expectation. More formally, we find the question that minimizes the variance of the
Laplace approximation A-optimally,

(6) min
j∈U tr

[
�U + ∑

�∈O
J �(ui;Ri�) + Ij (ui)

]−1
.

When expanding the survey by one question, the per-user item selection problems can be
solved in parallel. This subprocedure is placed in context in Algorithm 2.
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5.4. Results. We make two modifications to our evaluation procedure. First, predictions
by the ordered logit model are on the same scale as the original ordinal responses; questions
with more allowable responses will tend to have higher error. Thus, we rescale prediction
error per question to be comparable to that of PMF, which predicts responses rescaled to
[−1,1]. Second, inference and item selection are more computationally intensive with the
ordered logit model. To avoid the additional computational burden of leave-one-question-
out cross-validation, we resort to five-fold cross-validation on questions. Results appear in
Appendix J of the Supplementary Material (Zhang et al. (2020)).

We find that imputation error under active question selection is reduced faster with ordered
logit response modeling than with PMF. This is especially apparent after two questions. The
difference after one question comes from the matrix factorization step rather than item selec-
tion, since the first actively chosen question is the same under both models. We have modeled
responses more appropriately as ordinal and introduced additional parameters in the form of
question-specific cutpoints. Item selection with the ordered logit likelihood may contribute
to imputation gains starting with the second question; this warrants further investigation.

With five actively selected questions, the ordered logit predictions are nearly at oracle level.
Not much room for improvement remains; it may be worth terminating the survey here. The
presurvey and oracle error bounds are close to those of PMF. Note that oracle error may
exceed mid-survey error in some cases, due to the possibility of increased bias with more
responses. Indeed, greater bias is a shortcoming of the ordered logit procedure: unlike with
PMF, the oracle bias can be considerably higher than the presurvey bias. This is unsurprising
given our reliance on approximate inference.

With the ordered logit model there is more variability in the active question order within
one simulation than across PMF simulations. This can be seen by plotting individual paths
through survey questions (Figure J.7). The variability in question rank arises not from a few
common question orderings but, rather, from diverse personalized paths dependent on re-
sponses to previous questions.

Across these individual paths, immigration, abortion and environmental policies are priori-
tized, and ACA repeal remains the top question across sampled users. These similarities to the
PMF active ordering reinforce our earlier findings on question importance. Some questions
that appear late in the PMF ordering have highly variable position in the adaptive ordering.
Examples include perception of the U.S. economy over the past year and whether abortion
should always be illegal. Approval of Obama is asked anywhere from second to 20th. This
was the least stable question in our PMF robustness checks—it leaps into second place with
the addition of covariate questions—so its variable position under the ordered logit model is
natural.

6. Experimental comparison. Thus far, the imputation gains of active question selec-
tion have only been shown in simulations that reorder existing survey responses. To verify
these gains experimentally, we conducted a second version of the Facebook survey using the
deterministic active ordering from rank-4 PMF. Active order was compared to random order
and an order generated by a survey methodologist, henceforth called expert order. The expert
order was deterministic aside from certain random-order subsets of questions. To reduce bur-
den, we trimmed the survey from 53 to 33 questions by removing some question groupings.
Respondents were recruited from four countries and randomly assigned to conditions. The
active, random and expert conditions had 4224, 4211 and 4177 respondents, respectively.

Our primary concern is the imputation performance of short surveys designed by each
strategy. As before, our evaluation truncates the survey to a given length and computes the
error of PMF predictions on remaining responses under each strategy. In addition, we reuse
the notion of presurvey imputation error, the error of predictions using the user prior. Presur-
vey error on a given question can be slightly different across conditions (Figure I.2), due
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FIG. 6. Reduction in imputation error from presurvey levels for the Facebook survey experiment. We show per-
cent reduction in mean absolute error as a distribution over questions, smoothed by kernel density estimation. We
omit questions with undefined imputation error after the truncated survey, namely, the first question in the active
order (left) and the first five questions in the active order (right). The empirical distribution of error reduction
under the active strategy contains more right-tail mass despite omitting the first five actively selected questions,
two of which had high error reduction after a one-question survey.

to biases discussed in Section 7. We control for these small biases by computing, for each
condition, the reduction from its own pre-survey error.

The following analysis differs from the simulation-based comparisons in two ways. First,
while the simulations held out each question in turn to compute LOOCV error, here we re-
spect the order in which experimental responses are gathered. Suppose we are interested in
imputation error after a five-question survey. For any question and condition, the computa-
tion of imputation error is restricted to respondents who answered this question after the first
five. Hence, imputation error after a five-question active survey can only be computed for
questions after the fifth in the (deterministic) active ordering. Second, our response predic-
tions use question factors estimated from the first Facebook survey. As the surveys occurred a
year apart, the latent structure may have changed. Imputation for the survey experiment may
improve with updated question factors, and the active order may no longer be optimal.

Still, it is apparent after one question that the active order produces greater error reduction
than random and expert order on a subset of questions (Figure 6). Error reduction grows
as more questions are asked; at five questions the random and expert order begin to catch
up. For all strategies the distribution of error reduction appears bimodal, suggesting that one
set of questions is easier to impute than the rest. Error reduction in the experimental data is
consistent with reduction in LOOCV error on simulated data (Figure I.3). The questions we
expect to benefit, actually benefit, and they benefit more from active order in short surveys.

7. Limitations of evaluation.

7.1. Order effects. Simulation-based estimates of error reduction may not generalize
well to practice due to changes in respondent behavior under new survey designs. For in-
stance, our simulations assume that responses do not depend on the order in which questions
appear. In actuality, observed CCES responses are specific to the historical CCES question
order; an individual’s potential response to a question may be different under algorithmic
question order. Our evaluation procedure assumes that the active-order and random-order
interventions have zero effect on responses. In other words, there are no order effects.

In this section we estimate the magnitude of order effects in the initial randomly-ordered
Facebook survey to gauge how much bias the active strategy could introduce. Position effects
capture the effect of a question appearing at a given position in the instrument, such as early
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FIG. 7. Estimated order effects in the Facebook survey. While we do detect position and interaction effects, these
are not large.

or late. Interaction effects capture whether the previous survey question that a user answered
affects the response to the following question.

To estimate position effects, we fit one linear regression per survey question with the rela-
tive position of the question in the order as a predictor. In this model we use data from only
completed surveys (about 30% of the surveys) in order to preclude attrition bias. We use this
model to estimate the difference in the standardized response for each question appearing
at the end of the survey compared to the beginning. As a null distribution, we randomly re-
order the survey and fit the same model 200 times. The results are presented in Figure 7(a).
A number of survey questions exhibit position effects, in which responses vary significantly
depending on whether they were asked early or late in the survey. The worst-case bias appears
to be about 0.3 standard deviations on the response scale.

We also estimate first-order interaction effects, making the Markov assumption that con-
ditioning on the identity of the previous question is sufficient. We fit an L1-penalized regres-
sion with a parameter for all pairs of survey questions and previous questions, using 10-fold
cross-validation to select the optimal penalty parameter. The results of this model are illus-
trated in Figure 7(b). About 10% of the possible question pairs exhibit a nonzero interaction
effect. Some questions tend to be influential on the following question (columns with multi-
ple points), while others tend to be affected by the prior question (rows with multiple points).
Similarly to position effects, the interaction effects we observe are usually less than 0.2 stan-
dard deviations on the response scale. In regards to the choice of whether to include the pairs
beginning at odd- or even-numbered question positions, these effects are not robust. In sum,
we have not detected large, persistent interaction effects.

The subsequent experiment confirms that the order effects for the Facebook survey are
small. We find that both active and expert orderings induce order effects relative to random
order (Figure I.1). Where it exists, the bias in mean response is usually less than 0.2 standard
deviations on the response scale, consistent with our estimates from the first Facebook survey.

The evaluation of the Facebook survey experiment has the advantage of using real, not
potential, responses under each assigned ordering condition; we do not need to assume the
absence of order effects. However, if order effects exist, our evaluation is agnostic to which
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ordering is “correct,” that is, to the context in which the responses should be interpreted. An
alternative approach is to designate a standard ordering (e.g., expert) and attempt to adjust
observed responses under the other orderings to potential responses under the standard order-
ing. Error reduction would be interpretable with respect to a single ordering but with inflated
uncertainty.

7.2. Attrition. Although the experiment alleviates concerns over introducing bias by way
of an altered survey design, it provokes a different issue, the potential for higher nonresponse
under the active ordering. Compared to random and expert, the active order increases attrition
on the initial question and maintains a lower proportion of respondents over the course of the
survey (Figure I.4). A possible explanation is that the active order places more controversial
questions upfront. One proxy for controversiality is how often a question is skipped; of the
first four questions in the active order, three are frequently skipped by respondents in both
active and expert conditions. The expert order experiences the least attrition over the first half
of the survey, compensating in part for its slower reduction of imputation error.

If dropoff is indeed greater for the active ordering, our simulations may overstate the ben-
efit of active learning. Future work could account for attrition by giving the active strategy
a smaller question budget than other strategies. Otherwise, simulations could model proba-
bilistic dropoff after each question with probabilities estimated from a pilot sample. A more
pragmatic active learning objective would represent the tradeoff between information gain
and dropoff. In addition, a wide pilot survey could be undertaken to discover informative
questions with low rates of nonresponse.

7.3. Measurement error. On the other hand, the reduced burden of actively designed
surveys may result in lower measurement error. Our simulations do not account for the pos-
sibility that a shorter survey may reduce satisficing and improve response quality. Roberts
et al. (2019) review studies on satisficing across survey modes and domains, finding mixed
evidence of a relationship between predictors of satisficing (task difficulty, respondent ability,
respondent motivation) and degraded response quality. Even if satisficing is not a problem for
the CCES, the world of surveys is broad, and respondent motivation could vary widely.

When satisficing occurs, it is not inconceivable that an imputed response represents the re-
spondent’s view more accurately than the collected response. In this study, evaluations com-
pute error treating observed responses as ground truth. But observed responses are subject
to measurement error. If we regard observed responses as noisy realizations of true opinion,
as PMF does, we can attribute some of the irreducible error of imputation to measurement
error. Our evaluation procedure may thus understate the potential of our method for quality
imputations as well as quality responses.

8. Discussion and future work. If we commit to shortening a survey, we will impute
uncollected responses with error. We identify questions that diminish imputation error via
active learning that maximizes user precision in the latent space of concepts. As we explore
the CCES questions preferred by the active strategy, we develop insights about the most
informative set of questions for predicting political opinion. The active ordering offers a new
notion of feature importance for domains with wide item sets and low-dimensional latent
structure.

We have presented two variants of the active strategy. The first produces a deterministic
question order which follows from Gaussian response modeling in PMF. This is convenient
for survey applications that require a predictable design upfront. It is also computationally
simple. However, the property that future questions do not depend on past responses is unre-
alistic, as evidenced by the improved imputation ability of the ordered logit response model.
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With the ordered logit likelihood, the active ordering adapts to collected responses at the price
of increased computation.

Incorporating side information about respondents should lead to further efficiency gains.
Theoretical results have shown that sufficiently informative side information improves the
sample complexity of matrix completion (Chiang, Hsieh and Dhillon (2015), Xu, Jin and
Zhou (2013)). In Appendix K we explore two simple ways to leverage respondent covariates:
by computing subgroup-specific user priors, and by treating covariates as always-revealed
responses in matrix factorization. The latter method reduces imputation error early in the
survey at the cost of introducing bias. Many avenues exist for more sophisticated modeling
of side information. One could map covariates to a personalized user prior with multilevel
regression or a Gaussian process (Adams, Dahl and Murray (2010), Zhou et al. (2012)). An-
other approach is to add terms for user and question covariates to the response specification
(Athey et al. (2018), Porteous, Asuncion and Welling (2010)). Our simulations with free co-
variates imply an exchange rate between side information and survey responses. Trading off
the information gain and acquisition cost of both in a user-specific way is a design opportu-
nity.

Our methods thus far have assumed away uncertainty in estimated question factors. Future
work should incorporate this uncertainty into the active learning objective, for instance with
bandit algorithms that use an upper confidence bound for the optimality criterion or sam-
ple from its distribution. The active strategy could also account for temporal uncertainty if
one believes that latent concepts are time-varying; explicitly modeling these dynamics could
produce an active ordering that evolves automatically.

Matrix completion as an imputation procedure can suffer from both nonresponse and
model misspecification bias. The standard matrix completion loss assumes that entries are
missing completely at random. The tenuous plausibility of this assumption is exacerbated by
the active strategy, which tailors questions to a user’s inferred latent position. In an effort
to de-bias the loss, Srebro and Salakhutdinov (2010) regularize a weighted nuclear norm,
while others apply inverse propensity weights to reconstruction terms (Athey et al. (2018),
Schnabel et al. (2016)). Alternatively, one could model the missing-data mechanism explic-
itly (Marlin and Zemel (2009)). Even with these corrections, a low-rank linear decomposition
cannot capture all of the response variance; the remainder is reflected in oracle error. It could
be worth exploring nonlinear matrix factorization in the form of Gaussian process latent vari-
able models (Lawrence and Urtasun (2009)).

Aside from model improvements, future work should devote special attention to the logis-
tics of survey administration. The difficulty of implementing an active ordering depends on
the degree of adaptivity. The deterministic order from PMF is relatively straightforward to
apply across survey modes; the adaptive order powered by the ordered logit model would re-
quire more infrastructure. Web and computer-assisted telephone surveys could lean on back-
end software to suggest the next question. In-person field surveys would need a mechanism
for inputting responses and quickly receiving the next question, such as a mobile app that calls
a low-latency API for the active ordering. It would be productive to integrate with existing
survey platforms to make the active strategy available. Additionally, suggesting questions in
batch may be more practical than sequentially; this calls for optimal design with a multistep
horizon. It is also an opportunity to design logical question groupings informed by domain
knowledge of practitioners.

Ultimately, the degree to which active question selection influences survey design rests
with the survey researcher. Our method can guide the researcher in creating shorter instru-
ments by suggesting informative questions in a principled manner. At the other end of the
spectrum, it can automate adaptive survey design.
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