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Abstract. We propose a simple, geometrically-motivated construction of smooth random paths in the plane. The construction is such
that, with probability one, the paths have finite curvature everywhere. Our construction is Markovian of order 2. We show that a simpler
construction which is Markovian of order 1 fails to exhibit the desired finite curvature property.

Résumé. Nous étudions une manière élémentaire de construire des marches aléatoires du plan à l’aide d’angles aléatoires. Cette
construction, issue de considérations géométriques, est telle que le processus limite possède presque sûrement des trajectoires dont la
courbure est partout finie. Les marches aléatoires que nous exhibons sont markoviennes d’ordre 2, et nous montrons qu’une approche
plus simple, avec des processus d’ordre 1, ne permet pas d’obtenir, à la limite, les propriétés désirées de courbure finie.
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1. Introduction

A random walk with independent increments having finite variance converges, when linearly interpolated, to a Brown-
ian motion. This is the essence of the celebrated Donsker’s theorem [5], and applies in any (finite) dimension. In fact,
historically, Robert Brown’s observations were of pollen particles moving in a solution, therefore in dimension two or
three.

As is well-known, a Brownian motion is differentiable nowhere with probability one, and may be therefore inappropri-
ate to model motion that is smoother. In the present paper, we are concerned with constructing a stochastic process in the
plane that yields curves which have finite curvature almost surely. There are various relatively obvious constructions of
such processes that fit the bill, such as integrating a Brownian motion twice (Figure 1), or interpolating a random sample
of points using some splines such as cubic ones or GAMs (Generalized Additive Models) (Figure 2). In the first case, the
realizations are less than pleasant in that they do not seem to curve much at all. In the later case, the construction is not
particularly geometric in nature.

Fig. 1. A realization of a of 2-dimensional Brownian motion (left), which is then integrated once (center) and twice (right).
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Fig. 2. Two realizations of smooth random processes using cubic splines interpolation (middle) and GAM regression (right) applied to a discrete
random walk (left).

Fig. 3. A realization of the process defined in Section 4 for different values of the parameter defining it. Specifically, with the notation to be defined
shortly, n3/2αn was taken to be 4 (left), 16 (middle), and 128 (right).

We propose a construction based on a random walk with nontrivial memory. Indeed, a random walk with no memory
would again converge to a Brownian motion.

Our first attempt leads us to constraint the angle between two successive line segments in the polygonal line resulting
from interpolating the random walk. In our construction, the line segments are all of unit length and the angles are
drawn independently and uniformly at random in some interval – see (1) and (2) for a formal definition. It turns out that
this construction fails in producing a smooth curve in the limit: when the angle interval remains constant, the process
converges again to a Brownian motion (Theorem 1); when the angle interval has length tending to zero asymptotically,
the smoothest limiting process we are able to obtain is only once differentiable (Theorem 3). Our second attempt is based
on endowing the sequence of random angles in the construction with some memory. It turns out that a minimum amount
of memory suffices for the construction to be successful (Theorem 4). A realization of this process is given in Figure 3.

Related work. There does not seem to be much literature on geometric constructions of random walks leading to pro-
cesses with smooth paths. Tangentially related, [10] model polymer configurations as polygonal lines with random angles,
but no continuous process limit is derived. We provide other pointers to the literature later on.

Content. The remainder of the article is organized as follows. In Section 2, we define and study a random walk where
the successive angles are drawn iid from the uniform distribution on a fixed interval. We show that this construction
results to a Brownian motion when taken to the limit (Theorem 1). In Section 3, we consider the same construction
except that the interval from which the angles are sampled shrinks in size in the limit. We show that this construction
results to either trivial limits (Proposition 3), to a Brownian motion (Theorem 2), or to a process whose realizations have
infinite pointwise curvature everywhere with probability one (Theorem 3). In Section 4, we consider again the same
basic construction, except that the angles are generated by a Markov process, and show that the limit is a process whose
realizations have finite curvature everywhere with probability one (Theorem 4). We finish with a short discussion in
Section 5.
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2. Construction based on an iid sequence of angles

We consider a sequence of iid random variables {�i}i≥2 with values in R, which we use to define the following process:
Starting with U1 drawn uniformly at random from S1, recursively define

Uj = ei�j Uj−1, for j ≥ 2. (1)

Note that U1,U2, . . . are uniformly distributed on the unit circle, but not independent in general. Denote Gj the σ -field
generated by {�k}2≤k≤j and U1, so that Uj is Gj -measurable for all j . We investigate the behavior of the piecewise-linear
interpolation of this walk, namely

Xn
t =

�nt�∑
j=1

Uj + (
nt − �nt�)U�nt�+1, for t ∈ [0,1]. (2)

See Figure 4 for an illustration of this definition. We see Xn as a random variable taking its value in C2 = C([0,1],R2),
the set of continuous functions from [0,1] to R2, endowed with the σ -field associated with the uniform topology.

Theorem 1. If the random variables {�i}i≥1 are uniformly distributed in [−α,α], where α ∈ (0,π], then, as n → ∞,

1√
n
Xn ⇒ σαB(2), with σ 2

α = 1

2

1 + sincα

1 − sincα
,

where ⇒ stands for the weak convergence of probability measures, B(2) denotes the standard 2-dimensional Brownian
motion, and sincα = sin(α)/α.

In particular, we recover Donsker’s theorem (in dimension 2) when α = π , the situation in which {Ui}i≥1 are de facto
independent (and therefore iid, since they are uniformly distributed on the circle). In general, however, the limit process
is a scaled Brownian motion. See Figure 5 and Figure 6 for an illustration of Theorem 1.

Fig. 4. The first steps of the random walk defined by (1)-(2) and its linear interpolation.

Fig. 5. A realization of the process defined in Theorem 1 for α being equal to π/2 (left), π/8 (center) or π/16 (right).
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Fig. 6. A realization of the process defined in Theorem 1 for α = π/4 observed at different scales.

When clear from the context, we will use the abbreviation B instead of B(2).
This first result shows that we cannot create smoothness from independent angles, no matter how small we constraint

them to be. To prove Theorem 1, we will first show that the finite-dimensional laws of 1√
n
Xn converge toward the ones

of B , that is to say, as n → ∞,

1√
n

(
Xn

t1
, . . . ,Xn

tk

) ⇒ σα(Bt1 , . . . ,Btk ),

for all 0 ≤ t1 ≤ · · · ≤ tk ≤ 1. (Here ⇒ denotes the weak convergence of random vectors in the appropriate dimension,
which is 2k.) Once this is done, it will remain to show that the sequence of laws of 1√

n
Xn is tight.1

Because the steps, {Ui}i≥1, are not independent (at least when α < π , which is the situation not covered by Donsker’s
theorem), we need a generalization of the central limit theorem for dependent random variables. (Unless otherwise spec-
ified, the convergence is as n → ∞.)

Proposition 1. (Dependent CLT, [2]) Let ξi,n be centered with finite second moment random variables in Rd . Let kn → ∞
be a sequence of integers. Suppose that the following conditions hold:

There exists 0 < δ ≤ 1 such that An(δ) =
kn∑

i=1

E
[‖ξi,n‖2+δ

] → 0;

There exists a matrix � such that �n =
kn∑

i=1

Cov[ξi,n] → �;

For any t ∈ Rd , Tn(t) =
kn∑

i=1

∣∣Cov
[
ft (ξ1,n + · · · + ξi−1,n), ft (ξi,n)

]∣∣ → 0, where ft : x �→ ei〈x,t〉.

Then,

Sn =
kn∑

i=1

ξi,n ⇒ N (0,�), the centered normal law with covariance matrix �.

We will apply Proposition 1, not to the steps Uj themselves, but instead to slices of the random walk, defined in our
context as

ξj,n = 1√
n

(j−1)(pn+qn)+pn∑
i=(j−1)(pn+qn)+1

Ui. (3)

Each slice contains pn terms, and are qn terms apart. We will need to have pn large enough so that the sum
∑

j ξj,n is
close to 1√

n

∑
i Ui , but also qn large enough so that the ξj,n’s are all independent enough from each other.

We start with a covariance inequality.

1Because C2 is a polish space, tightness and relative compactness are classically equivalent notions, according to Prohorov’s theorem. We will use these
terms interchangeably.



120 C. Berenfeld and E. Arias-Castro

Proposition 2. Let s1 ≤ · · · ≤ su and t1 ≤ · · · ≤ tv be positive integers. Suppose that su ≤ t1. Then, for any bounded
measurable functions f : {R2}u →R and g : {R2}v →R, we have∣∣Cov

[
f (Us1 , . . . ,Usu), g(Ut1 , . . . ,Utv )

]∣∣ ≤ ‖f ‖∞‖g‖∞ TV(νt1−su , ν),

where ν is the uniform law over [0,2π ], νr is the law of
∑r

i=1 �i mod 2π , and TV is the total variation distance.2

Remark 1. If f and g are complex-valued, this results remains true up to a numeric constant. Indeed, for any random
variables X,Y ∈ C, noting X = X1 + iX2 and Y = Y1 + iY2, we have

∣∣Cov[X,Y ]∣∣2 = (
Cov[X1, Y1] − Cov[X2, Y2]

)2 + (
Cov[X1, Y2] + Cov[X2, Y1]

)2

≤ 8 max
i,j∈{1,2}

∣∣Cov[Xi,Yj ]
∣∣2

.

Proof. We set 
 = |Cov[f (Us1, . . . ,Usu), g(Ut1 , . . . ,Utv )]|. Recall that for any j ∈ N∗, Gj is the σ -field generated by
{�k}2≤k≤j and U1. We have


 = ∣∣E[
f (Us1 , . . . ,Usu)g(Ut1 , . . . ,Utv )

] −E
[
f (Us1, . . . ,Usu)

]
E

[
g(Ut1 , . . . ,Utv )

]∣∣
= ∣∣E[

f (Us1 , . . . ,Usu)
(
E

[
g(Ut1 , . . . ,Utv ) | Fsu

] −E
[
g(Ut1, . . . ,Utv )

])]∣∣
≤ ‖f ‖∞E

[∣∣E[
g(Ut1 , . . . ,Utv )|Gsu

] −E
[
g(Ut1 , . . . ,Utv )

]∣∣].
Note that, there exists random variables �, � and Z′ such that the vector Z = (Ut1 , . . . ,Utv ), which takes values in {R2}v ,
can be written in the form Z = exp{i(� + �)}Z′ as follows

Z = (Ut1 , . . . ,Utv )

=
(

U1 exp

(
i

t1∑
j=2

�j

)
, . . . ,U1 exp

(
i

tv∑
j=2

�j

))

= exp

(
i

su∑
j=2

�j

)
exp

(
i

t1∑
j=su+1

�j

)(
U1,U1 exp

(
t2∑

j=t1+1

�j

)
, . . . ,U1 exp

(
tv∑

j=t1+1

�j

))

=: exp(i�) exp(i�)Z′.

The random variable Z′ has same law as (U1,Ut2−t1+1, . . . ,Utv−t1+1), which is the same as Z by strong stationarity of
(U1,U2, . . .). Furthermore, � is Gsu -measurable, and � and Z′ are independent of Gsu . Using the fact that the law of Z

is rotationally-invariant and letting � be a random variable with law ν and independent from Z′, and denoting by ζ the
law of Z′, we get


 ≤ ‖f ‖∞E
[∣∣E[

g
(
exp

{
i(� + �)

}
Z′)|Gsu

] −E
[
g
(
exp{i�}Z′)]∣∣]

≤ ‖f ‖∞ sup
φ∈[0,2π]

∣∣E[
g
(
exp

{
i(� + φ)

}
Z′)] −E

[
g
(
exp{i�}Z′)]∣∣

≤ ‖f ‖∞‖g‖∞ TV(νt1−su ⊗ ζ, ν ⊗ ζ )

≤ ‖f ‖∞‖g‖∞ TV(νt1−su , ν). (4)

In (4), we used the fact that the function gφ : (ψ, z) ∈ [0,2π ] × {R2}v �→ g(ei(ψ+φ)z) is bounded by ‖g‖∞, the definition
of the total variation distance, and in the last inequality we used the subadditivity of the latter. �

We turn now to bounding TV(νr , ν), which again is the total variation between νr , the law of
∑r

i=1 �i (modulo 2π ),
and ν, the uniform distribution on [0,2π ].

2Recall that for any probability laws P and Q on some measurable space (X ,B), TV(P,Q) = supf {|P(f ) − Q(f )|} where the supremum is over
f :X → R measurable such that ‖f ‖∞ ≤ 1.
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Lemma 1. Let μ be a symmetric and absolutely continuous distribution over R. Letting νr denote the distribution μr =
μ∗r , but modulo 2π , we have

TV(νr , ν) ≤
∑
k≥1

∣∣φμ(k)
∣∣r , (5)

where φμ is the characteristic function of μ. In the special case where μ is the uniform distribution on [−α,α], where
α ∈ (0,π], there exists a positive numeric constant A such that, for r ≥ 2,

TV(νr , ν) ≤ A

α

(
sinc(α) ∨ 2/π

)r

and so the total variation distance between νr and ν decreases exponentially fast as r → ∞.

Proof. Since μ is absolutely continuous with respect to the Lebesgue measure, so is μr , and for any Borel set A of
[0,2π ] we have

νr(A) =
∫

[0,2π]
1A dνr =

∫
R

∑
k∈Z

1A+2kπ dμr =
∑
k∈Z

∫ 2(k+1)π

2kπ

1A+2kπ (x)
dμr

dx
(x) dx

=
∫ 2π

0
1A(x)

∑
k∈Z

dμr

dx
(x + 2kπ)dx.

The law of νr is thus absolutely continuous with respect to ν, and dνr

dν
(x) = 2π

∑
k∈Z

dμr

dx
(x + 2kπ). The RHS can be

computed with the Poisson summation formula

2π
∑
k∈Z

dμr

dx
(x + 2kπ) =

∑
k∈Z

F
[
dμr

dx

]
(k)eikx,

where F is the Fourier transform. With the classical property of the convolution product, we can get

F
[
dμr

dx

]
(k) =F

[
dμ

dx

]r

(k) = φμ

(|k|)r
,

since μ is symmetric, so that

TV(νr , ν) = 1

2

∫ ∣∣∣∣dνr

dν
− 1

∣∣∣∣dν ≤
∑
k≥1

∣∣φμ(k)
∣∣r .

This proves the stated bound (5).
When μ is uniform over [−α,α], we have φμ(k) = sinc(kα). We use this in order to bound the sum on the RHS of

(5). We distinguish two cases according to the value of α. If α > π/2, we immediately get that∑
k≥1

∣∣φμ(k)
∣∣r ≤

∑
k≥1

1/(kα)r ≤ (
ζ(r) − 1

)
(π/2)−r ≤ (

ζ(2) − 1
)
(π/α)(π/2)−r ,

where ζ is the Riemann zeta function. If α ≤ π/2, we split the sum at nα = �π/α�. For the first part of the sum, we simply
have

nα∑
k=1

∣∣φμ(k)
∣∣r ≤ nα(sincα)r ≤ (π/α)(sincα)r ,

which is justified because sinc is decreasing on the segment [0,π] and kα ≤ π for all k ≤ nα . For the second part of the
sum,

∑
k>nα

1

(kα)r
≤ 1

αr

∫ ∞

nα

dx

xr
= 1

(r − 1)αrnr−1
α

≤ nα

(r − 1)(π − α)r
≤ π

(r − 1)α
(π/2)−r .

Summing these two parts, all in all, we indeed get a bound of the desired form. �
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A very simple and straightforward computation of the covariance gives the following

Cov[Uj ,Uj+k] = 1

2
(sincα)k Id2, for all j, k ∈N∗. (6)

Recall the definition (3). We have the following.

Lemma 2. If pn and qn are two sequences of integers diverging to ∞ such that pn + qn ≤ n and qn � pn � n, then
E[‖Sn − S∗

n‖2] → 0, where Sn = 1√
n

∑n
j=1 Uj , S∗

n = ∑kn

k=1 ξk,n and kn = �n/(pn + qn)�.

Here, we write an � bn for any two real-valued sequences an and bn for an = o(bn) as n → ∞. This result appears in
[6, Section 4.3.1] in the context of real-valued time series. Although this is not difficult, we extend the result to bivariate
time series for the sake of completeness.

Proof. We start with the fact that

Sn − S∗
n =

kn+1∑
i=1

ξ∗
i,n,

where

ξ∗
k,n = 1√

n

k(pn+qn)∑
i=(k−1)(pn+qn)+pn+1

Ui, for k ≤ kn; and ξ∗
kn+1,n = 1√

n

n∑
i=kn(pn+qn)

Ui.

Simple calculations give

E
[∥∥Sn − S∗

n

∥∥2] = E

[∥∥∥∥∥
kn+1∑
i=1

ξ∗
i,n

∥∥∥∥∥
2]

≤ 2E

[∥∥∥∥∥
kn∑

i=1

ξ∗
i,n

∥∥∥∥∥
2]

+ 2E
[∥∥ξ∗

kn+1,n

∥∥2]

≤ 2
∑

1≤i,j≤kn

tr
(
Cov

[
ξ∗
i,n, ξ

∗
j,n

]) + 2 tr
(
Cov

[
ξ∗
kn+1,n

])
.

When i = j , we have, since Uj is strongly stationary and using formula (6),

tr
(
Cov

[
ξ∗
i,n, ξ

∗
i,n

]) = qn

n
E

[‖U0‖2] + 2

n

∑
1≤j<k≤qn

tr
(
Cov[Uj ,Uk]

)

= qn

n
+ 2

n

qn−1∑
k=1

(qn − k)(sincα)k = O

(
qn

n

)
.

We have, likewise, tr(Cov[ξ∗
kn+1,n]) = O(pn/n).

When i �= j , the steps of ξi,n and ξj,n are at least |i − j |pn apart, so that, using again (6),

tr
(
Cov

[
ξ∗
i,n, ξ

∗
j,n

]) ≤ q2
n

n
sup

k≥|i−j |pn

tr
(
Cov[U1,Uk+1]

) ≤ q2
n

n
(sincα)|i−j |pn .

Combining these bounds, we get that

E
[∥∥Sn − S∗

n

∥∥2] = O

(
knqn

n
+ pn

n
+ q2

n

n

kn∑
k=1

(kn − k)(sincα)kpn

)

= O

(
qn

pn

+ pn

n
+ q2

nkn

n
(sincα)pn

)

= O

(
qn

pn

+ pn

n

)
−→ 0,

which ends the proof. �
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In view of Lemma 2, it is thus sufficient to establish the convergence in law for S∗
n to deduce the same for Sn. This is

exactly what we do next.

Lemma 3. The finite-dimensional laws of 1√
n
Xn converge towards the ones of σαB .

Proof. We use the notation introduced in Lemma 2. We apply Proposition 1 to S∗
n = ∑kn

k=1 ξk,n, and we also use the
notation introduced there.

For the first condition, by stationarity, for any δ > 0 we have

An(δ) =
kn∑

k=1

E
[‖ξk,n‖2+δ

] = knE
[‖ξ1,n‖2+δ

] ≤ kn

p2+δ
n

n1+δ/2
≤ p1+δ

n

nδ/2
,

where the first inequality comes from the fact that ‖ξk,n‖ ≤ pn/
√

n (due to the triangle inequality and the fact that Uj ∈ S1

for all j ), and the second inequality comes from the definition of kn. It thus suffices to show that pn � nδ/(2δ+2) to have
that An(δ) converges towards 0.

For the third condition, we control Tn(t) with a straightforward application of Proposition 2 and Lemma 1, as follows

Tn(t) =
kn∑

j=1

∣∣Cov
[
ft (ξ1,n + · · · + ξj−1,n), ft (ξj,n)

]∣∣

≤
kn∑

j=1

4 TV(νqn, ν)

≤ 4kn

A

α
(sincα ∨ 2/π)qn = O

(
nθqn

)
, where θ = sincα ∨ 2/π, (7)

which yields that Tn(t) → 0 as soon as qn � logn. In (7) we used the fact that ft (ξ1,n + · · · + ξj−1,n) and ft (ξj,n) are
bounded functions of U1,U2, . . . ,U(j−2)(pn+qn)+pn and U(j−1)(pn+qn)+1, . . . ,U(j−1)(pn+qn)+pn , respectively.

Finally, for the second condition, using again stationarity and using (6), we get that

�n = kn Cov[ξ1,n] = kn

n

∑
1≤i,j≤pn

Cov[Ui,Uj ]

= kn

2n

(
pn +

pn∑
p=1

(pn − p)(sincα)p

)
Id2

= kn

2n

(
pn + 2(sincα)

pn(1 − sincα) + (sincα)pn − 1

(1 − sincα)2

)
Id2 → 1

2

1 + sincα

1 − sincα
Id2, (8)

where, in the convergence, we used the fact that pnkn ∼ n and pn → ∞.
Thus, for the conditions of Proposition 1 to be fulfilled, it suffices to choose sequences pn and qn such that logn �

qn � pn � nδ/(2δ+2), which we do. We may then apply Proposition 1, to get that S∗
n converges weakly to N (0, σ 2

α Id2)

or, equivalently, to σαB1. And in light of Lemma 2, we may conclude that the same is true for Sn = 1√
n
Xn

1 .

The same argumentation leads as easily to establishing that 1√
n
Xn

t converges weakly to σαBt , and even that 1√
n
(Xn

t −
Xn

s ) converges weakly to σα(Bt − Bs) for any 0 ≤ s ≤ t ≤ 1.
Now, let 0 ≤ t1 ≤ · · · ≤ tk ≤ 1 be a sequence of real numbers and t0 = 0. We set

Zn = 1√
n

(
Xn

t1
,Xn

t2
− Xn

t1
, . . . ,Xn

tk
− Xn

tk−1

)
,

with values in {R2}k , and we write Zn = Yn + εn, where

Yn
j = 1√

n

�ntj �−qn∑
q=�ntj−1�+1

Uq and εn
j = Zn

j − Yn
j .
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Similar arguments lead to the fact that E[‖εn
j ‖2] = O(qn/n) → 0 as soon as qn � n, thus E[‖Zn − Yn‖2] → 0, implying

that Zn and Yn have thereby the same limit law, provided that one of them has a limit law. In particular, we know that Yn
j

converges weakly towards σα(Btj − Btj−1) for all j . Let u = (u1, . . . , uk) ∈ {R2}k . By recurrence on k, it is easy to show
the following formula∣∣∣∣∣E[

ei〈u,Y n〉] −
k∏

j=1

E
[
e
i〈uj ,Y n

j 〉]∣∣∣∣∣ ≤
k∑

j=2

∣∣Cov
[
e
i(〈u1,Y

n
1 〉+···+〈uj−1,Y

n
j−1〉), ei〈uj ,Y n

j 〉]∣∣.
With Proposition 2 and Lemma 1, the RHS is bounded from above by

∑
j 4α−1Aθqn = O(θqn) → 0 as soon as qn → ∞.

Since we already know that Yn
j converges weakly towards σα(Btj − Btj−1), we can conclude using the Levy continuity

theorem. �

We conclude the proof of Theorem 1 with the following result.

Lemma 4. The sequence of laws of 1√
n
Xn is relatively compact.

Proof. For n ∈N, we now note Sn = ∑n
k=1 Uk . We have

E
[‖Sn‖4] = E

[( ∑
1≤i,j≤n

〈Ui,Uj 〉
)2]

=
∑

1≤i,j,k,l≤n

E
[〈Ui,Uj 〉〈Uk,Ul〉

]
.

Using that ab ≤ a ∧ b for any a, b ∈ [0,1], and using formula (6), we find that

E
[‖Sn‖4] ≤

∑
1≤i,j,k,l≤n

E
[〈Ui,Uj 〉

] ∧E
[〈Uk,Ul〉

] =
∑

1≤a,b≤n

(n − a)(n − b)(sincα)a∨b

= 2
n∑

k=1

(n − k)

(
nk − k(k + 1)

2

)
(sincα)k ≤ 2n2

n∑
k=1

k(sincα)k

≤ 2n2

(1 − sincα)2
.

Using [4, Thm. 10.2], which we may since the process {Uk} is stationary, we get that there exists a numeric constant
K > 0 such that, for any λ > 0,

P

(
max
k≤n

‖Sk‖ ≥ λ
)

≤ Kn2

(1 − sincα)2λ4
. (9)

Then, Lemma 5 below yields tightness, and hence relative compactness, of the sequence of law of 1√
n
Xn. �

Lemma 5 ([4, Lem. on p. 88]). Let ξi be stationary, real-valued and square integrable random variables with variance
σ 2. Let Wn

t = 1
σ
√

n
(S�nt� + (nt − �nt�)ξ�nt�+1), where Sk = ∑k

j=1 ξj . If

lim
λ→+∞ lim sup

n→∞
λ2P

(
max

1≤k≤n
|Sk| ≥ λσ

√
n
)

= 0,

then, the sequence of the laws of Wn is tight.

3. Construction based on a triangular array of angles

We now place ourselves in the setting where the laws of the angles �j can vary with n. Let {�j,n}j≥2,n≥1 be a collection
of real valued random variables. As in Section 2, define the following process: Starting with U1,n drawn uniformly at
random from S1, recursively define

Uj,n = ei�j,nUj−1,n, for j ≥ 2,
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and then

Xn
t =

�nt�∑
j=1

Uj,n + (
nt − �nt�)U�nt�+1,n for t ∈ [0,1].

Contrary to what has been done in the previous section, we will this time normalize Xn with n instead of
√

n. Note that,
if one wants to obtain a smooth – and thus rectifiable – curve at the limit, this is the only reasonable normalization.

Lemma 6. For any n ≥ 1, as a function on [0,1] with values in R2, 1
n
Xn is 1-Lipschitz.

Proof. For 0 ≤ s ≤ t ≤ 1 and n ∈N, we have

∥∥∥∥1

n
Xn

t − 1

n
Xn

s

∥∥∥∥ = 1

n

∥∥∥∥∥
�nt�∑

k=�ns�+2

Uk,n + (
nt − �nt�)U�nt�+1,n + (

1 − ns + �ns�)U�ns�+1,n

∥∥∥∥∥
≤ 1

n

(�nt� − �ns� − 1 + (
nt − �nt�) + (

1 − ns + �ns�)) = t − s,

by a simple application of the triangle inequality and the fact that Uk,n ∈ S1 for all k. �

Corollary 1. As a sequence of laws on C2, { 1
n
Xn} is relatively compact.

Proof. This is an immediate consequence of Lemma 6 and the fact that the set of 1-Lipschitz functions from [0,1] to R2

taking value (0,0) ∈R2 at 0 is relatively compact by the Arzelà–Ascoli theorem; see [4, Thm. 7.2 p. 81]. �

We first investigate the case where

�j,n, j ≥ 1 are iid from the uniform distribution on [−αn,αn],
αn ∈ (0,π] is a sequence of angles converging to 0.

(10)

We observe two degenerate regimes when αn converges either too fast or too slow towards 0.

Proposition 3. Consider a sequence of angles as in (10). If nα2
n → ∞, then 1

n
Xn ⇒ 0 in C2. If nα2

n → 0, then 1
n
Xn

t ⇒ tU

in C2, where U denotes a random vector with the uniform distribution on S1.

Proof. We first suppose that nα2
n → ∞. In this case, we have that for any t , developing the square like we did in formula

(8),

E

[∥∥∥∥1

n
Xn

t

∥∥∥∥
2]

= 2(sincαn)
�nt�(1 − sincαn) + (sincαn)

�nt� − 1

n2(1 − sincαn)2
+ O

(
1

n

)
, (11)

where the O(1/n) term corresponds to the one coming from U�nt�+1,n in the definition of Xn
t . Since

(sincαn)
�nt� = exp

{�nt� log
(
1 − α2

n/6 + o
(
α2

n

))} = exp
{−�nt�α2

n + o
(
nα2

n

)} → 0,

and n(1 − sincαn) ∼ nα2
n/6, we find that

E

[∥∥∥∥1

n
Xn

t

∥∥∥∥
2]

= O

(
1

nα2
n

)
+ O

(
1

n

)
−→ 0.

Finite-dimensional laws of 1
n
Xn all converge to 0 and thus 1

n
Xn ⇒ 0 in C2 by relative compactness (Corollary 1).

We now assume that nα2
n → 0. We then get

1 − (sincαn)
�nt� = 1 − exp

(
−1

6
�nt�α2

n + o
(
nα2

n

)) = 1

6
�nt�α2

n + o
(
nα2

n

)
,
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so that

1

n

1 − (sincαn)
�nt�

1 − sincαn

−→ t, for any t ∈ [0,1].

Developing (11) to the next order, we find

�nt�(1 − sincαn) + (sincαn)
�nt� − 1 = 1

72
�nt�2α4

n + o
(
n2α4

n

)
,

and this leads to E[‖ 1
n
Xn

t ‖2] → t2. We then conclude with

E

[∥∥∥∥1

n
Xn

t − tU1,n

∥∥∥∥
2]

= E

[∥∥∥∥1

n
Xn

t

∥∥∥∥
2]

+ t2 − 2
t

n
E

[〈
Xn

t ,Un
1

〉]

= t2 + o(1) + t2 + 2
t

n

n∑
j=1

E
[〈
Uj ,U

n
1

〉]

= 2t2 − 2t
1

n

1 − (sincαn)
�nt�

1 − sincαn

+ o(1) −→ 0, (12)

where at (12) we used (6), together with the relative compactness of { 1
n
Xn} as a sequence of laws (Corollary 1). �

When nα2
n → ∞ sufficiently fast, with a different normalization, Xn in fact converges to a Brownian motion. The

precise normalization that results in this is given below. (In a sense, Theorem 1 is a special case of the following.) See
Figure 7 for an illustration of Proposition 3 and Theorem 2.

Theorem 2. Consider a sequence of angles as in (10). If nα2
n � nω for some ω ∈ (0,1), then

αn√
n
Xn ⇒ √

3B.

Proof. The arguments are similar to those given in the proof of Theorem 1 in Section 2, so we will omit some details.
Let qn � pn � n be two sequences of integers with pn, qn → ∞ and such that pn + qn < n. Let kn = �n/(pn + qn)�.
We introduce the random variables

ξk,n = αn√
n

(k−1)(pn+qn)+pn∑
i=(k−1)(pn+qn)+1

Ui,n,

and S∗
n = ∑kn

i=1 ξi,n. We set Sn = αn√
n
Xn

1 . Mimicking the proof of Lemma 2, and using again Proposition 2 and Lemma 1,
we get

E
[∥∥Sn − S∗

n

∥∥2] = O

(
knqn

n
+ pn

n
+ q2

n

nαn

kn∑
k=1

(kn − k)(sincαn)
kpn

)

= O

(
qn

pn

+ pn

n
+ q2

nkn

nαn

(sincαn)
pn

1 − (sincαn)pn

)
.

Fig. 7. A realization of the process defined in (10) for αn = 2πn−3/4 (left) and αn = 2πn−1/4 (right).
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If pnα
2
n � logn, then (sincαn)

pn = exp(−pnα
2
n/6 + o(pnα

2
n)) → 0, thus

E
[∥∥Sn − S∗

n

∥∥2] = O

(
qn

pn

+ pn

n
+ n2−ω(sincαn)

pn

)
→ 0.

We now investigate the control of the three quantities underlying the conditions necessary for Proposition 1 to apply. For
the first condition, for any δ ∈ (0,1], we have

kn∑
i=1

‖ξi,n‖2+δ ≤ kn(pnαn/
√

n)2+δ ≤ α2+δ
n p1+δ

n /nδ/2,

using the triangle inequality and the fact that Uj,n ∈ S1. This implies that An(δ) → 0 as soon as the RHS converges to 0.
For the third condition, for t ∈ R2, we have, according to Proposition 2 and Lemma 1, for any n large enough so that

sincαn ≥ 2/π ,

Tn(t) ≤ 4kn

A

αn

(sincαn)
qn = O

(
n2−ω(sincαn)

qn
)
.

Thereby, Tn(t) → 0 as soon as qnα
2
n � logn.

For the second condition, using the same development as in the proof of Proposition 3, we find

�n = α2
nkn

2n

{
pn + 2(sincαn)

pn(1 − sincαn) + (sincαn)
pn − 1

(1 − sincαn)2

}
Id2,

and in particular, if pnα
2
n → ∞,

�n =
{
O

(
α2

n

) + o(1) + 3knpn

n

}
Id2 → 3 Id2 .

Thus, if we can find two sequences, pn and qn, verifying all the conditions above, we can then apply Proposition 1
and, in the same fashion as in the proof of Lemma 3, we show that the finite-dimensional laws of αn√

n
Xn converge weakly

to the appropriate limit.
It only remains to find two such sequences. The conditions are, in order of appearance: qn � pn � n; logn � pnα

2
n;

and α2+δ
n p1+δ

n � nδ/2 for some δ ∈ (0,1]; and logn � qnα
2
n. Denoting un = n1−ω/2α2

n/ logn, set pn = α−2
n (logn)uε

n

and qn = α−2
n (logn)u

η
n with 0 < η < ε < 1 fixed. The first, second and fourth conditions are immediate consequences of

the fact that un → ∞ (since n1−ω/2α2
n � nω/2 � logn) and αn → 0. The third condition is equivalent to u

ε(1+δ)−δ/2
n �

nωδ/4(logn)−1−δ/2 which is true as soon as we pick ε smaller than δ
2(1+δ)

.
It remains to show that the family of laws defined by { αn√

n
Xn} is tight. To do this, we do as in the proof Lemma 4, and

reinstate the notation defined there. The inequality at (9) applies in the same way, but with α replaced here by αn, and
thus

lim sup
n∈N

λ2P

(
max
k≤n

‖Sk‖ ≥ λ
√

n/αn

)
≤ lim sup

n∈N
α4

nK

(1 − sincαn)2λ2
= 6K

λ2
−−−→
λ→∞ 0,

which, by Lemma 5, implies relative compactness of the sequence of laws. �

Remark 2. We conjecture that the conditions of Theorem 2 can be weakened to a mere divergence, nα2
n → ∞, although

our proof technique does not seem capable to confirm this conjecture.

So far, our constructions have only yielded a (scaled) Brownian motion, or trivial limits. However, in the critical regime
where nα2

n converges to a positive real, the limit process is different, and, in particular, it is strictly smoother than the
Brownian motion itself. See Figure 8 for an illustration of Theorem 3.

Theorem 3. Consider a sequence of angles as defined in (10). If nα2
n → κ > 0, then

1

n
Xn

t ⇒ U

∫ t

0
exp

{
i
2

3
κB(1)

s

}
ds, (13)

where U and B(1) are independent, with U uniform over S1 and B(1) a standard 1-dimensional Brownian motion.
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Fig. 8. A realization of the process defined in (10) for αn = 2πn−1/2 observed at different scales.

Proof. We set C1 = C([0,1],R), and we introduce the sequence of processes

�n
t =

�nt�∑
i=2

�i,n + (
nt − �nt�)��nt�+1,n.

Since the angle variables �i,n, i ≥ 1, are iid, a simple application of the Lyapunov central limit theorem, in conjunction
with the use of [4, Lem. on p. 88] and of the Etemadi inequality [3, Thm. 22.5 on p. 288], immediately show that
�n

t ⇒ �t = 2
3κB

(1)
t in the space C1.

Set

fn : x ∈ C1 �→
(

t �→ 1

n

{�nt�∑
k=1

eix(k/n) + (
nt − �nt�)eix((�nt�+1)/n)

})
∈ C2, and

f : x ∈ C1 �→
(

t �→
∫ t

0
eix(s) ds

)
∈ C2.

These two maps are continuous from C1 to C2 for the uniform topology – they are even 1-Lipschitz for the supnorm.
Furthermore, we notice that 1

n
Xn = U1,nfn�

n, with U1,n being independent from fn�
n. Since f is continuous, we

immediately have that f �n ⇒ f � in the space C2.
Take a test function g : C2 → R that is both bounded and Lipschitz,3 and denote by Lipg its Lipschitz constant. We

have ∣∣E[
g
(
fn�

n
)] −E

[
g(f �)

]∣∣ ≤ ∣∣E[
g
(
fn�

n
)] −E

[
g
(
f �n

)]∣∣ + ∣∣E[
g
(
f �n

)] −E
[
g(f �)

]∣∣
≤ Lip(g)E

[∥∥fn�
n − f �n

∥∥∞
] + o(1).

The second term is indeed o(1) because f �n converges weakly to f �. With an analogous reasoning as the one underlying
Lemma 6, we see that for any s, t ∈ [0,1], |�n

t − �n
s | ≤ nαn|t − s|, and thus, for any t ∈ [0,1],

∣∣f �n[t] − fn�
n[t]∣∣ ≤

�nt�∑
k=1

∫ k
n

k−1
n

∣∣ei�n
s − e

i�n
k/n

∣∣ds +
∫ t

�nt�
n

∣∣ei�n
s − e

i�n
(�nt�+1)/n

∣∣ds (14)

≤
�nt�∑
k=1

∫ k
n

k−1
n

∣∣�n
s − �n

k/n

∣∣ds +
∫ t

�nt�
n

∣∣�n
s − �n

(�nt�+1)/n

∣∣ds

≤
�nt�∑
k=1

1

n
(nαn)

1

n
+ nt − �nt�

n
(nαn)

1

n
≤ tαn. (15)

Hence, ‖fn�
n − f �n‖∞ ≤ αn → 0. We may thus conclude that E[g(fn�

n)] → E[g(f �)], and so for any g bounded-
Lipschitz, thus implying that fn�

n converges weakly to f � in C2. �

3Because C2 is a polish space, the bounded-Lipschitz distance metrizes the weak convergence of probability measures [7, Thm. 11.3.3].
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Let (Xt : t ∈ [0,1]) denote the limit process in (13). Because a Brownian motion has continuous paths, X has continu-
ously differentiable paths. Furthermore, as a parametrization of a curve, it is unit-speed, its velocity at time t being given
by

Ẋt = U exp

{
i
2

3
κB

(1)
t

}
.

4. Construction based on a Markov sequence of angles

The limit process derived for the construction studied in Theorem 3 is not twice differentiable. Our goal in this section is
to construct a random walk with limiting process having finite curvature, which from a geometric standpoint is appealing.
Given our investigations in the previous two sections, such a construction appears to require some memory in the angle
processes. It turns out that just a little memory is sufficient.

We consider a sequence of angles constructed as follows:

Given δj,n that are iid uniform on [−αn,αn],
define �1,n = δ1,n, and for j ≥ 2, �j,n = �j−1,n + δj,n.

(16)

See Figure 9 for an illustration of this definition.

Theorem 4. Consider a sequence of angles as defined in (16). If n3α2
n → κ > 0, then

1

n
Xn

t ⇒ U

∫ t

0
exp

{
i
2

3
κ

∫ s

0
B(1)

u du

}
ds. (17)

Proof. The proof is similar to that of Theorem 3, and we reinstate the notation used there. We have �k,n = ∑k
i=2 δi,n

(denoting δ2,n = �2,n). We then define

�n
t = n

{�nt�∑
i=2

δi,n + (
nt − �nt�)δ�nt�+1,n

}
,

so that �k,n = 1
n
�n

k/n. As in the proof of Theorem 3, we have �n
t ⇒ �t = 2

3κB
(1)
t in the space C1. We introduce the

functions

hn : x ∈ C1 �→
(

t �→ 1

n

{�nt�∑
k=1

x(k/n) + (
nt − �nt�)x(�nt� + 1

n

)})
∈ C1, and

h : x ∈ C1 �→
(

t �→
∫ t

0
x(s) ds

)
∈ C1,

Fig. 9. The first steps of the random walk with a Markov sequence of angles. Because the angles keep track of their former values, we can expect a
smoother process at the limit.
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which are 1-Lipschitz for the supnorm. Furthermore, we have

1

n
Xn = U1,nfn�

n = U1,nfnhn�
n.

As before, U1,n are independent from fnhn�
n. Take a test function g ∈ BL(C2). We have∣∣E[

g
(
fnhn�

n
)] −E

[
g(f h�)

]∣∣ ≤ ∣∣E[
g
(
f h�n

)] −E
[
g(f h�)

]∣∣ + ∣∣E[
g
(
fnh�n

)] −E
[
g
(
f h�n

)]∣∣
+ ∣∣E[

g
(
fnhn�

n
)] −E

[
g
(
fnh�n

)]∣∣. (18)

The first term on the RHS of (18) converges to 0 because �n ⇒ �. The second term on the RHS of (18) can be bounded
as follows∣∣E[

g
(
fnh�n

)] −E
[
g
(
f h�n

)]∣∣ ≤ Lip(g)E
[∥∥fnh�n − f h�n

∥∥∞
]

≤ Lip(g)
1

n
E

[
Lip

(
h�n

)]
≤ Lip(g)

1

n
E

[∥∥�n
∥∥∞

] ≤ Lip(g)nαn −→ 0, (19)

where the inequality ‖fnx − f x‖∞ ≤ 1
n

Lip(x) comes from a computation similar to the one done in the proof of The-
orem 3 (see formulas (14) and (15)). The inequality Lip(h�n) ≤ ‖�n‖∞ that we use at (19) comes from the definition
of h: for any x ∈ C1, we have |hx(t) − hx(s)| ≤ ∫ t

s
|x| ≤ ‖x‖∞|t − s| for any 0 ≤ s ≤ t ≤ 1. The convergence to 0 holds

because n = O(α
−2/3
n ). The last term on the RHS of (18) is bounded as follows∣∣E[

g
(
fnhn�

n
)] −E

[
g
(
fnh�n

)]∣∣ ≤ Lip(g)E
[∥∥fnhn�

n − fnh�n
∥∥∞

]
≤ Lip(g)E

[∥∥hn�
n − h�n

∥∥∞
]

≤ Lip(g)
1

n
E

[
Lip

(
�n

)] ≤ Lip(g)nαn → 0,

where we used the fact that fn is 1-Lipschitz, and a few inequalities that we already used in the previous bounds.
We conclude that 1

n
Xn = U1,nfnhn�

n converges weakly in C2 to Uf h� , which is exactly the convergence stated in
the theorem. �

Let X denote the limit process in (17). It is clearly twice differentiable, with velocity given by

Ẋt = U exp

{
i
2

3
κ

∫ t

0
B(1)

s ds

}
,

and acceleration is given by

Ẍt = i
2

3
κB

(1)
t U exp

{
i
2

3
κ

∫ t

0
B(1)

s ds

}
.

In particular, as a parameterization, it is unit-speed (since ‖Ẋt‖ = 1 for all t ), and its (unsigned) curvature at time t is
given by ‖Ẍt‖ = 2

3κ|B(1)
t |. See Figure 10 for a realization of such a process.

Fig. 10. A realization of the process defined in Section 4 for αn = 64πn−3/2, observed at different scales.
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5. Discussion

Retrospectively, our construction in Section 2 appears naive. Yet, the fact that the construction failed to produce a process
with curves with finite curvature was initially surprising to us due to the fact that the polygonal lines resulting from
the construction do have bounded curvature (independent of n) in the sense of [1]. In that paper, the curvature of a
polygonal line at a vertex is defined as the inverse of the circumradius of the triangle that this vertex forms with the two
adjacent vertices on the polygonal line – a rather natural definition that is shown there to enjoy good properties. However,
as we have shown, such a construction can only yield a Brownian motion in the limit, or at best, a process with once
differentiable realizations if we let the angle interval shrink at a very specific rate.

Otherwise, we believe that the limits established here have the sort of universality expected for random walk construc-
tions, in that the edges defining polygonal line do not need to have the exact same length, and that the angles or their
increments do not need to be selected uniformly at random.

We also anticipate that similar constructions, with similar limits, are possible in arbitrary dimension. The most inter-
esting case, besides the planar case presented here, may well be that of random walks and curves in dimension three,
where an analogous goal would be to construct random walks with limits that exhibit finite curvature and torsion (almost
surely).

Finally, we mention that processes that look like (13) naturally appear in many applications ranging from mathematical
finance to quantum optics [9] and have been thoroughly considered in the literature, in particular by [11], who studies
exponential functionals of the Brownian motion of the form

Xt =
∫ t

0
exp

{
aB(1)

s + bs
}
ds,

in the situation where a and b are real. [8] study similar processes with a allowed to be complex, but with b < 0. To the
authors’ knowledge, the case when both a ∈ iR and b = 0 remains to be studied.
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