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Abstract. The Widom–Rowlinson model (or the Area-interaction model) is a Gibbs point process in R
d with the formal Hamiltonian

defined as the volume of ∪x∈ωB1(x), where ω is a locally finite configuration of points and B1(x) denotes the unit closed ball centred
at x. The model is also tuned by two other parameters: the activity z > 0 related to the intensity of the process and the inverse
temperature β ≥ 0 related to the strength of the interaction. In the present paper we investigate the phase transition of the model in the
point of view of percolation theory and the liquid-gas transition. First, considering the graph connecting points with distance smaller
than 2r > 0, we show that for any β ≥ 0, there exists 0 < z̃a

c (β, r) < +∞ such that an exponential decay of connectivity at distance
n occurs in the subcritical phase (i.e. z < z̃a

c (β, r)) and a linear lower bound of the connection at infinity holds in the supercritical
case (i.e. z > z̃a

c (β, r)). These results are in the spirit of recent works using the theory of randomised tree algorithms (Probab. Theory
Related Fields 173 (2019) 479–490, Ann. of Math. 189 (2019) 75–99, Duminil-Copin, Raoufi and Tassion (2018)). Secondly we study
a standard liquid-gas phase transition related to the uniqueness/non-uniqueness of Gibbs states depending on the parameters z, β. Old
results (Phys. Rev. Lett. 27 (1971) 1040–1041, J. Chem. Phys. 52 (1970) 1670–1684) claim that a non-uniqueness regime occurs for
z = β large enough and it is conjectured that the uniqueness should hold outside such an half line (z = β ≥ βc > 0). We solve partially
this conjecture in any dimension by showing that for β large enough the non-uniqueness holds if and only if z = β. We show also
that this critical value z = β corresponds to the percolation threshold z̃a

c (β, r) = β for β large enough, providing a straight connection
between these two notions of phase transition.

Résumé. Le modèle de Widom–Rowlinson (appelé aussi Area-interaction model) est un processus ponctuel de Gibbs dans R
d

d’Hamiltonien le volume de ∪x∈ωB1(x), où ω est une configuration localement finie de points, et B1(x) la boule unité fermée centrée
en x. Le modèle a deux paramètres : l’activité z > 0 liée à l’intensité du processus, et la température inverse β ≥ 0 liée à la force de
l’interaction. Dans cet article nous étudions la transition de phase du modèle du point de vue de la théorie de la percolation, et du point
de vue de la transition liquide-gaz. Premièrement, en considérant le graphe connectant les points à distance au plus 2r > 0, nous mon-
trons que pour chaque β ≥ 0, il existe 0 < z̃a

c (β, r) < +∞ tel qu’il y ait décroissance exponentielle de la connectivité dans le régime
sous-critique (i.e. z < z̃a

c (β, r)) et une minoration linéaire de la connectivité à l’infini dans le régime sur-critique (i.e. z > z̃a
c (β, r)).

Ces résultats sont inspirés de travaux récents utilisant la théorie des algorithmes aléatoires (Probab. Theory Related Fields 173 (2019)
479–490, Ann. of Math. 189 (2019) 75–99, Duminil-Copin, Raoufi and Tassion (2018)). Deuxièmement nous étudions la transition de
phase liquide-gaz, liée à l’unicité/non-unicité de la mesure de Gibbs en fonction des paramètres z, β. Des résultats anciens (Phys. Rev.
Lett. 27 (1971) 1040–1041, J. Chem. Phys. 52 (1970) 1670–1684) montrent qu’il y a non-unicité lorsque z = β sont assez grands, et il
est conjecturé qu’il y a unicité en dehors de cette demi-droite (z = β ≥ βc > 0). Nous résolvons partiellement cette conjecture en toute
dimension, en démontrant que pour chaque β assez grand, il y a non-unicité si et seulement si z = β. Nous démontrons également que
la valeur critique z = β correspond au seuil de percolation z̃a

c (β, r) = β pour β assez grand, donnant ainsi un lien étroit entre les deux
notions de transition de phase développées dans le papier.

MSC2020 subject classifications: 60D05; 60G10; 60G55; 60G57; 60G60; 60K35; 82B21; 82B26; 82B43

Keywords: Gibbs point process; DLR equations; Boolean model; Continuum percolation; Random cluster model; Fortuin–Kasteleyn representation;
Randomised tree algorithm; OSSS inequality

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/20-AIHP1082
mailto:david.dereudre@math.univ-lille.fr
mailto:pierre.houdebert@gmail.com
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


388 D. Dereudre and P. Houdebert

1. Introduction

The Widom–Rowlinson model (or the Area-interaction model) is a Gibbs point process in R
d with the formal Hamiltonian

given by the volume of the union of balls with radii 1 and centred at the points of the process;

H(ω) = Volume
(∪x∈ωB1(x)

)
.

By changing the scale, any other value of the radius can be considered as well. Two other parameters, the activity
z > 0, related to the intensity of the process, and the inverse temperature β ≥ 0, related to the strength of the interaction,
parametrize the distribution of the process following the standard Boltzmann-Gibbs formalism. In the finite volume
regime, the Gibbs measure is absolutely continuous with respect to the Poisson point process with the unnormalized
density

f (ω) ∼ z#ωe−βH(ω),

where #ω denotes the number of points in ω.
The popularity of this model is due to old results [2,23,25] which prove that the Gibbs measures are not unique in the

infinite volume regime for z = β large enough. This beautiful result is a consequence of a representation of the model
via the bi-color Widom–Rowlinson model which identifies the parameters z and β as the activities of a two-species
model of particles. The non-uniqueness of the bi-color Widom–Rowlinson model is proved using Peierls argument, and
by symmetry the phase transition is obtained for z = β [23]. An alternative proof via the random cluster model and a
Fortuin–Kasteleyn representation has been obtain later in [2]. A generalization is proved recently in the case of random
unbounded radii [16]. As far as we know, this model and another model with a particular Kac type potential treated in
[17] are the only models, in the continuum setting without spin, for which a non-uniqueness result is proved. Note also
that the Area-interaction have been abundantly studied by researchers from different communities in statistical physics,
probability theory or spatial statistics [1,5,13,20].

In the present paper we investigate percolation and liquid-gas transition questions for this Area-interaction model.
These two notions are different but are related and relevant to each other. Our first result claims that the Area-interaction
model exhibits a sharp phase transition of percolation for the graph connecting points with distance smaller than 2r >

0. Precisely, for any β > 0, there exists a non-trivial threshold 0 < z̃a
c (β, r) < +∞ such that an exponential decay of

connectivity at distance n occurs in the subcritical phase. It means that for z < z̃a
c (β, r) the probability (for any Area-

interaction model with parameters z and β) that the point 0 is connected to the boundary of the sphere of radius n centred
at 0 (i.e. ∂Bn(0)), decreases exponentially to zero when n goes to infinity. By standard Palm theory arguments, that
provides the exponential decay of the size of the clusters in the process itself. Moreover a local linear lower bound of
the connection at infinity holds in the supercritical case. It means that z > z̃a

c (β, r) not too large, the probability (for any
Area-interaction model with parameters z and β) that the point 0 is connected to infinity is larger than c(z− z̃a

c (β, r)) for a
fixed positive constant c > 0. Again, by standard Palm theory arguments, that provides a sub-linear bound for the density
of the infinite cluster in the process itself. The proofs of these results are in the spirit of recent works using the theory
of randomised tree algorithms [7–9]. Our main contribution is to prove an OSSS inequality for the Widom–Rowlinson
model and to adapt the general strategy of randomised tree algorithms to the setting of interacting continuum particle
systems. Complementary results show that the function β �→ z̃a

c (β, r) is a non-decreasing Lipschitz map.
Let us now discuss the sharp liquid-gas phase transition. As recalled above, the Area-interaction model exhibits a

non-uniqueness regime for z = β large enough. This result is called in the literature a liquid-gas phase transition since the
pressure is continuous and non-differentiable at the critical point. The derivatives before and after the critical points gives
the abrupt difference between the densities of particles in the liquid and gas phases. Since these results in the seventies, it
was conjectured that the phase transition is sharp which means that the non-uniqueness occurs if and only if z = β larger
than a threshold β∗ > 0. The results mentioned above do not give any information when z 
= β , except the standard case
where z or β are small enough and for which the uniqueness of Gibbs measures is known since long time. In the present
paper, we solve partially the conjecture by showing that for β large enough (but it is not a threshold) the non-uniqueness
holds if and only if z = β . For moderate values of β (not too small and not too large) we obtain uniqueness for z outside
the interval [̃za

c (β,1) ; z̃a
c (.,1)−1(β)]. See Figure 1 for a precise description of the phase diagram we obtain. Our main

tool here is an extension of the disagreement percolation argument introduced in [15] for continuum models. Actually we
show that the Gibbs measures are unique provided that the wired Area-interaction model does not percolate for r = 1. It
means that the Gibbs measures are unique as soon as z < z̃a

c (β,1) and also for z > z̃a
c (.,1)−1(β) by duality. A last result

claims that z̃a
c (β,1) = z̃a

c (.,1)−1(β) = β for β large enough reducing the interval to the single point {β}.
Let us note that the proofs of sharp phase transition, in the settings of percolation theory and liquid-gas transition are

quite independent although similar tools and notions are used in both. Let us mention also a similar sharp liquid-gas phase
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transition obtained for the 2D Widom–Rowlinson model on Z
2 (Theorem 1.1 [14]). The proof is based on large circuit

arguments and depends strongly on the lattice structure. It can not be adapted to the continuum setting developed here
and moreover it involves only the dimension d = 2.

The paper is organized as follows. In Section 2 we introduce the Area-intercation model and the main required tools
(stochastic domination, bicolor Widom–Rowlinson representation, duality). In Section 3, the results are presented and
the proofs related to the sharp phase transition of percolation (respectively the liquid-gas phase transition) are given in
Section 4 (respectively in Section 5). An annex Section contains some technical lemmas.

2. Preliminaries

2.1. Space

Let us consider the state space R
d with d ≥ 2 being the dimension. Let � be the set of locally finite configurations ω on

R
d . This means that #(ω ∩ �) < ∞ for every bounded Borel set � of Rd , with #ω being the cardinal of the configuration

ω. We write ω� as a shorthand for ω ∩ �. The configuration space is embedded with the usual σ -algebra F generated by
the counting variables. To a configuration ω ∈ � we associate the germ-grain structure

Br(ω) :=
⋃
x∈ω

Br(x),

where Br(x) is the closed ball centred at x with radius r > 0.

2.2. Poisson point processes

Let πz be the distribution on � of the homogeneous Poisson point process with intensity z > 0. Recall that it means

– for every bounded Borel set �, the distribution of the number of points in � under πz is a Poisson distribution of mean
zLd(�), where Ld stands for the usual d-dimensional Lebesgue measure;

– given the number of points in a bounded �, the points are independent and uniformly distributed in �.

We refer to [3] for details on Poisson point processes.
For � ⊆R

d bounded, we denote by πz
� the restriction of πz on �. For simplicity the special case of the Poisson point

process of unit intensity (i.e. z = 1) is denoted by π , and its restriction by π�.

2.3. Area-interaction measures

The area-interaction measures (or the one-color Widom–Rowlinson models) are defined through the standard Gibbs
Dobrushin-Lanford-Ruelle formalism prescribing the conditional probabilities. For a bounded � ⊆ R

d , we define the
�-Hamiltonian

H�(ω) := Ld
(
B1(ω�) \ B1(ω�c)

)
.

The area specification on a bounded � ⊆R
d with boundary condition ω�c is defined by

P
z,β
�,ω�c

(
dω′

�

) := z#ω′
�e−βH�(ω′

�∪ω�c )

Zarea(z,β,�,ω�c)
π�

(
dω′

�

)
with the standard partition function

Zarea(z,β,�,ω�c) :=
∫

�

z#ω′
�e−βH�(ω′

�∪ω�c )π�

(
dω′

�

)
which is always non-degenerate (i.e. 0 < Zarea(z,β,�,ω�c) < +∞).

Remark 2.1. There are several possible forms for the Hamiltonian H�, all of which defining the same specification.
The nice property about our definition of H� is the additivity, in the sense that H�(ω) can be seen as the sum of the
contribution of each points, with respect to the already considered ones.
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The additivity of the Hamiltonian is one way of ensuring the compatibility of the Gibbsian specification, i.e for all
� ⊆ 	 ⊂ Rd bounded subsets, for all measurable bounded functions f all boundary condition ω̂,∫

�

f dP
z,β

	,ω̂	c
=

∫
�

∫
�

f
(
ω′

� ∪ ω	\�
)
P

z,β

�,ω	\�∪ω̂	c

(
dω′

�

)
P

z,β

	,ω̂	c
(dω	). (2.1)

Definition 2.1. A probability measure P on � is an area-interaction measure of activity z and inverse temperature β ,
written P ∈ Garea

z,β , if for every bounded Borel set � ⊆R
d and every bounded measurable function f ,

∫
�

f dP =
∫

�

∫
�

f
(
ω′

� ∪ ω�c

)
P

z,β
�,ω�c

(
dω′

�

)
P(dω). (2.2)

The equations (2.2), for all bounded �, are called DLR equations, after Dobrushin, Lanford and Ruelle. Those equations
prescribe the conditional probabilities of a Gibbs measure.

2.4. Stochastic domination

Let us discuss stochastic domination, which is going to be a key element of several proofs of the paper. Recall that an event
E ∈ F is said increasing if for ω′ ∈ E and ω ⊇ ω′, we have ω ∈ E. This definition naturally extend to define increasing
functions f : � → R. Finally if P and P ′ are two probability measures on �, the measure P is said to stochastically
dominate the measure P ′, written P ′ � P , if P ′(E) ≤ P(E) for every increasing event E ∈ F .

The following proposition is a direct application of the classical Georgii and Küneth stochastic domination result [12,
Theorem 1.1] and gives standard stochastic dominations.

Proposition 2.1. For every bounded � ⊆R
d ,

– for every boundary condition ω�c and every z, β we have

πze−βvd

� � P
z,β
�,ω�c

(
dω′

�

) � πz
�,

where vd is the volume of the unit ball in dimension d .
This implies in particular that every P ∈ Garea

z,β satisfies

πze−βvd � P � πz.

– For every boundary conditions ω1
�c ⊆ ω2

�c , every z1 ≤ z2 and every β1 ≥ β2 we have

P
z1,β1

�,ω1
�c

(
dω′

�

) � P
z2,β2

�,ω2
�c

(
dω′

�

)
.

2.5. Free and wired measures

Two particular area-interaction measures are constructed as follows. Consider the increasing sequence �n :=] − n,n]d
and consider the free and wired area-interaction measures on the bounded box �n, denoted by P

z,β

n,free and P
z,β

n,wired and
defined as

P
z,β

n,free

(
dω′

�n

) := z
#ω′

�n e
−βLd (B1(ω

′
�n

))

Zarea(z,β,n, free)
π�n

(
dω′

�n

);
P

z,β

n,wired

(
dω′

�n

) := z
#ω′

�n e
−βLd (B1(ω

′
�n

)∩�n−1)

Zarea(z,β,n,wired)
π�n

(
dω′

�n

);
where Zarea(z,β,n, free) and Zarea(z,β,n,wired) are the normalising constants. The measure P

z,β

n,free is simply P
z,β
�n,∅,

whereas P
z,β

n,wired is the limiting case where the boundary condition would be filled with points on the boundary of �n.
From [12, Theorem 1.1] we get the following proposition.

Proposition 2.2. For every n and every z, β we have
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– P
z,β

n,free � P
z,β

n+1,free;

– P
z,β

n+1,wired|�n
� P

z,β

n,wired,

where P
z,β

n+1,wired|�n
stands for the measure P

z,β

n+1,wired restricted to �n.

From Proposition 2.2 and using Carathéodory’s extension theorem we get the existence of P
z,β

free and P
z,β

wired. Those

probability measures are, thanks to [3, Theorem 11.1.VII], weak limits of the sequences (P
z,β

n,free)n and (P
z,β

n,wired)n. They
are also stationary (see [2] for details).

Proposition 2.3. For every z1 ≤ z2 and β1 ≥ β2,

– P
z1,β1
free ∈ Garea

z1,β1
and P

z1,β1
wired ∈ Garea

z1,β1
;

– P
z1,β1
free � P

z2,β2
free and P

z1,β1
wired � P

z2,β2
wired ;

– P
z1,β1
free � P � P

z1,β1
wired for all P ∈ Garea

z1,β1
.

As a consequence of the first item of Proposition 2.3, we know that the set of area-interaction measures Garea
z,β is never

empty. From the last item of Proposition 2.3, the question of uniqueness of the area-interaction measure translates to the
question of the equality of measures P

z1,β1
free = P

z1,β1
wired . The next Proposition is stating that this equality happens for a lot

of parameters (z,β).

Proposition 2.4. For all β > 0, the set {z > 0,P
z,β

free 
= P
z,β

wired} is at most countable.

The proof of this proposition is related to standard differentiability/convexity arguments of the pressure function. See
for instance Theorem 3.34 in [10] for a proof in the case of Ising model or Theorem 4.2 in [14] for the lattice Widom–
Rowlinson model. A direct adaptation for the continuum area-interaction measure is achievable and omitted here for
brevity.

2.6. Bicolor Widom–Rowlinson representation of area-interaction measures

The bicolor Widom–Rowlinson model is simply defined as the reunion of two Poisson Boolean models (with deterministic
radii equal to 0.5) conditioned on a hard-core non overlapping condition between the two Boolean models. A formal
definition using standard DLR formalism is given below.

Definition 2.2. Let ω := (ω1,ω2) denotes a couple of configurations. Let A := {(ω1,ω2) ∈ �2,B1/2(ω
1) ∩ B1/2(ω

2) =
∅} be the event of authorised (couple of) configurations. Let πz1,z2 := πz1 ⊗ πz2 .

Then a probability measure P on �2 is a Widom–Rowlinson measure with parameters z1, z2, written P ∈ Gwr
z1,z2

, if
P (A) = 1 and if for every bounded � ⊆R

d and every bounded measurable function f ,∫
�2

f dP =
∫

�2

∫
�2

f
(
ω′

� ∪ ω�c

) 1A(ω′
� ∪ ω�c)

Zwr(�, z1, z2,ω�c)
π

z1,z2
�

(
dω′

�

)
P (dω), (2.3)

with Zwr(�, z1, z2,ω�c) being the standard partition function associated to the Widom–Rowlinson interaction.

The following proposition is the standard relation between one-color and bi-color Widom–Rowlinson models.

Proposition 2.5.

– Let P ∈ Gwr
z1,z2

. Then the first marginal of P is an area-interaction measure of activity z = z1 and inverse temperature
β = z2. The analogue is true for the second marginal.

– Let P ∈ Garea
z,β . Then the measure P := π

β

Rd\B1(ω
1)

(dω2)P (dω1) is a Widom–Rowlinson measure: P ∈ Gwr(z1 = z, z2 =
β).

As a consequence of these two points, the sets Garea
z,β and Gwr(z1 = z, z2 = β) are in bijection. By symmetry of Gwr(z1, z2)

with respect to z1, z2, the sets Garea
z,β and Garea

β,z are in bijection as well; this property is called the duality property. Only
this duality property will be used later, in the proof of Theorem 2.
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The proof relies on the fact that integrating the density of the bicolor Widom–Rowlinson model with respect to one
marginal, one gets the density of the monocoloured Widom–Rowlinson model. We omit the proof and we refer to [2,11,
25] for details.

2.7. Percolation

The theory of percolation studies the connectivity in random structures. Formally the percolation is defined as follows.

Definition 2.3. Let r > 0;

– two sets �1,�2 ⊆ R
d are said to be r-connected in ω, written �1 ←→

Br (ω)
�2 (or �1 ←→

r
�2 when there is no possible

confusion) if Br(ω) ∪ �1 ∪ �2 has a connected component overlapping both �1 and �2;
– a configuration ω is said to r-percolate if the germ-grain structure Br(ω) has at least one unbounded connected com-

ponent;
– a probability measure P on � is said to r-percolate (respectively do not percolate) if P({ω r-percolates}) = 1 (respec-

tively P({ω r-percolates}) = 0).

In the next proposition we state the standard percolation phase transition of the Poisson Boolean model. See for
instance [7] for a modern proof.

Proposition 2.6. For every r > 0, there exists 0 < z
p
c (r) < ∞, called r-percolation threshold of the Poisson Boolean

model, such that

– for every z < z
p
c (r), the measure πz does not r-percolate, and we have the existence of c := c(r, z) > 0 such that

πz(0 ←→
r

∂�n) ≤ exp(−cn), (2.4)

where ∂�n is the boundary of the set �n =] − n,n]d ;
– For every z > z

p
c (r), the measure πz r-percolates, and we have the existence of c′ := c′(r) > 0 such that for z in a

neighbourhood of z
p
c (r)

πz(0 ←→
r

∞) ≥ c′(z − z
p
c (r)

)
.

Concerning area-interaction measures such a behaviour is not proven, and is one of the questions investigated in this
paper. But as a consequence of the Propositions 2.1, 2.3, 2.4 and 2.6 we have the existence of a non degenerate percolation
threshold, common to all area-interaction measures. This is stated in the following Proposition.

Proposition 2.7. For all β > 0 and r > 0, there exists 0 < z̃a
c (β, r) < ∞ such that

– for all z < z̃a
c (β, r), any area-interaction measure P ∈ Garea

z,β almost never r-percolates, i.e

P
({ωr-percolates}) = 0;

– for all z > z̃a
c (β, r), any area-interaction measures P ∈ Garea

z,β almost surely r-percolates, i.e

P
({ωr-percolates}) = 1.

Proof. The fact that both the free and wired measures have the same threshold is a consequence of Proposition 2.3 and
Proposition 2.4. The non-degeneracy of this threshold follows from the non-degeneracy of the Poisson Boolean model
percolation threshold, which is a standard property included in the statement of Proposition 2.6, and from the dominations
of Proposition 2.1: for all P ∈ Garea

z,β

πze−βvd � P � πz. (2.5)�

Remark 2.2. Let us first notice that by a scaling argument, the percolation thresholds of the Poisson Boolean model
satisfies the well-known relation z

p
c (r) = 1

rd z
p
c (1). Then, from the stochastic dominations (2.5), we have the following

bound on the percolation threshold of the area-interaction measures: for all r > 0 and β ≥ 0,

z
p
c (r) ≤ z̃a

c (β, r) ≤ z
p
c (r) exp(βvd).
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3. Results

Let us now present our results related to the phase transition of the area-interaction measures. The proofs are given in the
following sections.

3.1. Sharp phase transition of percolation

The first result proves a sharp phase transition of percolation for the area-interaction measures in the spirit of Proposition
2.6 for the Boolean model. That means exponential decay of connectivity at distance n in the subcritical phase and a local
linear lower bound of the connection at infinity in the supercritical case.

Theorem 1. Let β ≥ 0.

1. For all z < z̃a
c (β, r), there exists α1 = α1(z,β, d, r) > 0 such that for all P ∈ Garea

z,β and all n,

P(0 ←→
r

∂�n) ≤ exp(−α1n). (3.1)

2. There exists α2 = α2(β, d, r) such that for all z > z̃a
c (β, r) small enough and all P ∈ Garea

z,β ,

P(0 ←→
r

∞) ≥ α2
(
z − z̃a

c (β, r)
)
. (3.2)

The proof of this theorem relies on the theory of randomised algorithms developed by Duminil-Copin, Raoufi and
Tassion in a series of papers [7–9]. The main ingredient, and our main contribution with respect to what was already done,
is the proof of an OSSS-type inequality which gives a control of the variance of a function f by a bound depending on
the influence of each point of the process. The proof of this inequality relies on a procedure, sampling an area-interaction
configuration using a dominating Poisson configuration. This procedure is in some sense monotonic with respect to the
dominating Poisson configuration. The proof is given in Section 4.

The next proposition gives some qualitative properties of the function β �→ z̃a
c (β, r) and exact values for β large

enough. The proof is given in Section 4 as well.

Proposition 3.1. For every r > 0, the function β �→ z̃a
c (β, r) is a non-decreasing Lipschitz map from R

+ to [zp
c (r),+∞).

In particular, it is continuous. Moreover for every r > 0, there exists 0 < β̃r < ∞ such that for β > β̃r , the equality
z̃a
c (β, r) = β holds.

3.2. Sharp liquid-gas phase transition

The other question of interest is the Sharp liquid-gas phase transition for which there are several definitions based either
on the regularity of the pressure or the uniqueness/non uniqueness of Gibbs measures. Here we say that a sharp liquid-gas
phase transition occurs at temperature 1/β if there exists only one value z such that the Gibbs measures are not unique.
This phenomenon is conjectured for several models but there does no exist complete rigorous proof in the continuum.
Here we improve existing results for the area-interaction measures.

3.2.1. Already known results
Several results are already known on this subject. First, it is well-known that the set of Gibbs measures is generally
reduced to a singleton when the parameters z or/and β are small enough (see for instance [22]). As a consequence of
a recent disagreement percolation result [15], explicit bounds related to 1-percolation threshold of the Poisson Boolean
model are given.

Proposition 3.2. Recall that z
p
c (r) is the percolation threshold of the Poisson Boolean model of constant radii r . Then for

every z < z
p
c (1) and every β ≥ 0, there is an unique area-interaction measure. Moreover, by duality, for every β < z

p
c (1)

and every z ≥ 0, the uniqueness occurs as well.

In addition, a Fortuin–Kasteleyn representation and percolation properties of the Continuum Random Cluster Model
allow to prove a non uniqueness result for the symmetric bicolor Widom–Rowlinson model [2]. This result translates
directly, thanks to Proposition 2.5, to a non uniqueness result of the area-interaction measure.

Proposition 3.3. There exists 0 < z̃sym < ∞ such that for all z > z̃sym
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Fig. 1. Uniqueness/non-uniqueness regimes for the area-interaction measures with parameters z, β .

– the measure P
z,z
wired does 1/2-percolate;

– the measure P
z,z
free does not 1/2-percolate;

hence we have P
z,z
free 
= P

z,z
wired, and therefore #Garea(z, z) > 1.

So in the symmetric case z = β , a standard phase transition is already known, where uniqueness is obtain at low activity
z and non-uniqueness at large activity. However it is not proved that there exists a threshold between both regimes. As far
as we know, this conjecture is still open today.

In the non-symmetric case z 
= β , very few is known expect from Proposition 3.2. In particular, the sharp phase
transition around the symmetric case z = β was unknown.

3.2.2. New results about uniqueness
It is conjectured that the non-uniqueness holds if and only if z = β larger than a certain threshold β∗ > 0. We do not
solve this conjecture here but we show in Corollary 3.1 that for β large enough the non-uniqueness holds only for z = β .
Actually we succeed to prove uniqueness in a larger domain drawn in Figure 1.

Our main Theorem, given below, ensures the uniqueness as soon as the area-measures do not 1-percolate.

Theorem 2. For all β ≥ 0 and z < z̃a
c (β,1), we have P

z,β

free = P
z,β

wired, and therefore there is uniqueness of the area-
interacton measure. By duality the result holds also for all z ≥ 0 and β < z̃a

c (z,1).

The proof of this theorem relies on a generalization of the disagreement percolation technique, relying on the con-
struction of a coupling, called disagreement coupling comparing the influence of the boundary condition to a domination
Poisson point process. Using the monotonicity of the area interaction, see Proposition 2.1, a better dominating measure
is the wired area-interaction measure. The dominating measure is not a Poisson point process and therefore the construc-
tion of the disagreement coupling is more elaborate, even though it still relies on the original idea of van den Berg and
Maes [24]. The proof of Theorem 2 is done in Section 5. Although both Theorem 1 and 2 are related, there proofs are
independent from one another.

Corollary 3.1. For β larger than β̃1, the area-interaction measures with parameters z, β are non-unique if and only if
z = β . The sharp liquid-gas transition occurs.

Proof. It is a direct consequence of Theorem 2, Proposition 3.1, Proposition 3.3 and the duality property given in Propo-
sition 2.5. �

4. Proofs related to percolation results

In this section we give the proofs of Theorem 1 and Proposition 3.1 involving the sharp phase transition of percolation.
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4.1. Proof of Theorem 1

First let us note that it is enough to prove Theorem 1 for the wired area-interaction measure P
z,β

wired. Indeed, recall that from

Proposition 2.3 we have the sandwich domination: for all P ∈ Garea
z,β , P

z,β

free � P � P
z,β

wired. Therefore the equation (3.1), i.e.

the exponential decay of connectivity when z < z̃a
c (β, r), translates directly from P

z,β

wired to all P ∈ Garea
z,β . For the equation

(3.2), consider z > z′ > z̃a
c (β, r) such that P

z′,β
free = P

z′,β
wired. From Proposition 2.4 the parameter z′ can be considered as

close to z as we need. But once again from Proposition 2.3 we have

P(0 ←→
r

∞) ≥ P
z,β

free(0 ←→
r

∞)

≥ P
z′,β
free (0 ←→

r
∞)

= P
z′,β
wired(0 ←→

r
∞)

≥ α2
(
z′ − z̃a

c

) −→
z′→z

α2
(
z − z̃a

c

)
,

and Equation (3.2) is proved.
Through the remainder of this section the parameters β > 0 and r > 0 are fixed and might be omitted from notations

and we consider only the wired case. Let μz
n := P

z,β

3n+2,wired. We are considering the connection probability

θn(z) = μz
n(0 ←→

r
∂�n),

where ∂�n is the boundary of �n =] − n,n]d .

Remark 4.1. The term 3n + 2 was chosen for several reasons. First the term “+2” is there to ensure that the wired
measure μz

n is well defined, even for n = 0. Second the factor 3 is there to ensure a good inclusion of boxes in (4.10).

Lemma 4.1. For each z, the sequence (θn(z)) converges and we have

θ(z) := lim
n→∞ θn(z) ≤ P

z,β

wired(0 ←→
r

∞).

Proof. The event {0 ←→
r

∂�n} depends only on the points inside �n+r , which is included in �3n+2 as soon as n ≥ r/2.

Therefore, using Proposition 2.2 we have for such n:

θn(z) = P
z,β

3n+2,wired(0 ←→
r

∂�n)

≥ P
z,β

3(n+1)+2,wired(0 ←→
r

∂�n)

≥ P
z,β

3(n+1)+2,wired(0 ←→
r

∂�n+1) = θn+1(z).

Hence the sequence is decreasing for n large enough and the convergence follows. For the inequality, just notice that for
any k

θ(z) = lim
n→∞ θn(z) ≤ lim

n→∞P
z,β

3n+2,wired(0 ←→
r

∂�k) = P
z,β

wired(0 ←→
r

∂�k).

Letting k go to infinity yields the result. �

Recall that z̃a
c (β, r) ∈]0,∞[ is the percolation threshold of the wired (and free as well) area-interaction measure,

defined in Proposition 2.7.

Theorem 3.
Let β > 0 and r > 0.

1. For all z < z̃a
c (β, r), there exists α1 = α1(z,β, d, r) > 0 such that, for all n,

θn(z) ≤ exp(−α1n). (4.1)
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2. There exists α2 = α2(β, d, r) such that for all z > z̃a
c (β, r) small enough,

θ(z) ≥ α2
(
z − z̃a

c

)
. (4.2)

Before proving this theorem, let us see quickly how it leads to the proof of Theorem 1. The equation (4.2) together
with Lemma 4.1 implies the equation (3.2), while (3.1) is a consequence of (4.1) and Proposition 2.2.

The proof of Theorem 3 relies on the theory of randomised algorithms popularized in [7–9]. First we are going to prove
in Section 4.2 a generalized version of the OSSS inequality satisfied by P

z,β

�,ω̂�c
for every cube � and every boundary

condition ω̂�c .
This inequality, valid in particular for the wired measure P

z,β

3n+2,wired, is then applied in Section 4.3 in order to get the
result.

4.2. OSSS inequality

4.2.1. Introduction of the formalism
In this section � is a fixed cube of side length c > 0. Let ε > 0 such that c/ε is a positive integer. We are dividing the box
� into small cubes of size ε. Let t := (c/ε)d be the total number of such cubes. Therefore a configuration ω in � can be
written as the collection (ωe)e∈E where E := � ∩ ε(Z+ 1/2)d and ωe := ω	ε

e
, where 	ε

e = e ⊕ ε] − 1/2,1/2]d . For an
enumeration (e1, . . . , et ) of the cubes, we wrote e[i] = (e1, . . . , ei) and ωe[i] = (ωe1, . . . ,ωei

).
Consider a Boolean function f : � → {0,1} and consider a decision tree T determining the value f (ω). A decision

tree queries the configuration ω one cube after the other. Hence to a random configuration is associated a random ordering
of the cubes e = (e1, . . . , et ). It starts from a deterministic cube e1 and looks at the configuration ωe1 . Then it chooses
a second cube e2 depending on e1 and ωe1 and carries out. At step i > 1 the cubes e[i−1] have been visited and the
configuration ωe[i−1] is known. The next cube ei to be explored is then expressed as a deterministic function of what have
been already explored, i.e.

ei = φi(e[i−1],ωe[i−1]). (4.3)

We then define the (random) time τ that the algorithm takes to determine the function f , meaning

τ(ω) = min
{
i ≥ 1,∀ω′,ω′

e[i] = ωe[i] ⇒ f (ω) = f
(
ω′)}. (4.4)

Theorem 4 (OSSS inequality). If the function 0 ≤ f ≤ 1 is increasing, then for all configurations ω̂�c ,

Var
Pz,β

�,ω̂�c

(f ) ≤ 2
∑
e∈E

δ(e, T )Cov
Pz,β

�,ω̂�c

(f,#ωe) +O
(
εd

)
, (4.5)

where δ(e, T ) := P
z,β

�,ω̂�c
(∃i ≤ τ, ei = e) is called the revealment of e and is the probability that the cube e is needed to

determine the value of the function f .

Remark 4.2. The term Cov
Pz,β

�,ω̂�c

(f,#ωe) is non-negative because the specification P
z,β

�,ω̂�c
, for all boundary condi-

tions, satisfies the FKG inequality. This is also a consequence of Theorem 1.1 in [12]

4.2.2. Proof of Theorem 4
The original proof of the OSSS inequality, see [21] or [6] for more probabilistic version, uses the product structure of the
space considered (the Bernoulli percolation model). But P

z,β

�,ω̂�c
is not a product measure and we need a more elaborate

method. For this we will generalize the idea from [9, Lemma 2.1] which sampled a finite family of dependant random
variables, one after the other in a random order, using independent uniform variables.

In the continuum setting of point processes this simple idea is much harder to implement. We will use ideas from
the theory of stochastic domination. Indeed the stochastic domination P

z,β

�,ω̂�c
� πz

� from Proposition 2.1 implies, using

Strassen’s Theorem, that a configuration ω ∼ P
z,β

�,ω̂�c
can be obtained from a dominating Poisson configuration ωD ∼ πz

�

by a random thinning of the dominating configuration, deciding for each x ∈ ωD if it belongs to the thinned configuration
ω. We will use an explicit form of the thinning probability proved in [15].

To formalize the thinning decision we are adding to each point of the configuration ωD an independent uniform mark
between 0 and 1. The marked configuration is denoted by ωD,U and its law is simply a marked Poisson point process.
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Even if ωD,U is a marked configuration on �, the sampling procedure we will construct below needs as many domi-
nating configurations ωD,U as there is cubes ei in �, meaning t . Let us write ωD,U,⊗ = (ωD,U,1, . . . ,ωD,U,t ). The law
of ωD,U,⊗ is a product of marked Poisson point processes.

Definition 4.1. For two marked configurations ωD,U , ω̃D,U , we say that ωD,U is smaller than ω̃D,U , writing ωD,U ≤
ω̃D,U , if for each (x,u) ∈ ωD,U we have (x,u) ∈ ω̃D,U .

We write ωD,U,⊗ ≤ ω̃D,U,⊗ if for all i we have ωD,U,i ≤ ω̃D,U,i

Proposition 4.1. For each (e1, . . . , et ), there exists a function F(e1...et ) indexed by an enumeration of the cubes, such
that:

1. if e = (e1, . . . , et ) is a random sequence such that for all i, ωD,U,i is independent of (e[i],ωD,U,1..i−1), where
ωD,U,1..i−1 is a short-hand for the family (ωD,U,1, . . . ,ωD,U,i−1), then

ω = Fe
(
ωD,U,⊗) ∼ P

z,β

�,ω̂�c
,

where ωD,U,⊗ is the random element described just before Definition 4.1.
2. For fixed (e1 . . . et ), the function F(e1...et ) is increasing with respect to order defined in Definition 4.1.

Proof. Let us first construct the function F(e1...et ).
The configuration ω is constructed in each cube ei one by one. At each step i the configuration ωe[i−1] is already

sampled and we are constructing ωei
. The construction is taken from [15, Proposition 4.1] which gives explicitly the

thinning probability for sampling a Gibbs point process dominated by a Poisson point process.
We are going to construct first a configuration (which we wrote ω′) on

�̃i := � \ (
	ε

e1
∪ · · · ∪ 	ε

ei−1

)
according to the specification P

z,β

�̃i ,ω̂�c∪ωe[i−1]
and then only keep the points inside 	ε

ei
by setting ωei

= ω′
ei

.

To construct ω′ we consider the dominating configuration ω
D,U,i

�̃i
restricted to the region where we are constructing

the configuration. Consider on �̃i a lexicographic order, which orders the points (x,u) ∈ ω
D,U,i

�̃i
. The marks play no role

in the ordering of the configuration. The configuration ω′ is then constructed inductively the following way:

– at the beginning of the induction we set ω′ =∅.
– Then we consider each point (x,u) ∈ ω

D,U,i

�̃i
one after the other with respect to the lexicographic order, and if

pi

(
x,ω′ ∪ ωe[i−1] ∪ ω̂�c

) ≥ u

we add x to the configuration ω′, i.e. ω′ ← ω′ ∪ {x}. The function pi , whose expression comes from [15, Proposition
4.1], is defined as

pi(x,ω) = e−βH{x}(x∪ω) × Zarea(z,β, �̃i∩]x,∞[,ω ∪ x)

Zarea(z,β, �̃i∩]x,∞[,ω)
, (4.6)

where the interval ]x,∞[ is defined with respect to the lexicographic ordering on �̃i , and where ω is a configuration
such that ω ∩ �̃i∩]x,∞[= ∅.

And finally at the end we set ωei
= ω′

ei
.

Remark 4.3. The Proposition 4.1 from [15] applies for general models, with random radii marks, for which the Hamilto-
nian is additive and satisfies a domination assumption. The additivity of the Hamiltonian was already discussed in Remark
2.1, and we already used implicitely the domination condition to derive Proposition 2.1. Hence by considering constants
radii, we can apply Proposition 4.1 from [15] in our context.

From the compatibility of the Gibbs specification (2.1), the assumption on e and the Proposition 4.1 from [15], the
sampled configuration has the law of P

z,β

�,ω̂�c
.
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In order to prove that F(e1...et ) is increasing, It remains to prove that pi(x,ω) is increasing in ω. Let us write �̃x
i :=

�̃i∩]x,∞[. Using the additivity of the Hamiltonian, see Remark 2.1, the function pi can be rewritten as

pi(x,ω) =
∫

z#γ e
−βH

�̃x
i
(γ∪ω)

e−βH{x}(x∪γ∪ω)π�̃x
i
(dγ )

Zarea(z,β, �̃x
i ,ω)

=
∫

e−βH{x}(x∪γ∪ω)P
z,β

�̃x
i ,ω

(dγ ).

Now using the fact that the integrated function is increasing in ω with the stochastic domination from Proposition 2.1, we
have that the function pi is increasing in ω. �

Remark 4.4. The Proposition 4.1 is the main improvement from the theory of randomized algorithm from Duminil-
Copin, Raoufi and Tassion [7–9]. Considering the assumption on e, the Proposition 4.1 applies in particular when e is
independent of ωD,U,⊗ or when e is constructed from ωD,U,⊗ as in (4.3).

The proof of Proposition 4.1 relies only on the additivity of the Hamiltonian, as well as the fact that the function
H{x}(x ∪ ω), often called local energy, is

– uniformly bounded from below, which provides the stochastic domination of P
z,β
�,ω�c

by the Poisson point process πz
�

and allow us to apply Proposition 4.1 of [15].
– decreasing with respect to ω, which provides the monotonicity of Fe thanks to [15, Proposition 4.1].

So Proposition 4.1, and more generally Theorem 3 would trivially generalised to every Gibbs measure whose interaction
satisfies those two properties. While the first property is a standard property satisfied by most interactions considered in
the literature, the second property, related to the monotony of the Gibbs specification, is less common. To the best of our
knowledge the area-interaction is the only interaction considered in the literature which satisfies this property.

Now consider two independent configurations ωD,U,⊗ and ω̃D,U,⊗. The random ordering of cubes e = (e1, . . . , et )

considered starting now is constructed from ωD,U,⊗ with (4.3). We write ω = Fe(ω
D,U,⊗) and ω̃ = Fe(ω̃

D,U,⊗). Thanks
to Proposition 4.1, those are two realisations of P

z,β

�,ω̂�c
. Even if they are both sample from e (which depends on ω), the

configurations ω and ω̃ are independent since e intervenes only in the order of the cubes 	ei
and the configurations in

	ei
are sampled from independent Poisson configurations.

Now write for i ≤ τ = τ(ω)

γ i = Fe
(
ω̃D,U,1, . . . , ω̃D,U,i ,ωD,U,i+1, . . . ,ωD,U,τ , ω̃D,U,τ+1, . . . , ω̃D,U,t

)
.

Then since 0 ≤ f ≤ 1 we have

Var
Pz,β

�,ω̂�c

[f ] ≤ E
Pz,β

�,ω̂�c

[∣∣f −E
Pz,β

�,ω̂�c

[f ]∣∣] = E
[∣∣f (

γ 0) −E
[
f

(
γ τ

)]∣∣],
where in the right-hand side the expectation is with respect to the two independent marked Poisson realisations ωD,U,⊗
and ω̃D,U,⊗ from which the γ i are constructed. Then

Var
Pz,β

�,ω̂�c

[f ] ≤ E
[∣∣E[

f
(
γ 0)|ωD,U,⊗] −E

[
f

(
γ τ

)|ωD,U,⊗]∣∣]
≤ E

[∣∣f (
γ 0) − f

(
γ τ

)∣∣]
≤

∑
i=1...t

E
[∣∣f (

γ i
) − f

(
γ i−1)∣∣1i≤τ

]

=
∑

i=1...t

∑
e∈E

E
[
E

[∣∣f (
γ i

) − f
(
γ i−1)∣∣|ωD,U,1..i−1]1i≤τ1ei=e

]
,

where ωD,U,1..i−1 is, as defined before, a short-hand for (ωD,U,1, . . . ,ωD,U,i−1).

Lemma 4.2. On the event {i ≤ τ } ∩ {ei = e} we have

E
[∣∣f (

γ i
) − f

(
γ i−1)∣∣|ωD,U,1..i−1] ≤ 2 Cov

Pz,β

�,ω̂�c

(f,#ωe) +O
(
ε2d

)
.
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Using the Lemma 4.2 we get

Var
Pz,β

�,ω̂�c

[f ] ≤
∑

i=1...t

∑
e∈E

(
2 Cov

Pz,β

�,ω̂�c

(f,#ωe) +O
(
ε2d

))
E[1i≤τ1ei=e]

=
∑
e∈E

(
2 Cov

Pz,β

�,ω̂�c

(f,#ωe) +O
(
ε2d

))
δ(e, T )

= 2

(∑
e∈E

Cov
Pz,β

�,ω̂�c

(f,#ωe)δ(e, T )

)
+O

(
εd

)
,

where the last equality uses that the cardinal of E is of order 1/εd .

Proof of Lemma 4.2. Since f is a positive increasing function bounded by one, we have∣∣f (
γ i

) − f
(
γ i−1)∣∣ = ∣∣f (

γ i
) − f

(
γ i−1)∣∣ × (1 − 1#γ i

e =#γ i−1
e =0)

≤ (
f

(
γ i

) − f
(
γ i−1)) × (1#γ i

e ≥1 − 1#γ i−1
e ≥1) + 1#(γ i

e ∪γ i−1
e )>1,

where we used the fact that if #γ i−1
e = #γ i

e = 0, then γ i−1 = γ i .
But using the stochastic domination of Proposition 2.1 we have the following easy bound

E
[
1#(γ i

e ∪γ i−1
e )>1|ωD,U,1..i−1] ≤ π2z(#ωe > 1) =O

(
ε2d

)
.

Using the first item of Proposition 4.1 we obtain that γ i, γ i−1 ∼ P
z,β

�,ω̂�c
for all ωD,U,1..i−1 (as those variables don’t

intervene in the definition of γ i−1, γ i but only in e1, . . . , ei ) and therefore

E
[
f

(
γ i−1)1#γ i−1

e ≥1|ωD,U,1..i−1] = E
[
f

(
γ i

)
1#γ i

e ≥1|ωD,U,1..i−1]
= E

Pz,β

�,ω̂�c

[
f (ω)1ωe≥1

]
.

Now let study the term E[f (γ i−1)1#γ i
e ≥1|ωD,U,1..i−1]. One can no longer apply directly the monotonicity of Proposition

4.1 since changing ωD,U,⊗ changes also e. But, as in [9], by conditioning by ωD,U,⊗ and applying the FKG inequality
(applied to ω̃D,U,⊗) we obtain

E
[
f

(
γ i−1)1#γ i

e ≥1|ωD,U,1..i−1] = E
[
E

[
f

(
γ i−1)1#γ i

e ≥1|ωD,U,⊗]|ωD,U,1..i−1]
≥ E

[
E

[
f

(
γ i−1)|ωD,U,⊗]

E
[
1#γ i

e ≥1|ωD,U,⊗]|ωD,U,1..i−1]
= E

Pz,β

�,ω̂�c

[
f (ω)

]
E

Pz,β

�,ω̂�c

[1ωe≥1],

where the last equality uses the measurability of E[1#γ i
e ≥1|ωD,U,⊗] with respect to ωD,U,1..i−1, and the first item of

Proposition 4.1.
The same is true for

E
[
f

(
γ i

)
1#γ i−1

e ≥1|ωD,U,1..i−1] = E
[
E

[
f

(
γ i

)
1#γ i−1

e ≥1|ωD,U,1..i
]|ωD,U,1..i−1]

≥ E
Pz,β

�,ω̂�c

[
f (ω)

]
E

Pz,β

�,ω̂�c

[1ωe≥1],

and therefore

E
[∣∣f (

γ i
) − f

(
γ i−1)∣∣|ωD,U,1..i−1] ≤ 2 Cov

Pz,β

�,ω̂�c

(f,1ωe≥1) +O
(
ε2d

)
≤ 2 Cov

Pz,β

�,ω̂�c

(f,#ωe) +O
(
ε2d

)
,

where the last inequality coming from the use of the FKG inequality, valid for P
z,β

�,ω̂c
�

as a consequence of Theorem 2.1

in [12], and applied to f and #ωe − 1ωe≥1.
The result is proved. �
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4.3. Proof of Theorem 3

We are now going to prove Theorem 3 by applying Theorem 4. We need the following classical lemma in the theory of
randomised algorithms (see Lemma 3 in [8] for instance).

Lemma 4.3. Consider a converging sequence of increasing differentiable functions gn : ]0, zmax] →]0,1] satisfying for
all n ≥ 1

g′
n(z) ≥ α2

n

�n(z)
gn(z), (4.7)

where α2 > 0 is a positive constant and

�n(z) =
n−1∑
i=0

gi(z).

Then there exists z̃ ∈ [0, zmax] such that:

– For every z < z̃, there exists α1 := α1(z) > 0 such that for all n,

gn(z) ≤ exp(−α1n).

– For every z > z̃,

g(z) := lim
n→∞gn(z) ≥ α2(z − z̃).

Remark 4.5. The statement of Lemma 4.3 is slightly different from the original one found in [9] as we added a constant
α2 in (4.7) in order to apply Lemma 4.3 directly to gn = θn.

Furthermore in the original statement of [9], the first point is obtained for n large enough. However since the functions
we consider in Lemma 4.3 are bounded by one, the same proof as in [9] proves the result for all n.

Therefore in order to prove Theorem 3 it is sufficient to prove that the functions gn = θn satisfies the assumptions of
Lemma 4.3. By construction, the functions z �→ θn(z) are increasing. The following lemma proves the differentiability of
the functions θn.

Lemma 4.4. For all functions f measurable and bounded, and all z > 0,

d

dz
P

z,β

n,wired(f ) = 1

z
Cov

P
z,β
n,wired

(f,#ω).

The proof of this result is done in the annex Section 6. Therefore the only remaining task in order to prove Theorem
3 is to prove that the functions θn satisfy (4.7). This is done using the OSSS inequality (4.5) to the wired measure μz

n for
the Boolean function f (ω) = 10←→

r
∂�n(ω) to the well chosen algorithms from [7,8].

Proposition 4.2. For 0 ≤ s ≤ n and ε small, there exists an algorithm Ts adapted to the event considered such that we
have δ(e, T ) = 0 if e /∈ �n+r+1 and otherwise

δ(e, Ts) ≤ μz
n

(
	ε

e ⊕ Br(0) ←→
r

∂�s

)
. (4.8)

This proposition uses the now standard algorithms used in [6,8,9]. The proof of Proposition 4.2 is done in the Annex
Section 6.

Using Theorem 4, summing over s between 0 and n − 1 and divinding by n we get

θn(z)
(
1 − θn(z)

) ≤ 2

n

∑
e∈E

n−1∑
s=0

μz
n

(
	ε

e ⊕ Br(0) ←→
r

∂�s

)
Covμz

n
(f,#ωe) +O

(
εd

)

≤ 2

n

∑
e∈E

n−1∑
s=0

μz
n

(
Br+1(e) ←→

r
∂�s

)
Covμz

n
(f,#ωe) +O

(
εd

)
,
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where the last inequality is valid by considering ε small enough. To see if Br+1(e) is r-connected to ∂�s , it is enough
to check if at least one point y, belonging to a finite collection of points Y e

r , is r-connected to ∂�s . Actually the set Y e
r

contains points close to the boundary of Br+1(e) (inside and outside) and also a point in Br+1(e)∩ ∂�s if the intersection
is non empty. It is easy to see also that the set Y e

r can be chosen with cardinal αr depending only on r and d .
Therefore

θn(z)
(
1 − θn(z)

) ≤ 2

n

∑
e∈E

∑
y∈Y e

r

n−1∑
s=0

μz
n(y ←→

r
∂�s)Covμz

n
(f,#ωe) +O

(
εd

)
. (4.9)

But we have

n−1∑
s=0

μz
n(y ←→

r
∂�s) ≤

n−1∑
s=0

μz
n

(
y ←→

r
∂��s−‖y‖�(y)

)

≤ 2
n−1∑
s=0

μz
n

(
y ←→

r
∂�s(y)

)

≤ 4
n/2∑
s=0

μz
n

(
y ←→

r
∂�s(y)

)
,

where �s� stands for the floor function of the absolute value of s, and where �s(y) = y ⊕ �s is the cube translated by
the vector y. Now using the stochastic domination between wired measures μz

n � μz
s from a straightforward extension of

Proposition 2.2, we finally obtain

n−1∑
s=0

μz
n

(
y ←→

r
∂�s(y)

) ≤ 4
n/2∑
s=0

μz
s(0 ←→

r
∂�s) ≤ 4�n(z). (4.10)

Remark 4.6. Equation (4.10) is the only step of the proof of Theorem 3 where we used the fact that μz
n is a wired

area-interaction measure.
The purpose of summing up to n/2 is to ensure that �3s+2(y) ⊆ �3n+2 and therefore μz

n � μz
s . This is why we

considered �3n+2 in the definition on μz
n.

Hence from (4.9), (4.10) and Lemma 4.4, we obtain

θn(z)
(
1 − θn(z)

) ≤ 8αr

�n(z)

n

∑
e∈E

Covμz
n
(f,#ωe) +O

(
εd

)

≤ 8αr

�n(z)

n
Covμz

n
(f,#ω) +O

(
εd

)
≤ 8αr

�n(z)

n
zθ ′

n(z) +O
(
εd

)
.

Now consider zmax > z̃a
c . Then for z ≤ zmax we have that 1 − θn(z) ≥ c > 0, where c can be chosen uniformly in n.

Therefore by letting ε goes to 0 we obtain

θ ′
n(z) ≥ c

8zmaxαr

n

�n(z)
θn(z) := α2

n

�n(z)
θn(z)

and equation (4.7) is fulfilled. From Lemma 4.3 we get the existence of a threshold z̃ but from the conclusion of Lemma
4.3 this threshold has to be the percolation threshold z̃a

c . The proof of Theorem 3 is complete.

4.4. Proof of proposition 3.1

We are in this section proving proposition 3.1, meaning the regularity of the function β → z̃a
c (β, r) and that for all r > 0

and β large enough (depending on r) we have z̃a
c (β, r) = β .
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4.4.1. Explicit value for the threshold
To prove that z̃a

c (β, r) = β for β large enough, we are going to use the well-known Fortuin–Kasteleyn representation of
bicolor Widom–Rowlinson measures (and therefore area-interaction measures as well) by Continuum Random Cluster
measures, defined as follows.

Definition 4.2. A stationary measure P crc on � is a Continuum Random Cluster measure of activity z, if for all bounded
� ⊆R

d and all bounded measurable function f ,

∫
f dP crc =

∫ ∫
f

(
ω′

� ∪ ω�c

) 2N�
cc(ω

′
�∪ω�c )

Zcrc(z,�,ω�c)
πz

�

(
dω′

�

)
P crc(dω), (4.11)

where N�
cc(ω) = lim	→Rd Ncc(ω	) − Ncc(ω	\�) with Ncc(ω	) counting the number of connected components of

B1/2(ω	), and Zcrc(z,�,ω�c) being the standard non-degenerate partition function.

Let us emphasis on the fact that N�
cc(ω) can be negative, which is a major difficulty on the study of the Continuum

Random Cluster Model. The existence of Random Cluster measures for every activity z was proved in [4]. In [16] the
author proves that for any r > 0 there exists z̃r

sym such that for any z > z̃r
sym every Continuum Random Cluster mea-

sures r-percolates, which as a consequence gives the non uniqueness of area-interaction measures in the symmetric case
for z = β > z̃

1/2
sym. Indeed the standard Fortuin–Kasteleyn representation claims that keeping each finite 1/2-connected

component from a Continuum Random Cluster measure with probability 1/2 and keeping as you want the infinite 1/2-
connected component, this construction produces an area-interaction measure with parameters z, β = z (see [2,16]).
Therefore, as recalled in Proposition 3.3, one area-interaction measure 1/2-percolates and another one does not 1/2-
percolate. Consequently z̃a

c (β,1/2) = β for β > z̃
1/2
sym and the result is proved for r = 1/2.

For r < 1/2, we notice that for β > z̃r
sym every Continuum Random Cluster measure, with activity β , r-percolates and

therefore at least one area-interaction measure with parameters z = β and β , r-percolates. That implies that z̃a
c (β, r) ≤ β

but by monotonicity z̃a
c (β, r) ≥ z̃a

c (β,1/2) = β which proves the result for r < 1/2.

It remains the case r > 1/2 which is more delicate. From now let z > z̃
1/2
sym and let P crc be a Continuum Random

Cluster measure of activity z, which is therefore 1/2-percolating by the choice of z. Consider the measure P thin obtained
from P crc by removing all points x ∈ ω belonging to the (unique) infinite component of B1/2(ω). Then as a consequence
of the Fortuin–Kasteleyn representation, we have the following domination:

P
z,z
free � P thin. (4.12)

By construction P thin does not 1/2-percolates, since the 1/2-infinite connected component was removed. We are proving
in the following lemma that by considering z large enough, this removed infinite connected component prevents r-
percolation in P thin.

Lemma 4.5. There exists z̄r ≥ z̃
1/2
sym such that for all z > z̄r , P thin does not r-percolate.

This lemma implies that z̃a
c (β, r) ≥ β for β > z̄r and by monotonicity z̃a

c (β, r) ≤ z̃a
c (β,1/2) = β . That concludes the

proof.

Proof of Lemma 4.5. We are divinding the space R
d into squares Cy := y⊕] − r, r]d , with y ∈ 2rZd . We are going

to prove that a lot of cubes are filled by balls from B1/2(ω), where ω ∼ P crc. By applying a well-known result from
Liggett,Schonmann and Stacey [18], the infinite connected component of B1/2(ω) will be (for large activities) very thick.
This will prevent P thin to r-percolate.

By stationarity of P crc we are only considering the conditional probability

pz(ω�c
0
) = P crc(C0 ⊆ B1/2(ω)|ω�c

0

)
,

where �0 :=]− r − 1, r + 1]d . For C0 to be 1/2-covered, it is sufficent that ω has enough nicely placed points. Therefore
we are once again diving C0 into smaller cubes C̃i , 1 ≤ i ≤ k, of side smaller than 1

2
√

d
. If all those small cubes contains

a point then C0 will be 1/2-covered. Using the union bound we have

1 − pz(ω�c
0
) ≤

k∑
i=1

P crc(#ω
C̃i

= 0|ω�c
0
).
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But

P crc(#ω
C̃i

= 0|ω�c
0
) =

∫ ∫
1#ω′′

C̃i
=0

2
N

C̃i
cc (ω′′

C̃i
∪ω′

�0\C̃i
∪ω�c

0
)

Zcrc(z, C̃i ,ω
′
�0\C̃i

∪ ω�c
0
))

πz

C̃i

(
dω′′

C̃i

)
P crc(dω′

�0
|ω�c

0

)

=
∫

e−zLd (C̃i )

Zcrc(z, C̃i ,ω
′
�0\C̃i

∪ ω�c
0
))

P crc(dω′
�0

|ω�c
0

)
,

where we used (4.11), the compatibility of the Continuum Random Cluster specification and the fact that N
C̃i
cc (∅ ∪

ω′
�0\C̃i

∪ ω�c
0
) = 0. But we also have the following bound on N

C̃i
cc (ω):

#ω
C̃i

(1 − cd) ≤ NC̃i
cc (ω) ≤ #ω

C̃i
,

where cd is the kissing number in dimension d , which is always larger than 2. This implies

P crc(#ω
C̃i

= 0|ω�c
0
) ≤ e−zLd (C̃i )ezLd (C̃i )(1−21−cd ) = e−21−cd zLd (C̃i ),

and therefore

pz(ω�c
0
) ≥ 1 − ke−21−cd zLd (C̃i ). (4.13)

The bound (4.13) is uniform in ω�c
0

and goes to 1 as z goes to infinity. Therefore by applying the result of Liggett
Schonmann and Stacey [18], we have for z large enough that the set of completely covered (by balls of radii 1/2) boxes
Cy stochastically dominates an independent and identically Bernoulli field with parameter 0 < p < 1 as large as we want.
Let Cinfinite be the set of sites y ∈ 2rZd belonging to the infinite connected component.

Now consider the set Cfinite = 2rZd \ Cinfinite of sites y ∈ 2rZd not belonging to the infinite cluster of this site perco-
lation. By considering z large enough we have that Cfinite only contains bounded connected components, with respect to
the site percolation.

Now consider the configuration ωfinite obtained from ω by removing the points x in the infinite connected component
of B1/2(ω). By construction we have that B1/2(ω

finite) is entirely contained in the cubes Cy for y ∈ Cfinite and the configu-
ration ωfinite cannot r-percolates, since otherwise the infinite connected component would have to cross cubes y ∈ Cinfinite,
which is not possible.

This implies that for z large enough the measure P thin does not r-percolate. �

4.4.2. Regularity of the threshold
In this section we show that the function β → z̃a

c (β, r) is non-decreasing and Lipschitz. From the previous section there
exists M > 1 such that z̃a

c (β, r) = β for β ≥ M . Therefore it is sufficient to show that the function β �→ z̃a
c (β, r) from

[0,M] to R is non-decreasing and Lipschitz. To this end we prove that there exists a constant 0 < c ≤ 1 such that for any
(z,β) be in [0,M]2 and u in [0,1]

P
z,β+u

free � P
z,β

wired and P
z,β

free � P
z+u,β+cu

wired . (4.14)

The expected regularity and monotony for β → z̃a
c (β, r) follows from the threshold property given in Proposition

2.7. Such stochastic domination results (4.14) are consequences of uniform properties of the Papangelou intensity of the
area-interaction measure defined for every x ∈R

d and ω ∈ � by

γz,β(x,ω) = ze−βH{x}(x∪ω) = ze−βLd (B1(x)\B1(ω)). (4.15)

Roughly speaking, this quantity is the quotient of the densities of the process with and without the point x. We refer to
[12] for rigorous definitions, interpretations and results on the topic. By Theorem 1.1 in [12], to prove (4.14) it is sufficient
to show that for any (z,β) be in [0,M]2, u in [0,1], x ∈ R

d and ω ⊂ ω′ in �

γz,β

(
x,ω′) ≥ γz,β+u(x,ω) and γz+u,β+cu

(
x,ω′) ≥ γz,β(x,ω).
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The first inequality is obvious from the expression of γz,β in (4.15). For the second inequality we define the constant

c = min

(
1,

e−(M+1)vd

vdM

)
> 0,

where vd is the volume of the unit ball in R
d . Therefore

γz+u,β+cu

(
x,ω′) = (z + u)e−(β+cu)H{x}(ω′∪x)

≥ γz,β

(
x,ω′)e−cuvd + ue−(M+1)vd

≥ γz,β(x,ω) + M
(
e−cuvd − 1

) + ue−(M+1)vd

≥ γz,β(x,ω) + u
(
e−(M+1)vd − cMvd

)
≥ γz,β(x,ω).

5. Proof of Theorem 2

In this section we are considering z < z̃a
c (β,1), and we want to prove P

z,β

free = P
z,β

wired. The proof relies on a disagreement
coupling method.

Definition 5.1. A disagreement coupling P
dc
�,ω1

�c ,ω2
�c

index by a bounded � ⊆ R
d and two configurations satisfying

ω1
�c ⊆ ω2

�c , is a coupling of two marginals, with canonical variables ξ1 and ξ2 satisfying

∀1 ≤ i ≤ 2 : P
dc
�,ω1

�c ,ω2
�c

(
ξ i = dω′) = P

z,β

�,ωi
�c

(
dω′) (5.1a)

P
dc
�,ω1

�c ,ω2
�c

(
ξ1 ⊆ ξ2) = 1 (5.1b)

P
dc
�,ω1

�c ,ω2
�c

(∀x ∈ ξ2 \ ξ1|B1(x) ←→
B1

(
ξ2

) B1
(
ω2

�c

)) = 1 (5.1c)

Remark 5.1. In the definition of a disagreement coupling from [15], there is a third marginal dominating the two first
which is a Poisson point process. But from the monotonicity property of area-interaction measures, see Proposition 2.1,
one can only consider two marginals in the coupling.

Proposition 5.1. Colorred Assume z < z̃a
c (β,1). If there exists a disagreement coupling for every � bounded and every

configurations ω1
�c ⊆ ω2

�c , then P
z,β

free = P
z,β

wired.

Proof. Let E be an event, that without loss of generality, only depends on the configurations inside a given bounded �.
Then for � ⊆ �n we have

∣∣P z,β

free(E) − P
z,β

wired(E)
∣∣ ≤

∫ ∫ ∣∣Pz,β

�n,ω1
�c

n

(E) − P
z,β

�n,ω2
�c

n

(E)
∣∣P z,β

free

(
dω1)P z,β

wired

(
dω2)

=
∫ ∫ ∣∣Pz,β

�n,ω1
�c

n

(E) − P
z,β

�n,ω2
�c

n

(E)
∣∣P z,β

free|�n+2

(
dω1)P z,β

wired|�n+2

(
dω2),

where P
z,β

free|�n+2
(respectively P

z,β

wired|�n+2
) is the restriction of P

z,β

free (respectively P
z,β

wired) on �n+2. Now by the stochastic

domination P
z,β

free � P
z,β

wired, we have from Strassen’s theorem, see for instance [19], the existence of a thinning probability
φ1

ω2 such that

∣∣P z,β

free(E) − P
z,β

wired(E)
∣∣ ≤

∫ ∑
ω1⊆ω2

∣∣Pz,β

�n,ω1
�c

n

(E) − P
z,β

�n,ω2
�c

n

(E)
∣∣φ1

ω2

(
ω1)P z,β

wired|�n+2

(
dω2)

≤
∫ ∑

ω1⊆ω2

P
dc
�n,ω1

�c
n
,ω2

�c
n
,

(
� ←→

B1

(
ξ2

) �n−2
)
φ1

ω2

(
ω1)P z,β

wired|�n+2

(
dω2),
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where the last inequality comes from the existence of the disagreement coupling and the property (5.1c). Therefore

∣∣P z,β

free(E) − P
z,β

wired(E)
∣∣ ≤

∫
P

z,β
�n,ω�c

n

(
� ←→

B1(ξ)
�n−2

)
P

z,β

wired|�n+2
(dω)

= P
z,β

wired

(
� ←→

B1(ξ)
�n−2

) −→
n→∞ 0,

where the convergence is a consequence of z < z̃a
c (β,1). �

It remains to prove the existence of the disagreement coupling.

Proposition 5.2. For each bounded � and each ω1
�c ⊆ ω2

�c , there exists a disagreement coupling P
dc
�,ω1

�c ,ω2
�c

.

The construction of the disagreement coupling is a generalisation of the one made in [15], where the dominating
measure is a Poisson point process. The coupling is sampled starting from the balls close to the boundary of �, and going
inductively inside �.

Proof. The coupling is constructed inductively. Recall that � ⊆R
d is bounded and that ω1

�c ⊆ ω2
�c . Define the disagree-

ment zone

� = {
x ∈ �,

∥∥x;ω2
�c

∥∥ ≤ 2
}

as the region where a point x of the point process would be directly 1-connected to the boundary condition ω2
�c (i.e. the

ball B1(x) would overlap B1(y) for at least one y ∈ ω2
�c ).

The induction will be made with respect to the disagreement zone � in the following way.

– If � 
=∅, let us first sample ξ2 ∼ P
z,β

�,ω2
�c

. We are then sampling ξ1 ∼ P
z,β

�,ω1
�c

as a thinning of ξ2.

This procedure is possible, since the condition ω1
�c ⊆ ω2

�c implies, thanks to Proposition 2.1, the following domi-
nation:

P
z,β

�,ω1
�c

� P
z,β

�,ω2
�c

.

From ξ1 and ξ2 we are only keeping the points inside �. The induction then goes on with � ← � ∩ �c with the new
boundary conditions ω1

�c∪� = ω1
�c ∪ ξ1

� and ω2
�c∪� = ω2

�c ∪ ξ2
� .

– If � = ∅. This is the terminal step of the induction. In this case we have P
z,β

�,ω1
�c

= P
z,β

�,ω2
�c

= P
z,β
�,∅. Therefore we

simply sample ξ1 = ξ2 ∼ P
z,β
�,∅.

It is easy to see that the induction terminates almost surely. Indeed if at one step the sampled configuration ξ2 is empty
(which happens with positive bounded from below probability) then at the following step we will have � =∅. Therefore
the number of steps is dominated by a geometric random variable, which is almost surely finite.

Finally the construction ensures that all properties of (5.1) are fullfilled. �

6. Annex

6.1. Proof of Proposition 4.2

Let us define the algorithm Ts which explores the r-connected components of ∂�s .

Definition 6.1 (Definition of the algorithm). During the first i steps, the configuration inside the cubes e1, . . . , ei have
been explored, and we write Zi = Br(ωe[i]) for the region known to be covered by r-balls. Remark that Zi might not be
entirely connected (in Zi ) to ∂�s , and wrote Zs

i for the subregion of Zi of points connected (in Zi ) to ∂�s .
At the step i + 1 we take a cube ei+1 ∈ ε(Z+ 1/2)d ∩ �n+r+1 \ e[i] such that∥∥	ε

ei+1
;Zs

i ∪ ∂�s

∥∥ ≤ r.
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If no such ei+1 exists, then the algorithm stops as the connected components of ∂�s have been entirely explored. If there
is several ei+1 satisfying the condition, we choose one using a deterministic (but not important) rule.

We then look at the configuration inside the chosen cube ei+1 and set Zi+1 = Zi ∪ Br(ωei+1) = Br(ωe[i+1]).

The bound (4.8) from Proposition 4.2 follows directly from the definition of the algorithms.

6.2. Proof of Lemma 4.4

We have P
z,β

n,wired(f ) = ∫
f (ω)

z#ωh(ω)
Zarea(z,β,n,wired)

π�n(dω), where

h(ω) := e−βLd (B(ω�n ,1)∩�n−1).

Using a standard derivative theorem we obtain

d

dz
P

z,β

n,wired(f ) = 1

z
P

z,β

n,wired(f × #) −
d
dz

Zarea(z,β,n,wired)

Zarea(z,β,n,wired)
P

z,β

n,wired(f ). (6.1)

Taking f = 1 in (6.1) yields

0 = 1

z
P

z,β

n,wired(#) −
d
dz

Zarea(z,β,n,wired)

Zarea(z,β,n,wired)
,

which transforms (6.1) into

d

dz
P

z,β

n,wired(f ) = 1

z

(
P

z,β

n,wired(f × #) − P
z,β

n,wired(#)P
z,β

n,wired(f )
)
,

proving the result.
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