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Abstract. Our work is motivated by a desire to study the theoretical underpinning for the convergence of stochastic gradient type
algorithms widely used for non-convex learning tasks such as training of neural networks. The key insight, already observed in (Mei,
Montanari and Nguyen (2018); Chizat and Bach (2018); Rotskoff and Vanden-Eijnden (2018)), is that a certain class of the finite-
dimensional non-convex problems becomes convex when lifted to infinite-dimensional space of measures. We leverage this observation
and show that the corresponding energy functional defined on the space of probability measures has a unique minimiser which can
be characterised by a first-order condition using the notion of linear functional derivative. Next, we study the corresponding gradient
flow structure in 2-Wasserstein metric, which we call Mean-Field Langevin Dynamics (MFLD), and show that the flow of marginal
laws induced by the gradient flow converges to a stationary distribution, which is exactly the minimiser of the energy functional. We
observe that this convergence is exponential under conditions that are satisfied for highly regularised learning tasks. Our proof of
convergence to stationary probability measure is novel and it relies on a generalisation of LaSalle’s invariance principle combined with
HWI inequality. Importantly, we assume neither that interaction potential of MFLD is of convolution type nor that it has any particular
symmetric structure. Furthermore, we allow for the general convex objective function, unlike, most papers in the literature that focus
on quadratic loss. Finally, we show that the error between finite-dimensional optimisation problem and its infinite-dimensional limit is
of order one over the number of parameters.

Résumé. L’objectif de nos travaux est d’étudier le fondement théorique pour la convergence des algorithmes du type gradient stochas-
tique, qui sont très souvent utilisés dans les problèmes d’apprentissage non-convexe, e.g. calibrer un réseau de neurones. L’observation
clé, qui a déjà été remarquée dans (Mei, Montanari and Nguyen (2018); Chizat and Bach (2018); Rotskoff and Vanden-Eijnden (2018)),
est qu’une certaine classe de problèmes non-convexes fini-dimensionnels devient convexe une fois injectée dans l’espace des mesures
de probabilité. À l’aide de cette observation nous montrons que la fonction d’énergie correspondante définie dans l’espace des mesures
de probabilité a un unique minimiser qui peut être caractérisé par une condition de premier ordre en utilisant la notion de dérivée fonc-
tionnelle. Par la suite, nous étudions la structure de flux de gradient avec la métrique de 2-Wasserstein, que nous appelons la dynamique
de Langevin au champs moyen (MFLD), et nous montrons que la loi marginale du flux de gradient converge vers une loi stationnaire
qui correspond au minimiser de la même fonction d’énergie précédente. Sous certaines conditions de régularité du probléme initial, la
convergence a lieu à une vitesse exponentielle. Nos preuves de la convergence vers la loi stationnaire est nouvelle, qui reposent sur le
principe d’invariance de LaSalle et l’inégalité HWI. Remarquons que nous ne supposons pas que l’interaction potentielle de MFLD
soit du type convolution ou symétrique. De plus, nos résultats s’appliquent aux fonctions d’objectif convexes générales contrairement
aux beaucoup d’articles dans la littérature qui se limitent aux fonctions quadratiques. Enfin, nous montrons que la différence entre le
probléme initial d’optimisation fini-dimensionnel et sa limite dans l’espace des mesures de probabilité est de l’ordre d’un sur le nombre
de paramètres.
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1. Introduction

Neural networks trained with stochastic gradient descent algorithm proved to be extremely successful in number of appli-
cations such as computer vision, natural language processing, generative models or reinforcement learning [36]. However,
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complete mathematical theory that would provide theoretical guarantees for the convergence of machine learning algo-
rithms for non-convex learning tasks has been elusive. On the contrary, empirical experiments demonstrate that classical
learning theory [50] may fail to predict the behaviour of modern machine learning algorithms [52]. In fact, it has been
observed that the performance of neural networks based algorithms is insensitive to the number of parameters in the hid-
den layers (provided that this is sufficiently large) and in practice one works with models that have number of parameters
larger than the size of the training set [4,24]. These findings motivate the study of neural networks with large number of
parameters which is a subject of this work.

Furthermore while universal representation theorems ensures the existence of the optimal parameters of the network,
it is in general not known when such optimal parameters can be efficiently approximated by conventional algorithms,
such as stochastic gradient descent. This paper aims at revealing the intrinsic connection between the optimality of the
network parameters and the dynamic of gradient-descent-type algorithm, using the perspective of the mean-field Langevin
equation.

This work builds on the rigorous mathematical framework to study non-convex learning tasks such as training of neural
networks developed in Mei, Misiakiewicz and Montanari [39], Chizat and Bach [18], Sirignano and Spiliopoulos [45] as
well as Rotskoff and Vanden-Eijnden [44].

We extend some existing results and provide a novel proof technique for mathematical results which provide a the-
oretical underpinning for the convergence of stochastic gradient type algorithms widely used in practice to train neural
networks. We demonstrate how our results apply to a situation when one aims to train one-hidden layer neural network
with (noisy) stochastic gradient algorithm.

Let us first briefly recall the classical finite dimensional Langevin equation. Given a potential function f : Rd → R

which is Lipschitz continuous and satisfies appropriate growth condition, the overdamped Langevin equation reads

dXt = −∇f (Xt ) dt + σ dWt , (1.1)

where σ is a scalar constant and W is a d-dimension Brownian motion. One can view this dynamic in two perspectives:

(i) The solution to (1.1) is a time-homogeneous Markov diffusion, so under mild condition it admits a unique invariant
measure mσ,∗, of which the density function must be in the form

mσ,∗(x) = 1

Z
exp

(
− 2

σ 2
f (x)

)
, for all x ∈R

d , where Z :=
∫
Rd

exp

(
− 2

σ 2
f (x)

)
dx.

(ii) The dynamic (1.1) can be viewed as the path of a randomised continuous time gradient descent algorithm.

These two perspectives are unified through the variational form of the invariant measure, namely, mσ,∗ is the unique
minimiser of the free energy function

V σ (m) :=
∫
Rd

f (x)m(dx) + σ 2

2
H(m)

over all probability measure m, where H is the relative entropy with respect to the Lebesgue measure. The variational
perspective has been established in [32] and [33]. Moreover, one may observe that the distribution mσ,∗ concentrates to
the Dirac measure δarg minf as σ → 0 and there is no need to assume that the function f is convex. This establishes the
link between theory of statistical sampling and optimisation and show that Langevin equation plays an important role
in the non-convex optimisation. This fact is well-recognized by the communities of numerical optimisation and machine
learning [27,28,30]

This paper aims at generalising the connection between the global minimiser and the invariant measure to the case
where the potential function is a function defined on a space of probability measures. This is motivated by the following
observation on the configuration of neural network. Let us take the example of the network with 1-hidden-layer. While
the universal representation theorem, [3,19] tells us that 1-hidden-layer network can arbitrarily well approximate the
continuous function on the compact time interval it does not tell us how to find optimal parameters. One is faced with the
following non-convex optimisation problem.

min
βn,i∈R,αn,i∈Rd−1

{∫
R×Rd−1

�

(
y − 1

n

n∑
i=1

βn,iϕ(αn,i · z)
)

ν(dy, dz)

}
, (1.2)

where � : R → R is a convex function, ϕ : R → R is a bounded, continuous, non-constant activation function and ν

is a measure of compact support representing the data. Let us define the empirical law of the parameters as mn :=
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1
n

∑n
i=1 δ{βn,i ,αn,i }. Then

1

n

n∑
i=1

βn,iϕ(αn,i · z) =
∫
Rd

βϕ(α · z)mn(dβ, dα).

To ease notation let us use, for x = (β,α) ∈ R
d , the function ϕ̂(x, z) := βϕ(α · z), and by E

m we denote the expecta-
tion of random variable X under the probability measure m. Now, instead of (1.2), we propose to study the following
minimisation problem over the probability measures:

min
m

F(m), with F(m) :=
∫
Rd

�
(
y −E

m
[
ϕ̂(X, z)

])
ν(dy, dz), (1.3)

This reformulation is crucial, because the potential function F defined above is convex in the measure space i.e. for any
probability measures m and m′ it holds that

F
(
(1 − α)m + αm′)≤ (1 − α)F (m) + αF

(
m′) for all α ∈ [0,1].

This example demonstrates that a non-convex minimisation problem on a finite-dimensional parameter space becomes a
convex minimisation problem when lifted to the infinite dimensional space of probability measures. The key aim of this
work is to provide analysis that takes advantage of this observation.

In order to build up the connection between the global minimiser of the convex potential function F and the upcoming
mean-field Langevin equation, as in the classic case, we add the relative entropy H as a regulariser, but different from the
classic case, we use the relative entropy with respect to a Gibbs measure of which the density is proportional to e−U(x).
A typical choice of the Gibbs measure could be the standard Gaussian distribution. One of our main contributions is to
characterise the minimiser of the free energy function

V σ := F + σ 2

2
H

using the linear functional derivative on the space of probability measures, denoted by δ
δm

(introduced originally in
calculus of variations and now used extensively in the theory of mean field games see, e.g. Cardaliaguet et al. [12]).
Indeed, we prove the following first order condition:

m∗ = arg min
m

V σ (m) if and only if
δF

δm

(
m∗, ·)+ σ 2

2
log
(
m∗)+ σ 2

2
U = constant.

This condition together with the fact that m∗ is a probability measure gives

m∗(x) = 1

Z
exp

(
− 2

σ 2

(
δF

δm

(
m∗, x

)+ U(x)

))
,

where Z is the normalising constant. We emphasise that throughout V and hence m∗ depend on the regularisation pa-
rameter σ > 0. It is noteworthy that the variational form of the invariant measure of the classic Langevin equation is a
particular example of this first order condition. Moreover, given a measure m∗ satisfying the first order condition, it is
formally a stationary solution to the nonlinear Fokker–Planck equation:

∂tm = ∇ ·
((

DmF(m, ·) + σ 2

2
∇U

)
m + σ 2

2
∇m

)
, (1.4)

where DmF is the intrinsic derivative on the probability measure space, defined as DmF(m,x) := ∇ δF
δm

(m,x). Clearly,
the particle dynamic corresponding to this Fokker–Planck equation is governed by the mean field Langevin equation:

dXt = −
(

DmF(mt ,Xt ) + σ 2

2
∇U(Xt)

)
dt + σ dWt , where mt := Law(Xt ). (1.5)

Therefore, formally, we have already obtained the correspondence between the minimiser of the free energy function and
the invariant measure of (1.5). In this paper, the connection is rigorously proved mainly with a probabilistic argument.

For the particular application to the neural network (1.3), it is crucial to observe that the dynamics corresponding to
the mean field Langevin dynamics describes exactly the path of the randomised regularized gradient-descent algorithm.
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More precisely, consider the case where we are given data points (ym, zm)m∈N which are i.i.d. samples from ν. If the loss
function � is simply the square loss then a version of the (randomized, regularized) gradient descent algorithm for the
evolution of parameter xi

k will simply read as

xi
k+1 = xi

k + 2τ

((
yk − 1

N

N∑
j=1

ϕ̂
(
x

j
k , zk

))∇ϕ̂
(
xi
k, z

k
)− σ 2

2
∇U
(
xi
k

))+ σ
√

τξ i
k, (1.6)

with ξ i
k independent samples from N(0, Id) (for details we refer the reader to Section 3.2). This evolution is an approxi-

mation of (1.5) and can be viewed as noisy gradient decent. Indeed, in its original form, the classical stochastic gradient
decent (also known as the Robins–Monroe algorithm), is given by (1.6) with σ = 0.

1.1. Organisation of the paper

The introduction is concluded by Section 1.2, where we compare the findings in this paper to those available in the
literature, and by Section 1.3 recall some basic notions of measure derivatives. All the main results of the paper are
presented in Section 2. In Section 3 we show how the results in Section 2 apply to in the case of gradient descent training
of neural networks. Section 4 contains all the proofs of the results concerning the free energy function: �-convergence
when σ → 0, particle approximation and the first order condition. In Section 5 we prove required properties of (1.4) and
(1.5), Section 6 is used to prove the convergence of the solution to (1.4) to an invariant measure which is the minimizer
of the free energy function.

1.2. Theoretical contributions and literature review

The study of stationary solutions to nonlocal, diffusive equations (1.4) is classical topic with it roots in statistical physics
literature and with strong links to Kac’s program in Kinetic theory [40]. We also refer reader to excellent monographs [2]
and [1]. In particular, variational approach has been developed in [14,42,49] where authors studied dissipation of entropy
for granular media equations with the symmetric interaction potential of convolution type (interaction potential corre-
sponds to term DmF in (1.4)). We also refer a reader to similar results with proofs based on particle approximation of [8,
15,51], coupling arguments [22] and Khasminskii’s technique [7,11]. All of the above results impose restrictive condition
on interaction potential or/and require it to be sufficiently small. We manage to relax these assumptions allowing for the
interaction potential to be arbitrary (but sufficiently regular/bounded) function of measure. Our proof is probabilisitic in
nature. Using Lasalle’s invariance principle and the HWI inequality from Otto and Villani [43] as the main ingredients,
we prove the desired convergence. This approach, to our knowledge, is original, and it clearly justifies the solvability of
the randomized/regularized gradient descent algorithm for neural networks. Finally we clarify how different notions of
calculus on the space of probability measures enter our framework. The calculus is critical to work with arbitrary func-
tions of measure. We refer to [13, Chapter 5] for an overview on that topic. The calculus on the measure space enables to
derive and quantify the error between finite dimensional optimisation problem and its infinite dimensional limit.

Other results are now available for the mean-field description of non-convex learning problems, see [18,31,38,39,44,
45]. Let us compare this paper to the key results available in the literature. There are essentially three, or, if entropic
regularization is included, four key ingredients:

(i) that the finite dimensional optimisation problem is approximated by infinite dimensional problem of minimizing
over measures (Theorem 2.4),

(ii) that the regularized problem approximates the original minimization problem (Proposition 2.3),
(iii) that on the space of probability measures the minimizers (or, if entropic regularization is included, the unique mini-

mizer) satisfy a first order condition (Proposition 2.5),
(iv) and finally that on the space of probability measures we have a gradient flow that converges with time to the mini-

mizer (Theorem 2.11).

Chizat and Bach [18] work without adding entropic regularization which means that their minimization task is convex
but not strictly convex. They have results regarding (i) and (iii). They have a partial result related to (iv) in that they prove
that if the gradient flow converges to a limit, as t → ∞ then objective function also converge to global minimiser. To
prove this final convergence result they require the assumption that the activation function is homogenous of either order
1 or order 2 and that, essentially, initial law has full support. The setting used in Chizat and Bach [18] is rather different to
that of the results in the present paper: in particular we do not need to assume any homogeneity on the activation function
and apart mild integrability conditions we do not make assumptions on the initial law. Since we regularize using entropy
we obtain convergence of the gradient flow to the minimizer.
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Rotskoff and Vanden-Eijnden [44] again work without entropic regularization and have results (i). Moreover they
provide Central-Limit-Theorem-type fluctuation results. They do show that the output of the network converges to a limit
as the time in the gradient flow for the parameter measure goes to infinity. However they do not prove convergence of the
parameter measure itself as in (iv).

Sirignano and Spiliopoulos in [45] provide detail analysis of (i), also studying time-discretisation of continuous time
gradient flow. In Section 3.2, by using links between intrinsic derivative on the space of measure and its finite dimensional
projection we provide further insight on the choice of scalings needed to derive non-trival limit in [45].

The setting of our paper is the closest to that of Mei, Misiakiewicz and Montanari [39] in that they use the entropic
regularization. For a square loss function � and a quadratic regularizer U they prove results on all of (i), (ii), (iii) and (iv).
In this paper we allow a general loss function for all the above results(that this is possible is conjectured in Appendix B
of [39]). Due to the special choice of the square loss function, in [39, Lemma 6.10] the authors can compute directly the
dynamics of F(mt ) along the flow of measures defined by (1.4). Instead, we obtain the desired dynamics for much more
general F using a pathwise argument based on the Itô calculus (see Theorem 2.9). The proof of (iv) in [39, Lemma 6.12]
is based on the Poincaré inequality for the Gaussian distribution and shows that the marginal law weakly converges. It is
not clear whether this argument can be extended to the case with a general regularizer U , whereas this paper develops a
new technique based on LaSalle’s invariance principle and the HWI inequality, which allows us to prove the convergence
for general U in the Wasserstein-2 metric, and moreover we observe that in the highly regularized case this convergence
is exponential, see Theorem 2.11.

1.3. Calculus on the space of probability measures

By P(Rd) we denote the space of probability measures on R
d , and by Pp(Rd) the subspace of P(Rd) in which the

measures have finite p-moment for p ≥ 1. Note that π ∈ Pp(Rd ×R
d) is called a coupling of μ and ν in Pp(Rd), if for

any borel subset B of Rd we have π(B,Rd) = μ(B) and π(Rd ,B) = ν(B). By Wp we denote the Wasserstein-p metric
on Pp(Rd), namely,

Wp(μ, ν) := inf

{(∫
Rd×Rd

|x − y|pπ(dx, dy)

) 1
p ;π is a coupling of μ and ν

}
for μ,ν ∈ Pp

(
R

d
)
.

It is convenient to recall that

(i) (Pp(Rd),Wp) is a Polish space;
(ii) Wp(μn,μ) → 0 if and only if μn weakly converge to μ and

∫
Rd |x|pμn(dx) → ∫

Rd |x|pμ(dx);

(iii) for p′ > p, the set {μ ∈Pp(Rd) : ∫
Rd |x|p′

μ(dx) ≤ C} is Wp-compact.

We say a function F : P(Rd) → R is in C1 if there exists a bounded continuous function δF
δm

: P(Rd) ×R
d → R such

that

F
(
m′)− F(m) =

∫ 1

0

∫
Rd

δF

δm

(
(1 − λ)m + λm′, x

)(
m′ − m

)
(dx) dλ. (1.7)

We will refer to δF
δm

as the linear functional derivative. There is at most one δF
δm

, up to a constant shift, satisfying (1.7). To
avoid the ambiguity, we impose∫

Rd

δF

δm
(m,x)m(dx) = 0.

If (m,x) �→ δF
δm

(m,x) is continuously differentiable in x, we define its intrinsic derivative DmF : P(Rd) ×R
d → R

d by

DmF(m,x) = ∇
(

δF

δm
(m,x)

)
.

In this paper ∇ always denotes the gradient in the variable x ∈R
d .

Example 1.1. If F(m) := ∫
Rd φ(x)m(dx) for some bounded continuous function φ : Rd → R, we have δF

δm
(m,x) = φ(x)

and DmF(m,x) = φ̇(x).
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It is useful to see what intrinsic measure derivative look like in the special case when we consider empirical measures

mN := 1

N

N∑
i=1

δxi , where xi ∈ R
d .

Then one can define FN : (Rd)N → R as FN(x1, . . . , xN) = F(mN). From [16, Proposition 3.1] we know that that if
F ∈ C1 then FN ∈ C1 and for any i = 1, . . . ,N and (x1, . . . , xN) ∈ (Rd)N it holds that

∂xi FN
(
x1, . . . , xN

)= 1

N
DmF

(
mN,xi

)
. (1.8)

We remark that for notational simplicity in the proofs the constant C > 0 can be different from line to line.

2. Main results

The objective of this paper is to study the minimizer(s) of a convex function F :P(Rd) → R.

Assumption 2.1. Assume that F ∈ C1 is convex and bounded from below.

Instead of directly considering the minimization minm F(m), we propose to first study the regularized version, namely,
the minimization of the free energy function:

min
m∈P(Rd )

V σ (m), where V σ (m) := F(m) + σ 2

2
H(m), for all m ∈ P

(
R

d
)
, (2.1)

where H : P(Rd) → [0,∞] is the relative entropy (Kullback–Leibler divergence) with respect to a given Gibbs measure
in R

d , namely,

H(m) :=
∫
Rd

m(x) log

(
m(x)

g(x)

)
dx,

where

g(x) = e−U(x) with U s.t.
∫
Rd

e−U(x) dx = 1,

is the density of the Gibbs measure and the function U satisfies the following conditions.

Assumption 2.2. The function U :Rd →R belongs to C∞. Further,

(i) there exist constants CU > 0 and C′
U ∈R such that

∇U(x) · x ≥ CU |x|2 + C′
U for all x ∈R

d . (2.2)

(ii) ∇U is Lipschitz continuous.

Immediately, we obtain that there exist 0 ≤ C′ ≤ C such that for all x ∈R
d

C′|x|2 − C ≤ U(x) ≤ C
(
1 + |x|2), ∣∣�U(x)

∣∣≤ C.

A typical choice of g would be the density of the d-dimensional standard Gaussian distribution. We recall that such
relative entropy H has the properties: it is strictly convex when restricted to measures absolutely continuous with g, it is
weakly lower semi-continuous and its sub-level sets are compact. For more details, we refer the readers to the book [20,
Section 1.4]. The original minimization and the regularized one is connected through the following �-convergence result.

Proposition 2.3. Assume that F is continuous in the topology of weak convergence. Then the sequence of functions

V σ = F + σ 2

2 H �-converges to F when σ ↓ 0. In particular, given the minimizer m∗,σ of V σ , we have

lim
σ→0

F
(
m∗,σ

)= inf
m∈P2(R

d )
F (m).
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It is a classic property of �-convergence that every cluster point of (arg minm V σ (m))σ is a minimizer of F .
The following theorem shows that we can control the error between the finite and infinite-dimensional optimization

problems. It generalises [39, Proposition 2.1] to an arbitrary (smooth) functions of measure. It is an extension of the result
from [17, Theorem 2.11].

Theorem 2.4. We assume that the 2nd order linear functional derivative of F exists, is jointly continuous in both variables
and that there is L > 0 such that for any random variables η1, η2 such that E[|ηi |2] < ∞, i = 1,2, it holds that

E

[
sup

ν∈P2(R
d )

∣∣∣∣δFδm(ν,η1)

∣∣∣∣]+E

[
sup

ν∈P2(R
d )

∣∣∣∣δ2F

δm2
(ν, η1, η2)

∣∣∣∣]≤ L (2.3)

If there is an m∗ ∈ P2(R
d) such that F(m∗) = infm∈P2(R

d ) F (m) then we have that∣∣∣∣∣ inf
(xi )

N
i=1⊂Rd

F

(
1

N

N∑
i=1

δxi

)
− F

(
m∗)∣∣∣∣∣≤ 2L

N
.

Moreover, when the relative entropy H is strictly convex, then so is the function V , and thus the minimizer
arg minm∈P(Rd ) V (m), if exists, must be unique. It can be characterized by the following first order condition.

Proposition 2.5. Under Assumption 2.1 and 2.2, the function V σ has a unique minimizer absolutely continuous with
respect to Lebesgue measure �, and belonging to P2(R

d). Moreover, m∗ ∈ P2(R
d) = arg minm∈P(Rd ) V

σ (m) if and only
if m∗ is equivalent to Lebesgue measure and

δF

δm

(
m∗, ·)+ σ 2

2
log
(
m∗)+ σ 2

2
U is a constant, �-a.s., (2.4)

where we abuse the notation, still denoting by m∗ the density with respect to Lebesgue measure.

Further, we are going to approximate the minimizer of V σ , using the marginal laws of the solution to the upcoming
mean field Langevin equation. Let σ ∈ R+ and consider the following McKean–Vlasov SDE:

dXt = −
(

DmF(mt ,Xt ) + σ 2

2
∇U(Xt)

)
dt + σ dWt , (2.5)

where mt is the law of Xt and (Wt)t≥0 is a standard d-dimensional Brownian motion.

Remark 2.6.

(i) Let F(m) = ∫
Rd f (x)m(dx) for some function f in C1(Rd ,R). We know that DmF(m,x) = ∇f (x). Hence with this

choice of F and entropy regulariser with respect to the Lebesgue measure, the dynamics (2.5) becomes the standard
overdamped Langevin equation (1.1).

(ii) If the Gibbs measure is chosen to be a standard Gaussian distribution, the potential of the drift of (2.5) becomes

F(m) + σ 2

4

∫
Rd |x|2m(dx). This shares the same spirit as ridge regression.

Assumption 2.7. Assume that the intrinsic derivative DmF : P(Rd) ×R
d → R

d of the function F : P(Rd) → R exists
and satisfies the following conditions:

(i) DmF is bounded and Lipschitz continuous, i.e. there exists CF > 0 such that for all x, x ∈R
d and m,m′ ∈P2(R

d)∣∣DmF(m,x) − DmF
(
m′, x′)∣∣≤ CF

(∣∣x − x′∣∣+W2
(
m,m′)) (2.6)

(ii) DmF(m, ·) ∈ C∞(Rd) for all m ∈ P(Rd);
(iii) ∇DmF : P(Rd) ×R

d → R
d ×R

d is jointly continuous.

The well-posedness of the McKean–Vlasov SDE (2.5) under Assumption 2.2 and 2.7 on the time interval [0, t], for
any t , is well known, see e.g. Snitzman [46], so the proof of the following proposition is omitted.
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Proposition 2.8. Under Assumption 2.2 and 2.7 the mean field Langevin SDE (2.5) has a unique strong solution, if
m0 ∈P2(R

d). Moreover, the solution is stable with respect to the initial law, that is, given m0,m
′
0 ∈ P2(R

d), denoting by
(mt )t∈R+ , (m′

t )t∈R+ the marginal laws of the corresponding solutions to (2.5), we have for all t > 0 there is a constant
C > 0 such that

W2
(
mt,m

′
t

)≤ CW2
(
m0,m

′
0

)
.

We shall prove the process (V σ (mt ))t is decreasing and satisfies the following dynamic.

Theorem 2.9. Let m0 ∈ P2(R
d). Under Assumption 2.2 and 2.7, we have for any t > s > 0

V σ (mt ) − V σ (ms) = −
∫ t

s

∫
Rd

∣∣∣∣DmF(mr, x) + σ 2

2

∇mr

mr

(x) + σ 2

2
∇U(x)

∣∣∣∣2mr(x)dx dr. (2.7)

Remark 2.10. In order to prove (2.7), we use the generalized Itô calculus as the main tool. Alternative proofs of Theo-
rem 2.9 can be obtained under the comparable assumptions using the theory of gradient flows, see e.g. the monograph [1].
Also note that our path-wise argument shares the spirit with the recent work [34], which recovers the results of gradient
flows for probability measure on the Euclidean space using the Itô calculus but only for linear functional F .

Formally, there is a clear connection between the derivative dV σ (mt )
dt

in (2.7) and the first order condition (2.4), and it
is revealed by the following main theorem.

We call a measure m an invariant measure of (2.5), if Law(Xt ) = m for all t ≥ 0.

Theorem 2.11. Let Assumption 2.1, 2.2 and 2.7 hold true and m0 ∈⋃p>2 Pp(Rd). Denote by (mt )t∈R+ the flow of
marginal laws of the solution to (2.5). There exists an invariant measure of (2.5) equal to m∗ := arg minm V σ (m), and
limt→∞ W2(mt ,m

∗) = 0.

Remark 2.12. As mentioned, the main contribution of this paper is to prove the W2-convergence of the marginal laws
of (2.5) towards the invariant measure under the mild conditions (Assumption 2.1, 2.2 and 2.7). Note that it is possible
to obtain exponential convergence result with extra conditions on the coefficients. More precisely, given the constants
CF ,ρF ,CU such that∣∣DmF(m,x) − DmF

(
m′, x′)∣∣≤ CF

∣∣x − x′∣∣+ ρFW1
(
m,m′) for all x, x′ ∈ R

d and m,m′ ∈ P
(
R

d
)
,(

x − x′) · (∇U(x) − ∇U
(
x′))≥ CU

∣∣x − x′∣∣2 for
∣∣x − x′∣∣ big enough ,

Eberle, Guillin and Zimmer [22] proved that there exists a constant γ depending on σ , CF and CU such that

W1
(
mt,m

′
t

)≤ Ce−(γ−ρF )tW1
(
m0,m

′
0

)
, (2.8)

where (m′
t )t∈R+ , (m′

t )t∈R+ are the flows of marginal laws of the solutions to (2.5) with the initial law m0,m
′
0, respectively.

In particular,

(i) the result (2.8) only implies the exponential contraction provided that ρF is small enough, that is, the mean field
dependence must be small;

(ii) the constant γ is increasing in σ and CU , so γ is big only if σ or/and CU are large, that is, the optimization (2.1) is
over-regularized.

3. Application to gradient descent of neural networks

Before proving the main results, we shall first apply them to study the minimization over a neural network. In particular,
in Corollary 3.3 we shall show that the marginal laws of the corresponding mean-field Langevin dynamics converge to
the optimal weight of the neural network with 1-hidden layer.

Fix a locally Lipschitz function ϕ : R → R and for l ∈ N define ϕl : Rl → R
l as the function given, for z =

(z1, . . . , zl)
� by ϕl(z) = (ϕ(z1), . . . , ϕ(zl))

�. We fix L ∈N (the number of layers), lk ∈N, k = 0,1, . . .L − 1 (the size of
input to layer k) and lL ∈ N (the size of the network output). A fully connected artificial neural network is then given by
� = ((α1, β1), . . . , (αL,βL)) ∈ �, where, for k = 1, . . . ,L, we have real lk × lk−1 matrices αk and real lk-dimensional
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vectors βk . We see that � = (Rl1×l0 × R
l1) × (Rl2×l1 × R

l2) × · · · × (RlL×lL−1 × R
lL). The artificial neural network

defines a reconstruction function R� :Rl0 →R
lL given recursively, for z0 ∈ R

l0 , by

(R�)
(
z0)= αLzL−1 + βL, zk = ϕlk

(
αkzk−1 + βk

)
, k = 1, . . . ,L − 1.

If for each k = 1, . . . ,L − 1 we write αk
i , βk

i to denote the i-th row of the matrix αk and vector βk respectively then we
can write the reconstruction of the network equivalently as

(R�)
(
z0)

i
= αL

i · zL−1 + βL
i ,

(
zk
)
i
= ϕ
(
αk

i · zk−1 + βk
i

)
, k = 1, . . . ,L − 1. (3.1)

We note that the number of parameters in the network is
∑L

i=1(lk−1lk + lk).
Given a potential function � and training data (yj , zj )Nj=1, (yj , zj ) ∈R

d one approximates the optimal parameters by
finding

arg min
�∈�

1

N

N∑
j=1

�
(
yj − (R�)

(
zj
))

. (3.2)

This is a non-convex minimization problem, so in general hard to solve. Theoretically, the following universal repre-
sentation theorem ensures that the minimum value should attain 0, provided that y = f (z) with a continuous function
f .

Theorem 3.1 (Universal Representation Theorem). If an activation function ϕ is bounded, continuous and non-
constant, then for any compact set K ⊂R

d the set{
(R�) : Rd →R : (R�) given by (3.1) with L = 2 for some n ∈ N, α2

j , β
1
j ∈ R, α1

j ∈R
d , j = 1, . . . , n

}
is dense in C(K).

For an elementary proof, we refer the readers to [29, Theorem 2].

3.1. Fully connected 1-hidden layer neural network

Take L = 2, fix d ∈ N and n ∈ N and consider the following 1-hidden layer neural network for approximating functions
from R

d to R: let l0 = d , let l1 = n, let β2 = 0 ∈ R, β1 = 0 ∈ R
n, α1 ∈ R

n×d . We will denote, for i ∈ {1, . . . , l0}, its i-th
row by α1

i ∈ R
1×d . Let α2 = ( c1

n
, . . . , cn

n
)�, where ci ∈ R. The neural network is �n = ((α1, β1), (α2, β2)) (where we

emphasise the that the size of the hidden layer is n). For z ∈R
l0 , its reconstruction can be written as

(
R�n

)
(z) = α2ϕl1

(
α1z
)= 1

n

n∑
i=1

ciϕ
(
α1

i · z).
The key observation is to note that, due to law of large numbers (and under appropriate technical assumptions)

1
n

∑n
j=1 cjϕ(α1

j · z) → E
m[Bϕ(A · z)] as n → ∞, where m is the law of the pair of random variables (B,A) and E

m

is the expectation under the measure m. Therefore, another way (indeed a more intrinsic way regarding to the universal
representation theorem) to formulate the minimizaiton problem (3.2) is:

min
m∈P(Rd×R)

F̃ (m), where F̃ (m) :=
∫
Rd

�
(
y −E

m
[
Bϕ(A · z)])ν(dz, dy).

For technical reason, we introduce a truncation function � : R → K (K denotes again some compact set), and consider
the truncated version of the minimization:

F(m) :=
∫
Rd

�
(
y −E

m
[
�(B)ϕ(A · z)])ν(dz, dy).

It is crucial to note that in the reformulation the objective function F becomes a convex function on P(Rd), provided that
� is convex.
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Assumption 3.2. We apply the following assumptions on the coefficients �,μ,ϕ, �:

(i) the function � is convex, smooth and 0 = �(0) = mina∈R �(a);
(ii) the data measure μ is of compact support;

(iii) the truncation function � ∈ C∞
b (Rd) such that �̇ and �̈ are bounded;

(iv) the activation function ϕ ∈ C∞
b (Rd) such that ϕ̇ and ϕ̈ are bounded.

Corollary 3.3. Under Assumption 3.2, the function F satisfies Assumption 2.1, 2.7. In particular, with a Gibbs measure
of which the function U satisfies Assumption 2.2, the corresponding mean field Langevin equation (2.5) admits a unique
strong solution, given m0 ∈P2(R

d). Moreover, the flow of marginal laws of the solution, (mt )t∈R+ , satisfies

lim
t→+∞W2

(
mt, arg min

m∈P(Rd )

V σ (m)
)= 0.

Proof. Let us define, for x = (β,α) ∈ R
d , β ∈ R, α ∈R

d−1 and z ∈R
d−1 the function ϕ̂(x, z) := �(β)ϕ(α · z). Then

δF

δm
(m,x) = −

∫
Rd

�̇
(
y −E

m
[
ϕ̂(X, z)

])
ϕ̂(x, z)ν(dz, dy) and

DmF(m,x) = −
∫
Rd

�̇
(
y −E

m
[
ϕ̂(X, z)

])∇ϕ̂(x, z)ν(dz, dy).

Then it becomes straightforward to verify that F satisfies both Assumption 2.1, 2.7. The rest of the result is direct from
Proposition 2.8 and Theorem 2.11. �

3.2. Gradient descent

Consider independent random variables (Xi
0)

N
i=1, Xi

0 ∼ m0 and independent Brownian motions (Wi)Ni=1. By approximat-
ing the law of the process (2.5) by its empirical law we arrive at the following interacting particle system{

dXi
t = −(DmF(mN

t ,Xi
t ) + σ 2

2 ∇U(Xi
t )) dt + σ dWi

t , i = 1, . . . ,N,

mN
t = 1

N

∑N
i=1 δXi

t
.

(3.3)

Note that particles (Xi)Ni=1 are not independent, but their laws are exchangeable. Recall the link between partial derivatives

and measure derivative given by (1.8) and for any (x1, . . . , xN) ∈ (Rd)N let FN(x1, . . . , xN) = F( 1
N

∑N
i=1 δxi ). Then

dXi
t = −

(
N∂xi

FN
(
X1

t , . . . ,X
N
t

)+ σ 2

2
∇U
(
Xi

t

))
dt + σ dWi

t .

Let us define, for x = (β,α) ∈R
d , β ∈ R, α ∈R

d−1 and z ∈R
d−1 the function ϕ̂(x, z) := �(β)ϕ(α · z). Then for (xi)Ni=1

we have

FN(x) =
∫
Rd

�

(
y − 1

N

N∑
j=1

ϕ̂
(
xj , z

))
ν(dz, dy).

Hence

∂xi FN
(
x1, . . . , xN

)= − 1

N

∫
Rd

�̇

(
y − 1

N

N∑
j=1

ϕ̂
(
xj , z

))∇ϕ̂
(
xi, z

)
ν(dz, dy),

where we denote for all z ∈ R
d−1

∇ϕ̂
(
xi, z

)= ∇(βi ,αi )

[
�
(
βi
)
ϕ
(
αiz
)]= ( �̇

(
βi
)
ϕ
(
αi · z)

�
(
βi
)
ϕ̇
(
αi · z)z

)
.

We thus see that (3.3) corresponds to

dXi
t =
(∫

Rd

�̇

(
y − 1

N

N∑
j=1

ϕ̂
(
X

j
t , z
))∇ϕ̂

(
Xi

t , z
)
ν(dz, dy) − σ 2

2
∇U
(
Xi

t

))
dt + σ dWi

t .
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This is classical Langevin dynamics (1.1) on (Rd)N . One may reasonably expect that the a version of Theorem 2.4 can be
proved in this dynamical setup. This has been done for finite time horizon problem in [17]. The extension to the infinite
horizon requires uniform in time regularity of the corresponding PDE on Wasserstein space (W2,P2) and we leave it for
a future research. However rate for uniform propagation of chaos in W1 under structural condition on the drift has been
proved in [21]. We also remark that for the implementable algorithm one works with time discretisation of (3.3) and, at
least for the finite time, the error bounds are rather well understood [9,10,37,47,48].

For a fixed time step τ > 0 fixing a grid of time points tk = kτ , k = 0,1, . . . we can then write the explicit Euler scheme

X
τ,i
tk+1

− X
τ,i
tk

=
(∫

Rd

�̇

(
y − 1

N

N∑
j=1

ϕ̂
(
X

τ,j
tk

, z
))∇ϕ̂

(
X

τ,i
tk

, z
)
ν(dz, dy) − σ 2

2
∇U
(
X

τ,i
tk

))
τ + σ

(
Wi

tk+1
− Wi

tk

)
.

To relate this to the gradient descent algorithm we consider the case where we are given data points (ym, zm)n∈N which
are i.i.d. samples from ν. If the loss function � is simply the square loss then a version of the (regularized) gradient
descent algorithm for the evolution of parameter xi

k will simply read as

xi
k+1 = xi

k +2τ

((
yk − 1

N

N∑
j=1

ϕ̂
(
x

j
k , zk

))∇ϕ̂
(
xi
k, z

k
)− σ 2

2
∇U
(
xi
k

))+σ
√

τξ i
k, with ξ i

k ∼ N(0, Id) independent.

4. Free energy function

In this section, we study the properties concerning the minimizer of the free energy function V σ . First, we prove that V σ

is an approximation of F in the sense of �-convergence.

Proof of Proposition 2.3. Let (σn)n∈N be a positive sequence decreasing to 0. On the one hand, since F is continuous
and H(m) ≥ 0, for all mn → m, we have

lim
n→+∞

V σn(mn) ≥ lim
n→+∞F(mn) = F(m).

On the other hand, given m ∈ P2(R
d), since the function

h(x) := x log(x) (4.1)

is convex, it follows Jensen’s inequality that∫
Rd

h(m ∗ fn)dx ≤
∫
Rd

∫
Rd

h
(
fn(x − y)

)
m(dy)dx =

∫
Rd

h
(
fn(x)

)
dx =

∫
Rd

h
(
f (x)

)
dx − d log(σn),

where f is the heat kernel and fn(x) = σ−d
n f (x/σn). Besides, we have∫

Rd

(m ∗ fn) log(g) dx = −
∫
Rd

m(dy)

∫
Rd

fn(x)U(x − y)dx ≥ −C

(
1 +

∫
Rd

|y|2m(dy)

)
.

The last inequality is due to the quadratic growth of U . Therefore

lim
n→+∞V σn(m ∗ fn) ≤ F(m) + lim

n→+∞
σ 2

n

2

{∫
Rd

h(m ∗ fn)dx −
∫
Rd

(m ∗ fn) log(g) dx

}
≤ F(m). (4.2)

In particular, given a minimizer m∗,σ of V σ , by (4.2) we have

lim
n→∞F

(
m∗,σn

)≤ lim
n→∞V σ

(
m∗,σn

)≤ lim
n→+∞V σn(m ∗ fn) ≤ F(m), for all m ∈P2

(
R

d
)
. �

Proof of Theorem 2.4. Let μ ∈ P2(R
d) be arbitrary. Let (Xi)

N
i=1 be i.i.d. with law μ. Let μN = 1

N

∑N
i=1 δXi

and mN
t =

μ + t (μN − μ), t ∈ [0,1]. Further let (X̃i)
N
i=1 be consider i.i.d., independent of (Xi)

N
i=1 with law μ.
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By the definition of linear functional derivatives, we have

E
[
F(μN)

]− F(μ) = E

[∫ 1

0

∫
Rd

δF

δm

(
mN

t , v
)
(μN − μ)(dv)dt

]

=
∫ 1

0

1

N

N∑
i=1

(
E

[
δF

δm

(
mN

t ,X1
)]−E

[
δF

δm

(
mN

t , X̃1
)])

dt

=
∫ 1

0
E

[
δF

δm

(
mN

t ,X1
)− δF

δm

(
mN

t , X̃1
)]

dt. (4.3)

We introduce the (random) measures

m̃N
t := mN

t + t

N
(δ

X̃1
− δX1) and mN

t,t1
:= (m̃N

t − mN
t

)
t1 + mN

t , t, t1 ∈ [0,1],

and notice that due to independence of (Xi)
N
i=1 and (X̃i)

N
i=1 we have that

E

[
δF

δm

(
m̃N

t , X̃1
)]= E

[
δF

δm

(
mN

t ,X1
)]

.

Therefore,

E
[
F(μN) − F(μ)

]= ∫ 1

0
E

[
δF

δm

(
m̃N

t , X̃1
)− δF

δm

(
mN

t , X̃1
)]

dt

=
∫ 1

0
E

[∫ 1

0

∫
Rd

δ2F

δm2

(
mN

t,t1
, X̃1, y1

)(
m̃N

t − mN
t

)
(dy1) dt1

]
dt

= 1

N
E

[∫ 1

0

∫ 1

0

∫
Rd

t
δ2F

δm2

(
mN

t,t1
, X̃1, y1

)
(δ

X̃1
− δX1)(dy1) dt1 dt

]
.

(4.4)

To conclude, we observe that

E

[∣∣∣∣∫
Rd

δ2F

δm2

(
mN

t,t1

)
(X̃1, y1)(δX̃1

− δX1)(dy1)

∣∣∣∣]

= E

[∣∣∣∣∫
Rd

δ2F

δm2

(
mN

t,t1

)
(X̃1, y1)δX̃1

(dy1) −
∫
Rd

δ2F

δm2

(
mN

t,t1

)
(X̃1, y1)δX1(dy1)

∣∣∣∣]

≤ E

[
sup

ν∈P2(R
d )

∣∣∣∣δ2F

δm2
(ν)(X̃1, X̃1)

∣∣∣∣+ sup
ν∈P2(R

d )

∣∣∣∣δ2F

δm2
(ν)(X̃1,X1)

∣∣∣∣]≤ 2L,

by (2.3). We have thus shown that for all μ ∈ P2(R
d), for all i.i.d. (Xi)

N
i=1 with law μ and with μN = 1

N

∑N
i=1 δXi

it
holds that∣∣E[F(μN)

]− F(μ)
∣∣≤ 2L

N
. (4.5)

From (4.5) with i.i.d. (X∗
i )

N
i=1 such that X∗

i ∼ m∗, i = 1, . . . ,N we get that∣∣∣∣∣E
[
F

(
1

N

N∑
i=1

δX∗
i

)]
− F

(
m∗)∣∣∣∣∣≤ 2L

N
.

Let (X∗
i )

N
i=1 be i.i.d. such that X∗

i ∼ m∗, i = 1, . . . ,N . Note that

F
(
m∗)≤ inf

(xi )
N
i=1⊂Rd

F

(
1

N

N∑
i=1

δxi

)
≤ E

[
F

(
1

N

N∑
i=1

δX∗
i

)]
.
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From this and (4.5) we then obtain

0 ≤ inf
(xi )

N
i=1⊂Rd

F

(
1

N

N∑
i=1

δxi

)
− F

(
m∗)≤ 2L

N
.

�

In the rest of the section, we shall discuss the first order condition for the minimizer of the function V σ . We first show
an elementary lemma for convex functions on P(Rd).

Lemma 4.1. Under Assumption 2.1, given m,m′ ∈P(Rd), we have

F
(
m′)− F(m) ≥

∫
Rd

δF

δm
(m,x)

(
m′ − m

)
(dx). (4.6)

Proof. Define mε := (1 − ε)m + εm′. Since F is convex, we have

ε
(
F
(
m′)− F(m)

)≥ F
(
mε
)− F(m) =

∫ ε

0

∫
Rd

δF

δm

(
ms,x

)(
m′ − m

)
(dx) ds

Since δF
δm

is bounded and continuous, we obtain (4.6) by the dominant convergence theorem. �

Proof of Proposition 2.5. Step 1. We first prove the existence of minimizer. Clearly there exists m̄ ∈ P(Rd) such that
V σ (m̄) < +∞. Denote

S :=
{
m : σ 2

2
H(m) ≤ V σ (m̄) − inf

m′∈P(Rd )
F
(
m′)}.

As a sublevel set of the relative entropy H , S is weakly compact, see e.g. [20, Lemma 1.4.3]. Together with the weak
lower semi-continuity of V σ , the minimum of V σ on S is attained. Notice that for all m /∈ S , we have V σ (m) ≥ V σ (m̄),
so the minimum of V σ on S coincides with the global minimum. Further, since V σ is strictly convex, the minimizer
is unique. Moreover, given m∗ = arg minm∈P(Rd ) V

σ (m), we know m∗ ∈ S , and thus we have H(m∗) < ∞ as well as

E
m∗ [U(X)] < ∞. Therefore, m∗ ∈ P2(R

d) is absolutely continuous with respect to the Gibbs measure, so also absolutely
continuous with respect to the Lebesgue measure.

Step 2. Sufficient condition: Let m∗ ∈ P2(R
d) satisfy (2.4), in particular, m∗ is equivalent to the Lebesgue measure.

Let m ∈ P(Rd) such that m is absolutely continuous with respect to the Lebesgue measure (otherwise V σ (m) = +∞).
Let

f := dm

dm∗

be the Radon–Nikodym derivative. Let mε := (1 − ε)m∗ + εm = (1 + ε(f − 1))m∗ for ε > 0. For the simplicity of the
notations, denote mε(x) and m∗(x) the respective density function of mε and m∗ with respect to Lebesgue measure.
Recall the function h in (4.1) and note that h(y) ≥ y − 1 for all y ∈ R

+. Using (4.6), we obtain

F(mε) − F(m∗)
ε

≥ 1

ε

∫
Rd

δF

δm

(
m∗, ·)(mε − m∗)dx =

∫
Rd

δF

δm

(
m∗, ·)(f − 1)m∗ dx.

Moreover

σ 2

2ε

(
H
(
mε
)− H

(
m∗))= σ 2

2ε

∫
Rd

(
mε log

mε

g
− m∗ log

m∗

g

)
dx

= σ 2

2ε

∫
Rd

(
mε − m∗) log

m∗

g
dx + σ 2

2ε

∫
Rd

mε

(
log

mε

g
− log

m∗

g

)
dx

= σ 2

2

∫
Rd

(f − 1)m∗ log
m∗

g
dx + σ 2

2ε

∫
Rd

mε log
mε

m∗ dx

= σ 2

2

∫
Rd

(f − 1)m∗(logm∗ + U
)
dx + σ 2

2ε

∫
Rd

h
(
1 + ε(f − 1)

)
m∗ dx
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≥ σ 2

2

∫
Rd

(f − 1)m∗(logm∗ + U
)
dx + σ 2

2

∫
Rd

(f − 1)m∗ dx

= σ 2

2

∫
Rd

(f − 1)m∗(logm∗ + U
)
dx

since
∫
Rd (f − 1)m∗ dx = ∫

Rd (m − m∗) dx = 0. Hence

V σ (mε) − V σ (m∗)
ε

≥
∫
Rd

(
δF

δm

(
m∗, ·)+ σ 2

2
logm∗ + σ 2

2
U

)
(f − 1)m∗ dx = 0.

Step 3. Necessary condition: Let m∗ be the minimizer of V σ . Let m a probability measure such that H(m) < ∞, in
particular m is also absolutely continuous with respect to Lebesgue measure �. As above, denote m(x) and m∗(x) the
respective density function of m and m∗ with respect to Lebesgue measure and we have

V σ (mε) − V σ (m∗)
ε

= 1

ε

∫ ε

0

∫
Rd

δF

δm

(
ms,x

)(
m(x) − m∗(x)

)
dx ds

+ σ 2

2ε

∫
Rd

(
h
(
mε(x)

)− h
(
m∗(x)

)− log
(
g(x)

)(
mε(x) − m∗(x)

))
dx.

Since h is convex, we note that for all ε ∈ (0,1)

1

ε

(
h
(
mε(x)

)− h
(
m∗(x)

)− log
(
g(x)

)(
mε(x) − m∗(x)

))≤ m(x) log

(
m(x)

g(x)

)
− m∗(x) log

(
m∗(x)

g(x)

)
.

Since H(m) and H(m∗) are both finite, the right hand side of the above inequality is integrable. Therefore by Fatou’s
Lemma we obtain

0 ≤ lim
ε→0

V σ (mε) − V σ (m∗)
ε

≤
∫
Rd

(
δF

δm

(
m∗, x

)+ σ 2

2
log
(
m∗(x)

)+ σ 2

2
U(x)

)(
m(x) − m∗(x)

)
dx. (4.7)

Since m is arbitrary, we first obtain

δF

δm

(
m∗, ·)+ σ 2

2
log
(
m∗)+ σ 2

2
U is a constant, m∗-a.s.

Now suppose that m∗ is not equivalent to Lebesgue measure. There exists a set K ⊂ R
d such that m∗(K) = 0 and

�(K) > 0. It follows from (4.7) that 0 ≤ C − ∫K ∞dm. Since we may choose m having positive mass on K, it is a
contradiction. Therefore, m∗ is equivalent to Lebesgue measure and we have

δF

δm

(
m∗, ·)+ σ 2

2
log
(
m∗)+ σ 2

2
U is a constant, �-a.s. �

5. Mean field Langevin equations

Recall that

b(x,m) := DmF(m,x) + σ 2

2
∇U(x).

Due to Assumption 2.7 and 2.2, the function b is of linear growth.

Lemma 5.1. Under Assumption 2.2 and 2.7, let X be the strong solution to (2.5). If m0 ∈ Pp(Rd) for some p ≥ 2, we
have

E

[
sup
t≤T

|Xt |p
]

≤ C, for some C depending on p,σ,T . (5.1)
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If m0 ∈Pp(Rd) for some p ≥ 2, we have

sup
t∈R+

E
[|Xt |p

]≤ C, for some C depending on p,σ . (5.2)

In particular, if m0 ∈⋃p>2 Pp(Rd), then (mt )t∈R+ belong to a W2-compact subset of P2(R
d).

Proof. Since b is of linear growth, we have

|Xt | ≤ |X0| +
∫ t

0
C
(
1 + |Xt |

)
dt + |σWt |.

Therefore,

sup
t≤s

|Xt |p ≤ C

(
|X0|p + 1 +

∫ s

0
sup
t≤r

|Xt |p dr + sup
t≤s

|σWt |p
)

.

Note that E[supt≤s |σWt |p] ≤ Csp/2. Then (5.1) follows from the Gronwall inequality.
For the second estimate, we apply the Itô formula and obtain

d|Xt |p = |Xt |p−2
(

−pXt · b(Xt ,mt ) + p(p − 1)

2
σ 2
)

dt + pσ |Xt |p−2Xt · dWt .

Since DmF is bounded and ∇U(x) · x ≥ C|x|2 + C′, we have

d|Xt |p ≤ |Xt |p−2
(

C′′|Xt | − pσ 2

2

(
C|Xt |2 + C′)+ p(p − 1)

2
σ 2
)

dt + pσ |Xt |p−2Xt · dWt

≤ |Xt |p−2
(

C − ε|Xt |2 + p(p − 1)

2
σ 2
)

dt + pσ |Xt |p−2Xt · dWt, for some 0 < ε <
pσ 2C

2
.

The last inequality is due to the Young inequality. Again by the Itô formula we have

d
(
eεt |Xt |p

)≤ eεt

(
|Xt |p−2

(
C + p(p − 1)

2
σ 2
)

dt + pσ |Xt |p−2Xt · dWt

)
(5.3)

Further, define the stopping time τm := inf{t ≥ 0 : |Xt | ≥ m}. By taking expectation on both sides of (5.3), we have

E
[
eε(τm∧t)|Xτm∧t |p

]≤ E
[|X0|p

]+E

[∫ τm∧t

0
eεs |Xs |p−2

(
C + p(p − 1)

2
σ 2
)

ds

]
. (5.4)

In the case p = 2, it follows from the Fatou lemma and the monotone convergence theorem that

E
[|Xt |2

]≤ e−εt
E
[|X0|2

]+ ∫ t

0
eε(s−t)

(
C + σ 2)ds ≤ C

(
e−εt + ε−1(1 − e−εt

))
,

and thus supt∈R+ E[|Xt |2] < ∞. For p > 2, we again obtain from (5.4) that

E
[|Xt |p

]≤ e−εt
E
[|X0|p

]+ ∫ t

0
eε(s−t)

E
[|Xs |p−2](C + p(p − 1)

2
σ 2
)

ds.

Then (5.2) follows from induction. �

Proposition 5.2. Let Assumption 2.2 and 2.7 hold true and assume m0 ∈ Pp(Rd) for some p ≥ 2. The marginal law m

of the solution X to (2.5) is a weak solution to Fokker–Planck equation:

∂tm = ∇ ·
(

b(x,m)m + σ 2

2
∇m

)
, (5.5)
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in the sense that for all C∞-function φ :Rd →R such that φ,∇φ,∇2φ decay to 0 at infinity, we have∫
Rd

φ(x)(mt − ms)(dx) =
∫ t

s

∫
Rd

(
−∇φ(x)b(x,mu)mu(dx) + σ 2

2
�φ(x)mu(dx)

)
du.

Moreover, the mapping t �→ mt is weakly continuous on [0,+∞), the joint density function (t, x) �→ m(t, x) exists and
m ∈ C1,∞((0,∞) × R

d,R). In particular, a stationary solution to the Fokker–Planck equation (5.5) is an invariant
measure to (2.5).

Proof. By applying the Itô formula on φ(t,Xt ), we can verify that m is a weak solution to (5.5). Next, define b̃(x, t) :=
b(x,mt ). Obviously, m can be regarded as a weak solution to the linear PDE:

∂tm = ∇ ·
(

b̃m + σ 2

2
∇m

)
. (5.6)

Then the regularity result follows from a standard argument through L
p

loc-estimate. For details, we refer the readers to the
seminal paper [33, p.14–p.15] or the classic book [35, Chapter IV].

Let m∗ be a stationary solution to (5.5), and X be the strong solution to the SDE:

dXt = −b
(
Xt,m

∗)dt + σ dWt .

It is easy to verify that given Law(X0) = m∗ we have Law(Xt ) = m∗ for all t ≥ 0. Therefore X is the solution to mean-
field Langevin equation (2.5) and m∗ is an invariant measure. �

6. Convergence to the invariant measure

Now we are going to show that under mild conditions, the flow of marginal law (mt )t∈R+ converges toward the invariant
measure which coincides with the minimizer of V σ .

Lemma 6.1. Suppose Assumption 2.2 and 2.7 hold true and m0 ∈ P2(R
d). Let m be the law of the solution to the mean

field Langevin equation (2.5). Denote by Pσ,w the scaled Wiener measure1 with initial distribution m0. Then,

(i) For any T > 0, Pσ,w is equivalent to m on FT , where {Ft } is the filtration generated by X, and the relative entropy

E
m

[
log

(
dm

dPσ,w

∣∣∣∣
FT

)]
< ∞. (6.1)

(ii) For all t > 0, the marginal law mt admits density such that mt > 0 and H(mt) < ∞.

Proof. (i) We shall prove in the Appendix in Lemma A.1 that due to the linear growth in x of the drift b, Pσ,w is equivalent
to m. Also by the linear growth of coefficient, we have

E
m

[
log

(
dm

dPσ,w

∣∣∣∣
FT

)]
= E

m

[
1

σ 2

∫ T

0

∣∣b(Xt ,mt )
∣∣2 dt

]
≤ CE

m
[
1 + sup

t≤T

|Xt |2
]

< ∞.

The last inequality is due to Lemma 5.1.
(ii) Since Pσ,w is equivalent to m, we have mt > 0. Denote fσ,t the density function of the marginal law of a standard

Brownian motion multiplied by σ with initial distribution m0. It follows from the conditional Jensen inequality that for
all t ∈ [0, T ]∫

Rd

mt log

(
mt(x)

fσ,t (x)

)
dx ≤ E

m

[
log

(
dm

dPσ,w

∣∣∣∣
FT

)]
< +∞. (6.2)

Further, by the fact fσ,t (x) ≤ 1
(2πt)d/2σ

, we have∫
Rd

mt (x) log
(
fσ,t (x)

)
dx ≤ −d

2
log
(
2πtσ 2).

1Under the scaled Wiener measure Pσ,w , if we denote X as the canonical process, X
σ is a standard Brownian motion.
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Finally, note that

−
∫
Rd

mt (x) log
(
g(x)

)
dx =

∫
Rd

mt (x)U(x)dx ≤ C

∫
Rd

mt (x)|x|2 dx < ∞.

Together with (6.2), we have H(mt) < ∞. �

Next, we introduce an interesting result of [23, Theorem 3.10 and Remark 4.13].

Lemma 6.2. Let m be a measure equivalent to the scaled Wiener measure Pσ,w such that the relative entropy is finite as
in (6.1). Then,

(i) for any 0 < t < T we have
∫ T

t

∫
Rd |∇ log(ms)|2ms dx ds < +∞.

(ii) given t ≥ t0 > 0 such that the Doléans–Dade exponential Eb(X) := e
− ∫ t

t−t0
bs

σ2 dXs−
∫ t
t−t0

1
2 | bs

σ
|2 ds 2 is conditionally

L
2-differentiable on the interval [t − t0, t],3 we have

∇ log
(
mt(x)

)= − 1

t0
E

[∫ t0

0

(
1 + s∇b(Xt−t0+s ,mt−t0+s)

)
dWt−t0

s |Xt = x

]
, (6.4)

where W
t−t0
s := Wt−t0+s − Wt−t0 and W is the Brownian motion in (2.5).

We shall prove in the Appendix, Lemma A.2, that under Assumption 2.2 and 2.7, Eb is conditionally L
2-differentiable

on [t − t0, t] for all t ≥ t0 > 0.
The estimate (i) leads to some other integrability results.

Lemma 6.3. Suppose Assumption 2.2 and 2.7 hold true and m0 ∈ P2(R
d). We have∫ T

t

∫
Rd

∣∣∇mt(x)
∣∣dx dt < ∞ and

∫ T

t

∫
Rd

∣∣x · ∇mt(x)
∣∣dx dt < ∞.

Proof. By the Young inequality, we have

|∇mt | ≤ mt +
∣∣∣∣∇mt

mt

∣∣∣∣2mt and |x · ∇mt | ≤ x2mt +
∣∣∣∣∇mt

mt

∣∣∣∣2mt .

Since all terms on the right hand sides are integrable, due to Lemma 6.2, so are ∇m and x · ∇m. �

Based on the previous integrability results, the next lemma follows from the integration by part.

Lemma 6.4. Let m0 ∈ P2(R
d). Under Assumption 2.2 and 2.7 we have for Leb-a.s. t that∫

Rd

Tr
(∇DmF(mt , x)

)
mt dx = −

∫
Rd

DmF(mt , x) · ∇mt dx, and∫
Rd

�U(x)mt (x) dx = −
∫
Rd

∇U(x) · ∇mt(x) dx.

Again using the estimate (i) in Lemma 6.2, together with Theorem 2.1 of Haussmann and Pardoux [25], we directly
obtain the following result concerning the time reverse process X̃t := XT −t for a given T > 0 and t ≤ T .

2Again, we slightly abuse the notation, using X to denote the canonical process of the Wiener space.
3Denote by P

t−t0,x0
σ,w the conditional probability of Pσ,w given Xt−t0 = x0. Eb(X) is conditionally L

2-differentiable on the interval [t − t0, t], if

there exists an absolutely continuous process DEb := ∫ ·
t−t0

DEb
s ds with DEb

s ∈ L
2(P

t−t0,x0
σ,w ) for all x0 ∈ R

d such that for any h := ∫ ·
t−t0

ḣs ds with

bounded predictable ḣ, we have

lim
ε→0

∣∣∣∣Eb(X + εh) − Eb(X)

ε
− 〈DEb(X),h

〉∣∣∣∣= 0, in L
2(
P

t−t0,x0
σ,w

)
for all x0 ∈ R

d , (6.3)

where 〈DEb(X),h〉 = ∫ t
t−t0

ḣsDEb
s (X)ds.
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Lemma 6.5. Under Assumption 2.2 and 2.7, there exists a Brownian motion W̃t such that (X̃, W̃ ) is a weak solution to
the SDE:

dX̃t = (b(X̃t ,mT −t ) + σ 2∇ logmT −t (X̃t )
)
dt + σdW̃t .

Proof of Theorem 2.9. By the Itô formula and the Fokker–Plank equation (5.5), we have

d logmT −t (X̃t ) =
(

−∂tmT −t

mT −t

(X̃t ) + ∇ log
(
mT −t (X̃t )

) · (b(X̃t ,mT −t ) + σ 2∇ logmT −t (X̃t )
)

+ 1

2
σ 2� log

(
mT −t (X̃t )

))
dt + ∇ log

(
mT −t (X̃t )

) · dW̃t

=
(

σ 2

2

∣∣∣∣∇mT −t

mT −t

(X̃t )

∣∣∣∣2 − ∇ · b(X̃t ,mT −t )

)
dt + ∇ log

(
mT −t (X̃t )

) · dW̃t .

Next by the Itô formula we obtain

dU(Xt) =
(

−∇U(Xt) · b(Xt ,mt ) + σ 2

2
�U(Xt)

)
dt + ∇U(Xt) dWt .

Note that dH(mt) = dE[logmt(X̃T −t ) + U(Xt)]. Therefore, it follows from Lemma 6.4 that

dH(mt)

= E

[
−σ 2

2

∣∣∣∣∇mt

mt

(Xt )

∣∣∣∣2 − b(Xt ,mt ) · ∇mt

mt

(Xt ) − ∇U(Xt) · b(Xt ,mt ) − σ 2

2
∇U(Xt) · ∇mt

mt

(Xt )

]
dt

= E

[
−σ 2

2

∣∣∣∣∇mt

mt

(Xt ) + ∇U(Xt)

∣∣∣∣2 − DmF(Xt ,mt ) ·
(∇mt

mt

(Xt ) + ∇U(Xt)

)]
dt

=
∫
Rd

(
−σ 2

2

∣∣∣∣∇mt

mt

+ ∇U(x)

∣∣∣∣2 − DmF(mt , x) ·
(∇mt

mt

+ ∇U(x)

))
mt(x) dx (6.5)

Further, by the Itô-type formula given by [13, Theorem 4.14] and Lemma 6.4, we have

dF(mt ) =
∫
Rd

(
−∣∣DmF(mt , x)

∣∣2 − σ 2

2
DmF(mt , x) · ∇U(x) + σ 2

2
Tr
(∇DmF(mt , x)

))
mt dx dt

=
∫
Rd

(
−∣∣DmF(mt , x)

∣∣2 − σ 2

2
DmF(mt , x) ·

(
∇U(x) + ∇mt

mt

))
mt dx dt. (6.6)

Finally, summing up the equation (6.5) and (6.6), we obtain (2.7). �

In order to prove there exists an invariant measure of (2.5) equal to the minimizer of V σ , we shall apply Lasalle’s
invariance principle. Now we simply recall it in our context. Let (mt )t∈R+ be the flow of marginal laws of the solution to
(2.5), given an initial law m0. Define a dynamic system S(t)[m0] := mt . We shall consider the so-called w-limit set:

w(m0) := {μ ∈P2
(
R

d
) : there exist tn → ∞ such that W2

(
S(tn)[m0],μ

)→ 0
}

Proposition 6.6. [Invariance Principle] Let Assumption 2.7 hold true and assume that m0 ∈⋃p>2 Pp(Rd). Then the set
w(m0) is nonempty, compact and invariant, that is,

(i) for any μ ∈ w(m0), we have S(t)[μ] ∈ w(m0) for all t ∈R
+.

(ii) for any μ ∈ w(m0) and all t ∈ R
+, there exits μ′ ∈ w(m0) such that S(t)[μ′] = μ.

Proof. Under the upholding assumptions, it follows from Proposition 2.8 that S(t) is continuous with respect to the W2-
topology. By Lemma 5.1, we have (5.2) with p > 2, and thus (S(t)[m0])t∈R+ = (mt )t∈R+ live in a W2-compact subset of
P2(R

d). The desired result follows from the invariance principle, see e.g. [26, Theorem 4.3.3]. In order to keep the paper
self-contained, we state the proof as follows.
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First, for any t ≥ 0, (ms)s≥t is relatively compact, hence (ms)s≥t is compact. Since the arbitrary intersection of closed
sets is closed, the set

w(m0) =
⋂
t≥0

(ms)s≥t

is compact.
Next, let μ ∈ w(m0), by definition we know that there exists a sequence (tN )N>0 such that S(tN )[m0] → μ. Let t ∈ R

+,
by the continuity of S(t) :P2(R

d) →P2(R
d), we have S(t + tN )[m0] → S(t)[μ] and therefore S(t)[μ] ∈ w(m0).

Finally, for the second point, let t ∈ R
+ and consider the sequence (S(tN − t)[m0])N . Since (mt )t∈R+ live in a W2-

compact subset of P2(R
d), there exists a subsequence (tN ′) and μ′ ∈ w(m0) such that S(tN ′ − t)[m0] → μ′. Again, by

the continuity of S(t), we have S(t)[μ′] = limN ′→∞ S(tN ′ − t + t)m0 = μ. �

Proof of Theorem 2.11. Step 1. We first prove that m∗ ∈ w(m0). Since w(m0) is compact, there exists m̃ ∈
arg minm∈w(m0)

V σ (m). By Proposition 6.6, for t > 0 there exists a probability measure μ ∈ w(m0) such that S(t)[μ] = m̃.
By Theorem 2.9, for any s > 0 we have

V σ
(
S(t + s)[μ])≤ V σ (m̃).

Since w(m0) is invariant, S(t + s)[μ] ∈ w(m0) and thus V σ (S(t + s)[μ]) = V σ (m̃). Again by Theorem 2.9, we obtain

0 = dV σ (S(t)[μ])
dt

= −
∫
Rd

∣∣∣∣DmF(m̃, x) + σ 2

2

∇m̃

m̃
(x) + σ 2

2
∇U(x)

∣∣∣∣2m̃(x) dx.

Since m̃ = S(t)[μ] is equivalent to the Lebesgue measure (Proposition 6.1), we have

DmF(m̃, ·) + σ 2

2

∇m̃

m̃
+ σ 2

2
∇U = 0. (6.7)

The probability measure m̃ is an invariant measure of (2.5), because it is a stationary solution to the Fokker–Planck
equation (5.5). Meanwhile, by Proposition 2.5 we have m̃ = m∗. Therefore, m∗ ∈ w(m0).

Step 2. Since m∗ ∈ w(m0), there exists a subsequence, denoted by (mtn)n∈N, converging to m∗. We are going to
prove that V σ (m∗) = limn→∞ V σ (mtn). It is enough to prove

∫
Rd m∗ log(m∗) dx = limn→∞

∫
Rd mtn log(mtn) dx. By the

lower-semicontinuity of entropy, it is sufficient to prove that∫
Rd

m∗ log
(
m∗)dx ≥ lim

n→∞

∫
Rd

mtn log(mtn) dx (6.8)

By (6.7), we know that − logm∗ is semi-convex, so we may apply the HWI inequality in [43, Theorem 3]:∫
Rd

mtn

(
log(mtn) − log

(
m∗))dx ≤ W2

(
mtn,m

∗)(√In + CW2
(
mtn,m

∗)), (6.9)

where In is the relative Fisher information defined as

In := E
[∣∣∇ log

(
mtn(Xtn)

)− ∇ log
(
m∗(Xtn)

)∣∣2]
= E

[∣∣∣∣∇ log
(
mtn(Xtn)

)+ 2

σ 2
DmF

(
m∗,Xtn

)+ ∇U(Xtn)

∣∣∣∣2]. (6.10)

We are going to show that supn In < ∞. First, since DmF is bounded and ∇U is of linear growth, by Lemma 5.1 we have

sup
n

E

[∣∣∣∣ 2

σ 2
DmF

(
m∗,Xtn

)+ ∇U(Xtn)

∣∣∣∣2]< ∞. (6.11)

Next, since ∇b is bounded, by Lemma A.2 and (6.4) we have for all n

E
[∣∣∇ log

(
mtn(Xtn)

)∣∣2]≤ inf
0<s≤tn

1

s2

∫ s

0
C
(
1 + r2)dr

= inf
0<s≤tn

C

(
1

s
+ s

3

)
≤ 2C√

3
, for tn >

√
3, (6.12)
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where the constant C does not depend on n. Combining (6.10), (6.11) and (6.12) we obtain supn In < ∞. Now the HWI
inequality (6.9) reads∫

Rd

mtn

(
log(mtn) − log

(
m∗))dx ≤ CW2

(
mtn,m

∗)(1 +W2
(
mtn,m

∗)).
By letting n → ∞, since W2(mtn,m

∗) → 0, we obtain (6.8).
Step 3. Finally we prove the convergence of the whole sequence (mt )t∈R+ towards m∗, by showing that the set w(m0)

is a singleton, namely w(m0) = {m∗}. Since V σ (mt ) is non-increasing in t , there is a constant c := limt→∞ V σ (mt ).
Recall that in Step 2 we proved V σ (m∗) = limn→∞ V σ (mtn), so we obtain c = V σ (m∗). On the other hand, for any
μ ∈ w(m0) there is a subsequence (mt ′n)n∈N converging to μ and by the weak lower-semicontinuity of V σ we have
V σ (μ) ≤ limn→∞ V σ (mt ′n) = c. Using the fact that m∗ = arg minm∈w(m0)

V σ (m), we have

V σ (μ) = V σ
(
m∗)= c, for all μ ∈ w(m0).

Finally by the uniqueness of the minimiser of V σ , we have w(m0) = {m∗}. �

Appendix

The following result regarding to the change of measure in the Wiener space is classic, see e.g. [5]. For readers’ conve-
nience, we provide a transparent proof as follow. Our argument is largely inspired by the one in [6, Lemma 4.1.1].

Lemma A.1. Let a function (t, x) �→ b(t, x) be Lipschitz continuous and of linear growth in x, and a process X be the
strong solution to the SDE:

dXt = b(t,Xt ) dt + σ dWt .

Define the following Doléan–Dade exponential for all t ∈R
+

ρt := exp

(
1

σ

∫ t

0
b(s,Xs) dWs − 1

2σ 2

∫ t

0

∣∣b(s,Xs)
∣∣2 ds

)
. (A.1)

Then we have E[ρt ] = 1 and thus ρ is a martingale on any finite horizon.

Proof. First, we shall prove that there exists C > 0 such that for all t ∈ R
+, we have

E
[
ρt |Xt |2

]
< C. (A.2)

By Itô’s formula, we have

d|Xt |2 = (2Xtb(t,Xt ) + σ 2)dt + 2Xtσ dWt,

and

d
(
ρt |Xt |2

)= ρt

(
4Xtb(t,Xt ) + σ 2)dt + ρt

(
1

σ
|Xt |2b(t,Xt ) + 2Xtσ

)
dWt,

and further

d
ρt |Xt |2

1 + ερt |Xt |2 = ρt

(1 + ερt |Xt |2)2

(
1

σ
|Xt |2b(t,Xt ) + 2Xtσ

)
dWt

+ ρt

(1 + ερt |Xt |2)2

(
4Xtb(t,Xt ) + σ 2)dt

− ερ2
t

(1 + ερt |Xt |2)3

∣∣∣∣ 1

σ
|Xt |2b(t,Xt ) + 2Xtσ

∣∣∣∣2 dt.
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Note that the integrand of the stochastic integral on the right hand side above is bounded, so the stochastic integral is
actually a real martingale. Therefore, by taking the expectation on both sides and using the fact that b has linear growth
in x, we get

d

dt
E

[
ρt |Xt |2

1 + ερt |Xt |2
]

≤ E

[
ρt

(1 + ερt |Xt |2)2

(
4Xtb(t,Xt ) + σ 2)]

≤ KE

[
ρt |Xt |2

1 + ερt |Xt |2 + 1

]
.

By Grönwall inequality, we get

E

[
ρt |Xt |2

1 + ερt |Xt |2
]

≤ C,

for some constant C which does not depend on ε. By Fatou’s lemma, we get (A.2).
Next, by Itô’s formula, we have

d
ρt

1 + ερt

= ρtb(t,Xt )

(1 + ερt )2
dWt − ερ2

t b(t,Xt )
2

(1 + ερt )3
dt.

By (A.2), the stochastic integral above is a martingale, so taking the expectation on both sides, we get

E

[
ρt

1 + ερt

]
= 1

1 + ε
−
∫ t

0
E

[
ερ2

s b(s,Xs)
2

(1 + ερs)3

]
ds.

Due to the linear growth of b, the term inside the expectation on the right hand side is bounded by Cρs(|Xs |2 + 1) for
some constant C > 0 independent of ε. By the dominated convergence theorem, we get

lim
ε→0

E

[
ρt

1 + ερt

]
= 1.

To conclude, one only needs to note that limε→0 E[ ρt

1+ερt
] = E[ρt ]. �

Lemma A.2. Under Assumption 2.2 and 2.7, the exponential martingale E(b) is conditionally L
2-differentiable on [t −

t0, t], i.e. the equation (6.3) holds true, for all t ≥ t0 > 0.

Proof. Without loss of generality, we may assume t = t0. Under the upholding assumptions, the process (bt )t∈[0,t0] is
L

2-differentiable. By [41, Lemma 1.3.4], we know that ζ(X) := − ∫ t0
0

bs

σ 2 dXs − ∫ t0
0

1
2 | bs

σ
|2 ds is L2-differentiable for any

t0 > 0, namely there exists Dζ such that

ζ(X + εh) − ζ(X)

ε
− 〈Dζ(X),h

〉→ 0 in L
2(
P

0,x
σ,w

)
for all x ∈R

d , as ε → 0.

By Proposition 1.3.8 and Proposition 1.3.11 from [41], we may compute Dζ explicitly:

Dζ(X) = −
∫ t0

0

(
bs

σ 2
+
∫ t0

s

∇br

σ 2
(dXr + brdr)

)
ds. (A.3)

Note that Eb = eζ . Therefore, we have

Eb(X + εh) − Eb(X) =
∫ ε

0

〈
Eb(X + sh)Dζ(X + sh),h

〉
ds, P

0,x
σ,w-a.s. for all x ∈ R

d .

In order to prove (6.3), it is sufficient to prove that for all x ∈ R
d

sup
s≤1

E
P

0,x
σ,w
[∣∣〈Eb(X + sh)Dζ(X + sh),h

〉∣∣p]< ∞ for some p > 2.
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By the form (A.3), we have 〈Dζ(X + sh),h〉 ∈⋂q>1 L
q(P0,x

σ,w), so it is enough to show

E
P

0,x
σ,w
[∣∣Eb(X)

∣∣p]< ∞ for some p > 2. (A.4)

Further, note that

∣∣Eb(X)
∣∣p = e

−p
∫ t0

0 (σ−2DmF(ms,Xs)+∇U(Xs)) dXs− p
2

∫ t0
0

|bs |2
σ2 ds

.

Since DmF is bounded, in order to prove (A.4), it is enough to show that

E
P

0,x
σ,w
[
e−p

∫ t0
0 ∇U(Xs)dXs

]
< ∞ for some p > 2.

By Itô formula, we obtain

E
P

0,x
σ,w
[
e−p

∫ t0
0 ∇U(Xs)dXs

]= E
P

0,x
σ,w
[
e−p(U(Xt0 )−U(x)−∫ t0

0
σ2
2 �U(Xs)ds)

]
< ∞,

where we use the fact that U ≥ −C for some C > 0 and �U is bounded. �
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