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Abstract. We consider weakly asymmetric exclusion processes whose initial density profile is a small perturbation of a constant. We
show that in the diffusive time-scale, in all dimensions, the density defect evolves as the solution of a viscous Burgers equation.

Résumé. Nous examinons le processus d’exclusion simple faiblement asymétrique partant d’une perturbation d’un profil de densité
constant. Nous montrons qu’à l’échelle diffusive, en toute dimension, la perturbation évolue selon la solution d’une équation de Burgers
visqueuse.
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1. Introduction

One of the main open problems in nonequilibrium statistical mechanics is the derivation of the hydrodynamic equations
of fluids, the so-called Euler and Navier–Stokes equations, from the microscopic Hamiltonian dynamics.

In contrast with the Euler equations, the Navier–Stokes equations are not scale invariant. They are obtained as cor-
rections of the Euler equations by adding a small viscosity, materialized as a second order derivative of the conserved
quantities.

Almost thirty years ago, Esposito, Marra and Yau [5,6] initiated the investigation of the time evolution of small per-
turbations of the density profile around the hydrodynamic limit for stochastic systems, deriving the incompressible limit
for asymmetric simple exclusion processes in dimension d ≥ 3.

To describe their result, fix a scaling parameter n ∈ N, and denote by T
d
n = (Z/nZ)d the d-dimensional discrete torus

with nd points. Elements of Td
n are represented by the letters x, y, z. Denote the configuration space by �n = {0,1}Td

n

and by η = {ηx : x ∈ T
d
n} the elements of �n, which describes a configuration on T

d
n such that ηx = 1 if there is a particle

at x ∈ T
d
n and ηx = 0 otherwise. For a configuration η ∈ �n, let σx,yη be the configuration of particles obtained from η

by exchanging the occupation variables ηx and ηy :

(
σx,yη

)
z
=

⎧⎪⎨⎪⎩
ηy if z = x,

ηx if z = y,

ηz otherwise.

Consider the asymmetric exclusion process on �n. This is the Markov chain whose generator, denoted by LA
n , applied

to a function f : �n → R is given by

(
LA

n f
)
(η) =

∑
x∈Td

n

d∑
j=1

rx,j (η)
{
f

(
σx,x+ej η

) − f (η)
}
, (1.1)
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where {ej : 1 ≤ j ≤ d} represents the canonical basis of Rd , rx,j (η) = pjηx(1−ηx+ej
)+qjηx+ej

(1−ηx) and 0 ≤ pj ≤ 1,
qj = 1 − pj .

Denote by θ = (θ1, . . . , θd) the points of the d-dimensional continuous torus Td = [0,1)d and by ∇F the gradient of a
function F : Td → R, ∇F = (∂θ1F, . . . , ∂θd

F ). It is well known [11,20], that in the hyperbolic scaling the density profile
evolves according to the inviscid Burger’s equation

∂tu + m · ∇σ0(u) = 0,

where σ0(α) = α(1 − α) is the mobility and m is the vector whose coordinates are given by mj = pj − qj .
In dimension d ≥ 3, the macroscopic current mσ0(u) is expected to have a correction of order 1/n and be given by

mσ0(u)− (1/n)
∑

k aj,k(u)∂θk
u for some diffusion coefficient a. If this is the case, the partial differential equation which

describes the evolution of the density becomes

∂tu + m · ∇σ0(u) = 1

n

∑
j,k

∂θj

(
aj,k(u)∂θk

u
)
.

If we start from a density which is a (1/n)-perturbation of the constant profile equal to 1/2, u0(θ) = (1/2) + εnv0(θ),
where εn = 1/n, if we rescale time by an extra factor n and assume that the density profile remains at all times a (1/n)-
perturbation of the constant profile equal to 1/2, u(t, θ) = (1/2) + εnv(t, θ), as σ ′

0(1/2) = 0, a Taylor expansion yields
that the perturbation v is expected to solve the viscous Burgers equation

∂tv = m · ∇v2 +
∑
j,k

aj,k(1/2)∂2
θj ,θk

v. (1.2)

This is the content of the main result of Esposito, Marra and Yau [5,6] which we now state. Note that one can consider a
perturbation around a general constant profile α ∈ (0,1) by performing a Galilean transformation [see Remark 2.6].

Recall that a function f : {0,1}Zd → R is said to be a local function or a cylinder function if it depends on the
configuration η only through a finite number of coordinates.

Denote by {τx : x ∈ Z
d} the group of translations acting on �n: For a configuration η ∈ �n, τxη is the configuration

given by (τxη)z = ηx+z, where the sum is taken modulo n. We extend the translations to functions f : �n → R by setting
(τxf )(η) = f (τxη), x ∈ Z

d , η ∈ �n.
Let να , 0 ≤ α ≤ 1, be the product measure on {0,1}Zd

with density α. For a continuous function u : Td → [0,1],
denote by νn

u(·) the Bernoulli product measure on �n with marginal density u(x/n):

νn
u(·)

{
η(x) = 1

} = u(x/n), x ∈ T
d
n. (1.3)

Fix a density v0 : Td → R, and let νn
t , t ≥ 0, be the measure νn

(1/2)+εnv(t,·), where v(t, θ) is the solution of equation (1.2)
with initial condition v0.

Denote by ηn(t) the Markov chain on �n induced by the generator n2LA
n , where LA

n has been introduced in (1.1). Note
that time has been rescaled diffusively. For a probability measure μ on �n, denote by Pμ the distribution of the process
ηn(t) starting from μ. Expectation with respect to Pμ is represented by Eμ.

Fix a smooth density profile v0 : Td → R, and distribute particles on T
d
n according to νn

0 = νn
(1/2)+εnv0(·). Then, in

dimension d ≥ 3, for every t > 0, continuous function G : Td → R, and cylinder function � : {0,1}Zd → R,

lim
n→∞Eνn

0

[
1

nd−1

∣∣∣∣ ∑
x∈Td

n

G(x/n)
{
(τx�)

(
ηn(t)

) − Eνρn(t,x)
[�]}∣∣∣∣] = 0, (1.4)

where ρn(t, x) = (1/2) + εnv(t, x/n) and, recall, να stands for the Bernoulli product measure with density α.
The proof of this result is based on a sharp estimate of the relative entropy. Let 
n be the set of all probability measures

on �n. For a reference measure ν ∈ 
n, define the relative entropy Hn(·|ν) with respect to ν by

Hn(μ|ν) = sup
f

{∫
�n

f dμ − log
∫

�n

ef dν

}
,

where the supremum is carried over all functions f : �n → R. It is well known that

Hn(μ|ν) =
∫

�n

dμ

dν
log

dμ

dν
dν, (1.5)

if μ is absolutely continuous with respect to ν, while Hn(μ|ν) = ∞ if this is not the case.
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Denote by {Sn
t : t ≥ 0} the semigroup of the Markov chain ηn

t rescaled diffusively. Hence, μnSn
t represents the state of

the process at time t provided the initial state is μn. Esposito, Marra and Yau [5,6] proved that in dimension d ≥ 3,

lim
n→∞

1

nd−2
Hn

(
μnSn

t |νn
t

) = 0,

where νn
t has been introduced just below (1.3). It is not difficult to deduce (1.4) from the previous bound.

The result is restricted to d ≥ 3, as in dimension 1 and 2 Gaussian fluctuations of order n−d/2 appear around the
hydrodynamic limit and n−d/2 is at least of the order of 1/n in dimensions 1 and 2. For more details, see [5, Section 1].

In this article, we pursue the investigation of the time evolution in the hydrodynamic limit of densities in the vicinity
of constant profiles by considering weakly asymmetric exclusion processes. These are Markov processes on �n whose
generator Ln acts on cylinder functions as Lnf = n2LS

nf + nLT
n f , where LS

n represents the generator of the speed-
change, symmetric exclusion process given by

(
LS

nf
)
(η) =

∑
x∈Td

n

d∑
j=1

cj (τxη)
{
f

(
σx,x+ej η

) − f (η)
}
, (1.6)

and LT
n the generator of the speed-change totally asymmetric exclusion process given by

(
LT

n f
)
(η) =

∑
x∈Td

n

d∑
j=1

mj cj (τxη)ηx(1 − ηx+ej
)
{
f

(
σx,x+ej η

) − f (η)
}
. (1.7)

In this formula, cj : {0,1}Zd → R, 1 ≤ j ≤ d , are cylinder functions and m = (m1, . . . ,md) is a fixed vector in R
d . In

this paper, we assume that cj does not depend on the occupation variables η0 and ηej
and satisfies the gradient conditions

(2.1). Under these conditions, one can see that the generator Ln is invariant with respect to the Bernoulli measures.
Note that the symmetric generator has been speeded-up by n2, while the asymmetric one by n. In other words, we

consider a weakly asymmetric system in a diffusive time scale n2 with asymmetry strength of order 1/n.
The hydrodynamic equation of the weakly asymmetric speed-change exclusion process is given by

∂tu = ∇ · [D(u)∇u
] − ∇ · [σ(u)m

]
,

where the matrices D(·) and σ(·) represent the diffusivity and the mobility, respectively. By further accelerating the
symmetric part of the dynamics by bn, the asymmetric one by an, and by assuming that the density is an εn-perturbation
of a constant α, viz. u(t, θ) = α + εnv(t, θ), we get from the previous equation that

∂tv = bn∇ · [D(α)∇v
] + bnεn∇ · [vD′(α)∇v

]
− an∇ · [vσ ′(α)m

] − (1/2)anεn∇ · [v2σ ′′(α)m
]
.

There are many ways to handle the right-hand side. One of them is to set bn = 1, an = ε−1
n , and assume that σ ′(α) = 0.

In this case, up to smaller order terms, the equation becomes

∂tv = ∇ · [D(α)∇v
] − (1/2)∇ · [v2σ ′′(α)m

]
. (1.8)

Assume, therefore, that σ ′(α) = 0 for some α ∈ (0,1). Note that this α always exists since each entry of σ is smooth
and vanishes at 0 and 1. Consider the weakly asymmetric exclusion process in which the asymmetric part of the generator
has been speeded-up by ann [instead of n] for some sequence an → ∞ and ann

−1 → 0. Note that the latter condition
ensures that the operator n2[LS

n + (an/n)LT
n ] becomes a Markovian generator for sufficiently large n. Denote by v =

v(t, θ) the solution of (1.8) with a smooth initial condition v0 : Td → R. Distribute particles on T
d
n according to νn

0 =
νn
α+εnv0(·), where εn = 1/an. The first main result of this article states that under some hypotheses on an, for every t > 0,

continuous function G : Td → R, and cylinder function � : {0,1}Zd → R,

lim
n→∞Eνn

0

[
1

ndεn

∣∣∣∣ ∑
x∈Td

n

G(x/n)
{
(τx�)

(
ηn(t)

) − Eνρn(t,x)
[�]}∣∣∣∣] = 0, (1.9)

where ρn(t, x) = α + εnv(t, x/n).
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As above, the proof of this result is based on an estimate of the relative entropy of the state of the process with
respect to a product measure. We start the presentation of this bound with a remark which elucidates what is needed.
In Lemma 2.1 below, we show that in order to single out an εn-perturbation of the density around a constant profile we
need the entropy of the state of the process with respect to the inhomogeneous product measure associated to the density
profile α + εnv(t, x/n) to be of an order much smaller than ndε2

n .
To state the entropy bound, denote by d the dimension, and let (gd(n) : n ≥ 1) be the sequences given by

gd(n) =

⎧⎪⎨⎪⎩
n if d = 1,

logn if d = 2,

1 for d ≥ 3.

(1.10)

Following Jara and Menezes in [10], we prove in Theorem 2.2 that under certain assumptions on the initial profile v0, the
sequence an and the initial distribution of particles, for all t > 0 there exists a finite constant C = C(t), such that

Hn

(
μnSn

t |νn
t

) ≤ Cnd−2gd(n),

where νn
t stands for the inhomogeneous product measure associated to the density profile α + εnv(t, x/n). This entropy

estimate and a simple argument, presented in the proof of Corollary 2.3, yield (1.9). Lemma 2.1 and (1.10) yield some
restrictions on εn discussed in Remark 2.4 below.

We here mention related results, which establish the incompressible limits for interacting particle systems: Esposito,
Marra and Yau [5,6], Quastel and Yau [19], Beltrán and Landim [1]. We also mention recent results, which study the
entropy estimate as in Theorem 2.2. The entropy estimate as in Theorem 2.2 has been established in Jara and Menezes
[9,10] to study the nonequilibrium fluctuations for interacting particle systems. By establishing a similar entropy estimate,
Funaki and Tsunoda [7] derived the motion by mean curvature from Glauber-Kawasaki processes, and Jara and Landim
[8] the stochastic heat equation from a stirring dynamics perturbed by a voter model, respectively.

We conclude this introduction mentioning two other ways to detect the evolution of small perturbations around the
hydrodynamic limit. Dobrushin [2], Dobrushin, Pellegrinotti, Suhov and Triolo [4], Dobrushin, Pellegrinotti, Suhov [3]
and Landim, Olla, Yau [15,16] investigated the first order correction to the hydrodynamic equation. Landim, Valle and
Sued [17] examined the evolution of the density profile in the orthogonal direction to the drift when the initial condition
is constant along the drift direction. Versions of these results might be problems for future investigation.

2. Notation and results

2.1. Model

Recall that we denote by {ej : j = 1, . . . , d} the canonical basis of Rd . Fix cylinder functions cj : {0,1}Zd → R+, 1 ≤
j ≤ d . Assume that cj does not depend on η0, ηej

and that the gradient conditions are in force: For each j , there exist
cylinder functions gj,p and finitely-supported signed measures mj,p , 1 ≤ p ≤ nj , such that

cj (η)[η0 − ηej
] =

nj∑
p=1

∑
y∈Zd

mj,p(y)(τygj,p)(η),
∑
y∈Zd

mj,p(y) = 0. (2.1)

Denote by �0 the size of the support of the measures mj,p . This is the smallest integer such that

mj,p(y) = 0 if y /∈ ��0 := {−�0, . . . , �0}d .

Let LS
n be the generator of the speed-change exclusion process in �n introduced in (1.6), and let LT

n be the generator
of the speed-change totally asymmetric exclusion process in �n, introduced in (1.7).

Recall that we denote by να = νn
α , 0 ≤ α ≤ 1, the Bernoulli product measure on �n or on {0,1}Zd

with density α.
Since we assume that cj does not depend on η0, ηej

, for any α, LS
n is reversible with respect to να . Moreover, this

assumption together with the gradient conditions (2.1) ensures that LT
n is invariant with respect to να . For a cylinder

function g : {0,1}Zd →R, let g̃ : [0,1] →R be the polynomial function given by

g̃(α) = Eνα [g], α ∈ [0,1]. (2.2)
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Denote by D(ρ) = (Dj,k(ρ))1≤j,k≤d , the diffusivity of the exclusion process, the matrix whose entries are given by

Dj,k(ρ) =
nj∑

p=1

Dp(j, k)g̃′
j,p(ρ) where Dp(j, k) = −

∑
y

ykmj,p(y). (2.3)

In this formula, g̃′
j,p represents the derivative of the function g̃j,p . This later one is obtained through equation (2.2) from

the cylinder functions gj,p introduced in (2.1). We prove in Proposition 5.7 that D(ρ) is a diagonal matrix:

nj∑
p=1

Dp(j, k)g̃′
j,p(ρ) = 0 for k 	= j. (2.4)

Denote by σ(ρ) = (σi,j (ρ))1≤i,j≤d the mobility, the diagonal matrix whose entries are given by

σj,j (ρ) = ρ(1 − ρ)̃cj (ρ). (2.5)

We prove in Proposition 5.7 the Einstein relation, which in the present context reads that for every ρ ∈ (0,1), 1 ≤ j ≤ d ,

c̃j (ρ) =
nj∑

p=1

Dp(j, j)g̃′
j,p(ρ) so that

1

χ(ρ)
σ (ρ) = D(ρ), (2.6)

where χ(ρ) = ρ(1 − ρ) is the static compressibility.
Recall that we denote by T

d = [0,1)d the d-dimensional torus and by the symbol θ = (θ1, . . . , θd) elements of Td . For
a smooth function u : Td → R, let ∂θj

u be the partial derivative of u in the j th direction and let ∇u = (∂θ1u, . . . , ∂θd
u)

be the gradient of u. Similarly, for a smooth vector field b = (b1, . . . , bd) : Td → R
d , denote by ∇ · b its divergence:

∇ · b = ∑
j ∂θj

bj .
Fix a sequence (an : n ≥ 1) such that an ↑ ∞, and let εn = 1/an. Denote by {ηn(t) : t ≥ 0} the Markov process on �n

generated by the operator

Ln = n2
[
LS

n + an

n
LT

n

]
.

As mentioned in the Introduction, throughout the paper we assume ann
−1 → 0, and this condition ensures that the

operator n2[LS
n + (an/n)LT

n ] becomes a Markovian generator for sufficiently large n. If an is constant in n, then the
process is a weakly asymmetric speed-change exclusion process. Therefore, formally, the hydrodynamic equation is
given by

∂tu = ∇ · [D(u)∇u
] − an∇ · [σ(u)m

]
. (2.7)

Assume that there exists α0 ∈ (0,1) such that

σ ′(α0) = 0: σ ′
j,j (α0) = 0 for 1 ≤ j ≤ d. (2.8)

Assume, furthermore, that the initial condition un
0 is given by un

0 = α0 + εnv0, where v0 : Td → R is a smooth profile,
and, recall, εn = 1/an. Write the solution u as α0 + εnv. Since σ ′(α0) = 0, a straightforward computation yields that, up
to lower order terms, v : Td × [0,∞) → R is the solution of the Cauchy problem{

∂tv = ∇ · [D(α0)∇v] − (1/2)∇ · [v2σ ′′(α0)m],
v(0, ·) = v0(·). (2.9)

From these observations, one might expect that the empirical measure of the weakly asymmetric exclusion process suit-
ably rescaled converges to the solution of the viscous Burgers equation (2.9). As mentioned in the Introduction, one
can consider a perturbation around a general constant profile α ∈ (0,1) by performing a Galilean transformation [see
Remark 2.6].
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2.2. Main results

Let u : Td → [0,1] be a continuous function. Denote by ‖u‖∞ the supremum norm: ‖u‖∞ = supθ∈Td |u(θ)|. Let uj :
T

d → R, j = 1, 2, be two continuous functions and let un
j (θ) = u(θ) + κnuj (θ), where limn κn = 0. Assume that there

exists δ > 0 such that δ ≤ uj (θ) ≤ 1 − δ for all θ ∈ T
d , j = 1,2. The proof of the next lemma relies on a simple Taylor

expansion.

Lemma 2.1. There exists a finite constant C0, depending only on δ and ‖u1‖∞, ‖u2‖∞, such that

Hn

(
νn
un

2(·)|νn
un

1(·)
) = κ2

n

2

∑
x∈Td

n

[u2(x/n) − u1(x/n)]2

χ(u(x/n))
+ Rn,

where |Rn| ≤ C0κ
3
nnd .

This result states that Hn(ν
n
un

2(·)|νn
un

1(·)) is of order κ2
nnd . In particular, the density profile at the scale κn of a probability

measure μn is not characterized if its relative entropy with respect to νn
un

1(·) is of order κ2
nnd .

Denote by Cm(Td), m ≥ 1, the set of m-times continuously differentiable functions on T
d , and by Cm+β(Td), 0 <

β < 1, the set of functions in Cm(Td) whose mth derivatives are Hölder-continuous with exponent β . Fix a function v0 in
C3(Td). By [14, Theorem V.6.1], for each T > 0, there exists a unique solution, represented by v(t, x), of (2.9). Denote
by (Sn

t : t ≥ 0) the semigroup associated to the generator Ln, and recall from (1.10) the definition of the sequence gd(n).

Theorem 2.2. Assume that εn ↓ 0 and that n2ε4
n ≤ C0gd(n) for some finite constant C0. Recall hypothesis (2.8). Suppose

that v0 belongs to C3+β(Td) for some 0 < β < 1. Let vt be the solution of (2.9), un
t = α0 +εnvt and νn

t = νn
un

t (·). Consider

a sequence of probability measures {μn : n ≥ 1} on �n such that

Hn

(
μn|νn

0

) ≤ C1n
d−2gd(n)

for some finite constant C1. Then, for every T > 0, there exists a finite constant C2 = C2(T , v0,C0,C1), such that for
every 0 ≤ t ≤ T ,

Hn

(
μnSn

t |νn
t

) ≤ C2n
d−2gd(n).

The proof of this result is based on a two-blocks estimate due to Jara and Menezes [10] and stated below in Lemma 4.2.
For two sequences (bn : n ≥ 1), (cn : n ≥ 1) of non-negative real numbers, we write bn 
 cn to mean that

limn bn/cn = 0. In view of Lemma 2.1 and Theorem 2.2, to characterize the density profile at the scale εn, we need
at least nd−2gd(n) 
 ndε2

n . This is exactly the extra assumption of the next corollary.

Corollary 2.3. Besides the assumptions of Theorem 2.2, assume that gd(n) 
 n2ε2
n . Then, for every t ≥ 0, every function

H in C2(Td) and every cylinder function � : {0,1}Zd →R,

lim
n→∞EμnSn

t

[∣∣∣∣ 1

ndεn

∑
x∈Td

n

H(x/n)(τx�)(η) −
∫
Td

H(x)Eνn
t
[�]dx

∣∣∣∣] = 0.

Remark 2.4. The conditions gd(n) 
 n2ε2
n and n2ε4

n ≤ C0gd(n) in Theorem 2.2 and Corollary 2.3 read as follows,
respectively. There exists a finite constant C0 such that

(a) in dimension 1, n−1/2 
 εn and εn ≤ C0n
−1/4;

(b) in dimension 2, (logn)1/2n−1 
 εn and εn ≤ C0(logn)1/4n−1/2;
(c) in dimension d ≥ 3, n−1 
 εn and εn ≤ C0n

−1/2.

Remark 2.5. In all dimensions, in the scaling εn = n−d/2 one observes the fluctuations of the density field. In dimen-
sion 1, the condition n−1/2 
 εn is therefore optimal, while in dimension 2, there is an extra factor (logn)1/2. In dimen-
sion d ≥ 3, Esposito, Marra and Yau [5,6] examined the incompressible limit of the asymmetric simple exclusion process.
They proved that a perturbation of size 1/n of the density profile around a constant evolves in the diffusive time-scale as
the solution of (2.9).
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In particular, we believe that to reach perturbations of size 1/n in dimension d ≥ 3 we have to improve Theorem 2.2
by adding “non-gradient corrections”, that is, to add a local perturbation of the state of the process, as it has been done in
[12,18,21] to derive the hydrodynamic behavior of non-gradient interacting particle systems [cf. Chapter 7 of [11]].

The diffusive behavior of the asymmetric exclusion process has been further investigated in [16,17].

Remark 2.6. Hypothesis (2.8) can be circumvented by performing a Galilean transformation. Indeed, writing the solution
of (2.7) as α0 + εnv(t, x − ε−1

n σ ′(α)mt), we get, from a straightforward computation, that v is the solution of the Cauchy
problem (2.9). This computation does not require hypothesis (2.8), as the higher order terms in εn cancel [one of them
being ∇ · [vσ ′(α)m]].

Remark 2.7. The assumption that n2ε4
n ≤ C0gd(n) for some finite constant C0 is needed to estimate the linear terms of

the time-derivative of the relative entropy. This issue is further discussed in Remarks 3.6 and 3.7 below.

The paper is organized as follows. In Section 3, we compute the time derivative of the entropy Hn(μ
nSn

t |νn
t ). In

Section 4, we estimate the time derivative of the entropy and we prove Theorem 2.2 and Corollary 2.3. In Section 5, we
present the results on the viscous Burger’s equation (2.9) needed in the proofs of the main results, and, in Section 6, we
compute the adjoint of the generator Ln in L2(νn

u(·)).

3. Entropy production

We estimate in this section the time derivative of the relative entropy. Fix n ≥ 1, and recall that we denote by (Sn
t : t ≥ 0)

the semigroup associated to the generator Ln. Fix a stationary state να , 0 < α < 1, and a probability measure μ on �n.
Denote by ft the Radon–Nikodym derivative of μSn

t with respect to να . An elementary computation yields that

d

dt
ft = L∗

nft ,

where L∗
n stands for the adjoint of Ln in L2(να).

For a function f : �n → R and a probability measure ν on �n, denote by I (f ;ν) the Dirichlet form given by

I (f ;ν) =
∑
x∈Td

n

d∑
j=1

∫ {√
f

(
σx,x+ej η

) − √
f (η)

}2
ν(dη). (3.1)

The proof of the next result, which is similar to the one of Lemma 6.1.4 in [11], is left to the reader. Recall from (1.3)
the definition of the product measure νn

u(·) associated to a function u : Td
n → (0,1). For a function w :R+ ×T

d
n → (0,1),

let νn
w(t) = νn

w(t,·).

Lemma 3.1. Fix n ≥ 1 and 0 < α < 1. Let w : R+ × T
d
n → (0,1) be a differentiable function in time, and let μ be a

probability measure on �n. Then,

d

dt
Hn

(
μSn

t |νn
w(t)

) ≤ −n2I
(
gt ;νn

w(t)

) +
∫ {

L∗
w(t)1 − ∂t logψt

}
dμSn

t ,

where gt represents the Radon–Nikodym derivative of μSn
t with respect to νn

w(t), gt = dμSn
t /dνn

w(t), L∗
w(t) the adjoint

operator of Ln in L2(νn
w(t)) and ψt the density given by ψt = dνn

w(t)/dνn
α .

In view of the previous lemma, we need to compute the integrand in the right hand side of the statement of the lemma.
To state the explicit formula of L∗

�1 − ∂t logψt for a function � : Td
n → (0,1), we need to introduce several notations.

This computation will be postponed to Section 6.
Consider a cylinder function f : {0,1}Zd → R and a function � : Td

n → (0,1). Fix a positive integer n large enough
for {−n/2, . . . , n/2}d to contain the support of f . We also introduce the notion of Fourier coefficients for local functions,
c.f. [13, Section 5.4]. For each x ∈ T

d
n and subset B of Td

n , let

f(x,∅) := Eν� [τxf ], f(x,B) := Eν�

[
(τxf )ξ�(B + x)

]
, (3.2)
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where, for a subset D of Td
n ,

D + x = {y + x : y ∈ D}, ξ�(D) =
∏
y∈D

[
η(y) − �(y)

]
.

When D = {x} for some x ∈ T
d
n , we shall denote ξ�(D) by ξ�(x) for simplicity.

Note that f(x,B) = 0 if the set B is not contained in the support of f . More precisely, assume that f depends on η

only through {η(x) : x ∈ ��}, where �� = {−�, . . . , �}d . Then,

f(x,B) = 0 if B is not a subset of ��. (3.3)

With these notations, we may write

(τxf )(η) = f(x,∅) +
∑
A

f(x,A)ω�(A + x), (3.4)

where the sum is performed over all non-empty subsets A of Td
n and

ω�(D) =
∏
y∈D

η(y) − �(y)

�(y)[1 − �(y)] ·

Note that {ω�(D) : D ⊂ T
d
n} forms an orthogonal basis of L2(νn

�). Denote by Ek = En,k all subsets of Td
n with k elements:

Ek = {A ⊂ T
d
n : |A| = k}. A cylinder function τxf , x ∈ T

d
n , is said to be of degree k if f(x,A) = 0 for all A /∈ Ek .

In Section 6, we compute L∗
�1 for a function � : Td

n → [0,1] and the results are stated in terms of coefficients

Aj(x),B
(i)
j,p(x), . . . , which are defined there. Since we apply the results to the function w(t), to stress the dependence

we denote them with t in the following paragraphs. Moreover, as we shall consider the case w(t) = (1/2) + εnv
n(t)

in the following subsection, we shall denote them with n. For instance, Aj(x) will be denoted by Aj(t, x),An
j (t, x)

when � = w(t),w(t) = (1/2)+ εnv
n(t), respectively. Moreover, the contributions coming from the symmetric part or the

asymmetric part will be denoted with the superscript i = 1,2, respectively.
The explicit expression of L∗

w(t)1 requires some notation. Some of the notation below is borrowed from Section 6.
Denote by Dj the difference operator defined by

(DjF )(x) = F(x + ej ) − F(x), x ∈ T
d
n. (3.5)

For 1 ≤ j ≤ d , 1 ≤ p ≤ nj , x ∈ T
d
n , t ≥ 0 A ⊂ T

d
n , let cj (t, x,A), gj,p(t, x,A) be the Fourier coefficients, introduced in

(3.2), of the cylinder functions τxcj , τxgj,p , respectively, with respect to the measure νn
w(t):

cj (t, x,A) = Eνn
w(t)

[
(τxcj )ξw(t)(A + x)

]
,

gj,p(t, x,A) = Eνn
w(t)

[
(τxgj,p)ξw(t)(A + x)

]
,

where ξw(t)(B) = ∏
x∈B [ηx − w(t, x)],B ⊂ T

d
n .

For i = 1, 2, let Aj(t, x), B
(i)
j,p(t, x), E

(i)
j (t, x), F

(i)
j (t, x), G

(i)
j (t, x), H

(i)
j (t, x,A), Ij (t, x) be the functions obtained

from (6.1), (6.8), (6.9) by replacing �(x) by w(t, x). For example,

Aj(t, x) = χ(w(t, x)) + χ(w(t, x + ej ))

χ(w(t, x))χ(w(t, x + ej ))
,

E
(2)
j (t, x) = −mj

2
Aj(t, x)(Djwt )(x)w(t, x)

[
1 − w(t, x + ej )

]
.

In the case of H
(i)
j (t, x,A) one has also to replace the Fourier coefficients cj (x,A), gj,p(x,A), computed with respect to

ν� , by cj (t, x,A), gj,p(t, x,A), respectively.
Let

Hj(t, x,A) = n2H
(1)
j (t, x,A) + annH

(2)
j (t, x,A).
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As mentioned before, note that the first or the second term in the right-hand side comes from the contribution of the
symmetric or the asymmetric part of the generator, respectively.

The functions H
(1)
j , H

(2)
j , introduced in (6.2), (6.10), are defined in terms of the Fourier coefficients cj (t, x,A)

and gj,p(t, x,A). Since the functions cj , gj,p are cylinder functions, there exists � ≥ 1 such that cj (t, x,A) = 0 and
gj,p(t, x,A) = 0 for all sets A which are not contained in {−�, . . . , �}d [cf. remark (3.3)]. Hence, there exists � ≥ 1 such
that Hj(t, x,A) = 0 if A 	⊂ {−�, . . . , �}d .

It also follows from the definitions of H
(1)
j , H

(2)
j , given in (6.2), (6.10), that the functions of x which appear in

the previous formula either contain the product of derivatives [this is the case of Ej , Fj and Gj ] or a second discrete
derivative, which is the case of Bj,p [see also the paragraph before Lemma 6.1].

Denote by j0,ej
the instantaneous current over the bond (0, ej ). This is the rate at which a particle jumps from 0 to ej

minus the rate at which it jumps from ej to 0. It is given by

j0,ej
= cj (η)[η0 − ηej

]. Let jx,x+ej
= τxj0,ej

, x ∈ T
d
n. (3.6)

The gradient conditions (2.1) assert that this current can be written as a mean-zero average of translations of cylinder
functions.

Next result is a consequence of Lemmata 6.1 and 6.6.

Lemma 3.2. We have that

L∗
w(t)1 =

d∑
j=1

∑
x∈Td

n

Kj (t, x)ωx +
d∑

j=1

∑
A:|A|≥2

∑
x∈Td

n

Hj (t, x,A)ω(A + x),

where

Kj(t, x) = n2{Eνn
w(t)

[jx−ej ,x] − Eνn
w(t)

[jx,x+ej
]} − ann(Dj Ij )(t, x − ej ),

the sum over A is performed over finite subsets A with at least two elements, and

ωx = ηx − w(t, x)

χ(w(t, x))
, ω(B) =

∏
x∈B

ωx, B ⊂ Z
d .

Note that ωx depends on time, but this dependency is frequently omitted from the notation to avoid long formulas.
Also, to stress the point at which it is evaluated, we write sometimes ω(x) for ωx .

Lemma 3.3. Under the assumptions of Lemma 3.1, for every t ≥ 0,

∂t logψt =
∑
x∈Td

n

(∂tw)(t, x)ωx.

It follows from Lemmata 3.1, 3.2, 3.3 that L∗
w(t)1− ∂t logψt presents only terms of degree 2 or higher if w(t, x) solves

the semi-discrete equation

(∂tw)(t, x) =
d∑

j=1

Kj(t, x).

3.1. Perturbations of constant profiles

We turn to the setting of Theorem 2.2, and assume, without loss of generality, that in hypothesis (2.8), α0 = 1/2. Recall
that εn = 1/an and assume, throughout this subsection, that the function w(t) of Lemma 3.1 is given by w(t) = (1/2) +
εnv

n(t) for some function vn : R+ ×T
d
n → R. At this point we do not suppose yet that vn(t) is the solution of (2.9).

Lemma 3.2 provides a formula for L∗
w(t)1. Many terms cancel or simplify due to the special form of w(t). In the next

lemma we present the result of these reductions. As mentioned before, the coefficients An
j (t, x), . . . , which will be defined

below, formally coincide with Aj(t, x), . . . , respectively.
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Denote by ∇n
j the discrete partial derivative in the j th direction. For a function � : Td

n → R, ∇n
j � is given by(∇n

j �
)
(x) = n

[
�(x + ej ) − �(x)

]
, x ∈ T

d
n. (3.7)

For 1 ≤ j ≤ d , 1 ≤ p ≤ nj , x ∈ T
d
n , let

An
j (t, x) = χ(wt (x)) + χ(wt (x + ej ))

χ(wt (x))χ(wt (x + ej ))
, (3.8)

Cn
j (t, x) = mjwt (x)

[
1 − wt(x + ej )

]
.

Let U
n,(1)
j (t, x) = (εn/n)(∇n

j vn)(t, x),U
n,(2)
j (t, x) = −Cn

j (t, x) and

V
n,(i)
j (t, x) = [

U
n,(1)
j (t, x)

]3−i[
U

n,(2)
j (t, x)

]i−1
, i = 1,2.

For i = 1, 2, B
n,(i)
j,p ,E

n,(i)
j,p ,F

n,(i)
j,p ,G

n,(i)
j,p , are defined as

B
n,(i)
j,p (t, x) = 1

2

∑
y∈Td

n

mj,p(y)An
j (t, x − y)U

n,(i)
j (t, x − y),

E
n,(i)
j (t, x) = 1

2
An

j (t, x)V
n,(i)
j (t, x),

F
n,(i)
j (t, x) = −εn

2

V
n,(i)
j (t, x)

χ(wt (x + ej ))

{
vn(t, x) + vn(t, x + ej )

}
,

G
n,(i)
j (t, x) = −εn

2

V
n,(i)
j (t, x)

χ(wt (x))

{
vn(t, x) + vn(t, x + ej )

}
,

respectively. For A ⊂ T
d
n and i = 1,2, let J

n,(i)
j (t, x,A) be given

J
n,(i)
j (t, x,A) = −ϒ{0,ej }(A)V

n,(i)
j (t, x)cj

(
t, x,A \ {0, ej }

)
+ ϒ{0}(A)F

n,(i)
j (t, x)cj

(
t, x,A \ {0})

+ ϒ{ej }(A)G
n,(i)
j (t, x)cj

(
t, x,A \ {ej }

)
,

where, for two subsets A, B of Zd ,

ϒB(A) = 1 if B ⊂ A, and ϒB(A) = 0 otherwise. (3.9)

Here, the Fourier coefficients cj (t, x,A), gj,p(t, x,A) are computed with respect to the product measure νn
w(t). Finally,

let

H
n,(i)
j (t, x,A) = E

n,(i)
j (t, x)cj (t, x,A) +

nj∑
p=1

B
n,(i)
j,p (t, x)gj,p(t, x,A) + J

n,(i)
j (t, x,A),

Hn
j (t, x,A) = n2H

n,(1)
j (t, x,A) + annH

n,(2)
j (t, x,A).

In the case where w(t) = (1/2) + εnv
n(t), Lemma 3.3 and Lemma 3.2 become

∂t logψt = εn

∑
x∈Td

n

(
∂tv

n
)
(t, x)ωx. (3.10)

Lemma 3.4. Suppose that w(t) = (1/2) + εnv
n(t). Then,

L∗
w(t)1 =

d∑
j=1

∑
x∈Td

n

Kn
j (t, x)ωx +

d∑
j=1

∑
A:|A|≥2

∑
x∈Td

n

Hn
j (t, x,A)ω(A + x),
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where

Kn
j (t, x) = n2{Eνn

w(t)
[jx−ej ,x] − Eνn

w(t)
[jx,x+ej

]} − an

(∇n
j In

j

)
(t, x − ej ),

In
j (t, x) = Eνn

w(t)
[τxcj ]Cn

j (t, x), and

ωx and ω(B) are defined in Lemma 3.2.

The next result is a consequence of Lemmata 3.1, 3.3, 3.4.

Corollary 3.5. Suppose that w(t) = (1/2)+εnv
n(t). All terms of degree 1 of L∗

w(t)1−∂t logψt vanish as long as vn(t, x)

is the solution of the semi-discrete equation

(
∂tv

n
)
(t, x) = an

d∑
j=1

Kn
j (t, x), t ≥ 0, x ∈ T

d
n. (3.11)

Remark 3.6. Note that the computation of L∗
w(t)1 for an arbitrary profile w(t) : Td

n → (0,1) reveals the semi-discrete
partial differential equation which describes the macroscopic evolution of the density.

At this point, there are two possible choices. In Lemma 3.4, we may consider as reference state the product measure
νn
w(t) whose density profile w(t) is given by (1/2) + εnv

n(t), where vn(t) is the solution of the semi-discrete equation
(3.11), or the one given by (1/2) + εnv(t), where v(t) is the solution of the semi-linear equation (2.9).

With the first choice, the terms of degree one in the expression L∗
w(t)1−∂t logψt vanish. To estimate the terms of order

2 or higher, uniform bounds of the discrete derivatives of the solutions of the semi-discrete equation (3.11) are needed.
With the second choice, the terms of degree one appear multiplied by a small constant, but do not vanish and need to

be estimated. In contrast, the terms of degree 2 or higher can be estimated with bounds on the derivatives of the solutions
of the semi-linear equation (2.9) provided by [14].

We followed here the approach adopted by the previous authors and sticked to the second choice.

Remark 3.7. The assumption that n2ε4
n ≤ C0gd(n) for some finite constant C0 is needed to estimate the linear terms

of the time-derivative of the relative entropy [the linear terms of L∗
w(t)1 − ∂t logψt , computed in Lemmata 3.2 and 3.3].

Actually, equation (2.9) is a continuous version of the semi-discrete equation obtained by considering the linear terms
(in η) of the identity

L∗
w(t)1 − ∂t logψt = 0. (3.12)

One may try to weaken or remove the hypothesis n2ε4
n ≤ C0gd(n) by replacing equation (2.9) by the one obtained

restricting (3.12) to the linear terms. In this case, however, estimating the quadratic terms of (3.12) might be more de-
manding. One may also try to weaken this hypothesis by adding to equation (2.9) terms of order εk

n , k ≥ 2.

Remark 3.8. In the case where cj (η) = 1, mj = 1 for all j , the semi-discrete equation (3.11) becomes

(∂tv)(t, x) =
(

1 + an

n

)
(�nv)(t, x) + n

d∑
j=1

{
v(t, x)v(t, x + ej ) − v(t, x − ej )v(t, x)

}
,

where �n� stands for the discrete Laplacian:

(�n�)(x) = n2
d∑

j=1

{
�(x + ej ) + �(x − ej ) − 2�(x)

}
.

4. Proof of Theorems 2.2 and Corollary 2.3

Assume, without loss of generality, that in hypothesis (2.8), α0 = 1/2. Assume, furthermore, that v :R+ ×T
d → R is the

solution of the semi-linear equation (2.9) and that wn(t, x) = (1/2) + εnv(t, x/n). We refer constantly to Section 5 for
properties of the solutions of the viscous Burgers equation (2.9).
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By Lemma 5.1, for all T > 0, there exists δ > 0 such that

δ ≤ wn(t, x) ≤ 1 − δ (4.1)

for all 0 ≤ t ≤ T , x ∈ T
d
n and n sufficiently large.

Let Ln : R+ ×T
d
n → R be given by

Ln(t, x) =
d∑

j=1

Kn
j (t, x) − εn(∂t v)(t, x/n). (4.2)

Lemma 4.1. Fix a density profile v0 in C3+β(Td) for some 0 < β < 1. For every T > 0, there exists a finite constant C0,
depending only on v0 and T , such that for all 0 ≤ t ≤ T , γ > 0,∫ ∑

x∈Td
n

Ln(t, x)ωx dμSn
t ≤ 1

γ
Hn

(
μSn

t |νn
wn(t)

) + C0γ nd−2(1 + n2ε4
n

)
eC0γ κn,

where κn = ε2
n + (1/n).

Proof. By the entropy inequality, the left-hand side is bounded by

1

γ
Hn

(
μSn

t |νn
wn(t)

) + 1

γ
log

∫
exp

{
γ

∑
x∈Td

n

Ln(t, x)ωx

}
dνn

wn(t)

for all γ > 0. As νn
wn(t) is a product measure, we may move the sum outside the logarithm. Since ex ≤ 1+x + (1/2)x2e|x|,

log(1 + a) ≤ a, a > 0, and since ωx has mean zero with respect to νn
wn(t), the second term of the previous formula is

bounded above by

γ

2

∑
x∈Td

n

Ln(t, x)2

χ(wn(t, x))
exp

{
γ
∣∣Ln(t, x)

∣∣/χ(
wn(t, x)

)}
,

because Eνn
wn(t)

[ω2
x] = 1/χ(wn(t, x)). By Lemma 5.2 and by (4.1), the previous expression is bounded by

C0γ nd−2(1 + n2ε4
n

)
eC0γ [ε2

n+(1/n)]

for some finite constant C0 which depends only on v0 and T . This completes the proof of the lemma. �

We turn to the quadratic or higher order term Hn
j (t, x,A). The estimation is based on the following bound due to Jara

and Menezes [10, Lemma 3.1].

Proposition 4.2. Fix a finite subset A of Zd with at least two elements. For every δ > 0, a > 0 and C1 < ∞, there exists
a finite constant C0, depending only on δ, A, C1 and a such that the following holds. For all n ≥ 1, probability measures
μ on �n, functions u, J : Td

n → R such that δ ≤ u(x) ≤ 1 − δ for all x ∈ T
d
n , and

max
x∈Td

n

max
1≤j≤d

∣∣(∇n
j u

)
(x)

∣∣ ≤ C1, max
x∈Td

n

∣∣J (x)
∣∣ ≤ C1,

we have that∫ ∑
x∈Td

n

J (x)ω(A + x)dμ ≤ an2I
(
g;νn

u(·)
) + C0

{
Hn

(
μ|νn

u(·)
) + nd−2gd(n)

}
,

where

ωx = ηx − u(x)

χ(u(x))
, ω(B) =

∏
x∈B

ωx, B ⊂ Z
d ,

and g = dμ/dνn
u(·).
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We show in the next paragraphs that the hypotheses of this proposition are fulfilled for u(x) = wn(t, x), J (x) =
Hn

j (t, x,A). We first prove the bounds for u and then the ones for J .
By definition, |(∇n

j wn)(t, x)| ≤ εn supθ∈Td |(∂θj
v)(t, θ)|. Hence, by Lemma 5.1, for every T > 0, there exists a finite

constant C1 = C1(T , v0) such that for all n ≥ 1,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

∣∣(∇n
j wn

)
(t, x)

∣∣ ≤ C1εn. (4.3)

On the other hand, we have seen in (4.1) that for all T > 0 there exists δ > 0 such that δ ≤ wn(t, x) ≤ 1 − δ for all x ∈ T
d
n ,

0 ≤ t ≤ T and n sufficiently large.
The next lemma provides an estimate for the term J (x) = Hn

j (t, x,A).

Lemma 4.3. For each T > 0, there exists a finite constant C0 = C0(T , v0) such that for all n ≥ 1,

sup
0≤t≤T

max
x∈Td

n

sup
A⊂Zd

max
1≤j≤d

∣∣Hn
j (t, x,A)

∣∣ ≤ C0,

where the supremum is carried over all finite subsets A of Zd .

Proof. The proof is long, elementary and tedious. It follows from Lemma 5.1 and from the definitions (3.8) of the terms
An

j , Cn
j that for each T > 0, there exists a finite constant C0 = C0(T , v0) such that for all n ≥ 1,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

∣∣An
j (t, x)

∣∣ ≤ C0, sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

∣∣Cn
j (t, x)

∣∣ ≤ C0.

Furthermore, as v(t, x) remains bounded in bounded time-intervals, for each T > 0, there exists a finite constant C0 =
C0(T , v0) such that for all n ≥ 1,

sup
0≤t≤T

max
x∈Td

n

max|y|≤�0
max

1≤j≤d
n
∣∣An

j (t, x − y) − An
j (t, x)

∣∣ ≤ C0εn,

where �0, introduced just after (2.1), represents the size of the support of the measures mj,p .

Similar bounds hold for the functions U
n,(i)
j . For each T > 0, there exists a finite constant C0 = C0(T , v0) such that

for all n ≥ 1, i = 1, 2,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

max
1≤p≤nj

n2−i
∣∣Un,(i)

j (t, x)
∣∣ ≤ C0ε

2−i
n ,

sup
0≤t≤T

max
x∈Td

n

max|y|≤�0
max

1≤j≤d
max

1≤p≤nj

n3−i
∣∣Un,(i)

j (t, x − y) − U
n,(i)
j (t, x)

∣∣ ≤ C0ε
3−i
n .

It follows from the estimates on An
j (t, x) and U

n,(i)
j (t, x) that for each T > 0, there exists a finite constant C0 =

C0(T , v0) such that for all n ≥ 1, i = 1, 2,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

max
1≤p≤nj

n3−i
∣∣Bn,(i)

j,p (t, x)
∣∣ ≤ C0εn.

Similarly, for each T > 0, there exists a finite constant C0 = C0(T , v0) such that for each i = 1, 2 and all n ≥ 1,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

n3−i
∣∣En,(i)

j (t, x)
∣∣ ≤ C0ε

3−i
n ,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

n3−i
∣∣Fn,(i)

j (t, x)
∣∣ ≤ C0ε

4−i
n ,

sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

n3−i
∣∣Gn,(i)

j (t, x)
∣∣ ≤ C0ε

4−i
n .

Let f be a cylinder function. Denote by f(t, x,A) the Fourier coefficients of f with respect to the measure νn
wn(t)

,

wn(t) = (1/2) + εnv(t). It is clear, from the definition (3.2), that for all n ≥ 1, t ≥ 0, x ∈ T
d
n , A ⊂ Z

d ,∣∣f(t, x,A)
∣∣ ≤ ‖f ‖∞ := sup

η

∣∣f (η)
∣∣. (4.4)
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It follows from the previous estimate on the Fourier coefficients of cylinder functions and from the bounds on F
n,(q)
j ,

G
n,(q)
j that for each T > 0, there exists a finite constant C0 = C0(T , v0) such that for each i = 1, 2, and all n ≥ 1,

sup
0≤t≤T

max
x∈Td

n

sup
A⊂Zd

max
1≤j≤d

n3−i
∣∣J n,(i)

j (t, x,A)
∣∣ ≤ C0ε

3−i
n ,

where the supremum is carried over all finite subsets A of Zd .
To complete the proof of the lemma, it remains to put together all previous estimates. �

Proof of Theorem 2.2. Let {μn : n ≥ 1} be a sequence of probability measures on �n satisfying the assumptions of the
theorem. Let μn

t = μnSn
t and Hn(t) = Hn(μ

n
t |νn

t ).
Lemma 3.1, equation (3.10) and Lemma 3.4 provide a formula for the derivative of Hn(t). Fix T > 0. By (4.1), there

exists δ > 0 such that δ ≤ wn(t, x) ≤ 1 − δ for all x ∈ T
d
n , 0 ≤ t ≤ T . By (4.3),

κT := sup
0≤t≤T

max
x∈Td

n

max
1≤j≤d

∣∣(∇n
j wn

)
(t, x)

∣∣ < ∞,

and by Lemma 4.3,

HT := sup
0≤t≤T

sup
n≥0

max
A⊂Zd

max
x∈Td

n

max
1≤j≤d

∣∣Hn
j (t, x,A)

∣∣ < ∞.

Therefore, the hypotheses of Proposition 4.2 are in force for u(x) = w(t, x), J (x) = Hn
j (t, x,A).

By hypothesis, n2ε4
n ≤ gd(n). Hence, the second term on the right-hand side of the statement of Lemma 4.1 is bounded

by C0γ nd−2gd(n) exp{C0γ }. In particular, by Lemma 4.1 with γ = 1 and by Proposition 4.2 with a = 1/2 applied to
μ = μn

t , u(x) = wn(t, x), J (x) = Hn
j (t, x,A), there exists a finite constant C0 such that

H ′
n(t) ≤ C0Hn(t) + C0n

d−2gd(n) − 1

2
n2I

(
gn

t ;νn
t

)
,

where gn
t = dμn

t /dνn
t . At this point the assertion of the theorem follows from Gronwall’s lemma. �

Proof of Corollary 2.3. For simplicity, we prove the corollary in the case �(η) = η0. Since vt is Lipschitz-continuous
and H is of class C2(Td),

an

∫
Td

H(θ)

{
1

2
+ εnv(t, θ)

}
dθ = an

nd

∑
x∈Td

n

H(x/n)

{
1

2
+ εnv(t, x/n)

}
+ O

(
an

n

)
.

For each x ∈ T
d
n , let J n

x (t) = H(x/n)(ηn
x(t) − 1/2 − εnv(t, x/n)). Since an/n → 0, to conclude the proof it is enough to

show that

lim
n→∞EμnSn

t

[∣∣∣∣ an

nd

∑
x∈Td

n

J n
x (t)

∣∣∣∣] = 0.

By the entropy inequality and Theorem 2.2, the expectation appearing in the left-hand side can be bounded above by

C0

K
+ 1

Knd−2gd(n)
logEνn

t

[
exp

{∣∣∣∣Kangd(n)

n2

∑
x∈Td

n

J n
x (t)

∣∣∣∣}]

for all K > 0 and some finite constant C0 > 0. Using exp{|x|} ≤ exp{x} + exp{−x}, it is enough to estimate the previous
expression without the absolute value. Indeed, the other term can be handled by the following argument similarly.

As νn
t is a product measure, the second term of the previous displayed expression without the absolute value is equal

to

1

Knd−2gd(n)

∑
x∈Td

n

logEνn
t

[
exp

{
Kangd(n)

n2
Jn

x (t)

}]
.
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Since expx ≤ 1+x+2−1x2 exp |x| and log (1 + y) ≤ y, as Jn
x (t) has mean zero with respect to νn

t , the previous displayed
expression is bounded above by

Ka2
ngd(n)

2nd+2

∑
x∈Td

n

Eνn
t

[
Jn

x (t)2] exp

{
Kangd(n)

n2
‖H‖∞

}
,

because vt is bounded. Since a2
ngd(n)/n2 → 0, to conclude the proof of the corollary, it remains to let n → ∞ and then

K → ∞. �

5. The Burgers viscous equation

We present in this section the properties of the solutions of the Burgers viscous equation (2.9) needed in the proof of
Theorem 2.2. Without loss of generality, we assume that in hypothesis (2.8), α0 = 1/2.

Recall the definition of the space Cm+β(Td) introduced just above Theorem 2.2. Fix a function v0 in C3+β(Td) for
some 0 < β < 1. According to [14, Theorem V.6.1] there exists a unique solution to (2.9). Moreover, the partial derivatives
of the solution are uniformly bounded on bounded time intervals. This later result is summarized in the next lemma.

Lemma 5.1. Assume that v0 belongs to C3+β(Td) for some 0 < β < 1. For every T > 0, there is a finite constant
C0 = C0(T ), depending only on v0 and T , such that

sup
0≤t≤T

sup
θ∈Td

∣∣v(t, θ)
∣∣ ≤ C0, max

1≤j≤d
sup

0≤t≤T

sup
θ∈Td

∣∣(∂θj
v)(t, θ)

∣∣ ≤ C0,

max
1≤i,j≤d

sup
0≤t≤T

sup
θ∈Td

∣∣(∂2
θi ,θj

v
)
(t, θ)

∣∣ ≤ C0,

max
1≤i,j,k≤d

sup
0≤t≤T

sup
θ∈Td

∣∣(∂3
θi ,θj ,θk

v
)
(t, θ)

∣∣ ≤ C0.

Recall the definition of the function Ln :R+ ×T
d
n → R introduced in (4.2).

Lemma 5.2. Let v : R+ × T
d → R be the solution of (2.9) and set w(t, x) = (1/2) + εnv(t, x/n), x ∈ T

d
n . Then, for

every T > 0, there is a finite constant C(T ), depending only on T and v0, such that

sup
0≤t≤T

max
x∈Td

n

∣∣Ln(t, x)
∣∣ ≤ C(T )

(
ε2
n + 1

n

)
for all n ≥ 1.

The proof of this lemma is divided in several steps.

Lemma 5.3. Fix x ∈ T
d
n , 1 ≤ j ≤ d and 0 ≤ t ≤ T . We claim that

n2{Eνn
w(t)

[jx−ej ,x] − Eνn
w(t)

[jx,x+ej
]}

= εnDj,j (1/2)
(
∂2
xj

v
)
(t, x/n) +

(
ε2
n + εn

n

)
Rn,

where Rn is a remainder whose absolute value is bounded by a finite constant C(T ) which depends only on T and on v

through the L∞ norm of its first three derivatives.

Proof. By definition of the current and by assumption (2.1), the difference inside braces is equal to

nj∑
p=1

∑
y∈Zd

mj,p(y)Eνn
w(t)

[τx+y−ej
gj,p − τx+ygj,p]. (5.1)

We may rewrite the previous expectation as Eνn
wt,x (·) [τy−ej

gj,p − τygj,p], where wt,x(z) = w(t, x + z), z ∈ T
d
n . By Corol-

lary 5.6, this expectation can be written as the sum of two expressions and a remainder. We consider them separately.
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The contribution to (5.1) of the first expression in Corollary 5.6 is equal to

−εn

n

nj∑
p=1

∑
y∈Zd

mj,p(y)
∑

z

[∇n
j v

](
t, [x + z − ej ]/n

)
Eνn

w(t,x)
[τygj,pωz],

where νn
w(t,x) is the homogeneous product Bernoulli measure with density w(t, x). Fix p and y. Performing a change of

variables we may rewrite the sum over z as∑
z

[∇n
j v

](
t, [x + z + y − ej ]/n

)
Eνn

w(t,x)
[gj,pωz]. (5.2)

Performing a Taylor expansion around (t, x/n),[∇n
x v

](
x′) := n

[
v
(
t,

[
x + x′]/n

) − v(t, x/n)
]

=
d∑

k=1

x′
k(∂xk

v)(t, x/n)

+ 1

n

∑
k,k′

x′
kx

′
k′(∂xk

v)(t, x/n)(∂xk′ v)(t, x/n),

plus Rn/n2, where Rn is a remainder whose absolute value is bounded by C0, for some constant C0 depending only on
T and on the L∞ norm of the first three derivatives of v. The expression of the remainder Rn may change below from
line to line. Note that [∇n

j v](t, [x + z + y − ej ]/n) = [∇n
x v](z + y) − [∇n

x v](z + y − ej ). Therefore an easy computation
yields that the sum in (5.2) becomes

(∂xj
v)(t, x/n)

∑
z

Eνn
w(t,x)

[gj,pωz]

− 1

2n

∑
z

{(
∂2
xj

v
)
(t, x/n) − 2

d∑
k=1

(yk + zk)
(
∂2
xj ,xk

v
)
(t, x/n)

}
Eνn

w(t,x)
[gj,pωz],

plus Rn/n2.
Since for each j and p,

∑
y mj,p(y) = 0, in view of (5.4), the contribution to (5.1) of the first expression in Corol-

lary 5.6 is equal to

εn

n2

nj∑
p=1

∑
k

Dp(j, k)
(
∂2
xj ,xk

v
)
(t, x/n)g̃′

j,p

(
w(t, x)

) + εn

n3
Rn

= εn

n2
Dj,j

(
w(t, x)

)(
∂2
xj

v
)
(t, x/n) + εn

n3
Rn,

where Dp(j, k), Dj,j (ρ) have been introduced in (2.3). We used in the previous step the identities (2.4). As w(t, x) =
(1/2) + εnv(t, x/n), by a Taylor expansion, the previous expression is equal to

εn

n2
Dj,j (1/2)

(
∂2
xj

v
)
(t, x/n) +

(
ε2
n

n2
+ εn

n3

)
Rn.

We turn to the contribution to (5.1) of the second expression in Corollary 5.6. It is equal to

ε2
n

2n

nj∑
p=1

∑
y∈Zd

mj,p(y)
∑
z 	=z′

cz,z′Eνn
w(t,x)

[
(τygj,p)ωzωz′

]
,
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where

cz,z′ = 1

n

(∇n
j v

)([z − ej ]/n
)(∇n

j v
)([

z′ − ej

]
/n

)
− (∇n

j v
)([z − ej ]/n

)[
v
(
z′/n

) − v(0)
]

− (∇n
j v

)([
z′ − ej

]
/n

)[
v(z/n) − v(0)

]
. (5.3)

By a change of variables, we may write this expression as

ε2
n

2n

nj∑
p=1

∑
y∈Zd

mj,p(y)
∑
z 	=z′

cz+y,z′+yEνn
w(t,x)

[gj,pωzωz′ ].

The fact that
∑

y mj,p(y) = 0 yields that this sum is equal to

ε2
n

2n

nj∑
p=1

∑
y∈Zd

mj,p(y)
∑
z 	=z′

[cz+y,z′+y − cz,z′ ]Eνn
w(t,x)

[gj,pωzωz′ ].

Note that mj,p(y) and the last expectation vanish except for a finite number of y, z, z′. For such y, z, z′, a Taylor expansion
shows that cz+y,z′+y − cz,z′ is of order n−2, uniformly in y, z, z′. Therefore this sum is bounded in absolute value by
C(T )ε2

n/n3. Since the third expression in Corollary 5.6 is bounded by C(T )ε3
n/n3, the proof is complete. �

Lemma 5.4. Fix x ∈ T
d
n , 1 ≤ j ≤ d and 0 ≤ t ≤ T . We claim that

an

(∇n
j In

j

)
(t, x − ej )

= εnmj σ
′′
j,j (1/2)v(t, x/n)(∂xj

v)(t, x/n) +
(

ε2
n + 1

n

)
Rn,

where Rn is a remainder whose absolute value is bounded by C(T ), where C(T ) is a finite constant which depends only
on T and on v through the L∞ norm of its first three derivatives.

Proof. Let dj be the cylinder function defined by dj (η) = cj (η)η0[1 − ηej
]. With this notation and since cj does not

depend on η0, ηej
, we may rewrite the left-hand side of the statement of the lemma as

n

εn

mj

{
Eνn

w(t)
[τxdj ] − Eνn

w(t)
[τx−ej

dj ]
}
.

Recall the definition of the measure νn
wt,x (·), introduced just after (5.1), and that νn

w(t,x) represents the homogeneous
product Bernoulli measure with density w(t, x). By Corollary 5.6 and since the absolute value of cz,z′ is bounded by
C(T )/n, the previous expression is equal to

mj

∑
z

[∇n
j v

](
t, [x + z − ej ]/n

)
Eνn

w(t,x)
[djωz] + εn

n
Rn.

In this formula and below, Rn is a remainder whose absolute value is bounded by C0, for some constant C0 depending
only on T and on the L∞ norm of the first three derivatives of v. The exact expression of the remainder Rn may change
from line to line.

A Taylor expansion around x/n yields that the previous sum is equal to

mj (∂xj
v)(t, x/n)

∑
z

Eνn
w(t,x)

[djωz] + 1

n
Rn.

By definition of dj and by (2.5), d̃j (ρ) = c̃j (ρ)ρ[1 − ρ] = σj,j (ρ). Hence, by (5.4), the sum over z is equal to
σ ′

j,j (w(t, x/n)). By (2.8) and a Taylor expansion, this later expression is equal to εnσ
′′
j,j (1/2)v(t, x/n) + ε2

nRn. This
completes the proof of the lemma. �
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Proof of Lemma 5.2. The proof is a straightforward consequence of Lemmata 5.3 and 5.4 and from the fact that v is the
solution of the equation (2.9). In both lemmata, the constant depends on the L∞ norm of the first three derivatives of v.
Lemma 5.1 states that these derivatives are bounded by a constant which depends on v0. �

We conclude this section with some results used above. Let v : Td → R be a function in C1(Td), and let w : Td
n → R

be given by w(x) = (1/2)+ εnv(x/n). Recall from (1.3) that we denote by νn
w(·) the product measure on �n in which the

density of ηx is w(x/n), while νn
w(0) represents the homogeneous product measure with constant density equal to w(0).

Lemma 5.5. Let g : �n → R be a local function. Then, there exists a constant C0, depending only on the cylinder function
g and on ‖∇v‖∞, such that

Eνn
w(·)[g] = Eνn

w(0)
[g] + εn

∑
z

[
v(z/n) − v(0)

]
Eνn

w(0)
[gωz]

+ 1

2
ε2
n

∑
z 	=z′

[
v(z/n) − v(0)

][
v
(
z′/n

) − v(0)
]
Eνn

w(0)
[gωzωz′ ] + Rn,

where |Rn| ≤ C0(εn/n)3, ωz = [ηz − w(0)]/w(0)[1 − w(0)]. On the right hand side, the sum is carried out over all z

(and z′ 	= z) in the support of g.

Proof. Fix a local function g : �n → R, and denote by �(g) its support. Clearly, as νn
w(·), νn

w(0) are product measures,

Eνn
w(·)[g] = Eνn

w(0)

[
geH

]
,

where

H(η) =
∑

z∈�(g)

ηz log

(
1 + εn[v(z/n) − v(0)]

w(0)

)

+
∑

z∈�(g)

[1 − ηz] log

(
1 − εn[v(z/n) − v(0)]

1 − w(0)

)
.

The result follows from a Taylor expansion up to the third order. �

Recall from (3.7) the definition of the discrete partial derivative in the j th direction represented by ∇n
j , and from (5.3)

the definition of cz,z′ .

Corollary 5.6. Let g : �n → R be a local function. Then, there exists a constant C0, depending only on the cylinder
function g and on ‖∇v‖∞, such that

Eνn
w(·)[τ−ej

g − g] = −εn

n

∑
z

[∇n
j v

]([z − ej ]/n
)
Eνn

w(0)
[gωz]

+ ε2
n

2n

∑
z 	=z′

cz,z′Eνn
w(0)

[gωzωz′ ] + Rn,

where |Rn| ≤ C0(εn/n)3.

Proof. Fix a local function g : �n → R. According to the previous lemma, the expectation appearing on the left-hand
side of the statement is equal to

εn

∑
z

[
v(z/n) − v(0)

]
Eνn

w(0)

[[τ−ej
g − g]ωz

]
+ 1

2
ε2
n

∑
z 	=z′

[
v(z/n) − v(0)

][
v
(
z′/n

) − v(0)
]
Eνn

w(0)

[[τ−ej
g − g]ωzωz′

] + Rn,
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where |Rn| ≤ C0(εn/n)3, for some constant C0 which depends only on g and ‖∇v‖∞. Here, the sum over z is carried out
over all z (and z′ 	= z) in the support of τ−ej

g − g. As the measure νn
w(0) is homogeneous, a change of variables permits

to complete the proof of the lemma. �

Let g : {0,1}Zd → R be a local function. Recall from (2.2) the definition of the smooth function g̃ : [0,1] → R.
A similar computation to the one presented in the proof of Lemma 5.5 yields that

g̃′(θ) =
∑

z

Eνθ [gωz], θ ∈ [0,1]. (5.4)

Along the same lines, we may also prove the Einstein relation.

Proposition 5.7. For every α ∈ (0,1), 1 ≤ j ≤ d ,

c̃j (α) =
nj∑

p=1

Dp(j, j)g̃′
j,p(α) and

nj∑
p=1

Dp(j, k)g̃′
j,p(α) = 0 for k 	= j.

Proof. Fix 1 ≤ j ≤ d , α ∈ (0,1) and let u : Td → (0,1) be a differentiable function such that u(0) = α, (∂xj
u)(0) 	= 0.

Take the expectation with respect to νn
u(·) on both sides of (2.1).

First, note that Eνα [cj (η)[η0 − ηej
]] = 0 since cj does not depend on η0 and ηej

. For the left-hand side, by the proof
of Lemma 5.5 and since u(0) = α,

Eνn
u(·)

[
cj (η)[η0 − ηej

]] =
∑

z

[
u(z/n) − α

]
Eνα

[
cj (η)[η0 − ηej

]ωz

] + O
(
1/n2),

where ωz = [ηz − α]/α(1 − α). Since cj does not depend on η0 and ηej
, for z 	= 0, ej ,

Eνα

[
cj (η)[η0 − ηej

]ωz

] = 0.

As u(0) = α, the sum in the penultimate line is equal to[
u(ej /n) − α

]
Eνα

[
cj (η)[η0 − ηej

]ωej

] = −[
u(ej /n) − α

]
Eνα

[
cj (η)

]
.

We turn to the expectation of the right-hand side of (2.1). By the proof of Lemma 5.5 and since
∑

y mj,p(y) = 0, the
first term in the expansion vanishes so that

nj∑
p=1

∑
y∈Zd

mj,p(y)Eνn
u(·)[τygj,p] =

nj∑
p=1

∑
y∈Zd

mj,p(y)
∑

z

[
u(z/n) − α

]
Eνα

[
(τygj,p)ωz

] + O
(
1/n2).

A change of variables η �→ τyη and a Taylor expansion permit to rewrite the sum as

1

n

nj∑
p=1

∑
y∈Zd

mj,p(y)
∑

z

(z + y) · (∇u)(0)Eνα [gj,pωz] + O
(
1/n2).

Since
∑

y mj,p(y) = 0 and, by definition,
∑

y ykmj,p(y) = −Dp(j, k), the last expression is equal to

−1

n

nj∑
p=1

[
Dp(j, ·) · (∇u)(0)

]
g̃′

j,p(α) + O
(
1/n2).

Putting together the previous estimates, we conclude that for every v ∈R
d ,

vj c̃j (α) =
nj∑

p=1

∑
k

Dp(j, k)vkg̃
′
j,p(α).

This completes the proof of the proposition. �



188 M. Jara, C. Landim and K. Tsunoda

6. The adjoint generator

Fix a function � : Td
n → (0,1). Throughout this section, ν� is a product measure on �n with marginals given by

Eν� [η(x)] = �(x), x ∈ T
d
n . Recall that we denote by χ(α) the static compressibility, χ(α) = α[1 − α].

For each q ≥ 0, recall the definition of the set Eq : Eq = {A ⊂ T
d
n : |A| = k}. Denote by P(q)

� (τxf ) the projection of the
cylinder function τxf over the linear set of functions of degree q:[

P(q)
� (τxf )

]
(η) =

∑
A∈Eq

f(x,A)ω�(A + x).

In particular, P(0)
� (τxf ) = Eν� [τxf ]. Let P(+q)

� = ∑
p≥q P(p)

� so that

[
P(+q)

� (τxf )
]
(η) =

∑
p≥q

∑
A∈Ep

f(x,A)ω�(A + x).

We represent P(+1)
� by P�:[

P�(τxf )
]
(η) = (τxf )(η) − Eν� [τxf ].

The statement of Lemma 6.1 requires some notation. Recall from (3.5) that Dj stands for the difference operator, and
from (3.6) that we denote by jx,x+ej

the instantaneous current over the bond (x, x + ej ).
For 1 ≤ j ≤ d , 1 ≤ p ≤ nj , x ∈ T

d
n , let

Aj(x) = χ(�(x)) + χ(�(x + ej ))

χ(�(x))χ(�(x + ej ))
, (6.1)

B
(1)
j,p(x) = 1

2

∑
y∈Td

n

mj,p(y)Aj (x − y)(Dj�)(x − y),

E
(1)
j (x) = 1

2
Aj(x)

[
(Dj�)(x)

]2
, F

(1)
j (x) = [Dj(χ ◦ �)](x)(Dj�)(x)

2χ(�(x + ej ))
,

G
(1)
j (x) = [Dj(χ ◦ �)](x)(Dj�)(x)

2χ(�(x))
·

Finally, for A ⊂ T
d
n , let

H
(1)
j (�, x,A) = E

(1)
j (x)cj (x,A) +

nj∑
p=1

B
(1)
j,p(x)gj,p(x,A) + J

(1)
j (x,A), (6.2)

where

J
(1)
j (x,A) = −ϒ{0,ej }(A)

[
(Dj�)(x)

]2
cj

(
x,A \ {0, ej }

)
+ ϒ{0}(A)F

(1)
j (x)cj

(
x,A \ {0})

+ ϒ{ej }(A)G
(1)
j (x)cj

(
x,A \ {ej }

)
.

In this formula, cj (x,A), gj,p(x,A) represent the Fourier coefficients, introduced in (3.2), of the cylinder functions cj ,
gj,p , respectively; and ϒB stand for the function introduced in (3.9).

It follows from (3.3) that there exists � ≥ 1 such that H
(1)
j (�, x,A) = 0 if A 	⊂ ��. Note that the functions of x which

appear in the previous formula either contain the product of derivatives [this is the case of E
(1)
j , F

(1)
j and G

(1)
j ] or a

mean-zero sum of discrete derivatives, which is the case of B
(1)
j,p . This structure makes n2H

(1)
j (�, x,A) bounded in n if

the reference density is good enough since these derivatives absorb the speeded-up factor n2.
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Lemma 6.1. Denote by L
S,∗
n,ν�

the adjoint of LS
n in L2(ν�). Then,

LS,∗
n,ν�

1 =
d∑

j=1

∑
x∈Td

n

{
Eν� [jx−ej ,x] − Eν� [jx,x+ej

]}ω�(x)

+
d∑

j=1

∑
A:|A|≥2

∑
x∈Td

n

H
(1)
j (�, x,A)ω�(A + x),

where the (finite) sum over A is performed over finite subsets A with at least two elements.

Note that the first term on the right-hand side contains only terms of degree 1, while the second one only terms of
degree 2 or higher.

The proof of this lemma is divided in four Lemmata and one identity, presented in (6.3). We first compute the adjoint
L

S,∗
n,ν�

of LS
n .

Lemma 6.2. For x ∈ T
d
n and 1 ≤ j ≤ d , let

Jx,x+ej
(η) = ν�(σ x,x+ej η)

ν�(η)
·

Then, for any f ∈ L2(ν�),

(
LS,∗

n,ν�
f

)
(η) =

∑
x∈Td

n

d∑
j=1

cj (τxη)Jx,x+ej
(η)

{
f

(
σx,x+ej η

) − f (η)
}

+
∑
x∈Td

n

d∑
j=1

cj (τxη)
{
Jx,x+ej

(η) − 1
}
f (η).

The proof of this lemma is elementary and left to the reader.

Lemma 6.3. We have that

(
LS,∗

n,ν�
1
)
(η) =

d∑
j=1

∑
x∈Td

n

{
Eν� [jx−ej ,x] − Eν� [jx,x+ej

]}ω�(x)

+
∑
x∈Td

n

d∑
j=1

(P�τxcj )(η)(Dj�)(x)
[
ω�(x) − ω�(x + ej )

]

−
∑
x∈Td

n

d∑
j=1

cj (τxη)
[
(Dj�)(x)

]2
ω�(x)ω�(x + ej ).

Proof. By Lemma 6.2,

LS,∗
n,ν�

1 =
∑
x∈Td

n

d∑
j=1

cj (τxη)
{
Jx,x+ej

(η) − 1
}
.

The definition of Jx,x+ej
and a straightforward computation yield that this expression is equal to

∑
x∈Td

n

d∑
j=1

cj (τxη)(Dj�)(x)

{
ηx(1 − ηx+ej

)

�(x)[1 − �(x + ej )] − ηx+ej
(1 − ηx)

�(x + ej )[1 − �(x)]
}
.
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Recall that ω�(x) = [η(x) − �(x)]/χ(�(x)). The expression inside braces can be written as

ω�(x) − ω�(x + ej ) − (Dj�)(x)ω�(x)ω�(x + ej ).

Therefore,

(
LS,∗

n,ν�
1
)
(η) =

∑
x∈Td

n

d∑
j=1

Eν�

[
cj (τxη)

]
(Dj�)(x)

[
ω�(x) − ω�(x + ej )

]

+
∑
x∈Td

n

d∑
j=1

(P�τxcj )(η)(Dj�)(x)
[
ω�(x) − ω�(x + ej )

]

−
∑
x∈Td

n

d∑
j=1

cj (τxη)
[
(Dj�)(x)

]2
ω�(x)ω�(x + ej ).

Note that the second and third lines contain only terms of degree 2 or more, while the first line have only terms of degree 1.
Since cj does not depend on η(0) and η(ej ), by definition of the instantaneous current jx,x+ej

,

Eν�

[
cj (τxη)

]
(Dj�)(x) = −Eν�

[
cj (τxη)

[
η(x) − η(x + ej )

]] = −Eν� [jx,x+ej
].

To complete the proof, it remains to insert this expression in the first line of the formula for (L
S,∗
n,ν�

1)(η) and to sum by
parts. �

In view of (3.4), the third term of Lemma 6.3 can be written as

−
d∑

j=1

∑
x∈Td

n

∑
A

[
(Dj�)(x)

]2
cj (x,A)ω�(A + x)ω�(x)ω�(x + ej ),

where cj (x,A) stands for the Fourier coefficients of τxcj , given by (3.2). As cj does not depend on η(0) and η(ej ),
cj (x,A) = 0 if A contains 0 or ej . We may therefore restrict the sum to sets which do not contain these points and rewrite
the previous expression as

−
d∑

j=1

∑
x∈Td

n

∑
A:A∩{0,ej }=∅

[
(Dj�)(x)

]2
cj (x,A)ω�

([
A ∪ {0, ej }

] + x
)

= −
d∑

j=1

∑
x∈Td

n

∑
A:A⊃{0,ej }

[
(Dj�)(x)

]2
cj

(
x,A \ {0, ej }

)
ω�(A + x). (6.3)

We turn to the second term of Lemma 6.3.

Lemma 6.4. For each 1 ≤ j ≤ d ,∑
x∈Td

n

[
P�(τxcj )

]
(η)(Dj�)(x)

[
ω�(x) − ω�(x + ej )

]
= 1

2

∑
x∈Td

n

[
P(+2)

� (τxj0,ej
)
]
(η)Aj (x)(Dj�)(x)

+ 1

2

∑
x∈Td

n

[
P(+2)

� (τxcj )
]
(η)Aj (x)

[
(Dj�)(x)

]2

+ 1

2

∑
x∈Td

n

[
P�(τxcj )

]
(η)

{
ω(x)

χ(�(x + ej ))
+ ω(x + ej )

χ(�(x))

}[
Dj(χ ◦ �)

]
(x)(Dj�)(x). (6.4)
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Proof. Recall the definition of ξ�(x) : ξ�(x) = η(x) − �(x), x ∈ T
d
n . Fix j and write ω�(x) − ω�(x + ej ) as

1

2χ(�(x))χ(�(x + ej ))

[
ξ�(x) − ξ�(x + ej )

][
χ

(
�(x + ej )

) + χ
(
�(x)

)]
+ 1

2χ(�(x))χ(�(x + ej ))

[
ξ�(x) + ξ�(x + ej )

][
χ

(
�(x + ej )

) − χ
(
�(x)

)]
. (6.5)

On the other hand, taking the operator P� ◦ τx for (3.6), one can obtain

[
P�(τxj0,ej

)
]
(η) = Eν� [τxcj ]

[
ξ�(x) − ξ�(x + ej )

]
+ [

P�(τxcj )
]
(η)

[
ξ�(x) − ξ�(x + ej )

]
− [

P�(τxcj )
]
(η)(Dj�)(x). (6.6)

From (6.5) and (6.6), the left-hand side of (6.4) becomes

1

2

∑
x∈Td

n

[
P�(τxj0,ej

)
]
(η)Aj (x)(Dj�)(x)

− 1

2

∑
x∈Td

n

Eν� [τxcj ]
[
ξ�(x) − ξ�(x + ej )

]
Aj(x)(Dj�)(x)

+ 1

2

∑
x∈Td

n

[
P�(τxcj )

]
(η)Aj (x)

[
(Dj�)(x)

]2 + L3,

where L3 is the last term appearing on the right-hand side of (6.4) and Aj(x) has been introduced in (6.1).
Since cj does not depend on η(0), η(ej ), the expectation with respect to ν� of the left-had side of (6.4) vanishes. It is

also clear that the covariance of this sum with respect to ξ�(z) vanishes for all z ∈ T
d
n . We may therefore introduce the

operator P(+2)
� in front of the sum. By doing so, the second sum of the previous formula vanishes because it contains only

terms of degree 1. This completes the proof of the lemma. �

We further express the sums on the right-hand side of (6.4) in terms of the Fourier coefficients of the cylinder functions.
Recall the notation introduced in (6.1) and below.

Lemma 6.5. For each 1 ≤ j ≤ d ,

∑
x∈Td

n

[
P�(τxcj )

]
(η)(Dj�)(x)

[
ω�(x) − ω�(x + ej )

]

=
∑

A:|A|≥2

∑
x∈Td

n

nj∑
p=1

B
(1)
j,p(x)gj,p(x,A)ω�(A + x)

+
∑

A:|A|≥2

∑
x∈Td

n

E
(1)
j (x)cj (x,A)ω�(A + x)

+
∑

A:|A|≥2
A�0

∑
x∈Td

n

F
(1)
j (x)cj

(
x,A \ {0})ω�(A + x)

+
∑

A:|A|≥2
A�ej

∑
x∈Td

n

G
(1)
j (x)cj

(
x,A \ {ej }

)
ω�(A + x). (6.7)
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Proof. Fix 1 ≤ j ≤ d . We consider separately each term on the right-hand side of (6.4). Let Bj (x) = Aj(x)(Dj�)(x).
By the gradient conditions (2.1), the first term can be written as

1

2

∑
x∈Td

n

nj∑
p=1

∑
y∈Td

n

mj,p(y)
[
P(+2)

� (τx+ygj,p)
]
(η)Bj (x).

Perform the change of variables x′ = x + y and express the cylinder function gj,p in terms of its Fourier coefficients to
rewrite this expression as

1

2

∑
x∈Td

n

nj∑
p=1

( ∑
y∈Td

n

mj,p(y)Bj (x − y)

) ∑
A:|A|≥2

gj,p(x,A)ω�(A + x).

This expression corresponds to the first one on the right-hand side of (6.7). The other three can be obtained easily. �

Recall the definition of the asymmetric part of the generator introduced in (1.7). For 1 ≤ j ≤ d , let Cj , Ij : Td
n → R

be given by

Cj (x) = mj �(x)
[
1 − �(x + ej )

]
, Ij (x) = Eν� [τxcj ]Cj (x). (6.8)

For 1 ≤ j ≤ d , 1 ≤ p ≤ nj , x ∈ T
d
n , let

B
(2)
j,p(x) = −1

2

∑
y∈Td

n

mj,p(y)Aj (x − y)(Cj�)(x − y),

E
(2)
j (x) = −1

2
Aj(x)(Dj�)(x)Cj (x),

F
(2)
j (x) = −[Dj(χ ◦ �)](x)(Cj�)(x)

2χ(�(x + ej ))
,

G
(2)
j (x) = −[Dj(χ ◦ �)](x)(Cj�)(x)

2χ(�(x))
· (6.9)

For A ⊂ T
d
n , let

H
(2)
j (�, x,A) = E

(2)
j (x)cj (x,A) +

nj∑
p=1

B
(2)
j,p(x)gj,p(x,A) + J

(2)
j (x,A), (6.10)

where

J
(2)
j (x,A) = ϒ{0,ej }(A)(Dj�)(x)Cj (x)cj

(
x,A \ {0, ej }

)
+ ϒ{0}(A)F

(2)
j (x)cj

(
x,A \ {0})

+ ϒ{ej }(A)G
(2)
j (x)cj

(
x,A \ {ej }

)
.

Lemma 6.6. Let L
T,∗
n,ν�

be the adjoint of LT
n in L2(ν�). Then,

LT,∗
n,ν�

1 = −
∑
x∈Td

n

d∑
j=1

(Dj Ij )(x − ej )ω�(x)

+
d∑

j=1

∑
A:|A|≥2

∑
x∈Td

n

H
(2)
j (�, x,A)ω�(A + x),

where the (finite) sum over A is performed over finite subsets A with at least two elements.
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The proof of this lemma relies on the next two lemmata.

Lemma 6.7. Recall the definition of Jx,x+ej
given in Lemma 6.2. Then, for any f ∈ L2(ν�),

(
LT,∗

n,ν�
f

)
(η) =

∑
x∈Td

n

d∑
j=1

mj (τxcj )(η)Jx,x+ej
(η)(1 − ηx)ηx+ej

{
f

(
σx,x+ej η

) − f (η)
}

+
∑
x∈Td

n

d∑
j=1

mj (τxcj )(η)
{
(1 − ηx)ηx+ej

Jx,x+ej
(η) − ηx(1 − ηx+ej

)
}
f (η).

Lemma 6.8. We have that

LT,∗
n,ν�

1 = −
∑
x∈Td

n

d∑
j=1

(Dj Ij )(x − ej )ω�(x)

−
∑
x∈Td

n

d∑
j=1

[
P�(τxcj )

]
(η)Cj (x)

[
ω�(x) − ω�(x + ej )

]

+
∑
x∈Td

n

d∑
j=1

(τxcj )(η)Cj (x)(Dj�)(x)ω�(x)ω�(x + ej ).

where Ij (x) = Eν� [τxcj ]Cj (x).

Proof. Recall the definition of Cj . It follows from the previous lemma and a straightforward computation that

LT,∗
n,ν�

1 =
∑
x∈Td

n

d∑
j=1

(τxcj )(η)Cj (x)
[
ω�(x + ej ) − ω�(x)

]

+
∑
x∈Td

n

d∑
j=1

(τxcj )(η)Cj (x)(Dj�)(x)ω�(x)ω�(x + ej ).

It remains to add and subtract Eν� [τxcj ] in the first term and to sum by parts. �

Proof of Lemma 6.6. The expression of L
T,∗
n,ν�

1 is similar to the one of L
S,∗
n,ν�

1. In the second and third terms one has
to replace Dj� by −Cj . We may thus follow the arguments presented for the symmetric part to complete the proof of
Lemma 6.6. �
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