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Abstract. We consider the free energy of the bipartite spherical Sherrington–Kirkpatrick model and determine the limiting free energy
at every temperature. We also prove the convergence of the law of the fluctuations of the free energy at non-critical temperature. The
limit is given by the Gaussian distribution for all high temperatures and by the GOE Tracy–Widom distribution for all low temperatures.
The result is universal and the analysis is applicable to a more general setting including the case where the disorders are non-identically
distributed.

Résumé. Nous considérons l’énergie libre du modèle sphérique bipartite de Sherrington–Kirkpatrick et déterminons l’énergie libre
limite à chaque température. Nous prouvons également la convergence de la loi des fluctuations de l’énergie libre à température non
critique. La limite est donnée par la distribution Gaussienne pour toutes les températures élevées et par la distribution de Tracy–Widom
GOE pour toutes les températures basses. Le résultat est universel et l’analyse est applicable à un cadre plus général, y compris le cas
où le désordre est distribué de manière non identique.
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1. Introduction

1.1. Bipartite SSK

The Sherrington–Kirkpatrick (SK) model and the spherical Sherrington–Kirkpatrick (SSK) model are disordered systems
in which the spin variables are subject to Gibbs probability measures defined by random Hamiltonians. They can be
thought of as finite-temperature versions of the problem of finding the maximum of a random function on either a hyper-
cube (SK model) or a sphere (SSK model). As such, there is significant interest in these models and their generalizations
in probability and statistical physics, as well as computer science and social science. There is a long history to the subject
with many important results. We refer to [24] and references therein.

A natural variation is the case when the spins are divided into two (or more) groups such that the spins in different
groups interact, but those within the same group do not interact. When there are two groups, we are led to the bipartite
system.

The bipartite spherical Sherrington–Kirkpatrick model (SSK) model is defined as follows. Let

Sn−1 = {
u ∈R

n : ‖u‖ = √
n
}

(1.1)

be a sphere in R
n. Let N1 and N2 be two positive integers and consider two types of spin variables σ = (σ1, . . . , σN1) and

τ = (τ1, . . . , τN2) on two different spheres,

σ ∈ SN1−1, τ ∈ SN2−1. (1.2)

Define the Hamiltonian

H(σ ,τ ) = 1√
N

N1∑
i=1

N2∑
j=1

Jij σiτj , N := N1 + N2, (1.3)
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where Jij are independent random variables of mean 0 and variance 1. The bipartite SSK model is defined, for each
β > 0, by the Gibbs probability measure

P(σ ,τ ) = 1

ZN1,N2

eβH(σ ,τ ), (σ ,τ ) ∈ SN1−1 × SN2−1 (1.4)

where β is called the inverse temperature and ZN1,N2 is the normalization constant, which is also known as the partition
function. Note that the probability measure depends on the random variables Jij .

The goal of this paper is to study the free energy FN1,N2(β) = N−1 logZN1,N2(β) as N1,N2 → ∞. For small enough
β , Auffinger and Chen obtained a minimization formula for the limiting free energy in [3]. We mention that their work
applies to more general mixed (p, q)-spin Hamiltonians with external fields. One of the contributions of this paper is the
computation of the limiting free energy for the Hamiltonian (1.3) for all β except a critical value βc which we determine
explicitly. When β is small, our formula agrees with the result of Auffinger and Chen.

Moreover, in this paper we evaluate the next order term. We obtain the limiting law of the fluctuations, again for all
β �= βc . We show that the fluctuations are Gaussian for β < βc, and are given by the Tracy–Widom distribution of random
matrix theory for β > βc . The disorder parameters Jij are not restricted to Gaussian variables.

For the usual SK and SSK models, the limiting free energy is given by the Parisi formula [36] and Crisanti–Sommers
formula [18], which were rigorously proved by Talagrand in [41,42]. The fluctuations were obtained for β below a critical
value by first Aizenman, Lebowitz, and Ruelle in [1] and subsequently in [14,17,23]. There are several recent results for
large β and and also for the case with the presence of the external field in [7,8,15,16,40].

1.2. Multi-species SK

The bipartite Sherrington–Kirkpatrick (SK) model is defined by the same Hamiltonian (1.3) but the spins are now assumed
to be on a hypercube,

(σ ,τ ) ∈ {−1,1}N1 × {−1,1}N2 = {−1,1}N1+N2 . (1.5)

Note that for the spheres, SN1−1 × SN2−1 is not equal to SN1+N2−1.
The bipartite SK model is a special case of the multi-species Sherrington–Kirkpatrick model. The multi-species SK

model was introduced in [10], and it is defined as follows. Let

HMS
N (σ) = 1√

N

N∑
i,j=1

gijσiσj , σ = (σ1, . . . , σN) ∈ {−1,1}N (1.6)

be the usual SK Hamiltonian. The disorder parameters gij are independent centered random variables. However, we
assume that the variances of gij are not uniform but they depend on the “species” of the index i and j . Let S be a finite
set independent of N and call the elements of S species. Fix a map

s : {1, . . . ,N} → S. (1.7)

The value s(i) assigns a species to the index i. Now we assume that the variance of gij depends only on the species of i

and j : Let

�2 = (
�2

st

)
s,t∈S , �2

st = �2
ts (1.8)

be a symmetric matrix with non-negative entries and we assume that

E
[
g2

ij

] = �2
s(i),s(j). (1.9)

Setting Ns = |{i : s(i) = s}|, the interesting case is when Ns

N
→ rs ∈ (0,1) as N → ∞ for each s ∈ S .

The bipartite SK model is the multi-species SK model when |S| = 2 and �2 = 1
4 ( 0 1

1 0 ). Note that in this case �2 is not
positive-semidefinite.

The liming free energy of the multi-species model was studied in [10] and [35]. In [10], Barra, Contucci, Mingione,
and Tantari obtained a lower bound of the limiting free energy assuming that �2 is positive-semidefinite. On the other
hand, Panchenko obtained an upper bound in [35] for general �2. When �2 is positive-semidefinite, the upper bound
matches with the lower bound, and hence one obtains the limiting free energy. The general case, including the bipartite
case, remains an open question; see [11,12] for some conjectural formulas for the bipartite SK model.
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1.3. Two multi-species SSK models

Let us consider a spherical version of multi-species SK model. We take the same Hamiltonian as (1.6) with same disorder
parameters gij satisfying (1.9). Note that if σ ∈ {−1,1}N , then ‖σ‖ = √

N . There are two different natural ways of
embedding the hypercube. One way is that

σ ∈ SN−1. (1.10)

The other way is that

σ ∈ SNs1−1 × · · · × SNsm−1 (1.11)

where m is the number of species, the set of species is denoted by S = {s1, . . . , sm}, and Nsk is the number of indices
corresponding to the species sk satisfying

∑m
k=1 Nsk = N . In both cases, ‖σ‖ = √

N . Therefore, we have two different
multi-species spherical Sherrington–Kirkpatrick models, one with spins on one sphere and the other with spins on a
product space of spheres.

The bipartite SSK model we introduced earlier corresponds to a special case of (1.11). In this paper, we focus only
on this model. However, using a method similar to this paper, one can study the model with (1.10) for bipartite case and
also some multi-species cases (possibly not positive-semidefinite �2). This “one-sphere multi-species SSK” model will
be considered in a separate paper.

1.4. Connection to random matrices

We use a special structure of the Hamiltonian (1.3) to study its limiting free energy and the fluctuations. Setting the matrix
J = (Jij ) and considering σ and τ as column vectors, the critical points of the function f (σ ,τ ) = σ T Jτ (which is a
constant multiple of the Hamiltonian) subject to the constraints ‖σ‖2 = N1 and ‖τ‖2 = N2 satisfy the equations

Jτ = λ1σ , J T σ = λ2τ , (1.12)

where λ1 and λ2 are Lagrange multipliers. These equations imply that σ is an eigenvector of the matrix JJ T , τ is an
eigenvector of J T J , and λ1λ2 is an eigenvalue of J T J (and also JJ T ).

The matrix J is a random matrix with independent and identically distributed entries. The matrix J T J is called a
(constant multiple of) sample covariance matrix (with null covariance) in statistics and also is said to belong to the
Laguerre orthogonal ensemble in random matrix theory [5,22,32]. It is one of the fundamental matrices in random matrix
theory. The behavior of the eigenvalues of J T J (the squared singular values of J ) in the large dimension limit is well-
studied.

There is a more direct connection between the random matrices and the free energy. In [7,27], it was shown that the
partition function of the usual SSK model can be expressed as a random single integral. In this paper, we obtain a similar
result for the bipartite SSK model, but this time the random integral is a double integral; see Lemma 2.7. This random
double integral involves the eigenvalues of J T J . We analyze the double integral asymptotically using the method of
steepest-descent. The reason that we can apply the method of steepest-descent to the random integral is that even though
the eigenvalues are random, their fluctuations about their classical locations are small. Precise estimates for the locations
of the eigenvalues were obtained recently in random matrix theory. The “rigidity” estimates for the eigenvalues of J T J

were proved by Pillai and Yin in 2014 [37] for the case N1 �= N2. The estimates for the case N1 = N2 follow from [2].
Similar rigidity results were proved for other classes of random matrices starting with the Wigner matrices [21] and also
various random matrix models including invariant ensembles [13] and sparse random matrices [20]. Rigidity estimates
are obtained from the local laws such as local semicircle law or local Marchenko–Pastur law, and they are also crucial a
priori estimates for the proof of bulk and edge universality of random matrices. Our analysis is applicable to a large class
of random double integrals under certain general conditions (including the rigidity condition) on a sequence of random
variables. We obtain the results for the bipartite SSK model as a special case of a more general asymptotic result for
random double integrals. We remark that the double integral representations also appear in the analysis of the overlap in
the spherical SK model [28,34].

The strategy above is an extension to our previous works [7,8] for the SSK model. A similar idea was also used in an
earlier physics paper [27] for a non-rigorous analysis for the limiting free energy. An important change from our previous
work is that the random integral is a double integral this time. This change adds significant technical difficulties. Even in
[7,8], the asymptotic analysis for large β (the low temperature regime) was subtle due to the fact that the critical point in
the method of steepest-descent is close to a branch point. While we could use a certain symmetry to simplify the situation
in the SSK model, we lose the symmetry for the double integral in this paper. This leads us to a more involved analysis;
see Section 5 for more discussions.
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1.5. Organization of the paper

The paper is organized as follows. We state the precise definition of the model and state the main results in Section 2.
The main fluctuation results are Theorem 2.3 and Theorem 2.6. We also state the double integral formula of the partition
function. The asymptotic analysis of the double integral can be carried out under certain general conditions. In Section 3,
we state these conditions and discuss the critical point for the steepest-descent analysis. The asymptotic analysis of the
general random double integrals is performed for the high temperature regime in Section 4 and for the low temperature
regime in Section 5. Section 5 is the most technical part of the paper. In Section 6, we prove Theorem 2.6 using the results
of Sections 4 and 5. In Section 7, we derive Theorem 2.3 from Theorem 2.6 using results from random matrix theory. In
Section 8, we briefly discuss the case where the disorders are non-identically distributed.

2. Results

In this section, we define the model precisely and state the results.

2.1. Definitions

Let

Sn−1 = {
u ∈R

n : ‖u‖ = √
n
}

(2.1)

be a sphere of radius
√

n in R
n. Let N1 and N2 be positive integers and set

N = N1 + N2. (2.2)

Let J = (Jij )i=1,...,N1,j=1,...,N2 be an N1 ×N2 matrix with i.i.d. entries of mean 0 and variance 1. Define the Hamiltonian

H(σ ,τ ) = 1√
N

N1∑
i=1

N2∑
j=1

Jijσiτj = 1√
N

〈σ , Jτ 〉, (σ ,τ ) ∈ SN1−1 × SN2−1. (2.3)

The free energy of the bipartite SSK model at inverse temperature β is defined by

FN1,N2(β) = 1

N
logZN1,N2(β), (2.4)

where the partition function ZN1,N2 is defined by

ZN1,N2(β) =
∫

SN1−1

∫
SN2−1

eβH(σ ,τ ) dωN2(τ )dωN1(σ ). (2.5)

Here, dωn(u) is the uniform probability measure on the sphere Sn−1.
We assume the following for J . Let Jij be independent random variables such that:

• The entries are centered with unit variance, i.e., E[Jij ] = 0 and E[J 2
ij ] = 1.

• For any i, j , E[J 3
ij ] = W3 and E[J 4

ij ] = W4 for some constants W3, W4.
• All moments of Jij are finite.

We consider the limit as N,N1,N2 → ∞. Define

ρ1 ≡ ρ1(N) = N1

N
, ρ2 ≡ ρ2(N) = N2

N
. (2.6)

Assume that

ρ1 = r1 + O
(
N−1), ρ2 = r2 + O

(
N−1) (2.7)

for some N -independent constants

r1, r2 > 0 satisfying r1 + r2 = 1. (2.8)

(See Remark 2.4 for more detail on the assumption.)
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2.2. Limiting free energy

We first state the limiting free energy.

Theorem 2.1. Set

βc := (r1r2)
− 1

4 . (2.9)

Define, for 0 < β < βc ,

F(β) = r1r2β
2

2
(2.10)

and for β > βc,

F(β) = (
√

r1 + √
r2)

√
S − √

r1r2 − 1

2

− r1 − r2

4
log

(√
S + √

r1 − √
r2√

S − √
r1 + √

r2

)
− r2

4
log r1 − r1

4
log r2 − 1

2
logβ (2.11)

where

S = S(β, r1, r2) := (
√

r1 − √
r2)

2 + 4r1r2β
2. (2.12)

Then,

FN1,N2(β) → F(β) (2.13)

as N → ∞ in probability for every β �= βc.

Proof. This result is a simple consequence of Theorem 2.3 below for the fluctuations. �

Note that F(β) in Theorem 2.1 is continuous if we define F(βc) =
√

r1r2
2 . As a corollary to Theorem 2.1, we have the

following convergence result for β = βc.

Corollary 2.2. For β = βc = (r1r2)
− 1

4 , set

F(βc) =
√

r1r2

2
. (2.14)

Then,

FN1,N2(βc) → F(βc) (2.15)

as N → ∞ in probability.

Proof. Since the free energy FN1,N2(β) is a convex function of β for any finite N , we can find the upper bound and the
lower bound of the free energy at βc for finite N , where the two bounds converge to the same value in the large N limit.
This proves that FN1,N2(βc) → F(βc) as N → ∞ in probability. �

Auffinger and Chen obtained the limiting free energy when β is small enough in [3] in terms of a minimization
problem. Their result applies to general mixed (p, q)-spin Hamiltonians with the presence of the external field. The spe-
cialization to the (p, q) = (1,1) case (we also set h1 = h2 = 0 and β1,1 = √

r1r2β in Theorem 1 of [3]) is the following:
There is a small constant β0 > 0 (which is not explicitly determined) such that for β < β0,

lim
N→∞FN1,N2(β) = min

a,b∈[0,1)
P (a, b) (2.16)
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where

P(a, b) = r1

2

(
a

1 − a
+ log(1 − a)

)
+ r2

2

(
b

1 − b
+ log(1 − b)

)
+ r1r2β

2

2
(1 − ab). (2.17)

It is easy to find the minimum explicitly. It is straightforward to check that the minimum occurs on the boundary of
domain [0,1) × [0,1) when β ≤ (r1r2)

−1/4 and inside the domain [0,1) × [0,1) when β > (r1r2)
−1/4. The minimizers

are (a, b) = (0,0) when β ≤ (r1r2)
−1/4 and

(a, b) =
(

1 −
√

S − √
r1 + √

r2

2
√

r1r2β2
,1 −

√
S + √

r1 − √
r2

2r1
√

r2β2

)
(2.18)

when β > (r1r2)
−1/4, where S is (2.12). From this, we find that the minimum is equal to F(β) in Theorem 2.1 and

Corollary 2.2 for all β . Hence, Theorem 2.1 and Corollary 2.2 imply that the result (2.16) of Auffinger and Chen actually
holds for all β for the (1,1)-spin Hamiltonian.

2.3. Fluctuations of the free energy

Next result is about the fluctuations of the free energy. In the high temperature regime 0 < β < βc = (r1r2)
− 1

4 , define

FN(β) = ρ1ρ2β
2

2
. (2.19)

Theorem 2.3. We have the following convergence in distribution.

(i) In the high temperature regime 0 < β < (r1r2)
− 1

4 ,

N
(
FN1,N2 − FN(β)

) ⇒ N
(
μ,σ 2), (2.20)

where N (μ,σ 2) is the Gaussian distribution with mean

μ = 1

4
log

(
1 − r1r2β

4) − log 2 − (W4 − 3)
r1r2β

4

4
(2.21)

and variance

σ 2 = −1

2
log

(
1 − r1r2β

4) + (W4 − 3)
r1r2β

4

4
. (2.22)

(ii) In the low temperature regime β > (r1r2)
− 1

4 ,

N
2
3

A

(
FN1,N2 − F(β)

) ⇒ TW (2.23)

where

A = A(β, r1, r2) = (
√

r1 + √
r2)

1
3 (

√
S − √

r1 − √
r2)

4(r1r2)
1
6

(2.24)

with S = (
√

r1 − √
r2)

2 + 4r1r2β
2 defined in (2.12) and TW denotes the GOE Tracy–Widom distribution.

We remark that the limiting free energy F(β) and the constants μ, σ 2, and A are all symmetric in r1 and r2.
The above change from the Gaussian distribution for high temperature to the Tracy–Widom distribution for low tem-

perature also occurs in the usual SSK model [7].

Remark 2.4. When r1 and r2 are given, it is natural to choose N1 and N2 so that |N1 − r1N | < N−1 and |N2 − r2N | <

N−1. In such a case, |ρ1 − r1| < N−1.
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Note that in the high temperature regime, the difference

FN(β) − F(β) = β2

2
(ρ1ρ2 − r1r2) = β2

2

(
(1 − 2r1)(ρ1 − r1) − (ρ1 − r1)

2) (2.25)

is of order (ρ1 − r1) if r1 �= 1
2 . Thus, the fluctuation of the free energy N(FN1,N2 − F(β)) can be decomposed into

two terms, the Gaussian fluctuation N (μ,σ 2) in Theorem 2.3 and the deterministic shift FN(β) − F(β), which are of
comparable order.

It is a classical result (Dirichlet’s approximation theorem) in number theory that for any irrational r , there are infinitely
many integers p and q such that |r − p

q
| < q−2. Hence, for some ε > 0, we can find infinitely many N ’s such that

r1N − 
r1N� = O(N−ε). The deterministic shift can be ignored by letting N → ∞ with such N ’s.
If |ρ1 − r1| � N−1 (and r1 �= 1

2 ), then the deterministic shift is not negligible since it is much larger than the fluctuation
of the free energy. Note that such a phenomenon does not happen in the low temperature regime as long as |ρ1 − r1| �
N− 2

3 since the fluctuation of the free energy, which is given by the GOE Tracy–Widom distribution, is much larger than
|ρ1 − r1|.

2.4. Free energy and eigenvalues

Assume, without loss of generality, that

N1 ≥ N2. (2.26)

The matrix of the disorder parameters J = (Jij ) is an N1 × N2 matrix. We consider the N2 × N2 square random matrix

S = 1

N1
J T J. (2.27)

In statistics, S is known as a sample covariance matrix (with null covariance). In random matrix theory, S is also known
to belong to the Laguerre orthogonal ensemble [5,22,32]. Let

μ1 ≥ μ2 ≥ · · · ≥ μN2 ≥ 0 (2.28)

be the eigenvalues of S. We note that
√

μi are the singular values of 1√
N1

J .
The eigenvalues of S are well studied in the random matrix theory. For example, the empirical spectral distribution

(ESD) of S converges to the Marchenko–Pastur distribution [31]:

1

N2

N2∑
i=1

δμi
(x)dx → dμMP(x) (2.29)

weakly in probability as N1,N2 → ∞ with N2
N1

→ r1
r2

∈ (0,1], where

dμMP(x) := 2
√

(a+ − x)(x − a−)

π(
√

a+ − √
a−)2x

1(a+,a−)(x)dx (2.30)

with

a+ = (
√

r1 − √
r2)

2

r1
, a− = (

√
r1 + √

r2)
2

r1
. (2.31)

When the small order correction of the Marchenko–Pastur distribution is not negligible as in the central limit theorem
for linear statistics of the eigenvalues, it is necessary to modify the Marchenko–Pastur distribution by plugging ρ1 and ρ2

instead of r1 and r2, respectively, in (2.30) as

dμ̂MP(x) := 2
√

(d+ − x)(x − d−)

π(
√

d+ − √
d−)2x

1(d−,d+)(x)dx (2.32)
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with

d+ = (
√

ρ1 − √
ρ2)

2

ρ1
, d− = (

√
ρ1 + √

ρ2)
2

ρ1
. (2.33)

The next theorem relates the second leading term of the free energy with the eigenvalues of S. We begin by introducing
a suitable notion for the estimates.

Definition 2.5 (High probability event). We say that an N -dependent event �N holds with high probability if, for any
given D > 0, there exists N0 > 0 such that

P
(
�c

N

) ≤ N−D

for all N > N0.

Theorem 2.6. Without loss of generality, assume that r1 ≥ r2. The following hold with high probability for any fixed
0 < ε < 1

100 .

(i) In the high temperature regime 0 < β < βc ,

FN1,N2(β) = FN(β) − 1

2N

[
N2∑
i=1

log(zc − μi) − N2

∫
log(zc − x)dμ̂MP(x)

]

+ 1

N

[
1

2
log

(
1 − r1r2β

4) − log 2

]
+ O

(
N−1−ε

)
(2.34)

where

zc = 1 + β2 + ρ1ρ2β
4

ρ1β2
. (2.35)

(ii) In the low temperature regime β > βc ,

FN1,N2(β) = F(β) +
(

μ1 − (
√

r1 + √
r2)

2

r1

)
r1(

√
S − √

r1 − √
r2)

4(
√

r1 + √
r2)

+ O
(
N−1+ε

)
(2.36)

with high probability where S = (
√

r1 − √
r2)

2 + 4r1r2β
2 as in (2.12).

Theorem 2.6 shows that the difference FN1,N2(β) − F(β) is governed by the top eigenvalue μ1 when β > βc and by a
certain combination of all eigenvalues when β < βc . The behaviors of the top eigenvalue and the special combination of
all the eigenvalues appearing in the theorem are well-known in random matrix theory. In Section 7, we prove Theorem 2.3
by combining Theorem 2.6 and the results from random matrix theory.

2.5. Special case

When r1 = r2 = 1
2 , the formulas are particularly simple. We will compare the formulas with the usual SSK model:

F SSK(β) =
{

β2 for β < 1
2 ,

2β − 3
4 − 1

2 log(2β) for β > 1
2 .

(2.37)

When r1 = r2 = 1
2 , we find that the limiting free energy of the bipartite SSK models satisfies

F BSSK(2
√

2β) = F SSK(β), β �= 1

2
.

For general r1 �= r2, we have

F BSSK
(

β

√
2

r1r2

)
= F SSK(β), β <

1

2
,

but this relationship is not true in low temperature regime β > 1
2 .
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For the fluctuations, when r1 = r2 and β > 1
2 , A(2

√
2β) = β − 1

2 . This is the same constant appearing for the low
temperature fluctuations of the usual SSK model [7] (see (iv) of Section 3.1). However, when r1 = r2 and β < 1

2 , the
constants μ(2

√
2β) and σ 2(2

√
2β) are not same as the constants for the high temperature fluctuations of the usual SSK

model ((3.12) and (3.13) of [7]).
We note that the limiting distribution of the eigenvalues associated to the bipartite SSK and the usual SSK are related

when r1 = r2. When r1 = r2, then the Marchenko–Pastur distribution (2.30) is

μMP(x) =
√

x(4 − x)

2πx
1(0,4)(x)dx. (2.38)

After a simple change of variables x = y2, this distribution is equal to the semicircle distribution,

μSC(y) =
√

4 − y2

2π
1(−2,2)(y)dy, (2.39)

which is the limiting distribution for the random symmetric matrix associated to the usual SSK model.

2.6. Double integral representation

As mentioned in Introduction, the starting point of our analysis for Theorem 2.6 is an explicit double integral formula for
the partition function. In this subsection, we state and prove the formula. Recall that we assume, without loss of generality,
that N1 ≥ N2. Let

Sn−1 = {
u ∈ R

n : ‖u‖ = 1
}

(2.40)

and �n(u) is the surface measure (which is not normalized) on the unit sphere Sn−1. After setting σ = √
N1x and

τ = √
N2y, the partition function (2.5) satisfies

ZN1,N2(β) = ẐN1,N2(N1N
1
2

2 N− 1
2 β)

|SN1−1||SN2−1| (2.41)

where

ẐN1,N2(b) =
∫

SN1−1

∫
SN2−1

eb〈x,My〉 d�N2(y)d�N1(x), M := J√
N1

. (2.42)

Let μ1 ≥ μ2 ≥ · · · ≥ μN2 ≥ 0 be the eigenvalues of the N2 × N2 matrix S = MT M = 1
N1

J T J . The following formula is
a variation of a result in [7].

Lemma 2.7. For N1 ≥ N2, we have

ẐN1,N2(b) = −2N2

(
π

b

)N1+N2
2 −2 ∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
eb(z1+z2)

z
(N1−N2)/2
1

∏N2
i=1

√
4z1z2 − μi

dz2 dz1 (2.43)

where γ1 and γ2 are any real positive constants satisfying 4γ1γ2 > μ1.

Proof. From the singular value decomposition, M = UDV where U and V are orthogonal matrices (of size N1 and N2,
respectively) and D = (Dij ) is an N1 × N2 matrix with Dii = √

μi and Dij = 0 for i �= j . Hence, after changing the
variables x and y to Ux and V T y, respectively, we have

ẐN1,N2(b) =
∫

SN1−1

∫
SN2−1

eb
∑N2

i=1
√

μixiyi d�N2(y)d�N1(x). (2.44)

Consier

I (z1, z2) :=
∫
R

N1

∫
R

N2
e
∑N2

i=1
√

μiXiYi e−z1|X|2−z2|Y |2 dNY dMX. (2.45)
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We evaluate this integral in two ways. First, by computing the Gaussian integrals,

I (z1, z2) = 2N2π
N1+N2

2

z
N1−N2

2
1

N2∏
i=1

1√
4z1z2 − μi

(2.46)

for z1 and z2 satisfying Re z1 > 0, Re z2 > 0 and Re(4z1z2) > μ1. Second, using polar coordinates X = √
ux, Y = √

vy

with u,v > 0 and x ∈ SN1−1, y ∈ SN2−1, we find that

I (z1, z2) =
∫ ∞

0

∫ ∞

0

1

4
u

N1
2 −1v

N2
2 −1ẐN1,N2(

√
uv)e−z1u−z2v dv du. (2.47)

By taking the inverse Laplace transform twice, we find

u
N1
2 −1v

N2
2 −1ẐN1,N2(

√
uv) = − 1

π2

∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
I (z1, z2)e

z1u+z2v dz2 dz1 (2.48)

for any γ1, γ2 > 0 satisfying 4γ1γ2 > μ1. Setting u = v = b, we obtain the result. �

3. Random double integral

The main technical part of this paper is the asymptotic analysis of the double integral in Lemma 2.7. The integrand
contains the random eigenvalues μi = μi(N2), 1 ≤ i ≤ N2. We use the method of steepest-descent to evaluate the double
integral asymptotically. This is possible since the eigenvalues satisfy certain rigidity estimates [2,37] with high probability.
Since the analysis depends only on the rigidity estimates and a few other properties of μi , we present the analysis for
a general sequence of random double integrals. In this section, we define general random double integrals and state the
conditions for the parameters and random variables of the integrals. The asymptotic analysis is carried out in the next
two sections, Sections 4 and 5. Section 5 is the most technical part of the analysis. We then discuss in Section 6 that the
eigenvalues of the matrix 1

N1
J T J for the bipartite SSK model satisfy the conditions (with high probability) and derive

Theorem 2.6 from the general asymptotic results, Proposition 4.4 and 5.8 for the double integrals.

3.1. General conditions for random double integrals

Let us define a sequence of general random double integrals.

Definition 3.1. Suppose that for each positive integer n, there are n non-negative numbers μ1(n) ≥ · · · ≥ μn(n) ≥ 0. Let
αn ≥ 0 and Bn > 0 be real numbers. For each positive integer n, define

Qn = Q(n,αn,Bn) := −
∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
enBn(z1+z2)

z
nαn

1

∏n
i=1

√
4z1z2 − μi(n)

dz2 dz1 (3.1)

where γ1 and γ2 are any real positive constants satisfying 4γ1γ2 > μ1(n).

We consider large n asymptotics of Qn under the following three conditions.

Condition 3.2. There is 0 < δ < 1 such that

αn = α + O
(
n−δ

)
, Bn = B + O

(
n−δ

)
(3.2)

for some α ≥ 0 and B > 0.

Condition 3.3 (Regularity of measure). The empirical spectral distribution satisfies

1

n

n∑
i=1

δμi(n)(x)dx − dμ̂(x) → 0 (3.3)

weakly for a sequence of measures μ̂ which depend on n and satisfy the following properties:
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• μ̂ is supported on a closed interval [d−, d+].
• μ̂ has a density that is positive on (d−, d+).
• The density of μ̂ exhibits square-root decay at the upper edge, i.e., for some cμ̂ > 0,

dμ̂

dx
(x) = cμ̂

√
d+ − x

(
1 + o(1)

)
as (d+ − x) ↓ 0. (3.4)

Condition 3.4 (Rigidity). For a positive integer k ∈ [1, n], let k̂ := min{k,n + 1 − k}. Let gk denote the “classical
location” defined by the quantiles,∫ ∞

gk

dμ̂ = 1

n

(
k − 1

2

)
. (3.5)

Then, for any ε > 0,∣∣μk(n) − gk

∣∣ ≤ k̂−1/3n−2/3+ε (3.6)

for all 1 ≤ k ≤ n and for all n.

Note that the last two conditions imply that

μ1(n) − d+ → 0. (3.7)

Remark 3.5 (Notational Remark 1). Throughout the paper we use C or c in order to denote a constant that is indepen-
dent of n. Even if the constant is different from one place to another, we may use the same notation C or c as long as it
does not depend on n for the convenience of the presentation.

Remark 3.6 (Notational Remark 2). We use standard notations O(·), o(·), �, and � as n → ∞.

In terms of the above notation, the partition function is given by (see Lemma 2.7)

ZN1,N2(β) =
Q(N2,

N1−N2
2N2

, N1√
N2N

β)

|SN1−1||SN2−1| 2N2

(
π2N

N2
1 N2β2

)(N−4)/4

(3.8)

for N1 ≥ N2, where N = N1 + N2 and μ1 ≥ · · · ≥ μN2 are the eigenvalues of 1
N1

J T J . The eigenvalues satisfy Condi-
tion 3.3 and 3.4 with high probability; see Section 6.

3.2. Critical point

We write

Qn = −
∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
enG(z1,z2) dz2 dz1 (3.9)

with

G(z1, z2) = Bn(z1 + z2) − 1

2n

n∑
i=1

log
(
4z1z2 − μi(n)

) − αn log z1. (3.10)

To evaluate the integral in (3.9) using the method of steepest-descent, we find the critical points of G(z1, z2). We have

∂1G = Bn − 2z2

n

n∑
i=1

1

4z1z2 − μi(n)
− αn

z1
, ∂2G = Bn − 2z1

n

n∑
i=1

1

4z1z2 − μi(n)
. (3.11)

Hence the critical points satisfy the equations

z1 − z2 = αn

Bn

,
z1

n

n∑
i=1

1

4z1z2 − μi(n)
= Bn

2
. (3.12)
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Taking the imaginary parts, we find that at the critical points,

Im z1 = Im z2,
1

n

n∑
i=1

4|z1|2 Im z2 + μi(n) Im z1

|4z1z2 − μi(n)|2 = 0.

Since μi(n) ≥ 0, Im z1 = Im z2 = 0 at the critical points. Hence, all critical points, if they exist, are real-valued.
We now look for real critical points. Due to the branch cut of G, we look only for real critical points (γ1, γ2) satisfying

4γ1γ2 > μ1(n), γ1 > 0, and γ2 > 0. We set 4γ1γ2 = γ and express the equations in terms of γ1 and γ instead of γ1 and
γ2:

γ1 − γ

4γ1
= αn

Bn

,
1

n

n∑
i=1

1

γ − μi(n)
= Bn

2γ1
(3.13)

where γ > μ1(n). The first equation is a quadratic equation of γ1 for given γ , and hence there are two solutions. Only
one of them is positive given by

γ1 = αn + √
α2

n + γB2
n

2Bn

. (3.14)

This implies that

γ2 = −αn + √
α2

n + γB2
n

2Bn

. (3.15)

Inserting (3.14) into the second equation of (3.13), we obtain an equation for γ given by (3.16) below. The next lemma
proves the existence and the uniqueness of the solution.

Lemma 3.7. The equation

1

n

n∑
i=1

1

γ − μi(n)
= B2

n

αn + √
α2

n + γB2
n

(3.16)

has a unique solution in the interval (μ1(n),∞).

Proof. Let L(γ ) and R(γ ) be the left-hand side and right-hand side of (3.16), respectively. We observe that the function

f (γ ) = c1 + √
c2 + γ

γ − μ

has the derivative

f ′(γ ) = −2c1
√

c2 + γ − 2c2 − γ − μ

2
√

c2 + γ (γ − μ)2
.

Hence, if c1, c2 > 0 and μ > 0, then h(γ ) is a decreasing function of γ ∈ (μ,∞). This shows that L(γ )
R(γ )

is a decreasing

function of γ ∈ (μ1(n),∞). Since the equation (3.16) is equivalent to L(γ )
R(γ )

= 1, if the solution exists in the interval
(μ1(n),∞), it is unique in the same interval.

We now prove the existence. We first notice that L(γ ) → ∞ as γ ↓ μ1(n) and R(γ ) is bounded above. Furthermore,

L(γ ) = O(γ −1) as γ → ∞ and R(γ ) ≥ Cγ − 1
2 for some C > 0 independent of γ . Thus,

lim
γ↓μ1

L(γ )

R(γ )
= +∞, lim

γ→∞
L(γ )

R(γ )
= 0. (3.17)

Therefore, L(γ )
R(γ )

= 1 has a unique solution in the interval (μ1(n),∞). �

In conclusion,

(i) there are no critical values of G with Im z1 �= 0 or Im z2 �= 0,
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(ii) there is a unique critical value (γ1, γ2) such that γ1 and γ2 are real and positive, and 4γ1γ2 > μ1(n),
(iii) the critical value (γ1, γ2) is given by the formulas (3.14) and (3.15) where γ ∈ (μ1(n),∞) satisfies the equation

(3.16).

Note that (γ1, γ2) = (γ1(n), γ2(n)) depends on n since G depends on n.

3.3. Critical temperature

We discuss how we find the critical temperature formally from the critical point.
Recall Condition 3.2 and Condition 3.3. Recall that d+ denotes the rightmost point of the support of μ̂. If γ in (3.16)

is O(1) distance to the right of d+, then we may approximate the equation (3.16) by the equation∫
R

1

z − x
dμ̂(x) = B2

n

αn + √
α2

n + zB2
n

. (3.18)

Call the left-hand side and right-hand side by L∞(z) and R∞(z), respectively. Note that L∞(z) is well-defined for all
real-valued z ≥ d+ (and also non-real z). In particular, the integral converges when z = d+ due to Condition 3.3. By the
same calculation of the proof of Lemma 3.7, L∞(z)

R∞(z)
is a decreasing function of z ∈ (d+,∞). As before, L∞(z)

R∞(z)
→ 0 as

z → ∞. However, unlike the previous lemma, the limit

lim
z↓d+

L∞(z)

R∞(z)
= L∞(d+)

R∞(d+)
(3.19)

is finite. Hence the solution z to the equation (3.18) exists in (d+,∞) only if L∞(d+) > R∞(d+), i.e., if∫
R

1

d+ − x
dμ̂(x) >

√
α2

n + d+B2
n − αn

d+
. (3.20)

Note that the left integral is a finite positive number due to the square-root vanishing assumption in Condition 3.3.
Considered as a function of B , the right-hand side f (B) is an increasing function of B , f (0) = 0, and f (B) → +∞ as
B → ∞. Hence the above inequality holds for all B < Bc where Bc is defined by the equation∫

R

1

d+ − x
dμ̂(x) =

√
α2

n + d+B2
c − αn

d+
. (3.21)

Thus, we define the following critical value of Bn.

Definition 3.8. Define

Bc =
√

d+
(
s(d+)

)2 + 2αns(d+) where s(z) :=
∫
R

1

z − x
dμ̂(x). (3.22)

The above discussion implies the following:

(a) For 0 < B < Bc , there is a unique solution zc in (d+,∞) to the equation (3.18).
(b) For B > Bc , there are no solutions to the equation (3.18) in (d+,∞), and

we will show in Section 4 that for the case (a), γ in Lemma 3.7 is indeed close to zc . On the other hand, we will see
in Section 5 that for the case (b), the assumption that the point γ in Lemma 3.7 is O(1) away from d+ is not true. This
means that (3.18) is not a good approximation to the equation (3.16).

3.4. Truncation of the double integral

The following lemma gives an estimate on the double integral (3.9) outside a small disk of radius N− 1
2 +ε about the point

(γ1, γ2). This result is used in later sections. The lemma does not require that (γ1, γ2) is the critical point.

Lemma 3.9. Let γ1 = γ1(n), γ2 = γ2(n) be any positive real numbers such that 4γ1(n)γ2(n) > μ1(n) for all n. Suppose
that there is a constant C′ > 0 such that 4γ1(n)γ2(n)−μn(n) ≤ C′ for all n. Then, for any ε > 0 and any � ⊂ {(y1, y2) ∈
R

2 : y2
1 + y2

2 ≥ n−1+2ε},∫
�

exp
[
nRe

(
G(γ1 + iy1, γ2 + iy2) − G(γ1, γ2)

)]
dy2 dy1 ≤ Ce−nε

(3.23)

with high probability.
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Proof. We write μi(n) = μi in this proof for a notational convenience. For y1, y2 ∈ R, from the definition of G,

Re
[
G(γ1 + iy1, γ2 + iy2) − G(γ1, γ2)

]
= − 1

4n

n∑
i=1

log

[(
1 − 4y1y2

4γ1γ2 − μi

)2

+ 16

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2]
− αn

2
log

(
1 + y2

1

γ 2
1

)
.

Consider the case y1y2 ≥ 0. Then(
1 − 4y1y2

4γ1γ2 − μi

)2

+ 16

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2

≥ 1 − 8y1y2

4γ1γ2 − μi

+ 16

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2

≥ 1 + 8

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2

≥ 1 + c
(
y2

1 + y2
2

)
,

where we used the fact that

8(γ2y1 + γ1y2)
2 ≥ 32γ1γ2y1y2 ≥ 8y1y2(4γ1γ2 − μi)

for the second inequality and that |4γ1γ2 − μi | < C uniformly for all i in the third inequality.
For the case y1y2 < 0, we consider the following sub-cases:

(i) If γ2|y1| > 2γ1|y2|, then 2|γ2y1 + γ1y2| ≥ |γ2y1|, and hence(
1 − 4y1y2

4γ1γ2 − μi

)2

+ 16

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2

≥ 1 + 4

(
γ2y1

4γ1γ2 − μi

)2

≥ 1 + c
(
y2

1 + y2
2

)
.

(ii) If γ2|y1| < 1
2γ1|y2|, then 2|γ2y1 + γ1y2| ≥ |γ1y2|, and hence(

1 − 4y1y2

4γ1γ2 − μi

)2

+ 16

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2

≥ 1 + 4

(
γ1y2

4γ1γ2 − μi

)2

≥ 1 + c
(
y2

1 + y2
2

)
.

(iii) If 1
2γ1|y2| ≤ γ2|y1| ≤ 2γ1|y2|, then(
1 − 4y1y2

4γ1γ2 − μi

)2

+ 16

(
γ2y1 + γ1y2

4γ1γ2 − μi

)2

≥ 1 − 8y1y2

4γ1γ2 − μi

≥ 1 + c
(
y2

1 + y2
2

)
,

since −y1y2 = |y1y2| ≥ c′(y2
1 + y2

2) for some c′ > 0.

Thus, for all y1, y2 ∈R,

Re
[
G(γ1 + iy1, γ2 + iy2) − G(γ1, γ2)

] ≤ −1

4
log

(
1 + c

(
y2

1 + y2
2

))
. (3.24)

Now note that

log
(
1 + c

(
y2

1 + y2
2

)) ≥ log
(
1 + cn−1+2ε

) ≥ 1

2
cn−1+2ε for y2

1 + y2
2 ∈ [

n−1+2ε, n
]

(3.25)

and

log
(
1 + c

(
y2

1 + y2
2

)) ≥ log
(
c
(
y2

1 + y2
2

))
for y2

1 + y2
2 > n. (3.26)

Hence,∫
�

exp
[
nRe

(
G(γ1 + iy1, γ2 + iy2) − G(γ1, γ2)

)]
dy2 dy1

≤ Ce− c
8 n2ε

∫ n1/2

n−1/2+ε

r dr + C

∫ ∞

n1/2

(
cr2)−n/4

r dr = O
(
e−c′n2ε ) + O

(
n−n/4). (3.27)

This proves the lemma. �
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4. High temperature

We consider the asymptotics of the double integral Qn in (3.9) when B < Bc, where Bc is defined in (3.22). We assume
Conditions 3.2, 3.3 and 3.4 throughout this section. Recall that

G(z1, z2) = Bn(z1 + z2) − 1

2n

n∑
i=1

log
(
4z1z2 − μi(n)

) − αn log z1. (4.1)

As in our previous works [7,8], we show that when B < Bc , the critical point of the random function G is close to the
critical point of a deterministic function.

Define

G∞(z1, z2) = Bn(z1 + z2) − 1

2

∫
R

log(4z1z2 − x)dμ̂(x) − αn log z1. (4.2)

Then

∂1G∞ = Bn −
∫
R

2z2

4z1z2 − x
dμ̂(x) − αn

z1
, ∂2G∞ = Bn −

∫
R

2z1

4z1z2 − x
dμ̂(x). (4.3)

When B < Bc , the critical point of G∞ is given by

zc
1 = αn + √

α2
n + zcB2

n

2Bn

, zc
2 = −αn + √

α2
n + zcB2

n

2Bn

, (4.4)

where zc is the solution to the equation∫
R

1

z − x
dμ̂(x) = B2

n

αn + √
α2

n + zB2
n

(4.5)

satisfying zc ∈ (d+,∞). We discussed in Section 3.3 that when Bn < Bc, there is unique such zc.
We start with the following lemma on the differences between the derivatives of G and G∞, which is analogous to

Lemma 5.1 of [7].

Lemma 4.1. Fix θ > 0 and set Bθ = {(z1, z2) : −θ < Re(4z1z2) < d+ + θ,−θ < Im(z1z2) < θ}. Then the following
hold.

(i) For every ε > 0 and each every multi-index m = (m1,m2),

∂mG(z1, z2) − ∂mG∞(z1, z2) = O
(
n−1+ε

)
(4.6)

uniformly on any compact subset of the region C
2 \ Bθ .

(ii) For every multi-index m, ∂mG(z1, z2) = O(1) uniformly on any compact subset of C2 \ Bθ .

Proof. (i) Let

G̃(z1, z2) = Bn(z1 + z2) − 1

2n

n∑
i=1

log(4z1z2 − gi) − αn log z1 (4.7)

where gi is the classical location of the i-th eigenvalue defined in (3.5). Then,

∣∣G(z1, z2) − G̃(z1, z2)
∣∣ = 1

2n

∣∣∣∣∣
n∑

i=1

log

(
4z1z2 − μi(n)

4z1z2 − gi

)∣∣∣∣∣ ≤ 1

2n

n∑
i=1

log
(
1 + C|μi − gi |

)
uniformly on a compact subset of C2 \ Bθ since |4z1z2 − gi | ≥ c. Hence, from the rigidity, Condition 3.4,

∣∣G(z1, z2) − G̃(z1, z2)
∣∣ ≤ C

2n

n∑
i=1

|μi − gi | ≤ Cnε

n
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in any compact subset of C2 \ Bθ . We now compare G̃(z1, z2) with G∞(z1, z2). For 2 ≤ i ≤ n − 1,∫ gi−1

gi

log(4z1z2 − x)dμ̂(x) ≤ 1

n
log(4z1z2 − gi) ≤

∫ gi

gi+1

log(4z1z2 − x)dμ̂(x).

Summing over the index i and using the trivial estimates∫ d+

g2

log(4z1z2 − x)dμ̂(x) = O
(
n−1), ∫ gn−2

0
log(4z1z2 − x)dμ̂(x) = O

(
n−1),

and log(4z1z2 − gi) = O(1) for any compact subset of C2 \ Bθ , we find that G̃(z1, z2) − G∞(z1, z2) = O(n−1). Hence,
G(z1, z2)−G∞(z1, z2) = O(n−1+ε). For the derivatives, the function log(4z1z2 −x) is replaced by 1

(4z1z2−x)k
for positive

integers k, and the proof is almost same.
(ii) can be proved in a similar manner since, for any compact subset of C

2 \ Bθ , log(4z1z2 − gi) = O(1) and
1

(4z1z2−x)k
= O(1) for positive integers k. �

We now compare the critical point (γ1, γ2) of G and the critical point (zc
1, z

c
2) of G∞. Recall that (γ1, γ2) depends

on n.

Lemma 4.2. For every ε > 0, the following hold:

(i) We have

γ1 − zc
1 = O

(
n−1+ε

)
, γ2 − zc

2 = O
(
n−1+ε

)
. (4.8)

(ii) There is a positive constant c, independent of n, such that

4γ1γ2 − μ1(n) > c and 4γ1γ2 − d+ > c. (4.9)

(iii) We have

G(γ1, γ2) = G
(
zc

1, z
c
2

) + O
(
n−2+ε

)
(4.10)

and for any multi-index m = (m1,m2) satisfying |m| > 0,

∂mG(γ1, γ2) = ∂mG
(
zc

1, z
c
2

) + O
(
n−1+ε

)
. (4.11)

Proof. (i) We first show that γ = 4γ1γ2 and zc = 4zc
1z

c
2 satisfy γ − zc = O(n−1+ε). The value γ is determined by the

equation in (3.16), which can be written as L(x) = R(x) where

L(x) := 1

n

n∑
i=1

1

x − μi(n)
, R(x) := B2

n

αn + √
α2

n + xB2
n

.

Similarly, the point zc is a solution of the equation L∞(x) = R(x) where

L∞(x) :=
∫
R

dμ̂(y)

x − y
.

We showed in the proof of Lemma 3.7 that F(x) := L(x)
R(x)

satisfies F ′(x) < 0 for all x > μ1(n). The same calculation

shows that F∞(x) := L∞(x)
R(x)

satisfies F ′∞(x) < 0 for all x > d+. Since

L(x) = 1

2

(
Bn − ∂2G(1, x)

)
, L∞(x) = 1

2

(
B − ∂2G∞(1, x)

)
,

we find from Lemma 4.1 (i) that F(x) = F∞(x) + O(n−1+ ε
2 ) uniformly for x in any compact subset of the interval

(d+,∞). Note that we used ε/2 when we apply Lemma 4.1. Recall that zc > d+. Hence, F(zc) = F∞(zc)+O(n−1+ ε
2 ) =

1 + O(n−1+ ε
2 ). By Taylor series,

F
(
zc ± n−1+ε

) = F∞
(
zc ± n−1+ε

) + O
(
n−1+ ε

2
) = 1 ± F ′∞(zc)n

−1+ε + O
(
n−2+2ε

) + O
(
n−1+ ε

2
)
.
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Since F ′∞(zc) < 0, we find that

F
(
zc + n−1+ε

)
< 1, F

(
zc − n−1+ε

)
> 1.

This implies that

γ ∈ (
zc − n−1+ε, zc + n−1+ε

)
.

Thus, we obtain (i) since γ1 and γ2 are given in terms of γ by (3.14) and (3.15), and respectively, and zc
1 and zc

2 are given
by (4.4) in terms of zc .

(ii) follows from (i).
(iii) From the Taylor expansion and the bounds in Lemma 4.1 (ii),

G
(
zc

1, z
c
2

) = G(γ1, γ2) + ∂1G(γ1, γ2)
(
zc

1 − γ1
) + ∂2G(γ1, γ2)

(
zc

2 − γ2
) + O

(
n−2+ε

)
= G(γ1, γ2) + O

(
n−2+ε

)
,

since ∂1G(γ1, γ2) = ∂2G(γ1, γ2) = 0, and

∂mG
(
zc

1, z
c
2

) = ∂mG(γ1, γ2) + O
(
n−1+ε

)
for any multi-index m satisfying |m| > 0. This completes the proof of the lemma. �

We evaluate the integral (3.9) using the method of steepest-descent.

Lemma 4.3. Let B < Bc for Bc defined in (3.22). Then for any ε > 0,

Qn = enG(γ1,γ2)
π

n
√

D(γ1, γ2)

(
1 + O

(
n−1+ε

))
(4.12)

where D(γ1, γ2) is the discriminant

D(γ1, γ2) = ∂2
1 G(γ1, γ2) · ∂2

2 G(γ1, γ2) − (
∂1∂2G(γ1, γ2)

)2
.

Proof. Changing the variables,

Qn = 1

n
enG(γ1,γ2)

∫ ∞

−∞

∫ ∞

−∞
exp

[
n

(
G

(
γ1 + i

t1√
n
,γ2 + i

t2√
n

)
− G(γ1, γ2)

)]
dt2 dt1.

Lemma 3.9 shows that, the part of the last double integral over the region R
2 \ [−nε,nε]2 is O(e−nε

). On the other hand,
for |t1|, |t2| ≤ nε ,

G

(
γ1 + i

t1√
n

,γ2 + i
t2√
n

)
− G(γ1, γ2)

= − 1

2n

(
∂2

1 G(γ1, γ2)t
2
1 + 2∂1∂2G(γ1, γ2)t1t2 + ∂2

2G(γ1, γ2)t
2
2

)
− i

6n
3
2

(
∂3

1 G(γ1, γ2)t
3
1 + 3∂2

1 ∂2G(γ1, γ2)t
2
1 t2 + 3∂1∂

2
2 G(γ1, γ2)t1t

2
2 + ∂3

2 G(γ1, γ2)t
3
2

) + O
(
n−2+4ε

)
=: −X2(t1, t2)

n
− iX3(t1, t2)

n
3
2

+ O
(
n−2+4ε

)
where we used Lemma 4.2 (i) and Lemma 4.1 (ii) for the error estimate. Hence,∫ nε

−nε

∫ nε

−nε

exp

[
n

(
G

(
γ1 + i

t1√
n
,γ2 + i

t2√
n

)
− G(γ1, γ2)

)]
dt2 dt1

=
∫ nε

−nε

∫ nε

−nε

e−X2(t1,t2) dt2 dt1 − i
∫ nε

−nε

∫ nε

−nε

X3(t1, t2)√
n

e−X2(t1,t2) dt2 dt1 + O
(
n−1+6ε

)
.
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Since

X3(−t1,−t2)e
−X2(−t1,−t2) = −X3(t1, t2)e

−X2(t1,t2),

the integral in the middle vanishes. On the other hand, from the estimate
∫ ∞
nε e−t2

dt = O(n−εe−n2ε
), we obtain that∫ nε

−nε

∫ nε

−nε

e−X2(t1,t2) dt2 dt1 = π√
D(γ1, γ2)

+ O
(
n−1+6ε

)
.

Thus, we obtain the lemma. �

The following is the main result for the double integral Qn when B < Bc .

Proposition 4.4 (Random double integral for high temperature). Assume Conditions 3.2, 3.3 and 3.4. Define

Ĥ (z) :=
∫
R

log(z − x)dμ̂(x). (4.13)

Suppose that B in Condition 3.2 satisfies 0 < B < Bc where Bc is defined in (3.22). Then, setting zc be the unique solution
of the equation (3.18), i.e.,

Ĥ ′(zc) = B2
n

αn + √
α2

n + zcB2
n

, zc ∈ (d+,∞), (4.14)

and setting

zc
1 = αn + √

α2
n + zcB2

n

2Bn

, zc
2 = −αn + √

α2
n + zcB2

n

2Bn

, (4.15)

we have

1

n
log Qn = Â − 1

2n

[
n∑

i=1

log(zc − μi) − nĤ (zc)

]
− logn

n
+ 1

2n
log

(
π2

D̂

)
(4.16)

where

Â =
√

α2
n + zcB2

n − αn log

(
αn + √

α2
n + zcB2

n

2Bn

)
− 1

2
Ĥ (zc),

D̂ = −8αnĤ
′′(zc) − 8zcĤ

′(zc)Ĥ
′′(zc) − 4

(
Ĥ ′(zc)

)2
.

(4.17)

Proof. Choose ε ∈ (0, δ). From Lemma 4.3,

1

n
log Qn = G(γ1, γ2) − logn

n
+ 1

2n
log

(
π2

D(γ1, γ2)

)
+ O

(
n−2+ε

)
.

Using Lemma 4.2 (iii), we write

G(γ1, γ2) = G
(
zc

1, z
c
2

) + O
(
n−2+ε

) = G∞
(
zc

1, z
c
2

) + [
G

(
zc

1, z
c
2

) − G∞
(
zc

1, z
c
2

)] + O
(
n−2+ε

)
.

We have

G
(
zc

1, z
c
2

) − G∞
(
zc

1, z
c
2

) = − 1

2n

[
n∑

i=1

log(zc − μi) − n

∫
R

log(zc − x)dμ̂(x)

]
.

We also have

G∞
(
zc

1, z
c
2

) =
√

α2
n + zcB2

n − 1

2

∫
R

log(zc − x)dμ̂(x) − αn log

(
αn + √

α2
n + zcB2

n

2Bn

)
= Â.
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It remains to compare D(γ1, γ2) with D̂. Using Lemma 4.2 (iii) and Lemma 4.1 (i),

D(γ1, γ2) = D∞
(
zc

1, z
c
2

) + O
(
n−1+ε

)
where

D∞
(
zc

1, z
c
2

) := ∂2
1 G∞

(
zc

1, z
c
2

) · ∂2
2 G∞

(
zc

1, z
c
2

) − (
∂1∂2G∞

(
zc

1, z
c
2

))2
.

From direct computation,

D∞
(
zc

1, z
c
2

) = −8αnĤ
′′(zc) − 8zcĤ

′(zc)Ĥ
′′(zc) − 4

(
Ĥ ′(zc)

)2 = D̂.

This completes the proof. �

5. Low temperature

In this section, we consider the asymptotics of

e−nG(γ1,γ2)Qn = −
∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
exp

[
n
(
G(z1, z2) − G(γ1, γ2)

)]
dz2 dz1 (5.1)

when B > Bc . We assume Conditions 3.2, 3.3 and 3.4 throughout this section.
Unlike the previous section, when B > Bc , the critical point (γ1, γ2) of G is not approximated by the critical point

of G∞. Indeed, we showed in Sections 3.2 and 3.3 that G∞ has no critical point when B > Bc , while (γ1, γ2) exists for
all B . We show in Lemma 5.3 below that γ = 4γ1γ2 is actually close to the branch point μ1(n). Due to this fact, the
control of the double integral becomes subtle. We had a similar situation for a random single integral in [7] for the usual
SSK model. In this paper, we have a double integral, and this brings an additional difficulty. In particular, the symmetry
we used in [7], which simplified the analysis, is no longer valid. In the below, we will choose the integration contours in a
certain explicit way and show that it is possible to reduce the double integral to the product of two single integrals plus an
error. One of the single integral is trivial and the other single integral has a certain symmetry that can be used to simplify
the method of steepest-descent in a manner similar to the analysis of [7].

In Sections 5.1–5.4, we prove the following lemma. The conclusion of this section is given in Section 5.5.

Lemma 5.1. Assume Conditions 3.2, 3.3 and 3.4. Suppose that B in Condition 3.2 satisfies B > Bc . Let (γ1, γ2) be the
critical point of G given by (3.14) and (3.15). Then, for every ε > 0, there is a constant C > 0 such that

Cn− 3
2 −ε ≤ e−nG(γ1,γ2)Qn ≤ Cn− 1

2 . (5.2)

Remark 5.2 (Notational Remark). In order to lighten up the notations, we will write μi for μi(n) in the rest of this
section. It should be understood that μi depends on n.

5.1. A priori estimate on γ

We begin by approximating γ = 4γ1γ2 and introducing a priori estimates that will be used in this section.

Lemma 5.3. For any 0 < ε < 1, the solution γ in Lemma 3.7,

1

n

n∑
i=1

1

γ − μi

= B2
n

αn + √
α2

n + γB2
n

, γ > μ1, (5.3)

satisfies the inequality

d
1/2
+

2Bnn
≤ γ − μ1 ≤ nε

n
. (5.4)
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Proof. We follow the proof of Lemma 6.1 in [7]. Define L(γ ) and R(γ ) to be the left-hand side and the right-hand side
of (5.3), respectively. The equation (5.3) is equivalent to the equation L(γ )

R(γ )
= 1. Since μ1 − d+ → 0,

μ1 + d
1/2
+

2Bnn
≥ d+

2
.

Since L(γ ) ≥ 1
n(γ−μ1)

for γ > μ1, we find that

L

(
μ1 + d

1/2
+

2Bnn

)
≥ 2Bn

d
1/2
+

≥ B2
n√

(μ1 + d
1/2
+

2Bnn
)B2

n

≥ R

(
μ1 + d

1/2
+

2Bnn

)
. (5.5)

Since L(x)/R(x) is a decreasing function of x (see the proof of Lemma 3.7), this implies the lower bound of (5.4).
The upper bound is proved if we show that L(μ1 +n−1+4ε) < R(μ1 +n−1+4ε) for any 0 < ε < 1

4 . From Condition 3.4,
|μi − gi | ≤ n−2/3 for n3ε ≤ i ≤ n − n3ε . For such i, we note that d+ − gi ≥ cn−2/3+2ε . Since μ1 = d+ + O(n−2/3+ε),

1

n

n−n3ε∑
i=n3ε

1

μ1 + n−1+4ε − μi

= 1

n

n−n3ε∑
i=n3ε

1

d+ − gi

(
1 + O

(
n−ε

))
.

Approximating the last sum by an integral as in the proof of Lemma 4.1, we find that∣∣∣∣∣1

n

n−n3ε∑
i=n3ε

1

μ1 + n−1+4ε − μi

−
∫ d+

d−

dμ̂(x)

d+ − x

∣∣∣∣∣ = O
(
n−1/3+ε

)
.

(See also Equations (6.6) and (6.7) in [7].) For 1 ≤ i < n3ε , since μ1 ≥ μi ,

1

n

n3ε−1∑
i=1

1

μ1 + n−1+4ε − μi

= O
(
n−ε

)
.

Finally, for n − n3ε < i ≤ n, since μ1 − μi > c > 0,

1

n

n∑
i=n−n3ε+1

1

μ1 + n−1+4ε − μi

= O
(
n−1+3ε

)
.

Combining the estimates, we find that

L
(
μ1 + n−1+4ε

) =
∫ d+

d−

dμ̂(x)

d+ − x
+ O

(
n−ε

)
. (5.6)

On the other hand, since μ1 + n−1+4ε − d+ → 0,

R
(
μ1 + n−1+4ε

) − B2
n

αn + √
α2

n + d+B2
n

→ 0. (5.7)

From the definition of Bc in (3.21),√
α2

n + d+B2
n − αn

d+
=

√
α2

n + d+B2
n − αn

d+
>

√
α2

n + d+B2
c − αn

d+
=

∫ d+

d−

dμ̂(x)

d+ − x
.

Hence

R
(
μ1 + n−1+4ε

)
> L

(
μ1 + n−1+4ε

) + c (5.8)

for some c > 0 for all large enough n. This proves the lemma. �
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Since γ is well approximaed by μ1 and μ1 is close to d+, heuristically,

1

n

n∑
i=1

log(γ − μi) ≈ 1

n

n∑
i=1

[
log(d+ − μi) + γ − d+

d+ − μi

]
≈ Ĥ (d+) + (μ1 − d+)Ĥ ′(d+). (5.9)

In the following lemma, we describe the approximation above rigorously and also estimate
∑n

i=1(γ − μi)
−� for � =

2,3, . . . . Since the following lemma can be proved in a similar manner to the proof of Lemma 6.2 of [7], we omit the
proof.

Lemma 5.4. Recall the definition of Ĥ (z) in Proposition 4.3. Then, for any 0 < ε < 1,

1

n

n∑
i=1

log(γ − μi) = Ĥ (d+) + (μ1 − d+)Ĥ ′(d+) + O
(
n−1+ε

)
. (5.10)

Furthermore, for any 0 < ε < 1 there is a constant C0 > 0 such that

n�(1−ε) ≤
n∑

i=1

1

(γ − μi)�
≤ C�

0n�+ε (5.11)

for all � = 2,3, . . . . Here, C0 does not depend on �.

Proof. See Lemma 6.2 of [7]. �

5.2. Truncation and deformation of the coutour

In Sections 5.2–5.4, we fix 0 < ε < 1
100 and prove Lemma 5.1.

Lemma 3.9 implies that the part of the double integral (5.1) with | Im z1| ≥ n− 1
2 +ε is O(e−nε

).

For the part | Im z1| < n− 1
2 +ε , we deform the z2-integral to a different vertical contour passing through a new point γ̃2

such that the difference |G(γ1, γ2) − G(γ1 + iy1, γ̃2)| is sufficiently small. Intuitively, since the main contribution to the
change of G(z1, z2) near the critical point comes from the term 1

4z1z2−μ1
, it must be very sensitive to the change of the

product z1z2 but not to the change of the individual variable z1 or z2 while z1z2 is fixed. Thus, for y1 ∈R, we define

γ̃2 ≡ γ̃2(y1) = γ1γ2

γ1 + iy1
(5.12)

and analyze the double integral in (5.1) with the deformed contour that passes through γ̃2 for the z2-integral.
Before we peform the analysis, we check that it is possible to deform the contour γ2 + iR to γ̃2 + iR for given

z1 ∈ γ1 + iR. For fixed z1 = γ1 + iy1, the branch cut �c of the logarithmic function in G(z1, z2) as a function of z2 is

�c = {
z2 ∈ C : 4z1z2 − μ1 ∈R

− ∪ {0}}.
If z2 ∈ �c , then there exists r ≥ 0 such that

z2 = μ1 − r

4(γ1 + iy1)
= μ1 − r

4γ1γ2
γ̃2.

Since 4γ1γ2 > μ1, this implies that Re z2 < Re γ̃2, and hence �c does not intersect the half plane {z ∈ C : Re z ≥ Re γ̃2}.
Therefore, we can deform the z2-contour and obtain

−
∫ γ1+in− 1

2 +ε

γ1−in− 1
2 +ε

∫ γ2+i∞

γ2−i∞
exp

[
n
(
G(z1, z2) − G(γ1, γ2)

)]
dz2 dz1

=
∫ n

− 1
2 +ε

−n
− 1

2 +ε

∫ ∞

−∞
exp

[
n
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)]
dy2 dy1. (5.13)

Recall that γ̃2 ≡ γ̃2(y1) depends on y1.
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We now truncate the y2-integral. From the definition of γ̃2 and G, for all y1, y2 ∈ R,

G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2) = iBn(y1 + y2) − iBn

γ2y1

γ1 + iy1

− αn log

(
1 + iy1

γ1

)
− 1

2n

n∑
i=1

log

(
1 − 4y1y2

4γ1γ2 − μi

+ 4iγ1y2

4γ1γ2 − μi

)
. (5.14)

Lemma 5.5. Uniformly for |y1| ≤ n− 1
2 +ε ,

(∫ −n
− 1

2 +2ε

−∞
+

∫ ∞

n
− 1

2 +2ε

)
exp

[
n
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)]
dy2 = O

(
e−nε )

(5.15)

Proof. The proof is similar to Lemma 3.9, but easier. Taking the real part of (5.14),

Re
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)
= − Bnγ2y

2
1

γ 2
1 + y2

1

− αn

2
log

(
1 + y2

1

γ 2
1

)
− 1

4n

n∑
i=1

log

[(
1 − 4y1y2

4γ1γ2 − μ1

)2

+
(

4γ1y2

4γ1γ2 − μi

)2]
. (5.16)

If y1y2 ≤ 0, then(
1 − 4y1y2

4γ1γ2 − μ1

)2

+
(

4γ1y2

4γ1γ2 − μi

)2

≥ 1 +
(

4γ1y2

4γ1γ2 − μi

)2

≥ 1 + cy2
2 .

If y1y2 ≥ 0, then(
1 − 4y1y2

4γ1γ2 − μ1

)2

+
(

4γ1y2

4γ1γ2 − μi

)2

≥ 1 − 8y1y2

4γ1γ2 − μ1
+ 16γ 2

1 y2
2

(4γ1γ2 − μi)2
≥ 1 + cy2

2

since y1y2 ≤ y2
2n−ε for |y1| ≤ n− 1

2 +ε and |y2| ≥ n−1+2ε . The above estimates imply that

Re
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

) ≥ −c′y2
1 − 1

4
log

(
1 + cy2

2

)
and hence, the left-hand side of (5.15) is bounded above by

2e−c′ny2
1

∫ ∞

n−1/2+2ε

e− n
4 log(1+cy2

2 ) dy2.

Since the integral is bounded by e−c′n2ε
, we obtain the lemma. �

The above truncation is not enough. The next lemma shows that we can truncate further to the interval |y2| ≤ n− 2
3 +2ε .

Here we use the fact that (γ1, γ2) is the critical point. Note that this y2-interval is smaller than the interval |y1| ≤ n− 1
2 +ε .

Lemma 5.6. Uniformly for |y1| ≤ n− 1
2 +ε ,

(∫ −n
− 2

3 +2ε

−n
− 1

2 +ε
+

∫ n
− 1

2 +ε

n
− 2

3 +2ε

)
exp

[
n
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)]
dy2 = O

(
e−n4ε )

. (5.17)

Proof. We start with (5.16). From the fact that (γ1, γ2) is a critical point, we showed in (3.12) that

αn = Bn(γ1 − γ2). (5.18)
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Inserting this into (5.16) to remove αn, and then expanding the terms involving Bn in terms of powers of y1, we find that

Re
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)
= −Bn(γ1 + γ2)

2γ 2
1

y2
1 − 1

4n

n∑
i=1

log

[(
1 − 4y1y2

4γ1γ2 − μi

)2

+
(

4γ1y2

4γ1γ2 − μi

)2]
+ O

(
y4

1

)
. (5.19)

From the rigidity, Condition 3.4, it is easy to check that

n− 2
3 � μ1 − μn4ε � n− 2

3 +2ε . (5.20)

The upper bound implies that 4γ1γ2 − μn4ε � n− 2
3 +2ε . Hence, for |y2| ≥ n− 2

3 +2ε ,

1

4n

n4ε∑
i=1

log

[(
1 − 4y1y2

4γ1γ2 − μi

)2

+
(

4γ1y2

4γ1γ2 − μi

)2]

≥ 1

2n

n4ε∑
i=1

log

(
4γ1|y2|

4γ1γ2 − μi

)
≥ Cn−1+4ε . (5.21)

The lower bound of (5.20) implies that 4γ1γ2 − μnε � |y1y2| for |y2| ≤ n− 1
2 +ε and |y1| ≤ n− 1

2 +ε . Hence,

1

4n

n∑
i=n4ε+1

log

[(
1 − 4y1y2

4γ1γ2 − μi

)2

+
(

4γ1y2

4γ1γ2 − μi

)2]
≥ 1

2n

n∑
i=n4ε+1

log

(
1 − 4y1y2

4γ1γ2 − μi

)

≥ −C

n

n∑
i=n4ε+1

|y1y2|
4γ1γ2 − μi

≥ −C′|y1y2| ≥ −C′n−1+3ε .

Note that the exponent (−1 + 3ε) is smaller than (−1 + 4ε) in (5.21). Therefore, we obtain for n− 2
3 +2ε ≤ |y2| ≤ n− 1

2 +ε

that

Re
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

) ≤ −Cn−1+4ε .

This implies the lemma. �

5.3. Decomposition of the double integral

We consider the part of the double integral (5.13) with |y1| ≤ n− 1
2 +ε and |y2| ≤ n− 2

3 +2ε . From (5.14) and (5.18), using
the Taylor series,

G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

= iBny2 − Bn(γ1 + γ2)

2γ 2
1

y2
1 − 1

2n

n∑
i=1

log

(
1 − 4y1y2

4γ1γ2 − μi

+ 4iγ1y2

4γ1γ2 − μi

)
+ O

(
y3

1

)
. (5.22)

Hence,

exp
[
n
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)]
= exp

[
iBnny2 − Bn(γ1 + γ2)

2γ 2
1

ny2
1 − 1

2

n∑
i=1

log

(
1 + 4iγ1y2

4γ1γ2 − μi

)]

× exp

[
−1

2

n∑
i=1

log

(
1 − 4y1y2

4γ1γ2 − μi + 4iγ1y2

)
+ O

(
y3

1

)]
. (5.23)
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Applying Lemma 5.4,

n∑
i=1

1

|4γ1γ2 − μi + 4iγ1y2|� ≤
n∑

i=1

1

|4γ1γ2 − μi |� ≤ C�
0n�+ε (5.24)

for � = 2,3, . . . , where C0 is the constant in Lemma 5.4. For � = 1, we use the bound

n∑
i=1

1

|4γ1γ2 − μi + 4iγ1y2| ≤
n∑

i=1

1

4γ1γ2 − μi

= n

2γ1

(
Bn − ∂2G(γ1, γ2)

) = nBn

2γ1
= O(n). (5.25)

This implies that, from the conditions on y1, y2,

n∑
i=1

(
y1y2

4γ1γ2 − μi + 4iγ1y2

)�

= O
(
n− 1

6 �+(3�+1)ε
)

(5.26)

for � = 2,3, . . . and

n∑
i=1

y1y2

4γ1γ2 − μi + 4iγ1y2
= O

(
n− 1

6 +3ε
)
. (5.27)

Thus, expanding the last exponential function in (5.23), we obtain

exp
[
n
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)]
= exp

[
iBnny2 − Bn(γ1 + γ2)

2γ 2
1

ny2
1 − 1

2

n∑
i=1

log

(
1 + 4iγ1y2

4γ1γ2 − μi

)]

×
(

1 + 2y1y2

n∑
i=1

1

4γ1γ2 − μi + 4iγ1y2
+ O

(
n− 1

3 +6ε
))

. (5.28)

We thus have

∫ n
− 1

2 +ε

−n
− 1

2 +ε

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε
exp

[
n
(
G(γ1 + iy1, γ̃2 + iy2) − G(γ1, γ2)

)]
dy2 dy1 =: I1 + I2 + I3, (5.29)

where I1, I2, and I3 are given as follows: First,

I1 =
∫ n

− 1
2 +ε

−n
− 1

2 +ε

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε
exp

[
iBnny2 − Bn(γ1 + γ2)

2γ 2
1

ny2
1 − 1

2

n∑
i=1

log

(
1 + 4iγ1y2

4γ1γ2 − μi

)]
dy2 dy1. (5.30)

This is equal to the product of two single integrals I11 and I12. The y1-integral is

I11 :=
∫ n

− 1
2 +ε

−n
− 1

2 +ε
exp

[
−Bn(γ1 + γ2)

2γ 2
1

ny2
1

]
dy1. (5.31)

This is real-valued and we have

C√
n

≤ I11 ≤ C′
√

n
. (5.32)

The y2-integral is

I12 :=
∫ n

− 2
3 +2ε

−n
− 2

3 +2ε
exp

[
iBnny2 − 1

2

n∑
i=1

log

(
1 + 4iγ1y2

4γ1γ2 − μi

)]
dy2. (5.33)
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This is also real-valued since the imaginary part of the integrand is an odd function of y2. We have

I12 ≤ |I12| ≤
∫ ∞

−∞
exp

[
−1

4

n∑
i=1

log

(
1 +

(
4γ1y2

4γ1γ2 − μi

)2)]
dy2

≤
∫ ∞

−∞
exp

[
−n

4
log

(
1 + Cy2

2

)]
dy2 ≤ C. (5.34)

On the other hand, we will show the following lower bound in Section 5.4:

I12 ≥ Cn−1−5ε . (5.35)

Assuming this is true and using (5.34), we find that

Cn− 3
2 −5ε ≤ I1 ≤ Cn− 1

2 . (5.36)

Second,

I2 =
∫ n

− 1
2 +ε

−n
− 1

2 +ε

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε
exp

[
iBnny2 − Bn(γ1 + γ2)

2γ 2
1

ny2
1 − 1

2

n∑
i=1

log

(
1 + 4iγ1y2

4γ1γ2 − μi

)]

×
(

2y1y2

n∑
i=1

1

4γ1γ2 − μi + 4iγ1y2

)
dy2 dy1.

Since the integrand is an odd function of y1, we find that I2 = 0.
Finally, I3 satisfies

|I3| ≤ Cn− 1
3 +6ε

∫ n
− 1

2 +ε

−n
− 1

2 +ε

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε
exp

[
−Bn(γ1 + γ2)

2γ 2
1

ny2
1 − 1

2
Re

n∑
i=1

log

(
1 + 4iγ1y2

4γ1γ2 − μi

)]
dy2 dy1

≤ C′n− 5
6 +6ε

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε
exp

[
−1

2
log

(
4γ1y2

4γ1γ2 − μ1

)]
dy2

≤ C′′n− 5
6 +6ε

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε

1√
n1−εy2

dy2 ≤ C′′n− 5
3 +8ε .

Note that this upper bound is smaller than the lower bound of (5.36) if ε < 1
78 .

Combining all estimates of Sections 5.2 and 5.3, we obtain

Cn− 3
2 −5ε ≤ −

∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
exp

[
n
(
G(z1, z2) − G(γ1, γ2)

)]
dz2 dz1 ≤ Cn− 1

2 , (5.37)

thus prove Lemma 5.1, assuming that (5.35) is true.

5.4. Analysis of I12

To complete the proof of Lemma 5.1, it remains to show the lower bound I12 ≥ Cn−1−5ε in (5.35). We note by checking
directly from the definition of G that,

I12 =
∫ n

− 2
3 +2ε

−n
− 2

3 +2ε
exp

[
n
(
G(γ1, γ2 + iy2) − G(γ1, γ2)

)]
dy2.

(5.38)

Define

K := −i
∫ γ2+i∞

γ2−i∞
exp

[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dz. (5.39)



2922 J. Baik and J. O. Lee

Then I12 is the same integral as K where the contour is restricted to the part |z−γ2| ≤ n− 2
3 +2ε . Note that K is real-valued

since G(γ1, z2) = G(γ1, z2). The lower bound (5.35) follows if we show that

(a) |K − I12| ≤ e−Cn4ε
, and

(b) K ≥ Cn−1−5ε .

Since K is real-valued,

|K − I12| ≤
(∫ ∞

−∞
−

∫ n
− 2

3 +2ε

−n
− 2

3 +2ε

)
exp

[
nRe

(
G(γ1, γ2 + iy2) − G(γ1, γ2)

)]
dy2.

We have

nRe
(
G(γ1, γ2 + iy2) − G(γ1, γ2)

) = −1

4

n∑
i=1

log

[
1 +

(
4γ1y2

4γ1γ2 − μi

)2]
.

Using (5.21), for n− 2
3 +2ε ≤ |y2| ≤ n, we have the estimate

1

4

n∑
i=1

log

[
1 +

(
4γ1y2

4γ1γ2 − μi

)2]
≥ 1

4

n4ε∑
i=1

log

[
1 +

(
4γ1y2

4γ1γ2 − μi

]2)
≥ Cn4ε .

For |y2| ≥ n,

1

4

n∑
i=1

log

[
1 +

(
4γ1y2

4γ1γ2 − μi

)2]
≥ n

4
log

(
1 + cy2

2

) ≥ n

4
log

(
c|y2|

)
.

Hence

|K − I12| ≤ 2ne−Cn4ε + 2
∫ ∞

n

(cy2)
− n

4 dy2 ≤ e−C′n4ε

. (5.40)

We thus obtained property (a).
We now prove the property (b), K ≥ Cn−1−5ε . We follow the proof of Lemma 6.3 in [7] closely. Observe that γ2 is a

critical point of the function G(γ1, z). Let � be the curve of steepest-descent that passes through the point γ2. It satisfies
ImG(γ1, z) = 0. It is straightforward to check from the formula of G that

(i) � is symmetric about the real axis,
(ii) � ∩C

+ is a C1 curve,
(iii) � lies in the half plane Re z ≤ γ2,
(iv) � intersects with R only at γ2,
(v) the tangent line of � at γ2 is parallel to the imaginary axis,

(vi) the asymptote of � is the negative real axis.

For example, the property (iii) can be checked by noting that for z = x + iy with x > γ2,

F(y) := ImG(γ1, x + iy) = Bny − 1

2n

n∑
i=1

arctan

(
4γ1y

(4γ1x − μi)2 + (4γ1y)2

)
has the global minimum at y = 0 by computing its derivative.

Since Re(G(γ1, z) − G(γ1, γ2)) ≤ Bnγ2 − 1
2 log(R/2) for |z| = R with Re(z) ≤ γ2, we can deform the contour so that

K = −i
∫

�

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dz.

For z ∈ �, we let x = Re z and y = Im z. Then, dz = dx + i dy and

K = −i
∫

�

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dx +

∫
�

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy.
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Let �+ = � ∩C
+. By symmetry,

K = 2
∫

�+
exp

[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy. (5.41)

In [7], the lower bound of K was obtained by restricting the integral to a small ball of radius n−2. In the current work,
however, we need to refine the argument further to prove (5.39). We let D1 be the disk of radius n−1−ε centered at γ2, and
similarly, D2 be the disk of radius n−1−2ε centered at γ2. The rest of the contour is controlled by the following lemma.

Lemma 5.7 (Lemma 6.4 of [7]). Suppose that f is a real-valued function defined on �+ and f (z) is decreasing along
the curve �+ as z moves from the point γ2 to the point −∞. Then,∫

�+
ef (z) dy ≥ 0. (5.42)

Since G(γ1, z) is analytic for z2 in D1, the series expansion

G(γ1, z) − G(γ1, γ2) =
∞∑

j=2

1

j !∂
j

2 G(γ1, γ2)(z − γ2)
j (5.43)

converges for z ∈ �+ ∩ D1. Set X = Re(z − γ2) and Y = Im z = Im(z − γ2). Comparing the imaginary parts of the both
sides of (5.43) by using Lemma 5.4, we find that

0 = ∂2
2G(γ1, γ2)XY + 1

2
∂3

2 G(γ1, γ2X
2Y − 1

6
∂3

2 G(γ1, γ2)Y
3 + �̃ (5.44)

with

�̃ =
∞∑

j=4

1

j !∂
j

2 G(γ1, γ2) Im
(
(X + iY)j

)
.

Note that Im((X + iY)j ) is a homogeneous polynomial of X and Y with degree j . In the polynomial, every term contains
both X and Y , possibly except the term Y j when j is odd. In any case,∣∣∣∣ 1

j !∂
j

2 G(γ1, γ2) Im
(
(X + iY)j

)∣∣∣∣ ≤ (8γ1C0)
j

j ! nj−1+ε |z − γ2|j−2|XY | + (4γ1C0)
j

j ! nj−1+εY j ,

hence

|�̃| ≤ Cn1−ε
(|XY | + Y 2). (5.45)

Define

τ = −∂3
2 G(γ1, γ2)

∂2
2 G(γ1, γ2)

> 0.

From Lemma 5.4 (by putting ε/4 instead of ε), we find that ∂2
2G(γ1, γ2) ≥ Cn1− ε

2 and

τ � n1−ε . (5.46)

Thus, dividing both sides of (5.44) by ∂2
2 G(γ1, γ2)Y , we obtain that

X
(
1 + o(1)

) + τ

6
Y 2(1 + o(1)

) = 0,

and thus,

X = −τ

6
Y 2(1 + o(1)

)
. (5.47)

We also see that �+ ∩ D1 is a graph, dy = dY is positive on �+ ∩ D1, and �+ intersects ∂D1 at exactly one point.
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Let ζ1 (resp. ζ2) be the point where �+ and ∂D1 (resp. ∂D2) intersect. Then,

G(γ1, γ2) − G(γ1, ζ1) ≥ 1

4
∂2

2 G(γ1, γ2)|ζ1 − γ2|2 −
∞∑

j=3

1

j !C
j

0 nj−1+ ε
4 |ζ1 − γ2|j

≥ Cn−1− 5ε
2 (5.48)

and

G(γ1, γ2) − G(γ1, ζ2) ≤ 1

2
∂2

2 G(γ1, γ2)|ζ2 − γ2|2 +
∞∑

j=3

1

j !C
j

0 nj−1+ ε
4 |ζ2 − γ2|j

≤ Cn−1− 7ε
2 . (5.49)

We introduce the function

f (z) =
{

nG(γ1, ζ1) − G(γ1, γ2) if z ∈ �+ ∩ D1,

nG(γ1, z) − G(γ1, γ2) if z ∈ �+ ∩ Dc
1.

It is obvious that f (z) is a decreasing function of z along the curve �+ as z moves from γ2 to −∞. Thus, applying
Lemma 5.7 to the function f ,∫

�+∩D1

exp
[
n
(
G(γ1, ζ1) − G(γ1, γ2)

)]
dy +

∫
�+∩Dc

1

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy ≥ 0. (5.50)

Since dy is positive on �+ ∩ D1,

K

2
=

∫
�+

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy

=
∫

�+∩D2

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy +

∫
�+∩Dc

2

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy

≥
∫

�+∩D2

exp
[
n
(
G(γ1, ζ2) − G(γ1, γ2)

)]
dy +

∫
�+∩Dc

2

exp
[
n
(
G(γ1, z) − G(γ1, γ2)

)]
dy. (5.51)

Subtracting (5.50) from (5.51), we find that

K

2
≥

∫
�+∩D2

(
exp

[
n
(
G(γ1, ζ2) − G(γ1, γ2)

)] − exp
[
n
(
G(γ1, ζ1) − G(γ1, γ2)

)])
dy

+
∫

�+∩D1∩Dc
2

(
exp

[
n
(
G(γ1, z) − G(γ1, γ2)

)] − exp
[
n
(
G(γ1, ζ1) − G(γ1, γ2)

)])
dy

≥
∫

�+∩D2

(
exp

[
n
(
G(γ1, ζ2) − G(γ1, γ2)

)] − exp
[
n
(
G(γ1, ζ1) − G(γ1, γ2)

)])
dy. (5.52)

From (5.47), we find that Im ζ2 � Re ζ2, hence Im ζ2 ≥ Cn−1−2ε . Since
∫
�+∩D2

dy = Im ζ2 ≥ Cn−1−2ε , we find from
the estimates (5.48) and (5.49) that

K

2
≥ Cn−1−2ε

[
exp

(−Cn− 7ε
2
) − exp

(−Cn− 5ε
2
)] ≥ Cn−1−5ε . (5.53)

This proves the desired lower bound of K . Thus, Lemma 5.1 is proved.

5.5. Double integral in the low temperature regime

The following is the main result for the random double integral in the low temperature regime.
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Proposition 5.8 (Random double integral for low temperature). Assume Conditions 3.2, 3.3 and 3.4. Suppose that B

in Condition 3.2 satisfies B > Bc where Bc is defined in (3.22). Then, for every ε > 0,

1

n
log Qn = Ê + (μ1 − d+)L̂ + O

(
n−1+ε

)
(5.54)

where

Ê =
√

α2
n + d+B2

n − αn log

(
αn + √

α2
n + d+B2

n

2Bn

)
− 1

2
Ĥ (d+),

L̂ = B2
n

2(αn + √
α2

n + d+B2
n)

− 1

2
Ĥ ′(d+).

(5.55)

Proof. From Lemma 5.1,

1

n
log Qn = G(γ1, γ2) + O

(
logn

n

)
.

We have

G(γ1, γ2) =
√

α2
n + γB2

n − 1

2n

n∑
i=1

log(γ − μi) − αn log

(
αn + √

α2
n + γB2

n

2Bn

)
. (5.56)

From Lemma 5.4,

1

n

n∑
i=1

log(γ − μi) = Ĥ (d+) + (μ1 − d+)Ĥ ′(d+) + O
(
n−1+ε

)
.

We replace γ by μ1 and introduce an error term O(n−1+ε) due to Lemma 5.3. Writing μ1 = d+ + (μ1 − d+) and using
the Taylor expansion up to the first order using (μ1 − d+)2 = O(n−4/3+2ε), we find that√

α2
n + γB2

n − αn log

(
αn + √

α2
n + γB2

n

2Bn

)

=
√

α2
n + d+B2

n − αn log

(
αn + √

α2
n + d+B2

n

2Bn

)
+ B2

n

2(αn + √
α2

n + d+B2
n)

(μ1 − d+) + O
(
n−1+ε

)
.

This completes the proof. �

6. Proof of Theorem 2.6

Recall that we assume N1 ≥ N2 and N = N1 + N2. We take the limit as N,N1,N2 → ∞ satisfying

N1

N
= ρ1 = r1 + O

(
N−1), N2

N
= ρ2 = r2 + O

(
N−1) (6.1)

for r1 ≥ r2 > 0 and r1 + r2 = 1. From (3.8), we have

ZN1,N2(β) = Q
(

N2,
N1 − N2

2N2
,

N1√
N2N

β

)
R(N1,N2, β) (6.2)

where Q is defined with the eigenvalues μi , 1 ≤ i ≤ N2, of the random matrix 1
N1

J T J . Here J is an N1 ×N2 matrix with
independent and identically distributed entries of mean 0 and variance 1 satisfying the assumptions in Section 2.1. The
constant

R(N1,N2, β) = 1

|SN1−1||SN2−1|2N2

(
π2N

N2
1 N2β2

)(N−4)/4

. (6.3)

We use the results of the previous two sections on Qn. To do that, we need to check Conditions 3.2, 3.3 and 3.4:
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• Conditions 3.2 holds with

n = N2, αn = N1 − N2

2N2
, Bn = N1√

N2N
β (6.4)

where α = r1−r2
2r2

and B = r1√
r2

β .
• Condition 3.3 follows from the well-known Marchenko–Pastur law [31] in random matrix theory. The limiting empiri-

cal measure is given by (2.32),

dμ̂(x) = dμMP(x) := 2
√

(d+ − x)(x − d−)

π(
√

d+ − √
d−)2x

1(d−,d+)(x)dx (6.5)

where

d− = (
√

ρ1 − √
ρ2)

2

ρ1
, d+ = (

√
ρ1 + √

ρ2)
2

ρ1
. (6.6)

• Condition 3.4 holds with high probability for the eigenvalues. With the classical location with respect to the
Marchenko–Pastur distribution in (2.30), this is proved recently by Pillai and Yin in [37] for r1 > r2. For the case
r1 = r2, Condition 3.4 with high probability follows from Corollary 1.3 of [2] and the fact that dμMP(x) = dμSC(

√
x)

where μSC is the Wigner semicircle distribution. (See also Equation (1.12) of [2].) Even if we consider the classical
location with respect to the modified law in (2.32), the change is smaller than the right-hand side of (3.6), and hence
we can see that Condition 3.4 holds with high probability.

Before we deduce the limit of Q, we first state the asymptotics of R(N1,N2, β).

Lemma 6.1. We have

1

N
log

(
R(N1,N2, β)

) = −1

2
+ ρ2 log 2 − 1

2
log(2ρ1

√
ρ2β) + ρ1

2
logρ1 + ρ2

2
logρ2

+ logN

N
− 1

N
log

(
π

ρ1
√

ρ1ρ2
β2

)
+ O

(
N−2). (6.7)

Proof. The area of unit sphere satisfies

log
(∣∣Sn−1

∣∣) = log

(
2πn/2

�(n/2)

)
= n

2
log

(
2πe

n

)
+ 1

2
log

(
n

π

)
+ O

(
n−1). (6.8)

Hence,

1

N
log

(∣∣SN1−1
∣∣∣∣SN2−1

∣∣) = 1

2
log

(
2πe

N

)
− ρ1

2
logρ1 − ρ2

2
logρ2 + 1

N
log

(√
ρ1ρ2N

π

)
+ O

(
N−2).

On the other hand,

1

N
log

(
2N2

(
π2N

N2
1 N2β2

)(N−4)/4)
= ρ2 log 2 +

(
1

2
− 2

N

)
log

(
π

ρ1
√

ρ2βN

)
.

We thus obtain the lemma. �

6.1. Transforms of the Marchenko–Pastur distribution and critical temperature

We need the following formulas of the log transform and the Stieltjes transform of the Marchenko–Pastur distribution.

Lemma 6.2. Set

R(z) := √
(z − d−)(z − d+). (6.9)
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We have

HMP(z) :=
∫
R

log(z − x)dμ̂MP(x)

= 2

(
√

d+ − √
d−)2

[
z − √

d+d+ log z − R(z) + (d+ + d−) log(
√

z − d− + √
z − d+)

+ √
d+d− log

(√
d+(z − d−) − √

d−(z − d+)√
d+(z − d−) + √

d−(z − d+)

)]
for z /∈ (−∞, d+) and

sMP(z) := H ′
MP(z) =

∫
R

1

z − x
dμ̂MP(x) = 2(z − R(z) − √

d+d+)

(
√

d+ − √
d−)2z

(6.10)

for z /∈ (d−, d+).

Proof. The computation of the Stieltjes transform (6.10) is a standard exercise in complex analysis. The log transform
HMP(z) can be obtained from (6.10) by taking an anti-derivative. �

In terms of ρ1 and ρ2,

R(z) =
√

(ρ1z − 1)2 − 4ρ1ρ2

ρ1
, (6.11)

HMP(z) = 1

2ρ2

[
ρ1z − 1 − ρ1R(z) − (ρ1 − ρ2) log z + log

(
ρ1z − 1 + ρ1R(z)

2ρ1

)
+ (ρ1 − ρ2) log

(
ρ1z − (ρ1 − ρ2)ρ1R(z) − (ρ1 − ρ2)

2

2ρ1ρ2z

)]
, (6.12)

and

sMP(z) = H ′
MP(z) = ρ1z − ρ1R(z) − (ρ1 − ρ2)

2ρ2z
. (6.13)

Let us consider the critical inverse temperature, which is given by
√

ρ2
ρ1

Bc from (6.4). By Definition 3.8, Bc =√
d+(sMP(d+))2 + 2αnsMP(d+). From the above explicit formulas, we see that

sMP(d+) = H ′
MP(d+) = ρ1√

ρ2(
√

ρ1 + √
ρ2)

. (6.14)

Hence we find that the critical inverse temperature is (ρ1ρ2)
− 1

4 , which converges to βc = (r1r2)
− 1

4 .

6.2. High temperature case

For β < βc , we evaluate the terms in Proposition 4.4 explicitly. We first find zc solving the equation (4.14). From (6.4)
and (6.13), this equation is

ρ1zc − ρ1R(zc) − (ρ1 − ρ2)

2ρ2zc

= 2ρ2
1β2

ρ1 − ρ2 + √
W(zc)

(6.15)

where R(z) is given by (6.11) and

W(z) := (ρ1 − ρ2)
2 + 4ρ2

1ρ2β
2z. (6.16)

We claim that the solution of this equation in zc ∈ (d+,∞) is given by

zc = (1 + ρ1β
2)(1 + ρ2β

2)

ρ1β2
= 1 + β2 + ρ1ρ2β

4

ρ1β2
. (6.17)
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Indeed, with this zc , we find that

√
W(zc) = 1 + 2ρ1ρ2β

2, R(zc) = 1 − ρ1ρ2β
4

ρ1β2
(6.18)

where we used the condition that β < (ρ1ρ2)
−1/4. Using this, we find that both sides of (6.15) are ρ1β

2

1+ρ2β
2 . This verifies

(6.17).
Now from Proposition 4.4 and recalling that n = N2, we find that for any ε > 0,

1

N
log Q = Ã − 1

2N

[
N2∑
i=1

log(zc − μi) − N2HMP(zc)

]
− log(ρ2N)

N
+ 1

2N
log

(
π2

D̂

)
+ O

(
N−1−ε

)
(6.19)

with high probability where

Ã = ρ2Â =
√

W(zc)

2
− ρ1 − ρ2

2
log

(
ρ1 − ρ2 + √

W(zc)

4ρ1
√

ρ2β

)
− ρ2

2
HMP(zc) (6.20)

and

D̂ = −4(ρ1 − ρ2)

ρ2
H ′′

MP(zc) − 8zcH
′
MP(zc)H

′′
MP (zc) − 4

(
H ′

MP(zc)
)2

. (6.21)

It is direct to check that

HMP(zc) = ρ1β
2 + ρ1 − ρ2

ρ2
log

(
1

1 + ρ2β2

)
− log

(
ρ1β

2) (6.22)

and

H ′
MP(zc) = ρ1β

2

1 + ρ2β2
, H ′′

MP(zc) = − ρ2
1β4

(1 + ρ2β2)2(1 − ρ1ρ2β4)
. (6.23)

Thus, we obtain

Ã = 1

2

(
1 + ρ1ρ2β

2) − ρ1 − ρ2

2
log

(
1

2
√

ρ2β

)
+ ρ2

2
log

(
ρ1β

2) (6.24)

and

D̂ = 4ρ3
1β4

ρ2(1 − ρ1ρ2β4)
. (6.25)

Recalling (6.2), we find that for β < βc,

1

N
logZN1,N2(β) = ρ1ρ2β

2

2
− 1

2N

[
N2∑
i=1

log(zc − μi) − N2HMP(zc)

]

+ 1

N

[
1

2
log

(
1 − ρ1ρ2β

4) − log 2

]
+ O

(
N−1−ε

)
(6.26)

with high probability. Since

log
(
1 − ρ1ρ2β

4) − log
(
1 − r1r2β

4) = O
(
N−2),

this proves the part (i) of Theorem 2.6.
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6.3. Low temperature case

For β < βc, Proposition 5.8 implies that (recall that n = N2 and N2
N

= ρ2)

1

N
log Q(n,αn,Bn) = Ẽ + (μ1 − d+)L̃ + O

(
N−1+ε

)
(6.27)

where

Ẽ = ρ2Ê =
√

W(d+)

2
− ρ1 − ρ2

2
log

(
ρ1 − ρ2 + √

W(d+)

4ρ1
√

ρ2β

)
− ρ2

2
HMP(d+),

L̃ = ρ2L̂ = ρ2
1ρ2β

2

ρ1 − ρ2 + √
W(d+)

− ρ2

2
H ′

MP(d+)

(6.28)

with

W(d+) = (
√

ρ1 + √
ρ2)

2((√ρ1 − √
ρ2)

2 + 4ρ1ρ2β
2). (6.29)

From the explicit formulas,

HMP(d+) =
√

ρ1

ρ2
− ρ1 − ρ2

ρ2
log

(√
ρ1 + √

ρ2√
ρ1

)
+ log

√
ρ2

ρ1
(6.30)

and

H ′
MP(d+) = ρ1√

ρ2(
√

ρ1 + √
ρ2)

. (6.31)

Setting

SN = S(β,ρ1, ρ2) := (
√

ρ1 − √
ρ2)

2 + 4ρ1ρ2β
2, (6.32)

we have

Ẽ = (
√

ρ1 + √
ρ2)

√
SN − √

ρ1ρ2

2
− ρ1 − ρ2

2
log

(√
SN + √

ρ1 − √
ρ2

4
√

ρ1ρ2β

)
− ρ2

4
log

ρ2

ρ1
(6.33)

and

L̃ = ρ1
√

ρ1ρ2

2(
√

ρ1 + √
ρ2)

(
2
√

ρ1ρ2β
2

√
SN + √

ρ1 − √
ρ2

− 1√
ρ1

)
= ρ1(

√
SN − √

ρ1 − √
ρ2)

4(
√

ρ1 + √
ρ2)

. (6.34)

Using (

√
A2+B2+A

B
)2 =

√
A2+B2+A√
A2+B2−A

, we write the log term in Ẽ as

log

(√
SN + √

ρ1 − √
ρ2

4
√

ρ1ρ2β

)
= 1

2
log

(√
SN + √

ρ1 − √
ρ2√

SN − √
ρ1 + √

ρ2

)
− log 2. (6.35)

Hence, recalling (6.2) and using Lemma 6.1, we find that for β > βc,

1

N
logZN1,N2(β)

= (
√

ρ1 + √
ρ2)

√
SN − √

ρ1ρ2 − 1

2
− ρ1 − ρ2

4
log

(√
SN + √

ρ1 − √
ρ2√

SN − √
ρ1 + √

ρ2

)

− ρ2

4
logρ1 − ρ1

4
logρ2 − 1

2
logβ +

(
μ1 − (

√
ρ1 + √

ρ2)
2

ρ1

)
ρ1(

√
SN − √

ρ1 − √
ρ2)

4(
√

ρ1 + √
ρ2)

+ O
(
N−1+ε

)
(6.36)

with high probability. Replacing ρ1 and ρ2 by r1 and r2, respectively (and also SN by S), this completes the proof of the
part (ii) of Theorem 2.6, since the change of the right-hand side of (6.36) due to the replacement is O(N−1).
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7. Proof of Theorem 2.3

We derive Theorem 2.3 from Theorem 2.6.

7.1. High temperature

When β < βc, from Theorem 2.6, we need the behavior of the sum of log(zc − μi). It follows form the following result
in random matrix theory.

Proposition 7.1 (Linear statistics of the eigenvalues). For any function ϕ : R → R that is analytic in an open neigh-
borhood of the support of μMP, the random variable

N2∑
i=1

ϕ(μi) − N2

∫
ϕ(x)dμ̂MP(x) (7.1)

converges in distribution as N2 → ∞ to a Gaussian random variable with mean M(ϕ) and variance V (ϕ) given as
follows: setting

�(x) = ϕ

(
d+ − d−

4
x + d+ + d−

2

)
, (7.2)

we have

M(ϕ) = MGOE(�) − (W4 − 3)τ2(�), V (ϕ) = VGOE(�) + (W4 − 3)τ1(�)2 (7.3)

where

MGOE(�) = �(−2) + �(2)

4
− τ0(�)

2
,

VGOE(�) = 1

2π2

∫ d+

d−

∫ d+

d−

(
�(x1) − �(x2)

x1 − x2

)2 4 − x1x2√
4 − x2

1

√
4 − x2

2

dx1 dx2

(7.4)

and for � = 0,1,2, . . . ,

τ�(�) = 1

2π

∫ π

−π

�(2 cos θ) cos(�θ)dθ. (7.5)

This result was first obtained in [4] (equation (5.13)). It was also obtained in [30] (Theorem 4.5) and [6] (Theorem 1.1).
In the above formulas, GOE stands for Gaussian orthogonal ensemble, another classical random matrix ensemble.

To complete the proof of the part (i) of Theorem 2.3, we need to evaluate M(ϕ) and V (ϕ) when ϕ(x) = log(zc − x).
In this case,

�(y) = log

(
a+ − a−

4

)
+ log(z̃ − y), z̃ = 4

a+ − a−

(
zc − a+ + a−

2

)
. (7.6)

Since τ0(1) = 1, we find that

τ�(�) = δ�=0 log

(
a+ − a−

4

)
+ τ�(�0), �0(x) := log(z̃ − x). (7.7)

We computed in Appendix A of [7] that for �0(x) = log(z̃ − x),

τ0(�0) = log
(
z̃ +

√
z̃2 − 4

) − log 2, τ1(�0) =
√

z̃2 − 4

2
− z̃

2
, τ2(�0) = z̃

√
z̃2 − 4

4
− z̃2

4
+ 1

2
.

Note that√
z̃2 − 4 = 4

a+ − a−
√

(zc − a−)(zc − a+) = 4

a+ − a−
R(zc), (7.8)
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which can be checked from the definition (6.9). Hence,

MGOE(�) = logR(zc)

2
− 1

2

[
log

(
zc − a+ + a−

2
+ R(zc)

)
− log 2

]
,

τ1(�0) = 2

a+ − a−

[
R(zc) −

(
zc − a+ + a−

2

)]
,

τ2(�0) = 4(zc − a++a−
2 )

(a+ − a−)2

[
R(zc) −

(
zc − a+ + a−

2

)]
+ 1

2
.

(7.9)

On the other hand, from Lemma A.1 of [7],

VGOE(�) = 2 log

(
zc − a++a−

2 + R(zc)

2R(zc)

)
. (7.10)

Inserting (6.5) for a+ and a−, and recalling (6.18) for R(zc), we find that

τ1(�0) = −√
r1r2β

2, τ2(�0) = − r1r2β
4

2

MGOE(�) = 1

2
log

(
1 − r1r2β

4), VGOE(�) = −2 log
(
1 − r1r2β

4). (7.11)

Hence, we have

M(ϕ) = 1

2
log

(
1 − r1r2β

4) + (W4 − 3)
r1r2β

4

2
,

V (ϕ) = −2 log
(
1 − r1r2β

4) + (W4 − 3)r1r2β
4

(7.12)

for ϕ(x) = log(zc − x).
Part (i) of Theorem 2.6, Prosition 7.1 and (7.12) prove the part (i) of Theorem 2.3 when r1 ≥ r2. The case when r1 < r2

follows from the symmetry, noting that F(β), μ and σ 2 are all symmetric in r1 and r2.

7.2. Low temperature

When β < βc, we need the behavior of the top eigenvalue μ1. The following result is well-known in random matrix
theory. See, for example, [25,39] and also Corollary 1.2 of [37].

Proposition 7.2 (Tracy–Widom limit of the largest eigenvalue). We have

N1√
N1 + √

N2

(
1√
N1

+ 1√
N2

)− 1
3

(μ1 − d+) ⇒ TW (7.13)

in distribution.

In terms of r1, r2,

N1√
N1 + √

N2

(
1√
N1

+ 1√
N2

)− 1
3 = r1(r1r2)

1
6

(
√

r1 + √
r2)

4
3

N2/3(1 + O
(
N−1)). (7.14)

Then, combining with the constant in (2.36),

(
√

r1 + √
r2)

4
3

r1(r1r2)
1
6

r1(
√

S − √
r1 − √

r2)

4(
√

r1 + √
r2)

= (
√

r1 + √
r2)

1/3(
√

S − √
r1 − √

r2)

4(r1r2)1/6
. (7.15)

This proves the part (ii) of Theorem 2.3 when r1 ≥ r2. The case when r1 < r2 again follows from the symmetry noting
that F(β) and A are symmetric in r1 and r2.
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8. Non-identically distributed disorders

In this section, we briefly discuss the case where the disorders are non-identically distributed. Let � be a positive-definite
matrix of size N1 × N1. Let J be the matrix of i.i.d. entries as before. Consider the new Hamiltonian

H(σ ,τ ) = 1√
N

N1∑
i=1

N2∑
j=1

(
�1/2J

)
ij
σiτj . (8.1)

The new disorder parameters are (�1/2J )ij = ∑
k �

1/2
ik Jkj . In particular, when �1/2 is a diagonal matrix, the variances

of the disorder parameters depend on the index i but not on j .
The associated random matrix is

S = 1

N1
J T �J. (8.2)

In statistics, S is known as a sample covariance matrix with general population covariance matrix �. Recall the ingredients
of the analysis we have done in this paper. The double integral formula in Lemma 2.7, which was the starting point of
our analysis, holds for any sample covariance matrices: we set M = 1√

N1
�1/2J in the proof. The proofs of asymptotic

formulas for Qn in Proposition 4.4 and Proposition 5.8 require the regularity of measure in Condition 3.3 and the rigidity
of the eigenvalues in Condition 3.4. Finally, the fluctuation of the free energy was obtained by applying the linear statistics
of the eigenvalues in Proposition 7.1 and the Tracy–Widom limit of the largest eigenvalue in Proposition 7.2.

The limiting empirical spectral distribution (ESD) of S is well studied in random matrix theory. Under a very general
assumption, it was proved in [38] that the limiting ESD of S is regular. The typical assumption is as follows: Let σ1 ≥
σ2 ≥ · · · ≥ σN1 be the eigenvalues of � and denote by σ̂ the empirical spectral distribution of �. Define ξ+ as the unique
solution in (0, σ−1

1 ) to the equation

∫ (
tξ+

1 − tξ+

)2

dσ̂ (t) = r2
2

r2
1

. (8.3)

If

lim supσ1 < ∞, lim infσN1 > 0, lim supσ1ξ+ < 1, (8.4)

then the limiting ESD of S is regular, and hence satisfy Condition 3.3. (See Theorem 3.1 of [9].) This assumption basically
means that the largest eigenvalue σ1 of � is not too far away from the rest of the eigenvalues. Such an assumption was
also used in [19,26,29]. Under the same assumption, it was proved by Knowles and Yin [26] that Condition 3.4 holds
with high probability.

Proposition 7.1, the central limit theorem for the linear statistics of the eigenvalues was first proved by Bai and Silver-
stein [4] when W4, the fourth moment of Jij , matches that of the standard Gaussian, which is 3. It was later extended to
a general case with any finite fourth moment by Najim and Yao [33].

Proposition 7.2 was first proved for the complex case with Gaussian disorder Jij by El Karoui [19]. Bao, Pan, and
Zhou [9] proved the edge universality for the model, which asserts that the rescaled distribution of the largest eigenvalue
does not depend on the distribution of Jij . The result in [9] also holds for the real case, but the Tracy–Widom limit for
the case was not proved. Proposition 7.2 was later proved in [26,29].

Therefore, the main theorems, Theorem 2.3 and Theorem 2.6, also hold for the Hamiltonian with non-identically
distributed disorders under a general assumption on the spectrum of the matrix �, with suitable changes on the constants
μ, σ 2, A, and S.
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