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Abstract. In this paper, we study existence and uniqueness to multidimensional Reflected Backward Stochastic Differential Equations
in a non-empty open convex domain, allowing for oblique directions of reflection. In a Markovian framework, combining a priori
estimates for penalised equations and compactness arguments, we obtain existence results under quite weak assumptions on the driver
of the BSDEs and the direction of reflection, which is allowed to depend on both Y and Z. In a non Markovian framework, we obtain
existence and uniqueness result for direction of reflection depending on time and Y in smooth convex domain. We make use in this
case of stability estimates that require some regularity conditions on the direction of reflection only.

Résumé. Nous étudions dans cet article l’existence et l’unicité des solutions d’équations différentielles stochastiques rétrogrades
multidimensionnelles réfléchies dans un domaine ouvert convexe non vide avec une possible obliquité de la direction de réflexion.
Dans le cadre markovien, en utilisant des estimées a priori pour les équations pénalisées et des arguments de compacité, nous obtenons
un résultat d’existence sous des hypothèses faibles sur le générateur de l’EDSR et la direction de réflexion qui peut dépendre de Y et Z.
Dans un cadre non markovien, nous obtenons un résultat d’existence et d’unicité lorsque la direction de réflexion dépend uniquement
du temps et de Y et que le domaine de réflexion est régulier. Pour ce faire, nous utilisons des estimées de stabilité qui nécessitent des
conditions de régularité portant uniquement sur la direction de réflexion.
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1. Introduction

In this paper, we study a class of BSDE whose solution is constrained to stay in a non-empty open convex domain,
hereafter denoted D. The “reflection” at the boundary of the domain is made along an oblique direction. Such equations
are known as Obliquely Reflected BSDEs and they allow to represent the solution to some stochastic control problems.
Precisely, let (�,F,P) be a complete probability space and (Wt )t∈[0,T ] a k-dimensional Brownian motion, defined on
this space, whose natural filtration is denoted (Ft )t∈[0,T ]. P is the σ -algebra generated by the progressively measurable
processes on [0, T ] × �. In the sequel, T > 0 is a terminal time for the equation under consideration. In this paper, we
are interested in the study of existence and uniqueness of a P- measurable solution (Y,Z,�) to the following equation{

(i) Yt = ξ + ∫ T

t
f (s, Ys,Zs)ds − ∫ T

t
H(s,Ys,Zs)�s ds − ∫ T

t
Zs dWs, 0 ≤ t ≤ T ,

(ii) Y· ∈ D̄ a.s., �· ∈ ∂ϕ(Y·) dt ⊗ dP-a.e.,
∫ T

0 |�s |1{Ys /∈∂D} ds = 0,
(1.1)

where ∂D is the boundary of the non-empty open convex domain D, ϕ the (convex) indicator function of D, ∂ϕ the sub-
differential of ϕ and (f,H) : �×[0, T ]×R

d ×R
d×k → (Rd,Rd×d) is a P⊗B(Rd ×R

d×k)-measurable random function.
The terminal value ξ is given as a parameter and belongs to L 2(FT ), where for p > 0 and a σ -algebra B, L p(B) is the
space of B-measurable random R variable satisfying E[|R|p] < +∞. Of course, we shall require some extra conditions
to get an existence and uniqueness result. Classically, we will look for solutions with the following integrability property:
(Y,Z,�) ∈ S 2 × H 2 × H 2, where, for p ∈ [1,∞], H p is the set of progressively measurable process V such that
E[(∫ T

0 |Vt |2 dt)
p
2 ] < +∞, and S p is the set of continuous and adapted processes U satisfying E[supt∈[0,T ] |Ut |p]. The

main constraints on the couple (Y,�) are given in (1.1)(ii). As already mentioned, the first one is that Y takes its value
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in D̄, where D is a non-empty open convex subset of Rd . The fact that �t ∈ ∂ϕ(Yt ) imposes that � is directed along the
outward normal of the convex domain, the important point being that in (i) this direction is perturbed by the operator H

and we are thus dealing with an oblique direction of reflection. When (1.1)(i) is viewed backward in time, the process
� or, more precisely � := H(·)�, is the process allowing Y to stay in D̄. The condition

∫ T

0 |�t |1{Yt /∈∂D} dt = 0 is then
interpreted as a minimality condition, in the sense that � will be active only when Y touches the boundary of the domain.
This is of course one of the main ingredient to get uniqueness result for this kind of equation.

Let us now mention some known results about these equations. In the one dimensional case, they have been first studied
in [8] for the – so called– simply reflected case and in [4] for the doubly reflected case. The literature on this specific form
of equation has then grown very importantly due to their range of application, in particular in mathematical economics
or stochastic control. The multidimensional case is only well understood in the case of normal reflection i.e. when the
matrix-valued random function H is equal to the identity, see the seminal paper [11]. We also refer to [22] for BSDEs
with jumps, [17] for normal reflection in time-dependent random convex domains and [9,21] for the case of BSDEs with
jumps normally reflected in time-dependent random convex domains. The case of oblique direction of reflection has been
only partially treated. Up until recently, only very specific cases have been considered for the couple (H,D). In [26], the
author studies the case of the reflection in an orthant with some restriction on the direction of oblique reflection and the
driver f . Another case that has received a lot of attention is the setting of RBSDEs associated to “switching problems”,
see e.g. [3,14,15] and the references therein: the multidimensional domain has a specific form and the direction is along
the axis, see also Section 4.1 for more details. In this case, structural conditions on f are required to retrieve existence and
uniqueness results also. This restriction are based on the technique of proof used to obtain the results and which is mainly
based on a monotonic limit theorem à la Peng [25], in a multidimensional setting. To the best of our knowledge, the first
attempt to treat the question of BSDEs with oblique reflection in full generality can be found in [10]. Unfortunately, their
setting is still quite restrictive concerning H and f .

To the best of our knowledge, there is no, up to now, satisfying global approach for the question of well-posedness
of Obliquely Reflected BSDEs, especially when compared the case of forward SDEs, where existence and uniqueness
results are obtained for oblique reflection and general domain, see e.g. [7,18,19,28].

Our goal in this paper is thus to prove existence and uniqueness for the RBSDEs (1.1) for generic H and non-empty
convex domain D without imposing any structural dependence condition on the driver f of the equation. In the general
case of P-measurable random coefficients f , our first result, see Proposition 3.1, is to obtain existence of a solution to the
RBSDEs imposing some regularity and boundedness assumptions on the terminal condition ξ and some C2 smoothness
assumption on H , which depends then only on the time and y variables. Let us stress the fact that this result can then be
invoked to get existence of RBSDEs in some domains with corners, see Remark 3.1. Then, assuming C2 smoothness of
the domain also, we obtain our main result in the non-Markovian setting, see Theorem 3.1, which states existence and
uniqueness of the solution to the obliquely reflected BSDEs, for unbounded ξ with some regularity.

In the Markovian case, the existence results are dramatically improved; the coefficient H can depend on Z and there
is no restriction on the convex domain. The two main results in this setting are Theorem 4.1, for continuous H and Theo-
rem 4.2 for discontinuous H . In this last case, we exhibit a simple counterexample to uniqueness of solution. Essentially,
the only question that remains open is then the uniqueness of solution when there is no smoothness assumption on D and
when H is assumed to be continuous. Currently, in the litterature, this question of uniqueness is investigated in a case by
case basis, relying for example on the link with stochastic control problem, see e.g. [15].

Let us now give some details on how the above results are proved. The main tool to obtain the existence result is to
consider a sequence of penalised equation: for n ∈N, t ∈ [0, T ],

Yn
t = ξ +

∫ T

t

f
(
s, Y n

s ,Zn
s

)
ds −

∫ T

t

Zn
s dWs −

∫ T

t

H
(
s, Y n

s ,Zn
s

)∇ϕM
n

(
Yn

s

)
ds, (1.2)

where, for y ∈R
d , and some M > 0,

ϕM
n (y) := n inf

x∈D
θM(y − x) with θM(h) =

{
M|h|−M2

2 if |h| > M,
1
2 |h|2 if |h| ≤ M.

(1.3)

The key point is to obtain the convergence in a strong sense of (Y n) to some process Y along with some a priori estimates
on (Zn,�n). This will then allow to obtain the existence of some limiting process (Z,�) as well.

The first possible argument to obtain the convergence of (Y n) is to prove some monotonicity on the sequence to apply
Peng’s monotonic limit theorem [25]. In a multidimensional setting, this monotonicity is obtained under very restrictive
structural condition on the coefficient. Nevertheless, it has been successfully used for the study of RBSDE associated to
switching problem. Another possible argument is to invoke some fine compactness arguments and this is the approach



2870 J.-F. Chassagneux and A. Richou

followed in [10]. But, again some strong structural conditions are required to obtain convergence results in a weak setting.
In this paper, we follow a similar approach in the Markovian setting, see Section 4. At the heart of our proof, we use the
paper [13], which was concerned with multidimensional (non-reflected) BSDEs with continuous only driver f . With
this approach, in the Markovian setting, we are able to obtain existence result for H that can depend on Z and even be
discontinuous. To the best of our knowledge, this is the first time such general setting is considered successfully. It has
been brought to our attention that independently from us, [5] has followed a similar approach to treat BSDEs associated
to the classical switching problem in a more restrictive setting.

The last approach to obtain convergence of the sequence (Yn) is to show classically that it is a Cauchy sequence.
This approach has been used in the case of multidimensional RBSDE when there is no perturbation H of the direction
of reflection, namely H is the identity matrix of Rd , in the seminal paper [11]. To obtain this result and a key stability
estimate, authors of [11] use dramatically the convexity property of the domain linked with the normal reflection by
applying Itô’s formula to the Euclidean norm of the difference of two solutions. In our setting of general perturbation H ,
we cannot follow directly their proof. In order to retrieve the stability estimates, we modify the Euclidean norm to take
into account the oblique reflection, inspired by [18]. Unfortunately, this produces new terms that have to be controlled.
The most difficult one is certainly the term linked to the quadratic variation of the martingale term in (1.1)(i) or (1.2).
Let us emphasize that this term cannot be dealt with as one would do in the forward SDE case. Nevertheless, we are
able to treat this term using BMO martingales estimates. This tool was already used with success to deal with quadratic
BSDEs but, to the best of our knowledge, this approach is completely new in the setting of Reflected BSDEs. We are then
able to obtain in the non-Markovian setting existence results when (D,H) satisfies some smoothness condition, with H

depending only on the time and y variables. Let us note also that in this case the uniqueness result is obtained as an easy
consequence of the stability estimate.

The rest of the paper is organised as follows. In the next Section, we present precisely our framework and the as-
sumption made on the coefficients along with some discussions on these assumptions. We also prove the key a priori and
stability estimates, that will be used later on. In Section 3, we present our first novel result on existence and uniqueness of
Obliquely Reflected BSDEs in a regular setting for (D,H). In Section 4, restricting to a Markovian framework, we extend
our previous existence result assuming no regularity on (D,H) and allowing a dependence in Z for the H operator.

Notations. We denote by ϕ the indicator function of D

ϕ(y) =
{

0 if y ∈ D̄,

+∞ otherwise,

and ∂ϕ its sub-differential operator:

∂ϕ(y) =
{

{ŷ ∈R
d : ŷ · (z − y) ≤ 0,∀z ∈ D̄} if y ∈ D̄

∅ if y /∈ D̄.

In particular, ∂ϕ(y) is the closed cone of outward normals to D at y when y ∈ ∂D and ∂ϕ(y) = {0} when y ∈D. Finally,
we denote by P the projection onto D̄ and by n(y) the set of unit outward normals at y ∈ ∂D.

For a matrix M , we denote M† its transpose.
We denote B2, the set of processes V ∈ H 2, such that

‖V ‖B2 :=
∥∥∥∥supt∈[0,T ]E

[∫ T

t

|Vs |2 ds

∣∣∣Ft

]∥∥∥∥
1
2

L ∞
< +∞.

Let us remark that V ∈ B2 means that the martingale
∫ ·

0 Vs dWs is a BMO martingale and ‖V ‖B2 is the BMO norm of∫ ·
0 Vs dWs . We refer to [16] for further details about BMO martingales.

The set of continuous function from [0, T ] to R
n is denoted C([0, T ],Rn). For x ∈ C([0, T ],Rn), we denote by

‖x‖∞ := supt∈[0,T ] |xt |, the sup-norm on this space.

2. Setting and preliminary estimates

In this section, we first introduce and discuss the main assumptions that will be used to obtain our existence and uniqueness
results. In a second part, we give important a priori estimates and prove a key stability result, which is one of the novelty
in our approach to solve Obliquely Reflected BSDEs.
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2.1. Framework

The first minimal set of assumption that we consider here is the following.

Assumption (A).

(i) ξ is an FT -measurable random variable, Rd -valued such that E[|ξ |2] < +∞.
(ii) f : � × [0, T ] × R

d × R
d×k → R

d is a P ⊗ B(Rd × R
d×k)-measurable function and there exists a non negative

progressively measurable process α ∈ H 2(R) and a constant L such that∣∣f (t, y, z)
∣∣ ≤ αt + L

(|y| + |z|), ∀(t, y, z) ∈ [0, T ] ×R
d ×R

d×k. (2.1)

(iii) H : �×[0, T ]×R
d ×R

d×k →R
d×d is a P ⊗B(Rd ×R

d×k)-measurable function and there exists a constant η > 0
such that, for any (t, y, z) ∈ [0, T ] ×R

d ×R
d×k

H(t, y, z)υ · υ ≥ η, υ ∈ n
(
P(y)

)
, (2.2)∣∣H(t, y, z)

∣∣ ≤ L. (2.3)

The above assumptions are too weak to obtain existence and uniqueness result in a general random framework. They
will be used in Section 4 in a Markovian framework with their Markovian counterpart (AM). Nevertheless, it is possible
to derive useful a priori estimates in the general setting of (A).

Remark 2.1. In applications, H(t, ·, z) is usually specified only on the boundary ∂D. The extension to R
d \ D̄ in a

continuous way can be done easily by setting H(t, y, z) := H(t,P(y), z). Moreover, if H(t, ·, z) is a continuous and
bounded function on ∂D it is possible to extend it to a continuous and bounded function on D̄. Indeed, D̄ is a closed
convex set in finite dimension so it is homeomorph to a set S that satisfies

• there exists r with 0 ≤ r ≤ d such that S =R
r × Bd−r ,

• or S is a half plane of Rd .

The constant r is a topological invariant of D̄. Moreover, the boundary of D is sent to the boundary of S. Then we remark
that the extension of H(t, ·, z) is straightforward when D = S.

In the non-Markovian setting, our results require more smoothness and control on the parameters of the BSDE. We
will then work under the following assumption.

Assumption (SB).

(i) ξ is an FT -measurable D̄-valued random variable and the martingale Yξ
t := Et [ξ ] = ξ − ∫ T

t
Zξ

s dWs , t ≤ T , is BMO
(see [16] for further details on BMO martingales).

(ii) f : � × [0, T ] ×R
d ×R

d×k → R
d is a P ⊗B(Rd ×R

d×k)-measurable function, there exists a constant L > 0 such
that, for all (t, y, y′, z, z′) ∈ [0, T ] ×R

d ×R
d ×R

d×k ×R
d×k ,∣∣f (t, y, z) − f

(
t, y′, z′)∣∣ ≤ L

(∣∣y − y′∣∣ + ∣∣z − z′∣∣). (2.4)

Moreover, the process θ
ξ· := f (·,Yξ· ,Zξ· ) belongs to B2.

(iii) H : [0, T ] ×R
d →R

d×d is valued in the set of symmetric matrices Q satisfying

|Q| ≤ L, L|υ|2 ≥ υ†Qυ ≥ 1

L
|υ|2, ∀υ ∈R

d . (2.5)

(t, y) �→ H(t, y) is a C0,1-function and (t, y) �→ H−1(t, y) is a C1,2 function satisfying

|∂yH | + ∣∣H−1
∣∣ + ∣∣∂tH

−1
∣∣ + ∣∣∂yH

−1
∣∣ + ∣∣∂2

yyH
−1

∣∣ ≤ , (2.6)

for some positive .
(iv) The open convex domain D is given by a C2(Rd,R) function φ with a bounded first derivative, namely D = {φ < 0}

and ∂D = {φ = 0}. This function satisfies moreover∣∣φ(x)
∣∣ = d(x, ∂D) for x ∈ V ∩ (

R
d \ D̄)

,where V is a neighbourhood of ∂D. (2.7)
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We first comment assumptions made on BSDE parameters.

Remark 2.2.

(i) Let us observe that under the BMO condition, there exists μξ > 0, such that E[eμξ supt∈[0,T ] |Yξ
t |] < ∞ and that

‖Zξ‖B2 < ∞, see e.g. [16]. For later use, we define

σ ξ := E
[
eμξ supt∈[0,T ] |Yξ

t |] + ∥∥Zξ
∥∥

B2 + ∥∥θξ
∥∥

B2 < ∞. (2.8)

(ii) The end of Assumption (SB)(ii) are a mix of the property of ξ , f and the domain D. In many applications, it will be
straightforward to check. For example, it is trivially satisfied in the following cases:
(a) supy∈D f (s, y, z) ≤ C, for some C > 0;
(b) ξ ∈ L ∞(FT );
(c) D is a bounded domain.

(iii) If (SB) holds, then (A) holds as well. Indeed, one can set α := L(|Yξ | + |Zξ | + |θξ |).

We now discuss the various assumptions made on H and the domain D.

Remark 2.3.

(i) An example of function φ can be constructed as in e.g. [11] Section 2.4 if the non-empty convex domain D is C2.
From (SB)(iv), it follows that ∂φ(x) (resp. n(x)) is the outward normal (resp. unit outward normal) of D at a point
x ∈ ∂D. Moreover, the constructed function φ is convex on R

d \D and thus, ∂2
xxφ is a positive semi-definite matrix

on this domain. Let us also observe that the application P : Rd \ D̄ → ∂D is C2.
(ii) The matrix H defines on ∂D a unit vector field ν in the following way

ν̃(t, y) := H(t, y)n(y) and ν(t, y) := ν̃(t, y)

|ν̃(t, y)| , for y ∈ ∂D,

which represents the oblique direction of reflection. Then, (2.2) rewrites as

〈
ν̃(t, y),n(y)

〉 ≥ η, for y ∈ ∂D. (2.9)

In applications, it is generally the case that only the smooth vector field ν is given on ∂D. Following Lemma 4.1 in
[18], it is possible to construct H satisfying (SB)(iii) on ∂D and then to extend it on D̄ under (SB)(iv) using classical
extension results, see e.g. [12].

We now introduce a class of terminal conditions that are admissible for the purpose of our work, in the sense that we
can obtain an existence and uniqueness result for this class.

Definition 2.1. For β > 0, the class Tβ is the subset of ξ ∈ L 2(FT ) satisfying: there exists λξ > β , such that

E
[
eλξ

∫ T
0 |Zξ

s |2 ds
]
< ∞, (2.10)

where Zξ is given by the martingale representation theorem applied to Yξ
t := Et [ξ ] = ξ − ∫ T

t
Zξ

s dWs , t ≤ T .

We study the class Tβ in Section 2.4. Especially, we exhibit some specific elements of this class that are quite useful
for applications.

Remark 2.4. In the following, we will use in proofs the notation “C” to denote a generic constant that may change
from line to line and that depends in an implicit way on T , L and η. We shall denote it Cθ , if it depends on an extra
parameters θ . In the statement of the results, we prefer the notation “c” and the dependence upon any extra parameters on
top of T , L and η, will also be made clear.
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2.2. A priori estimates

In this section, we prove some a priori control on the solution (Y,Z,�) ∈ S 2 × H 2 × H 2 to the following generalised
BSDE

Yt = ξ +
∫ T

t

f (s, Ys,Zs)ds −
∫ T

t

H(s,Ys,Zs)�s ds −
∫ T

t

Zs dWs, 0 ≤ t ≤ T . (2.11)

Importantly, we assume that (Y,Z,�) satisfies the following structural condition:

Et

[∫ T

t

|�s |2 ds

]
≤ KEt

[∫ T

t

∣∣f (s,Ys,Zs)
∣∣2 ds

]
, for some K > 0. (2.12)

Equation (2.11) encompasses both the obliquely reflected BSDE (1.1) and its penalised approximation given in equa-
tion (1.2). The key point for these two equations will then be to prove that their solutions satisfy condition (2.12).

Our first estimate is quite classical.

Lemma 2.1. Assume (A). Let (Y,Z,�) ∈ S 2 × H 2 × H 2 be a solution to (2.11) with condition (2.12) holding true.
Then, for some c := c(K),

sup
t∈[0,T ]

E
[|Yt |2

] +E

[∫ T

0
|Zs |2 ds

]
≤ cE

[
|ξ |2 +

∫ T

0
|αs |2 ds

]
.

Proof. We apply Itô’s formula to |Y |2 to obtain

E

[
|Yt |2 +

∫ T

t

|Zs |2 ds

]
= E

[
|ξ |2 + 2

∫ T

t

Ysf (s,Ys,Zs)ds − 2
∫ T

t

YsH(s,Ys,Zs)�s ds

]
.

We thus compute, using (2.12) and Assumption (A)(ii), the boundedness of H and Young’s inequality, for some
ε ∈ (0,1),

E

[∫ T

t

YsH(s,Ys,Zs)�s ds

]
+E

[∫ T

t

Ysf (s,Ys,Zs)ds

]
≤ CE

[∫ T

t

(
1

ε
|Ys |2 + ε|Zs |2 + |αs |2

)
ds

]
.

For ε small enough and using Grönwall Lemma, we get the result. �

The following proposition refines the previous estimates in the smooth setting of Assumption (SB). It will also allow
to use the stability result proved in the next section. Interestingly, it shows that most of the properties of the martingale
Yξ are transferred to the non-linear process given in equation (2.11).

Proposition 2.1. Assume that (SB)(i)–(ii) holds. Let (Y,Z,�) ∈ S 2 ×H 2 × H 2 be a solution to (2.11) with condition
(2.12) in force. Then, the following holds

(i) (Y,Z,�) ∈ S 2 × B2 × B2 with, for some c := c(K,σ ξ ), recalling (2.8) for the definition of σ ξ ,

E
[
eμξ supt∈[0,T ] |Yt |] + ‖�‖B2 + ‖Z‖B2 ≤ c, (2.13)

and, for all b > 0 and some c′ := c′(b,K,σ ξ )

E
[
eb

∫ T
0 (|�s |+|Zt−Zξ

t |+|θξ
t |)ds

] ≤ c′. (2.14)

(ii) Moreover, if ξ ∈ Tβ , for some β > 0, then there exists � ∈ H 2 such that, for all non negative increasing process γ

satisfying E[|γT |p] < ∞ for some p > 1 (depending on γ ), we have for all t ∈ [0, T ]

Et

[∫ T

t

γs |Zs |2 ds

]
≤ Et

[∫ T

t

γs |�s |ds

]
< +∞ (2.15)

and for some λ ∈ (β,λξ ) and c := c(K,σ ξ , λ), recalling (2.10) for the definition of λξ ,

E
[
eλ

∫ T
0 |�t |dt

] ≤ c. (2.16)
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Proof. An important step to obtain our estimates below is to compare the BSDE (Y,Z) with the martingale Yξ . To this
end, we introduce for this proof �Y := Y −Yξ and �Z = Z −Zξ .

1.a We apply Itô’s formula to |�Y |2 to obtain, for all r ≤ t ,

Er

[
|�Yt |2 +

∫ T

t

|�Zs |2 ds

]
= 2Er

[∫ T

t

�Ysf (s,Ys,Zs)ds −
∫ T

t

�YsH(s,Ys)�s ds

]
. (2.17)

We thus compute, using (2.12), the Lipschitz continuity of f , the boundedness of H and Young’s inequality, for all
r ≤ t and some ε ∈ (0,1)

Er

[∫ T

t

�Ysf (s,Ys,Zs)ds

]
+Er

[∫ T

t

�YsH(s,Ys)�s ds

]
≤ CKEr

[∫ T

t

(
1

ε
|�Ys |2 + ε|�Zs |2 + ∣∣θξ

s

∣∣2
)

ds

]
.

Combining the last estimate with (2.17), setting ε small enough and using Gronwall Lemma, we get for all r ≤ t

Er

[
|�Yt |2 + 1

2

∫ T

t

|�Zs |2 ds

]
≤ CKEr

[∫ T

t

∣∣θξ
s

∣∣2 ds

]
.

1.b Setting r = t in the preceding inequality, we have

sup
t∈[0,T ]

|�Yt |2 + ‖�Z‖2
B2 ≤ CK,σξ (2.18)

from which we straightforwardly deduce

E
[
eμξ supt∈[0,T ] |Yt |] ≤ E

[
eμξ supt∈[0,T ](|�Yt |+|Yξ

t |)] ≤ CK,σξ (2.19)

and ‖Z‖B2 ≤ ∥∥Zξ
∥∥

B2 + ‖�Z‖B2 ≤ CK,σξ . (2.20)

Combining (2.18) with (2.12), we obtain

‖�‖B2 ≤ CK,σξ . (2.21)

This concludes the proof of (2.13).
2.a We denote R := |�| + |�Z| + |θξ |. For all b > 0, we use Young inequality to get

E
[
eb

∫ T
0 Rs ds

] ≤ e
b2T

ε E
[
eε

∫ T
0 |Rs |2 ds

]
(2.22)

for all ε > 0. Then, by setting ε = (1 + 4‖�‖2
B2 + 4‖�Z‖2

B2 + 4‖θξ‖2
B2)

−1 we compute, for all r ∈ [0, T ],

Er

[∫ T

r

ε|Rs |2 ds

]
≤ 3εEr

[∫ T

r

|�s |2 + |�Zs |2 + ∣∣θξ
s

∣∣2 ds

]
≤ 3

4
.

Going back to (2.22) and applying the John–Nirenberg formula, see Theorem 2.2 in [16], we obtain

E
[
eb

∫ T
0 Rs ds

] ≤ CK,σξ ,b, (2.23)

which proves (2.14).
2.b Applying Itô’s formula to γ·|�Y·|2, on [t, T ], we compute,

γt |�Yt |2 +
∫ T

t

γs |�Zs |2 ds +
∫ T

t

|�Ys |2 dγs = 2
∫ T

t

γs�Ysf (s,Ys,Zs)ds

− 2
∫ T

t

γs�YsH(s,Ys)�s ds − 2
∫ T

t

γs�Ys�Zs dWs. (2.24)
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Let us observe that the local martingale
∫ ·

0 γt�Yt�Zt dWt is a true martingale. Indeed, we compute, using Burkholder–
Davis–Gundy inequality,

E

[
sup

s∈[0,T ]

∣∣∣∣
∫ s

0
γt�Yt�Zt dWt

∣∣∣∣
]

≤ CE

[(∫ T

0
|γt�Yt�Zt |2 dt

) 1
2
]

≤ CK,σξE

[
|γT |

(∫ T

0
|�Zt |2 dt

) 1
2
]

where we used (2.18) for the last inequality. Using Hölder inequality, denoting q the conjugate exponent of p, we get

E

[
sup

s∈[0,T ]

∣∣∣∣
∫ s

0
γt�Yt�Zt dWt

∣∣∣∣
]

≤ CK,σξ ,pE
[|γT |p] 1

p E

[(∫ T

0
|�Zt |2 dt

) q
2
] 1

q

.

From the energy inequality, c.f. (VI.109.7) in [6], we have that

E

[(∫ T

0
|�Zt |2 dt

) �q�
2

]
≤ Cq‖�Z‖�q�

B2 .

We thus deduce

E

[
sup

s∈[0,T ]

∣∣∣∣
∫ s

0
γt�Yt�Zt dWt

∣∣∣∣
]

< ∞.

Since γ is non-decreasing, we then compute, using (2.24), (2.12) and the Lipschitz continuity of f ,

Et

[∫ T

t

γs |�Zs |2 ds

]
≤ Et

[∫ T

t

γs�s ds

]
< ∞, (2.25)

where we set � := CK,σξ (1 + R) recalling that �Y is bounded by (2.18) and R is defined in step 2.a. Using (2.23) we
compute

E
[
eb

∫ T
0 |�s |ds

] ≤ CK,σξ ,b, (2.26)

for all b > 0.
2.c We set λ = (1 + ε)β with ε > 0 such that (1 + ε)2β ≤ λξ , recalling Definition 2.1. Now we define

� := (1 + ε)
∣∣Zξ

∣∣2 +
(

1 + 1

ε

)
�.

We observe that Et [
∫ T

t
γs |�s |ds] < ∞: this follows from (2.25) and the fact that

Et

[∫ T

t

γs

∣∣Zξ
s

∣∣2 ds

]
< ∞.

This last inequality is simply obtained by applying Itô’s formula to γ |Yξ |2 which yields

E

[∫ T

0
γs

∣∣Zξ
s

∣∣2 ds

]
≤ E

[
γT |ξ |2] ≤ ‖γT ‖L p

∥∥|ξ |2∥∥L q < ∞.

From the definition of �, we have that, for t ≤ T ,

Et

[∫ T

t

γs�s ds

]
≥ (1 + ε)Et

[∫ T

t

γs

∣∣Zξ
s

∣∣2 ds

]
+

(
1 + 1

ε

)
Et

[∫ T

t

γs |�Zs |2 ds

]

where we used (2.25). Then it follows from Young’s inequality,

Et

[∫ T

t

γs |Zs |2 ds

]
≤ CEt

[∫ T

t

γs�s ds

]
< ∞,
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which proves (2.15). Finally, we compute using Hölder’s inequality,

E
[
e(1+ε)β

∫ T
0 �s ds

] ≤ CE
[
e(1+ε)2β

∫ T
0 |Zξ

s |2 ds
] 1

1+ε E
[
e(1+ 1

ε
)2β

∫ T
0 |�s |ds

] ε
1+ε

and using the fact that ξ ∈ Tβ and (2.26), we obtain (2.16) with λ = (1 + ε)β . �

Let us remark the following result, that will be useful in the next section.

Corollary 2.1. Assume that (SB)(i)–(ii) holds. Let (Y,Z,�) ∈ S 2 × H 2 × H 2 be a solution to (2.11) with condition
(2.12) in force and assume moreover that ξ ∈ L ∞(FT ) then Y is bounded, namely for some c := c(K,σ ξ ,‖ξ‖L ∞), we
have

sup
t∈[0,T ]

|Yt | ≤ c.

Proof. We observe that |Yξ
t | ≤ ‖ξ‖L ∞ and then conclude the proof using (2.18). �

2.3. A stability result

In this section, we prove a key estimate for the difference of two solutions of the generalised BSDE (2.11) satisfying
(2.12). For i ∈ {1,2}, we denote (iY, iZ, i�) the solutions associated to parameters (iξ, if ) and we furthermore assume
that

i�· ∈ ∂ϕ
(
P

(
iY·

))
dP⊗ dt-a.e. and

∫ T

0

∣∣i�t

∣∣1{iYt∈D} dt = 0. (2.27)

Remark 2.5. The above assumption allows us to cover both cases of equation (1.1) and equation (1.2).

We now define δY = 1Y − 2Y , δZ = 1Z − 2Z, δ� = 1� − 2� , where i� = H(·, iY )i� and δf = 1f (·, 1Y, 1Z) −
2f (·, 2Y, 2Z). We have the following key result for our work.

Proposition 2.2. Assume that (SB)(i)–(iii) holds. There exist two increasing functions B(·) and A(·) from (0,∞) to
(0,∞), such that for all 1ξ belonging to TB(), setting

�t := eA()t+∫ t
0 B(){�1

s +��
s +�

f
s }ds

where �� := |1�| + |2�|, �f := |1Z − Z1ξ | + |θ 1ξ |, and �1 is given by Proposition 2.1(ii) applied to the BSDE with
parameters (1ξ, 1f ), we have,

(i) E[|�T |p] < c for some p := p() > 1 and c := c(K,,σ
1ξ , σ

2ξ );
(ii) for some c′ := c′(K,,σ

1ξ , σ
2ξ ), and for all t ≤ T ,

|δYt |2 +Et

[∫ T

t

|δZs |2 ds

]
≤ c′

Et

[
�T |δξ |2 +

∫ T

t

�s

∣∣(1f − 2f
)(

s, 1Ys,
1Zs

)∣∣2 ds

+
∫ T

t

�s

(∣∣P(2Ys

) − 2Ys

∣∣ + ∣∣P(1Ys

) − 1Ys

∣∣)(∣∣1�s

∣∣ + ∣∣2�s

∣∣)ds

]
. (2.28)

Proof. In this proof, we denote A = (aij ) = H−1 and the following simplified notation will be used a
ij
t = aij (t, 1Yt ),

∂ta
ij
t = ∂ta

ij (t, 1Yt ), ∂ya
ij
t = ∂ya

ij (t, 1Yt ), ∂2
yya

ij
t = ∂2

yya
ij (t, 1Yt ) and ft = f (t, 1Yt ,

1Zt). For the reader’s convenience,

we shall also denote σ := σ
1ξ ∨ σ

2ξ in the proof below.
1. We first show the integrability property of �. We first recall that from Proposition 2.1, for all b > 0, we have

E
[
eb

∫ T
0 {|��

s |+|�f
s |}ds

] ≤ CK,σ,b. (2.29)
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Setting p := p() > 1 such that p2B() ≤ λξ , recall Definition 2.1, we obtain using Hölder inequality,

E
[|�T |p] ≤ CE

[
epB()

∫ T
0 {�1

s +��
s +�

f
s }ds

]
≤ CK,,σE

[
ep2B()

∫ T
0 �1

s ds
] 1

p

≤ CK,,σ ,

where we used (2.29) and Proposition 2.1 (ii).
2.a To obtain the stability result, we first expand the product (�t δY

†
t A(t, Yt )δYt )0≤t≤T . Applying Itô’s formula, we

compute, for 1 ≤ i, j ≤ d ,

d
[
�ta

ij
t δY i

t δY
j
t

]
/�t (2.30)

= δY i
t δY

j
t

(
a

ij
t A() + ∂ta

ij
t

)
dt =: (ETt )ij dt

+ δY i
t δY

j
t

(
a

ij
t B()�1

t + 1

2
Tr

[
∂2
yya

ij
t

1Zt
1Z

†
t

])
dt =: (EZ

t

)ij dt

+ {
a

ij
t

(−δY i
t δf

j
t − δY

j
t δf i

t +B()�
f
t δY i

t δY
j
t

) − ∂ya
ij
t

1ftδY
i
t δY

j
t

}
dt =: (Ef

t

)ij dt (2.31)

+
{

a
ij
t

k∑
m=1

δZim
t δZ

jm
t +

k∑
m=1

∂ya
ij
t

1Z.m
t

(
δY i

t δZ
jm
t + δY

j
t δZim

t

)}
dt =: (EδZ

t

)ij dt (2.32)

+ {
a

ij
t

(
δY i

t δZ
j.
t + δYt δZ

i.
t

) + δY i
t δY

j
t ∂ya

ij
t

1Zt

}
dWt =: dM

ij
t (2.33)

+ {
a

ij
t

(
δY i

t δ�
j
t + δY

j
t δ�i

t

) + (
∂ya

ij
t

1�t +B()a
ij
t ��

t

)
δY i

t δY
j
t

}
dt =: (ERt )ij dt. (2.34)

We now study each term separately.
2.b We start by the reflection terms in (2.34). We first observe that

∑
1≤i,j≤d

(
ERt

)ij = 2A
(
t, 1Yt

)
δYt · δ�t +

∑
1≤i,j≤d

∂ya
ij
t

1�tδY
i
t δY

j
t +B()��

t δYt · A(
t, 1Yt

)
δYt .

Recalling (2.5) and (2.6), we compute

∑
1≤i,j≤d

(
ERt

)ij ≥ 2A
(
t, 1Yt

)
δYt · δ�t +

(
B()

L
��

t − C

∣∣1�t

∣∣)|δYt |2. (2.35)

For the first term in the right hand side of (2.35), we compute

A
(
t, 1Yt

)
δYt · δ�t = A

(
t, 1Yt

)
δYt · 1�t − A

(
t, 2Yt

)
δYt · 2�t − {

A
(
t, 1Yt

) − A
(
t, 2Yt

)}
δYt · 2�t . (2.36)

We now observe that,

A
(
t, 1Yt

)
δYt · 1�t = δYt · A(

t, 1Yt

)1�t = δYt · 1�t

≥ (1Yt −P
(1Yt

) +P
(2Yt

) − 2Yt

) · 1�t

≥ −(∣∣P(1Yt

) − 1Yt

∣∣ + ∣∣P(2Yt

) − 2Yt

∣∣)∣∣1�t

∣∣ (2.37)

where we used (2.27) and the convexity property of D. Similarly, we compute

−A
(
t, 2Yt

)
δYt · 2�t ≥ −(∣∣P(1Yt

) − 1Yt

∣∣ + ∣∣P(2Yt

) − 2Yt

∣∣)∣∣2�t

∣∣. (2.38)

For the last term in the right-hand side of (2.36), we get, using the Lipschitz property of A that

{
A

(
t, 1Yt

) − A
(
t, 2Yt

)}
δYt · 2�t ≥ −C|δYt |2

∣∣2�t

∣∣. (2.39)
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Combining (2.37)–(2.38)–(2.39) with (2.35), we obtain, for B() large enough,

Et

[∫ T

t

�s

∑
1≤i,j≤d

(
ERs

)ij ds

]
≥ −CEt

[∫ T

t

�s

(|P(2Ys

) − 2Ys | + |P(1Ys

) − 1Ys |
)(∣∣1�s

∣∣ + ∣∣2�s

∣∣)ds

]
. (2.40)

2.c Using Young’s inequality, we compute, recalling (2.5) and (2.6),

∑
1≤i,j≤d

(
EδZ

t

)ij ≥ 1

2L
|δZt |2 − C|δYt |2

∣∣1Zt

∣∣2
. (2.41)

The terms Ef in (2.31) can be lower bounded, using Young’s inequality and (2.5), by

∑
1≤i,j≤d

(
Ef

t

)ij ≥ − 1

3L
|δZt |2 +

(
B()

L
�

f
t − CK,,σ

(
1 + ∣∣θ 1ξ

t

∣∣ + ∣∣1Zt −Z1ξ
∣∣))|δYt |2

− C|(1f − 2f
)(

t, 1Yt ,
1Zt

)|2, (2.42)

recalling (2.18).
We also have that

∑
1≤i,j≤d

(
EZ

t

)ij ≥
(
B()

L
�1

t − C

∣∣1Zt

∣∣2
)

|δYt |2 and
∑

1≤i,j≤d

(
ETt

)ij ≥
(
A()

L
− C

)
|δYt |2. (2.43)

2.d We now consider the local martingale M, defined by

Mt :=
∑

1≤i,j≤d

Mij
t with Mij

t :=
∫ t

0
�s dM

ij
s ,

and are going to show that it is in fact a true martingale. We study only the second term in (2.33), the first term is treated
similarly with δZ in place of 1Z. Applying Burkholder–Davis–Gundy inequality, we compute, using (2.6),

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
�tδY

i
t δY

j
t ∂ya

ij
t

1Zt dWt

∣∣∣∣
]

≤ CE

[(∫ T

0
�2

t |δYt |2
∣∣1Zt

∣∣2 dt

) 1
2
]

≤ C,pE
[|�T |p] 1

p E

[
sup

t∈[0,T ]
|δYt |q

(∫ T

0

∣∣1Zt

∣∣2 dt

)q] 1
q

≤ C,pE
[|�T |p] 1

p ,

where we used Cauchy–Schwarz inequality, the energy inequality, with the fact that supt |δYt | is bounded in any L r (FT )

and 1Z ∈ B2. From step 1. we deduce then that the supremum of the local martingale term is integrable and it is thus a
martingale.

3. Combining the results from steps 2.a–2.c, we get, for B() and A() large enough,

�tδYt · A(t,Yt )δYt +Et

[∫ T

t

�s

1

6L
|δZs |2 ds +Mt −MT

]

≤ Et

[
�T δξ · A(T ,YT )δξ

]
+ C,K,σEt

[∫ T

t

�s

{∣∣(1f − 2f
)(

s, 1Ys,
1Zs

)∣∣2 + (|P(2Ys

) − 2Ys | + |P(1Ys

) − 1Ys |
)(∣∣1�s

∣∣ + ∣∣2�s

∣∣)}ds

]
.

Step 2.d allows us to claim that Et [Mt − MT ] = 0 in the preceding inequality. Moreover, we have, recalling (2.5) and
� ≥ 1,

|δYt |2 ≤ L�tδYt · A(t,Yt )δYt and Et

[
�T δξ · A(T ,YT )δξ

] ≤ LEt

[
�T |δξ |2],

which combined with the preceding inequality concludes the proof of (2.28). �
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Remark 2.6. The dependence upon  is a key fact that will restrain us to extend straightforwardly to rougher coefficients
our main existence and uniqueness results in the non-Markovian case, recall assumption (SB). This justifies Section 4
where the Markovian framework is studied under a weaker regularity assumption on H thanks to a different approach.

2.4. Some interesting facts about the class Tβ

We first make the following observation.

Proposition 2.3. Let ξ ∈ L 2(FT ) satisfying (SB)(i). If we have, for some β > 0,

dB2

(
Zξ ,H ∞)

<
1√
β

, (2.44)

then ξ ∈ Tβ .

Proof. We can find V ∈ H ∞, s.t. ‖Zξ − V ‖B2 = 1
(1+η)

√
β

, for some η > 0 small enough. We now set λ := (
1+ η

2
1+ η

3
)2β

and we compute, using Young’s inequality,

∣∣Zξ
∣∣2 ≤

(
1 + η

3

)∣∣Zξ − V
∣∣2 +

(
1 + 3

η

)
|V |2.

This leads, using Hölder inequality, to

E
[
eλ

∫ T
0 |Zξ

t |2 dt
] ≤ CE

[
e(1+ η

3 )2λ
∫ T

0 |Zξ
t −Vt |2 dt

] 1
1+ η

3

where we used the fact that V ∈ H ∞. Since ‖(1 + η
3 )

√
λ(Zξ − V )‖B2 = 1+ η

2
1+η

< 1, we can apply the John–Nirenberg
inequality, see Theorem 2.2 in [16], to obtain

E
[
e(1+ η

3 )2λ
∫ T

0 |Zξ
t −Vt |2 dt

]
< ∞,

which concludes the proof. �

Proposition 2.3 only suggests a sufficient condition. In the case β = +∞, for which condition (2.44) should read
dB2(Zξ ,H ∞) = 0, it is known that the condition is not necessary. We refer the interested reader to the paper [27], where
this question is treated with more details.

The next result shows that a class of path-dependent function of some smooth processes are naturally contained in Tβ

and actually for all β > 0. This class is quite important for applications.

Proposition 2.4. Let X ∈ S 2 such that for all t, s ≤ T , the Malliavin derivatives of Xs denoted DtXs is well defined and
satisfies ‖ supt,s |Et [DtXs]|‖L ∞ < ∞. Let g : C([0, T ],Rn) → R

d be a uniformly continuous function, then denoting

ξ = g(X·), we have that Zξ ∈ �H ∞B2

.

Proof. 1.a We first start by considering a sequence (gN) of N -Lipschitz regularisation of g = (g1, . . . , gd) given by

gi
N(x) = inf

u∈C0([0,T ],Rn)

{
gi(u) + N‖u − x‖∞

}
, for all x ∈ C0([0, T ],Rn

)
,1 ≤ i ≤ n.

Let us observe that gN is finite for N large enough due to the linear growth of g. Then we have, for all x ∈ C0([0, T ],Rn)

and 1 ≤ i ≤ n,

gi(x) ≥ gi
N(x) ≥ inf

u∈C0([0,T ],Rn)

{
gi(x) − ωgi

(|u − x|∞
) + N |u − x|∞

}
≥ gi(x) + inf

u∈C0([0,T ],Rn)

{
N |u|∞ − ωgi

(|u|∞
)}
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where ωgi is a concave modulus of continuity for the uniformly continuous component gi of g. Thus we get

|gN − g|∞ ≤ C

d∑
i=1

sup
u∈C0([0,T ],Rn)

{
ωgi

(|u|∞
) − N |u|∞

} := c(N). (2.45)

Since ωgi (h) = o(1) when h → 0+ then c(N) = o(1) when N → +∞.

1.b Defining YN
t := Et [gN(X·)] = gN(X·) − ∫ T

t
ZN

s dWs and applying Itô’s formula to |YN· −Yξ· |2, we compute

∣∣YN
t −Yξ

t

∣∣2 +Et

[∫ T

t

∣∣ZN
t −Zξ

t

∣∣2 dt

]
= Et

[∣∣gN(X·) − g(X·)
∣∣2] ≤ c(N)2

recall (2.45). From this, we deduce that for all ε > 0, there exists Nε , s.t. for all N ≥ Nε ,∥∥ZN −Zξ
∥∥

B2 ≤ ε. (2.46)

2. Let us now focus on ZN . By classical arguments, see e.g. Proposition 3.3 in [2], we can show that∣∣ZN
∣∣ ≤ CN, dP⊗ dt-a.e.

which shows that ZN , belongs to H ∞.
Finally, we remark that Zξ ∈ B2 since Zξ − ZN ∈ B2 and ZN ∈ H ∞ ⊂ B2. We conclude the proof by using

(2.46). �

We obtain the following direct corollary, which gives a sufficient condition on models in a path-dependent framework
to check the admissibility of the terminal condition.

Corollary 2.2. Let X be solution of the Lipschitz SDE

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs,

where σ and b are Lipschitz continuous functions and σ is bounded.
Set ξ := g(X·) where g is a uniformly continuous function on C([0, T ],Rd), then ξ belongs to Tβ , for all β > 0.

Moreover, if ξ̃ ∈ L ∞, then ξ + ξ̃ belongs to Tβ for all β < ‖ξ̃‖−2
L ∞ .

Proof. When σ and b are smooth enough, it is well known, see e.g. [20], that X is Malliavin differentiable and, for all
1 ≤ i ≤ k, (Di

t Xs)s∈[t,T ] is solution of the linear SDE given by

Di
t Xs = σ i(Xt ) +

∫ s

t

∇b(Xr)D
i
t Xr dr +

∫ s

t

k∑
j=1

∇σ j (Xr)D
i
t Xr dW

j
r , t ≤ s ≤ T .

Then, we easily get that |Et [DtXs]| ≤ eKbT M with Kb the Lipschitz constant of b and M a bound of σ . Thus we can
apply Proposition 2.4 to get the first part of the result. When coefficients are not smooth enough, a standard approximation
gives us the result, pointing out the fact that ‖ supt,s |Et [DtXs]|‖L ∞ can be uniformly bounded with respect to the
approximation. For the second part of the corollary, we just have to remark that

dB2

(
Zξ+ξ̃ ,H ∞) ≤ ∥∥Zξ+ξ̃ −Zξ

∥∥
B2 + dB2

(
Zξ ,H ∞) = ∥∥Z ξ̃

∥∥
B2 .

Moreover, applying Itô’s formula to |Y ξ̃
t |2, we compute

∥∥Z ξ̃
∥∥

B2 ≤ ‖ξ̃‖L ∞,

which implies

dB2

(
Zξ+ξ̃ ,H ∞) ≤ ‖ξ̃‖L ∞ .

Thus, we just have to apply Proposition 2.3 to conclude. �
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3. Existence and uniqueness in a regular setting

In this section, we obtain an existence and uniqueness result in a non Markovian setting, working under assumption (SB)
and considering terminal condition in the class Tβ , for some β > 0. This β , as shown in the previous section depends
dramatically on the smoothness of the coefficients. Our proof is done in two main steps. In the first step, we restrict to the
case of a bounded terminal condition. We study the well-posedness of the penalised equation, and prove their convergence
to an obliquely reflected BSDE. In a second step, we extend our result to all terminal condition in the class Tβ .

3.1. Bounded terminal condition

We first obtain some results on the penalised BSDE that will be used later in this section and also in Section 4 in the
Markovian case. We thus essentially work here under the assumption (A).

We start with the following lemma that verifies the well-posedness of equation (1.2) under some classical conditions.

Lemma 3.1. We assume that (A) is in force and that f and H are Lipschitz continuous with respect to (y, z). Then, for
all n ∈N there exists a unique solution to (1.2) in S 2 × H 2.

Proof. Since D is convex, ϕM
n is convex and nM-Lipschitz continuous, recall (1.3). Indeed, denoting DM := {y ∈

R
d |d(y,D) ≤ M}, we have that

ϕM
n (h) =

{
n 1

2d2(h,D) if h ∈ DM

nMd(h,D) − nM2

2 if h /∈ DM

(3.1)

and

∇ϕM
n (y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if y ∈ D̄
nd(y,D)

y−P(y)
|y−P(y)| if y ∈DM \ D̄

nM
y−P(y)
|y−P(y)| if y /∈DM.

(3.2)

Finally H and ∇ϕM
n are two Lipschitz bounded functions which proves that the penalised BSDE (1.2) has a Lipschitz

driver: the classical result of [23] then applies to get the existence and uniqueness result. �

Lemma 3.2. Assume that (A) holds and that there exists a solution to (1.2) in S 2 × H 2. Then, (Y n,Zn,∇ϕM
n (Y n))

satisfies Condition (2.12) for some K > 0 and for some c > 0 we have

sup
t∈[0,T ]

E
[
ϕM

n

(
Yn

t

)] +E

[∫ T

0

∣∣∇ϕM
n

(
Yn

s

)∣∣2 ds

]
≤ cE

[
|ξ |2 +

∫ T

0
|αs |2 ds

]
. (3.3)

Importantly, K and c do not depend on n, nor M .
Moreover, if (SB)(i)–(ii) holds, then, there exists c′ := c′(σ ξ ), which does not depend on n nor M , such that

sup
t∈[0,T ]

ϕM
n

(
Yn

t

) + ∥∥∇ϕM
n

(
Yn

)∥∥2
B2 ≤ c′. (3.4)

Proof. Since ϕM
n is a C1 convex function, we have the following inequality (see Lemma 2.38 in [24]): for s ∈ [t, T ],

ϕM
n

(
Yn

s

) +
∫ T

s

∇ϕM
n

(
Yn

u

) · H (
u,Y n

u ,Zn
u

)∇ϕM
n

(
Yn

u

)
du

≤ ϕM
n (ξ) +

∫ T

s

∇ϕM
n

(
Yn

u

) · f (
u,Y n

u ,Zn
u

)
du −

∫ T

s

∇ϕM
n

(
Yn

u

) · Zn
u dWu, (3.5)

and we recall that ϕM
n (ξ) = 0. We observe, using (2.2) that

∇ϕM
n

(
Yn

u

) · H (
u,Y n

u ,Zn
u

)∇ϕM
n

(
Yn

u

) ≥ η
∣∣∇ϕM

n

(
Yn

u

)∣∣2 (3.6)
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and combining Cauchy–Schwarz inequality with Young’s inequality

∫ T

s

∇ϕM
n

(
Yn

u

) · f (
u,Y n

u ,Zn
u

)
du ≤ η

2

∫ T

s

∣∣∇ϕM
n

(
Yn

u

)∣∣2 du + 2

η

∫ T

s

∣∣f (
u,Y n

u ,Zn
u

)∣∣2 du.

From this, we deduce

ϕM
n

(
Yn

t

) +Et

[∫ T

t

∣∣∇ϕM
n

(
Yn

u

)∣∣2 du

]
≤ 4

η
Et

[∫ T

t

∣∣f (
u,Y n

u ,Zn
u

)∣∣2 du

]
, (3.7)

which proves (2.12) for (Y n,Zn,�n). This allows then to invoke Lemma 2.1 to obtain (3.3) under (A). Under (SB)(i)–(ii),
(3.7) allows also to conclude recalling that f is Lipschitz continuous, θξ ∈ B2 and (2.18). �

We now prove our first existence result for the obliquely reflected BSDE{
Yt = ξ + ∫ T

t
f (s, Ys,Zs)ds − ∫ T

t
H(s,Ys)�s ds − ∫ T

t
Zs dWs, 0 ≤ t ≤ T ,

Yt ∈ D̄, �t ∈ ∂ϕ(Yt ),
∫ T

0 1{Yt /∈∂D}|�t |dt = 0.
(3.8)

Proposition 3.1. Assume that (SB)(i)–(iii) holds and that ξ ∈ L ∞ ∩TB(). Then, there exists a solution in S 2 ×H 2 ×
H 2 to the obliquely reflected BSDE (3.8).

Proof. To obtain the existence result, we consider a sequence of penalised BSDEs given by equation (1.2) for which we
have existence and uniqueness from Lemma 3.1. In the definition of ϕM

n , recall (1.3), we set M = 2c where c is given in
Corollary 2.1. In particular, we observe that for this choice of M , for 0 ≤ t ≤ T ,

�n
t := ∇ϕM

n

(
Yn

t

) = n
(
Yn

t −P
(
Yn

t

))
and

1

n
ϕn

(
Yn

t

) = 1

2

∣∣P(
Yn

t

) − Yn
t

∣∣2
, (3.9)

recall (3.1) and (3.2). We will use this fact later on.
1.a. We now prove that (Y n,Zn) is a Cauchy sequence in S 2 ×H 2. Indeed, let m ≥ 0 and n ≥ 0, thanks to Lemma 3.2

we can apply Proposition 2.2 to obtain

sup
t∈[0,T ]

E
[∣∣Yn

t − Ym
t

∣∣2] + ∥∥Zn − Zm
∥∥2

H 2

≤ CE

[∫ T

0
�n,m

s

(∣∣P(
Yn

s

) − Yn
s

∣∣ + ∣∣P(
Ym

s

) − Ym
s

∣∣)(∣∣�m
s

∣∣ + ∣∣�n
s

∣∣)ds

]
=: An,m. (3.10)

Let us notice that, from Proposition 2.2 again, there exist p > 1 and a constant C such that

E
[∣∣�n,m

T

∣∣p] ≤ C, (3.11)

where, importantly, p and C do not depend on (n,m). Applying Itô’s formula to |Yn − Ym|2 on [0, T ], we compute,
using usual arguments,

∥∥Yn − Ym
∥∥2

S 2 ≤ CE

[∫ T

0

∣∣Yn
t − Ym

t

∣∣(∣∣�n
t

∣∣ + ∣∣�m
t

∣∣)dt

]

+ CE

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(
Yn

s − Ym
s

)(
Zn

s − Zm
s

)
dWs

∣∣∣∣
]
.

Using Burkholder–Davis–Gundy inequality and Young’s inequality, we obtain

∥∥Yn − Ym
∥∥2

S 2 ≤ CE

[∫ T

0

∣∣Yn
t − Ym

t

∣∣(∣∣�n
∣∣ + ∣∣�m

t

∣∣)dt

]
+ C

∥∥Zn − Zm
∥∥2

H 2 .

Applying Cauchy–Schwarz inequality, and using Lemma 3.2, we get

∥∥Yn − Ym
∥∥2

S 2 ≤ C
(∥∥Yn − Ym

∥∥
H 2 + ∥∥Zn − Zm

∥∥2
H 2

)
. (3.12)
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Combining the preceding inequality with (3.10), we have∥∥Yn − Ym
∥∥2

S 2 + ∥∥Zn − Zm
∥∥2

H 2 ≤ C(An,m + √
An,m). (3.13)

1.b We now study the An,m term. We first observe, recalling Lemma 3.2 and (3.9),

E

[∫ T

0
�

n,m
t

∣∣P(
Yn

t

) − Yn
t

∣∣∣∣�m
s

∣∣ds

]
≤

∥∥∥sup
t

∣∣P(
Yn

t

) − Yn
t

∣∣∥∥∥
L ∞E

[
�

n,m
T

∫ T

0

∣∣�m
s

∣∣ds

]

≤ C√
n
E

[
�

n,m
T

∫ T

0

∣∣�m
s

∣∣ds

]
.

Applying Hölder inequality, denoting q the conjugate exponent of p introduced in (3.11), we deduce from the preceding
inequality

E

[∫ T

0
�

n,m
t

∣∣P(
Yn

t

) − Yn
t

∣∣∣∣�m
s

∣∣ds

]
≤ C√

n
E

[(∫ T

0

∣∣�m
s

∣∣2
ds

) q
2
]
.

Then, combining the energy inequality with (3.4), we conclude

E

[∫ T

0
�

n,m
t

∣∣P(
Yn

t

) − Yn
t

∣∣∣∣�m
s

∣∣ds

]
≤ C√

n
. (3.14)

Similarly we obtain,

E

[∫ T

0
�

n,m
t

∣∣P(
Ym

t

) − Ym
t

∣∣∣∣�n
s

∣∣ds

]
≤ C√

m

and

E

[∫ T

0
�

n,m
t

(∣∣P(
Yn

t

) − Yn
t

∣∣ + ∣∣P(
Ym

t

) − Ym
t

∣∣)∣∣�m
s

∣∣ds

]
≤ C

(
1√
m

+ 1√
n

)
.

Combining the preceding inequalities with (3.13), we compute that

∥∥Yn − Ym
∥∥2

S 2 + ∥∥Zn − Zm
∥∥2

H 2 ≤ C
(
n− 1

4 + m− 1
4
)
,

which proves that (Y n,Zn)n is a Cauchy sequence in S 2 × H 2. We denote (Y,Z) its limit.
2. We now prove that (Y,Z) is solution to an obliquely reflected BSDE, namely we pass to the limit in (1.2). Let us

first observe that, passing to the limit in (3.4) yields that Y ∈ D̄ as expected.
2.a We first study the reflecting term. Since, by Lemma 3.2,

E

[∫ T

0

∣∣∇ϕn

(
Yn

s

)∣∣2 ds

]
≤ C,

we have, up to a subsequence, the following weak L2([0, T ] × �)-convergence:

∇ϕn

(
Yn

)
⇀ �, when n → +∞.

Let (Vt )t∈[0,T ] be a continuous adapted process valued in D̄. From the convexity property of D and the fact that
∇ϕn(Y

n) = n(Y n −P(Y n
s )), recall (3.9), we have

∫ T

0

(
Yn

t − Vt

)†∇ϕn

(
Yn

t

)
dt ≤ 0.

By strong convergence of (Y n)n≥0 to Y , weak convergence of (∇ϕn(Y
n· ))n≥0 and the uniform L2-bound on ∇ϕn(Y

n· ),
recall Lemma 3.2, we obtain

E

[∫ T

0
(Yt − Vt )

†�t dt1A

]
≤ 0,
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for all A ∈ FT . This leads to
∫ T

0 (Yt − Vt )
†�t dt ≤ 0. Using Lemma 2.1 in [11] ω-wise, we obtain that

� ∈ ∂ϕ(Y ) and
∫ T

0
1{Yt /∈∂D}|�t |dt = 0,

which fully characterise �.
2.b Now we want to show that (Y,Z,�) is solution of (3.8). By strong convergence of (Y n,Zn) to (Y,Z) and the

Lipschitz-continuity of f , we have

f
(·, Y n· ,Zn·

) H 2−→ f (·, Y·,Z·) and
∫ t

0
Zn

s dWs
L 2−→

∫ t

0
Zs dWs,

for all t ≤ T . Moreover, �n ⇀ � in L2([0, T ] × �), when n → +∞. Using Mazur’s Lemma, we know that there exists
a convex combination of the above converging strongly in L2([0, T ] × �), namely

p� :=
Np∑
r=p

λ
p
r �r p→∞→ �,

where λ
p
r ≥ 0 for all p ∈ N and p ≤ r ≤ Np , and

∑Np
r=p λ

p
r = 1. Let us observe that by strong convergence, the following

combination

(
pY, pZ

) :=
Np∑
r=p

λ
p
r

(
Y r,Zr

)

still converges to (Y,Z) in S 2 × H 2 and, by strong convergence,

Np∑
r=p

λ
p
r f

(·, Y r ,Zr
) H 2−→ f (·, Y,Z) and

∫ t

0

pZs dWs
L 2−→

∫ t

0
Zs dWs, t ≤ T .

Moreover, we remark that

Np∑
r=p

λ
p
r H

(·, Y r
)
�r =

Np∑
r=p

λ
p
r

[
H

(·, Y r
) − H(·, Y )

]
�r + H(·, Y )p�.

Using the Lipschitz property of H and the uniform L2-bound on ∇ϕn(Y
n· ), the first term in the right hand side of the

preceding equation tends to zero in H 2. Then we get

Np∑
r=p

λ
p
r H

(·, Y r
)
�r H 2−→ H(·, Y )�.

Finally, we just have to pass to the limit into

pYt = ξ +
∫ T

t

Np∑
r=p

λ
p
r f

(
s, Y r

s ,Zr
s

)
ds −

∫ T

t

pZs dWs −
∫ T

t

Np∑
r=p

λ
p
r H

(
s, Y r

s

)
�r

s ds

to conclude the proof of the theorem. �

Remark 3.1. We insist here on the fact that no smoothness condition is imposed on the convex domain in the previous
result. The main point is the smoothness of H and this depends on the problem under consideration. If the domain and
the direction of reflection are smooth, one can exhibit a smooth H , see Remark 2.3. If the domain is allowed to have
corners, the construction of H becomes a delicate task. However this is possible in some cases of practical interest:
Several examples of construction of smooth H in domains with corners are provided for randomised switching control
problems in [1].
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3.2. General case

Theorem 3.1. Assume that (SB) holds and ξ ∈ TB(). There exists a unique solution (Y,Z,�) ∈ S 2 × B2 × B2 to
(1.1).

Before proving our main result, we consider the following lemma which is a key result for the study of Obliquely
Reflected BSDEs, as it proves, among other things, the structural condition (2.12). It is the counterpart of Lemma 3.2
introduced for the penalised BSDE.

Lemma 3.3. Assume that (SB) holds. Let (Y,Z,�) ∈ S 2 × H 2 × H 2 be a solution to the Obliquely Reflected BSDE
(1.1). Then, the structural condition (2.12) holds true for (Y,Z,�) for some K > 0. Moreover, there exists c := c(σ ξ )

such that

‖�‖B2 ≤ c. (3.15)

Proof. Applying Itô’s formula to Ut := φ(Yt ), recall assumption (SB), we compute that dUt = at dt + bt dWt with

at := ∂φ(Yt )
{−f (t, Yt ,Zt ) + H(t,Yt )�t

} + 1

2
Tr

[
∂2φ(Yt )ZtZ

∗
t

]
and bt := ∂φ(Yt )Zt .

Using Itô–Tanaka formula, we obtain

d[−Ut ]+ = −at1{Ut<0} dt − bt1{Ut<0} dWt + dL0
t

where L0 is the local time at 0 of the semi-martingale U . Taking the difference of the two preceding equations, we obtain

0 = at1{Ut=0} dt + bt1{Ut=0} dWt + dL0
t

which leads to at1{Ut=0} dt ≤ 0. We then deduce

|�t |dt ≤ 1

η

[
∂φ(Yt )f (t, Yt ,Zt )

]+ dt, (3.16)

recall (2.9) and Remark 2.3(i). From this, we deduce that a fortiori (2.12) holds true. �

We should notice that in the proof of the above lemma, we obtain a stronger result than the structural condition (2.12).
Indeed, we are able to control in (3.16) the reflecting process without the conditional expectation appearing in (2.12).

We now turn to the proof of our main result for this section.

Proof of Theorem 3.1. 1. We first prove uniqueness of the solution. Let (1Y, 1Z, 1�) and (2Y, 2Z, 2�) be two solutions
of (3.8) in S 2 ×H 2 ×H 2. We first observe that both solutions satisfies (2.12) by application of Lemma 3.3 which allows
us to invoke Proposition 2.1. Moreover, both solutions satisfy (2.27) by definition. Then, a straightforward application of
Proposition 2.2 concludes the proof of this step, noticing that all the terms in the right hand side of (2.28) are null.

2. We now turn to the existence question.
2.a We first approximate ξ by a sequence of bounded random variables (ξN)N≥1. Let (τN)N≥1 be the sequence of

stopping time defined by

τN := inf
{
t ≥ 0 | ∣∣Yξ

t

∣∣ ≥ N
} ∧ T ,

and we set ξN := Yξ
τN

. Importantly, we observe that ξN satisfies (SB)(i) and it belongs also to the class TB(), indeed∫ T

0 |ZξN
s |2 ds ≤ ∫ T

0 |Zξ
s |2 ds. For later use, let us also remark that

σ ξN ≤ σ ξ , for all N ≥ 1, (3.17)

recall (2.8). Moreover, since

ξN → ξP-a.s. and |ξN − ξ | ≤ 2 sup
t∈[0,T ]

∣∣Yξ
t

∣∣,
we have that by the dominated convergence theorem, recall Remark 2.2 (i), ξN → ξ in L q , for any q ≥ 1.
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2.b Applying Proposition 3.1, we introduce a sequence of Obliquely RBSDEs, (YN ,ZN,�N) with terminal condition
ξN . We now show that (YN ,ZN) is a Cauchy sequence in S 2 × H 2. First, we apply the stability estimate given in
Proposition 2.2: for N,P ≥ 1, we have

sup
t∈[0,T ]

E
[∣∣YN

t − YP
t

∣∣2] + ∥∥ZN − ZP
∥∥2

H 2 ≤ CE
[
�

N,P
T

∣∣ξN − ξP
∣∣2]

,

with �N,P such that for some p > 1 and C > 0,

E
[∣∣�N,P

T

∣∣p] ≤ C,

where importantly p and C do not depend on (N,P ), recall (3.17). Using Hölder inequality, we then obtain

sup
t∈[0,T ]

E
[∣∣YN

t − YP
t

∣∣2] + ∥∥ZN − ZP
∥∥2

H 2 ≤ C
∥∥ξN − ξP

∥∥2
L 2q .

Following classical arguments, see Step 1.a in the proof of Proposition 3.1, we compute also

∥∥YN − YP
∥∥2

S 2 ≤ CE

[∫ T

0

∣∣YN
t − YP

t

∣∣(∣∣�N
t

∣∣ + ∣∣�P
t

∣∣)dt

]
+ C

∥∥ZN − ZP
∥∥2

H 2 .

Applying Cauchy–Schwarz inequality, and combining Lemma 3.3 and (3.17), we get

∥∥YN − YP
∥∥2

S 2 ≤ C
(∥∥YN − YP

∥∥
H 2 + ∥∥ZN − ZP

∥∥2
H 2

)
.

Eventually, we obtain

∥∥YN − YP
∥∥2

S 2 + ∥∥ZN − ZP
∥∥2

H 2 ≤ C
(∥∥ξN − ξP

∥∥
L 2q + ∥∥ξN − ξP

∥∥2
L 2q

)
.

From the conclusion of Step 1. we deduce the Cauchy property of the sequence (YN ,ZN) and we denote (Y,Z) its
limit. The proof is then concluded following the same arguments as in step 2 of Proposition 3.1, once observed that by
Lemma 3.3,

E

[∫ T

0

∣∣�N
s

∣∣2 ds

]
≤ C,

where again C does not depend on N from (3.17). �

4. A general existence result in the Markovian framework

In this section, we introduce a Markovian framework: for all (t, x) ∈ [0, T ] ×R
q , we denote (X

t,x
s )s∈[0,T ] the solution of

the SDE

dXs = b(s,Xs)ds + σ(s,Xs)dWs, s ∈ [t, T ],
Xs = x, s ∈ [0, t], (4.1)

and we consider the following Markovian reflected BSDE:

{
Yt = g(X

0,a
T ) + ∫ T

t
f (s,X

0,a
s , Ys,Zs)ds − ∫ T

t
Zs dWs − ∫ T

t
H(s,X

0,a
s , Ys,Zs)�s ds,

Yt ∈ D̄, �t ∈ ∂ϕ(Yt ), 0 ≤ t ≤ T ,
∫ T

0 1{Yt /∈∂D}|�t |dt = 0.
(4.2)

The main goal of this section is to prove an existence result for the above reflected BSDE when H is only continuous,
compare with assumption (SB). We also discuss the case of discontinuous H and the difficulty arising for uniqueness in
this setting.
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4.1. Continuous oblique direction of reflection

We now introduce the main setting for this part. The set of assumption below echoes assumption (A) introduced in
Section 2.1 but in a Markovian setting.

Assumption (AM).

(i) b : [0, T ] ×R
q → R

q and σ : [0, T ] ×R
q → R

q×k are measurable functions satisfying linear growth condition and
uniform Lipschitz condition with respect to the space variable namely

∣∣b(t, x)
∣∣ + ∣∣σ(t, x)

∣∣ ≤ L
(
1 + |x|) and

∣∣b(t, x) − b(t, y)
∣∣ + ∣∣σ(t, x) − σ(t, y)

∣∣ ≤ L|x − y|,

for some L > 0 and all (t, x, y) ∈ [0, T ] ×R
q ×R

q .
(ii) g :Rq → D̄ is a measurable function and there exists p ∈R

+ such that for any x ∈ R
q ,

∣∣g(x)
∣∣ ≤ L

(
1 + |x|p)

.

(iii) f : [0, T ] × R
q × R

d × R
d×k → R

d is a measurable function satisfying: there exists p ∈ R
+ such that, for any

(t, x, y, z) ∈ [0, T ] ×R
q ×R

d ×R
d×k , we have

∣∣f (t, x, y, z)
∣∣ ≤ L

(
1 + |x|p + |y| + |z|),

and, for all (t, x) ∈ [0, T ] ×R
d , f (t, x, ·, ·) is continuous on R

d ×R
d×k .

(iv) H : [0, T ] × R
q × R

d × R
d×k → R

d×d is a measurable function. There exists η > 0 such that, for all (t, x, y, z) ∈
[0, T ] ×R

q ×R
d ×R

d×k

H(t, x, y, z)υ · υ ≥ η, ∀υ ∈ n
(
P(y)

)
,

and
∣∣H(t, x, y, z)

∣∣ ≤ L.
(4.3)

(v) Let X = {μ(t, x; s,dy), x ∈ R
q and 0 ≤ t ≤ s ≤ T } be the family of laws of Xt,x on R

q , i.e., the measures such that
∀A ∈ B(Rq), μ(t, x; s,A) = P(X

t,x
s ∈ A). For any t ∈ [0, T ), for any μ(0, a; t,dy)-almost every x ∈ R

q , and any
δ ∈]0, T − t], there exists an application φt,x : [t, T ] ×R

d → R
+ such that:

(a) ∀k ≥ 1, φt,x ∈ L2([t + δ, T ] × [−k, k]q;μ(0, a; s,dy)ds),
(b) μ(t, x; s,dy)ds = φt,x(s, y)μ(0, a; s,dy)ds on [t + δ, T ] ×R

q .
(vi) For all (t, x) ∈ [0, T ] ×R

d , H(t, x, ·, ·) is continuous on R
d ×D.

Remark 4.1.

(i) We observe that H(t,X, ·) and f (t,X, ·) satisfy assumption (A). Thus we will use in the sequel the a priori estimates
obtained in Section 2.2.

(ii) Remark 2.1 applies for H which is continuous in this context.
(iii) The L 2-domination condition (AM)(v) was initially introduced in [13]. We refer to [5,13] for examples of assump-

tions on coefficients of the SDE (4.1) under which (AM)(v) is true.

Theorem 4.1. Assume (AM). Then, there exists a solution (Y,Z) ∈ S 2 × H 2 to (4.2). Moreover, the following Marko-
vian representation holds true:

There exist u : [0, T ] ×R
q → R

d and v : [0, T ] ×R
q → R

d×k measurable functions such that

Yt = u
(
t,X

0,a
t

)
and Zt = v

(
t,X

0,a
t

)
,

and, for some c > 0, for all (t, x) ∈ [0, T ] ×R
q ,

∣∣u(t, x)
∣∣ ≤ c

(
1 + |x|p)

.

By choosing properly the function H we can obtain the following corollary.
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Corollary 4.1. Let us consider the following obliquely reflected Markovian BSDE⎧⎪⎨
⎪⎩

Yt = g(X
0,a
T ) + ∫ T

t
f (s,X

0,a
s , Ys,Zs)ds − ∫ T

t
Zs dWs + ∫ T

t
�s ds, 0 ≤ t ≤ T ,

Y �
t ≥ maxj∈I{Y j

t − c�j }, 0 ≤ t ≤ T , � ∈ I,∫ T

0 [Y �
t − maxj∈I\{�}{Y j

t − c�j }]��
t dt = 0, � ∈ I,

(4.4)

where I := {1, . . . , d} and the switching costs (cij )i,j∈I satisfy the following structure condition{
cii = 0, for 1 ≤ i ≤ d;
{cij + cjl − cil} > 0, for 1 ≤ i, j ≤ d with i �= j, j �= l.

(4.5)

We assume that assumption (AM) is in force. Then there exists a solution (Y,Z,�) ∈ S 2 ×H 2 ×H 2 to (4.4). Moreover
the following Markovian representation holds true: There exist two measurable functions u : [0, T ] × R

q → R
d and

v : [0, T ] ×R
q →R

d×k such that

Yt = u
(
t,X

0,x
t

)
and Zt = v

(
t,X

0,x
t

)
,

and, for some c > 0, for all (t, x) ∈ [0, T ] ×R
q ,∣∣u(t, x)

∣∣ ≤ c
(
1 + |x|p)

.

Remark 4.2.

(i) Usually obliquely reflected BSDEs associated to switching control problems are written with a reflection term dKt

that is not assumed to be absolutely continuous with respect to the Lebesgue measure in time (see e.g. [14,15]). So
our framework seems to be at first slightly less general. Nevertheless, it is possible to show that the reflecting term
for obliquely reflected BSDEs in fixed convex domain appearing in switching control problems is in fact absolutely
continuous with respect to the Lebesgue measure: This is due to the fact that the existence result is usually obtained
by a penalisation procedure that gives a uniform bound on the penalised term which allows to use a weak topology
convergence argument. For more details, we refer to Remark 2.1 in [15].

(ii) The main novelty here is the dependence of the generator on the whole z (as in the concomitant article [5]) which
extend the result of [3,14,15]. Our result only cover the case of constant switching costs due to a priori estimates
obtained previously in the framework of a deterministic domain D. Nevertheless our approach might be adapted to
treat random domains by following same ideas than [17].

Before giving the proof of Theorem 4.1 and Corollary 4.1, we start by considering an approximation of (4.2). Let θ be
an element of C∞(Rd+d×k,R+) with compact support and satisfying∫

Rd+d×k

θ(y, z)dy dz = 1.

For all n ∈ N and (t, x, y, z) ∈ [0, T ] ×R
q ×R

d ×R
d×k we set

fn(t, x, y, z) =
∫
Rd+d×k

n2f (t, x, y, z)θ
(
n(y − u),n(z − v)

)
dudv

Hn(t, x, y, z) =
∫
Rd+d×k

n2H(t, x, y, z)θ
(
n(y − u),n(z − v)

)
dudv.

By classical convolution arguments functions (fn)n∈N and (Hn)n∈N satisfy following properties.

Lemma 4.1. Assume (AM).

(i) fn : [0, T ] × R
q × R

d × R
d×k → R

d and Hn : [0, T ] × R
q × R

d × R
d×k → R

d×d are measurable and uniformly
Lipschitz functions with respect to (y, z).

(ii) |fn(t, x, y, z)| ≤ L(1 + |x|p + |y| + |z|) and |Hn(t, x, y, z)| ≤ L for all (t, x, y, z) ∈ [0, T ] ×R
q ×R

d ×R
d×k .

(iii) For all (t, x) ∈ [0, T ] ×R
q and K a compact subset of Rd ×R

d×k

sup
(y,z)∈K

∣∣fn(t, x, y, z) − f (t, x, y, z)
∣∣ + sup

(y,z)∈K

∣∣Hn(t, x, y, z) − H(t, x, y, z)
∣∣ n→+∞−→ 0.
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For any n ∈N, we then consider the following BSDE

Yn
t = g

(
X

0,a
T

) +
∫ T

t

fn

(
s,X0,a

s , Y n
s ,Zn

s

)
ds

−
∫ T

t

Zn
s dWs −

∫ T

t

Hn

(
s,X0,a

s , Y n
s ,Zn

s

)∇ϕn

(
Yn

s

)
ds, t ∈ [0, T ] (4.6)

where ϕn is defined in (1.3) with M fixed to an arbitrary value. Note that, in this section, for the reader’s convenience, we
write simply ϕn instead of ϕM

n .

Lemma 4.2. There exists a unique solution to (4.6) in S 2 × H 2. Moreover, there is a Markovian representation for this
solution: for all n ∈N, there exist un : [0, T ] ×R

q → R
d and vn : [0, T ] ×R

q → R
d×k measurable functions satisfying

Yn
t = un

(
t,X

0,a
T

)
and Zn

t = vn

(
t,X

0,a
T

)
. (4.7)

Moreover, for all (t, x) ∈ [0, T ] ×R
q , (un(s,X

t,x
s ), vn(s,X

t,x
s ))s∈[t,T ] is the unique solution in S 2 × H 2 of the BSDE

Yn,t,x
s = g

(
X

t,x
T

) +
∫ T

s

fn

(
r,Xt,x

r , Y n,t,x
r ,Zn,t,x

r

)
dr −

∫ T

s

Zn,t,x
r dWr

−
∫ T

s

Hn

(
r,Xt,x

r , Y n,t,x
r ,Zn,t,x

r

)∇ϕn

(
Yn,t,x

r

)
dr s ∈ [t, T ]. (4.8)

Proof. We use the same arguments as in the proof of Lemma 3.1: Since Hn and ∇ϕn are two Lipschitz bounded functions
(with respect to y and z), the penalised BSDE (4.6) has a Lipschitz driver and the classical theory then applies to get the
existence, uniqueness and representation result. �

By applying Lemma 2.1 and Lemma 3.2, we obtain the following estimates for (Y n,t,x ,Zn,t,x).

Proposition 4.1. For all (t, x) ∈ [0, T ] ×R
q , we have

sup
t≤s≤T

E
[∣∣Yn,t,x

s

∣∣2 + ϕn

(
Yn,t,x

s

)] +E

[∫ T

t

∣∣Zn,t,x
s

∣∣2 ds +
∫ T

t

∣∣∇ϕn

(
Yn,t,x

s

)∣∣2 ds

]
≤ C

(
1 + |x|2p

)
.

In particular, Proposition 4.1 yields that, for some c > 0,∣∣un(t, x)
∣∣ ≤ c

(
1 + |x|p)

, ∀n ∈ N,∀(t, x) ∈ [0, T ] ×R
q .

We now turn to the proof of the main result for this section.

Proof of Theorem 4.1. The proof follows mainly from arguments in [13]. Some extra work is required to identify the
reflecting process properly.

1. Define,

Fn(t, x) = fn

(
t, x, un(t, x), vn(t, x)

)
, Gn(t, x) = Hn

(
t, x, un(t, x), vn(t, x)

)∇ϕn

(
un(t, x)

)
,

and

Fn := Fn − Gn,

we compute∫
Rq

∫ T

0

∣∣Fn(s, y)
∣∣2

μ(0, a; s, dy)ds = E

[∫ T

0

∣∣Fn

(
s,X0,a

s

)∣∣2 ds

]

≤ E

[∫ T

0
C

(
1 + ∣∣X0,a

s

∣∣2p + ∣∣Yn
s

∣∣2 + ∣∣Zn
s

∣∣2 + ∣∣∇ϕn

(
Yn

s

)∣∣2)ds

]

≤ C,

by using Proposition 4.1. Thus we get Fn ⇀ F in L2([0, T ] ×R
q;μ(0, a; s,dx)ds), up to a subsequence.
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2. We now show that (un(t, x))n∈N is a Cauchy sequence in R
d for all t ∈ [0, T ] and for μ(0, a; t,dx)-almost every

x ∈ R
q . When t = T the sequence is constant and the result is obvious. When t < T , x ∈ R

q and δ ∈ (0, T − t], we
compute

∣∣un(t, x) − um(t, x)
∣∣ =

∣∣∣∣E
[∫ T

t

(
Fn

(
s,Xt,x

s

) − Fm

(
s,Xt,x

s

))
ds

]∣∣∣∣
≤ E

[∫ t+δ

t

∣∣Fn

(
s,Xt,x

s

) − Fm

(
s,Xt,x

s

)∣∣ds

]
=: A1

+E

[∫ T

t+δ

∣∣Fn

(
s,Xt,x

s

) − Fm

(
s,Xt,x

s

)∣∣1{|Xt,x
s |≥κ} ds

]
=: A2

+
∣∣∣∣E

[∫ T

t+δ

(
Fn

(
s,Xt,x

s

) − Fm

(
s,Xt,x

s

))
1{|Xt,x

s |<κ} ds

]∣∣∣∣ =: A3.

For the first two terms, we easily get

A1 ≤ δ
1
2 E

[∫ t+δ

t

∣∣Fn

(
s,Xt,x

s

) − Fm

(
s,Xt,x

s

)∣∣2 ds

] 1
2 ≤ C

(
1 + |x|p)

δ
1
2 ,

A2 ≤ Cκ− 1
2 E

[∫ T

t+δ

∣∣Xt,x
s

∣∣ds

]
E

[∫ T

t+δ

∣∣Fn

(
s,Xt,x

s

) − Fm

(
s,Xt,x

s

)∣∣2 ds

] 1
2 ≤ C

(
1 + |x|p+1)κ− 1

2 ,

where C is a constant that does not depend on n nor m. For the third term, we have

A3 =
∣∣∣∣
∫
Rq

∫ T

t+δ

(
Fn(s, y) − Fm(s, y)

)
1{|y|≤κ}μ(t, x; s,dy)ds

∣∣∣∣
=

∣∣∣∣
∫
Rq

∫ T

t+δ

(
Fn(s, y) − Fm(s, y)

)
1{|y|≤κ}φt,x(s, y)μ(0, a; s, dy)ds

∣∣∣∣
for μ(0, a; s,dx)-almost every x ∈ R

q , where we used the L2-domination assumption. By weak convergence, A3 → 0
when n,m → ∞. Thus, by taking δ → 0 and κ → +∞ we show that for all t ∈ [0, T ] and for μ(0, a; t,dx)-almost every
x ∈ R

q , (un(t, x))n∈N is a Cauchy sequence. So, there exists a Borelian application u : [0, T ] × R
q → R

d such that for
all t ∈ [0, T ], for μ(0, a; t,dx)-almost every x ∈R

q ,

u(t, x) = lim
n∞ un(t, x). (4.9)

We straightforwardly get, for all t ∈ [0, T ],

Yn
t = un

(
t,X

0,a
t

) → u
(
t,X

0,a
t

) := Yt , a.s.

and, observing that |Yn
t | ≤ C(1 + |X0,a

t |p), we obtain via the dominated convergence theorem, Yn
t → Yt in L2([0, T ] ×

�,dt ⊗ dP).
3. We can easily prove that the process Y lives in the non-empty convex set D̄. Indeed, we have, recalling (3.1),

sup
0≤s≤T

E
[
ϕ1(Ys)

] ≤ sup
0≤s≤T

E
[∣∣ϕ1(Ys) − ϕ1

(
Yn

s

)∣∣] + 1

n
sup

0≤s≤T

E
[
ϕn

(
Yn

s

)]

≤ M sup
0≤s≤T

E
[∣∣Ys − Yn

s

∣∣] + C

n

n→+∞−→ 0,

where we used Proposition 4.1, the fact that ϕ1 is a M-Lipschitz function and the convergence of (Y n)n∈N. Then, for all
s ∈ [0, T ], d(Ys,D) = 0 a.s. and so Ys ∈ D̄ a.s.



Obliquely reflected backward stochastic differential equations 2891

4. We now show that (Zn)n = ((vn(t,X
0,a
t ))t∈[0,T ])n is a Cauchy sequence in L2([0, T ] × �,dt ⊗ dP). For n,m ≥ 1,

we compute, applying Itô’s formula,

E

[∫ T

0

∣∣Zn
s − Zm

s

∣∣2 ds

]
≤ 2E

[∫ T

0

(
Yn

t − Ym
t

)(
Fn

(
t,X

0,a
t

) − Fm

(
t,X

0,a
t

))
dt

]

≤ CE

[∫ T

0

∣∣Yn
t − Ym

t

∣∣2 dt

] 1
2

,

which goes to 0 as n,m → ∞. We denote by Z the limit. From now on, we work with the progressively measurable
version of (Y,Z).

5.a In the last step we have to prove that (Y,Z) is a solution to BSDE (4.2).
We start by studying the convergence of the generator. By mimicking [13], we can easily show that (fn(t,X

0,a
t ,

Y n
t ,Zn

t ))t∈[0,T ] converges to (f (t,X
0,a
t , Yt ,Zt ))t∈[0,T ] in L1([0, T ] × �,dt ⊗ dP ).

5.b Finally we study the reflecting term. Since

E

[∫ T

0

∣∣∇ϕn

(
Yn

s

)∣∣2 ds

]
≤ C,

we have, up to a subsequence, the following weak L2([0, T ] × �)-convergence:

∇ϕn

(
Yn·

)
⇀ �, when n → +∞,

and we can follow step 2.a in the proof of Proposition 3.1 to obtain

� ∈ ∂ϕ(Y ) and
∫ T

0
1{Yt /∈∂D}|�t |dt = 0,

which fully characterize �. We now follow step 2.b in the proof of Proposition 3.1. Using Mazur’s Lemma, we know that
there exists a convex combination of (�n)n∈N := (∇ϕn(Y

n))n∈N converging strongly in L2([0, T ] × �), namely

p� :=
Np∑
r=p

λ
p
r �r p→∞→ �,

where λ
p
r ≥ 0 for all p ∈ N and p ≤ r ≤ Np , and

∑Np
r=p λ

p
r = 1. Let us observe that by strong convergence, the following

combination

(
pY, pZ

) :=
Np∑
r=p

λ
p
r

(
Y r,Zr

)

still converges to (Y,Z) in S 2 × H 2 and, by strong convergence again,

Np∑
r=p

λ
p
r fr

(·,X0,a, Y r ,Zr
) L1

(
[0,T ]×�,dt⊗dP

)
−→ f

(·,X0,a, Y,Z
)

and
∫ t

0

pZs dWs
L 2−→

∫ t

0
Zs dWs.

Moreover, we remark that, for all t ≤ T ,

Ep :=
∫ t

0

Np∑
r=p

λ
p
r Hr

(
s,X0,a

s , Y r
s ,Zr

s

)
�r ds −

∫ t

0
H

(
s,X0,a

s , Ys,Zs

)
�s ds

=
∫ t

0

Np∑
r=p

λ
p
r

{
Hr

(
s,X0,a

s , Y r
s ,Zr

s

) − H
(
s,X0,a

s , Y r
s ,Zr

s

)}
�r

s ds =: Ap

1

+
∫ t

0

Np∑
r=p

λ
p
r

{
H

(
s,X0,a

s , Y r
s ,Zr

s

) − H
(
s,X0,a

s , Ys,Zs

)}
�r

s ds =: Ap

2
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+
∫ t

0
H

(
s,X0,a

s , Ys,Zs

){
p�s − �s

}
ds =: Ap

3 . (4.10)

We study each term in the right hand side of the above equality separately. For the first one, we compute using Cauchy–
Schwartz inequality and the uniform bound on ‖�n‖H 2

E
[∣∣Ap

1

∣∣] ≤ C

Np∑
r=p

λ
p
r E

[∫ t

0

∣∣Hr

(
s,X0,a

s , Y r
s ,Zr

s

) − H
(
s,X0,a

s , Y r
s ,Zr

s

)∣∣2 ds

] 1
2

. (4.11)

For all κ > 0, we then get

E
[∣∣Ap

1

∣∣] ≤ C

Np∑
r=p

λ
p
r E

[∫ t

0

∣∣Hr

(
s,X0,a

s , Y r
s ,Zr

s

) − H
(
s,X0,a

s , Y r
s ,Zr

s

)∣∣21{|Y r
s |+|Zr

s |≤κ} ds

] 1
2 =: Bp

1

+ C

Np∑
r=p

λ
p
r E

[∫ t

0
1{|Y r

s |+|Zr
s |>κ} ds

] 1
2 =: Bp

2 .

Combining Markov inequality with the uniform square integrability of Yn and Zn, we easily obtain that

B
p

2 ≤ C

κ
. (4.12)

For the term B
p

1 , we combine the uniform convergence (on compact set) of Hr to H , recall Lemma 4.1(iii), with the
dominated convergence theorem, since Hr and H are bounded, to get that for all ε > 0 there exists Nκ,ε ∈N such that

B
p

1 ≤ ε for all p ≥ Nκ,ε. (4.13)

Combining (4.12) and (4.13), we then get

lim
p

E
[∣∣Ap

1

∣∣] = 0. (4.14)

Next, we compute, using Cauchy–Schwartz inequality and the uniform bound on ‖�n‖H 2 ,

E
[∣∣Ap

2

∣∣] ≤ C

Np∑
r=p

λ
p
r E

[∫ t

0

∣∣H (
s,X0,a

s , Y r
s ,Zr

s

) − H
(
s,X0,a

s , Ys,Zs

)∣∣2
ds

] 1
2

and we deduce

lim
p

E
[∣∣Ap

2

∣∣] = 0, (4.15)

from the continuity of H and the strong convergence of (Y r ,Zr) to (Y,Z). Finally we use the boundedness of H and the
strong convergence of p� to � to get

lim
p

E
[∣∣Ap

3

∣∣] = 0. (4.16)

Combining (4.14), (4.15) and (4.16) with (4.10) yields limp E[|Ep
t |] = 0. Eventually, we get that, for all t ≤ T ,

Yt = g
(
X

0,a
T

) +
∫ T

t

f
(
s,X0,a

s , Ys,Zs

)
ds −

∫ T

t

Zs dWs −
∫ T

t

H
(
s,X0,a

s , Ys,Zs

)
�s ds,

which concludes the proof of Theorem 4.1. Let us remark that the preceding equation allows us to consider a continuous
version of the process Y . �

We conclude this section by giving the proof of Corollary 4.1 which is an interesting application of Theorem 4.1 to the
well studied case of BSDEs for switching problems. Following our approach, the main question reduces now to find an
appropriate continuous H to describe the direction of reflection such that H(·)� = −� , compare (4.2) and (4.4).
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Proof of Corollary 4.1. It is sufficient to define a continuous function H on ∂D, recall Remark 2.1. We have

D =
{
y ∈R

d : yl > max
j∈I

(
yj − clj

)
, l ∈ I

}
, (4.17)

thus, D̄ is a non-compact convex polyhedron. We can remark that

D̄0 := D̄ ∩ {
yd = 0

}
is, by abuse of notation, a compact convex polyhedron of Rd−1 and so it is a convex polytope. Indeed, we have

D̄0 ⊂ {(
y1, . . . , yd−1)|yi ∈ [−cid , cdi

]
,∀i ∈ {1, . . . , d − 1}} �=∅,

since we have cdi + cid > 0 for all 1 ≤ i ≤ d − 1 due to the structure condition (4.5). We just have to define H on ∂D̄0

and then extend H to ∂D̄ in this way: for all (t, x, y, z) ∈ [0, T ] ×R
k ×D ×R

d×k , we define

H(t, x, y, z) := H
(
t, x,

(
y1 − yd, . . . , yd−1 − yd,0

)
, z

)
.

Since D̄0 is a convex polytope, then, by Krein–Milman theorem, it is the convex hull of its extremal points. We will define
H on all extremal points and then the value of H on all facets

Clj = {
y ∈ ∂D0 : yl = yj − clj

}
, l, j ∈ I, l �= j,

will be defined by linear interpolations. Let us consider an extremal point (ȳ1, . . . , ȳd−1): we know that there exist
(li , ji)i∈{1,...,d−1} ∈ {1, . . . , d}2×(d−1) such that

• (li , ji) �= (lk, jk) when i �= k,
• for all i ∈ {1, . . . , d − 1}, ȳli = ȳji − cliji where ȳd = 0.

Then, we define H(t, x, (ȳ1, . . . , ȳd−1,0), z) as the orthogonal projection onto span({el1 , . . . , eld−1}). To conclude it is
sufficient to check that H(t, x, (y1, . . . , yd−1,0), z) sends the vector el − ej to the vector el when (y1, . . . , yd−1) ∈ Clj

and to show the result only for extremal points. In order to do so, let us consider (ȳ1, . . . , ȳd−1) ∈ Clj an extremal point:
by the definition of H we just have to show that ej /∈ {el1, . . . , eld−1} where we re-use previous notations. Let us prove it
by contradiction: we assume that there exists i ∈ {1, . . . , d − 1} such that

j = li and ȳli = ȳji − cliji . (4.18)

Moreover, we have (ȳ1, . . . , ȳd−1) ∈ Clj so

ȳl = ȳj − clj . (4.19)

By combining (4.18), (4.19) and the structure condition (4.5), we obtain

ȳl = ȳj − clj = ȳji − (
clj + cjji

)
< ȳji − clji ,

which is in contradiction with the definition of D given by (4.17). �

Remark 4.3. The H operator constructed in the above proof does not satisfy the assumption (SB)(iii) used in the non-
Markovian framework of Section 3. Actually, we do not know yet if it is possible to exhibit such an H when d > 2. For
positive results in this direction, we refer to [1] dealing with randomised switching problems.

4.2. The case of discontinuous H

In this section, we consider the case of a discontinuous direction of reflection on the boundary ∂D. We obtain an existence
result for an obliquely reflected BSDE but the characterization of the reflecting part is somehow more involved, specially
at the discontinuity point of H , where many directions of reflection are allowed at the limit. This too weak characterization
leads a to non-uniqueness result as illustrated in the next paragraph. The limiting equation we are studying here is then

Yt = g
(
X

0,a
T

) +
∫ T

t

f
(
s,X0,a

s , Ys,Zs

)
ds −

∫ T

t

Zs dWs −
∫ T

t

�s ds, t ∈ [0, T ]

�s ∈ E
(
s,X0,a

s , Ys,Zs

)
and Ys ∈ D̄ dP⊗ ds a.e., (4.20)
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with a ∈R
q and, for all (t, x, y, z) ∈ [0, T ] ×R

q × D̄ ×R
d×k ,

E(t, x, y, z) :=
{⋂

ε>0 pos({H(t, x, ỹ, z̃)u|(ỹ, z̃ ∈ B((y, z), ε), u ∈ ∂ϕ(y)}) if y ∈ ∂D
{0} if y ∈ D,

where pos({vi}) is the closure of the positive linear span of the family {vi}, and B(x, ε) is the closed Euclidean ball of
center x and radius ε.

Theorem 4.2. Assume that assumptions (AM)(i)–(v) hold. Then, there exists a solution in S 2 × H 2 × H 2 to (4.20).

Remark 4.4. When H is continuous, we can easily show that

E(t, x, y, z) = H(t, x, y, z)∂ϕ(y)

which is consistent with the result of Theorem 4.1.

Proof. The proof of Theorem 4.2 strongly follows the proof of Theorem 4.1. The arguments are similar from step 1 to
step 5.a. We thus start directly the proof at step 5.b by studying the reflecting term. Since

E

[∫ T

0

∣∣H (
s,X0,a

s , Y n
s ,Zn

s

)∇ϕn

(
Yn

s

)∣∣2 ds

]
≤ C,

we have, up to a subsequence, the following weak L2([0, T ] × �)-convergence:

�n := H
(·,X0,a· , Y n· ,Zn·

)∇ϕn

(
Yn·

)
⇀ �, when n → +∞.

Using once again Mazur’s Lemma, we know that there exists a convex combination of (�n)n∈N converging strongly in
L2([0, T ] × �), namely

p� :=
Np∑
r=p

λ
p
r �r p→∞→ �,

where λ
p
r ≥ 0 for all p ∈N and p ≤ r ≤ Np , and

∑Np
r=p λ

p
r = 1. As usual, the following combination

(
pY, pZ

) :=
Np∑
r=p

λ
p
r

(
Y r,Zr

)

still converges to (Y,Z) in S 2 × H 2 and, by strong convergence,

Np∑
r=p

λ
p
r fr

(·,X0,a, Y r ,Zr
) L1

(
[0,T ]×�,dt⊗dP

)
−→ f

(·,X0,a, Y,Z
)

and
∫ t

0

pZs dWs
L 2−→

∫ t

0
Zs dWs.

So we can pass to the limit into

pYt = g
(
X

0,a
T

) +
∫ T

t

Np∑
r=p

λ
p
r fr

(
s,X0,a, Y r

s ,Zr
s

)
ds −

∫ T

t

pZs dWs −
∫ T

t

p�s ds

to obtain that

Yt = g
(
X

0,a
T

) +
∫ T

t

f
(
s,X0,a

s , Ys,Zs

)
ds −

∫ T

t

Zs dWs −
∫ T

t

�s ds, dt ⊗ dPa.e.

To conclude we just have to study the direction of reflection. Since we have, for all n ∈N,

�n
t := H

(
t,X

0,a
t , Y n

t ,Zn
t

)∇ϕn

(
Yn

t

) ∈ H
(
t,X

0,a
t , Y n

t ,Zn
t

)
∂ϕ

(
P

(
Yn

t

))
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and (Y n
t ,Zn

t )
n→∞→ (Y,Z) dt ⊗ dPa.e., then, for all ε1 > 0 and ε2 > 0, there exists N (depending on ω) such that, for all

n ≥ N ,

�n
t ∈ pos

({
H

(
t,X

0,a
t , ỹ, z̃

)
u|(ỹ, z̃) ∈ B

(
(Yt ,Zt ), ε1

)
, ȳ ∈ B(Yt , ε2) ∩ D̄, u ∈ ∂ϕ(ȳ)

})
,

dt ⊗ dPa.e. It implies that, for all p ≥ N ,

p�t ∈ pos
({

H
(
t,X

0,a
t , ỹ, z̃

)
u|(ỹ, z̃) ∈ B

(
(Yt ,Zt ), ε1

)
, ȳ ∈ B(Yt , ε2) ∩ D̄, u ∈ ∂ϕ(ȳ)

})
dt ⊗ dPa.e. Finally we get that

�t ∈ Ē
(
t,X

0,a
t , Yt ,Zt

)
dt ⊗ dP-a.e.

where

Ē(t, x, y, z) :=
⋂

ε1>0,ε2>0

pos(
{
H(t, x, ỹ, z̃)u|(ỹ, z̃ ∈ B

(
(y, z), ε1

)
, ȳ ∈ B(y, ε2) ∩ D̄, u ∈ ∂ϕ(ȳ)

})
.

When y ∈ D we can remark that ∂ϕ(ȳ) = 0 when ȳ ∈ B(y, ε2) ∩ D̄ with ε2 small enough: thus we get E(t, x, y, z) = 0.
When y /∈ D, Let us show that

∂ϕ(y) =
⋂
ε2>0

{
u|u ∈ ∂ϕ(ȳ), ȳ ∈ B(y, ε2) ∩ D̄

}
. (4.21)

One inclusion is obvious, we will prove the other one. Let us consider u ∈ ∂ϕ(yn) for all n ∈N
∗ with yn ∈ B(y,1/n)∩ D̄

and let us show that u ∈ ∂ϕ(y). For all z ∈ D̄ and n ∈N we have

u · (z − y) = u · (z − yn) + u · (yn − y)

and so

sup
z∈D̄

(
u · (z − y)

) ≤ sup
z∈D̄

(
u · (z − yn)

) + u · (yn − y) ≤ |u||yn − y|

by definition of ∂ϕ(yn). Then, by taking n → +∞ in the preceding inequality we get

sup
z∈D̄

(
u · (z − y)

) ≤ 0

which proves (4.21). This result implies that for any (ỹ, z̃) ∈R
d ×R

d×k ,⋂
ε2>0

{
H(t, x, ỹ, z̃)u|ȳ ∈ B(y, ε2) ∩ D̄, u ∈ ∂ϕ(ȳ)

} = {
H(t, x, ỹ, z̃)u|u ∈ ∂ϕ(y)

}
,

and so we finally get that Ē = E which concludes the proof. �

A counter-example to uniqueness. Inspired by Remark 4.4 in [18], we suggest the following counter-example to unique-
ness in a non-smooth setting. The domain D is given by

D = {
y ∈R

3 | y1 ≥ 0 and y2 + y1 ≥ 0
}

Observe that ∂D = F1 ∪ F2, where F1 and F2 are given by

F1 = {
y ∈ R

3 | y1 = 0 and y2 ≥ 0
}
, F2 = {

y ∈R
3 | y1 ≥ 0 and y1 + y2 = 0

}
and we denote by G = F1 ∩ F2, the corner of the domain. On F1 we assume that the reflection is normal so that H = I3,
including points on G where the outward cone of reflection if given by

K = {
y ∈ R

3 | y1 ≤ 0, y2 ≤ 0 and y2 ≥ y1
}
.
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The direction of reflection is along the y1 axis on F2 \ G and is thus oblique, H is constant but not equal to Id . H is thus
discontinuous at the corner.

We consider a BSDE with the following data: X = W , ξ = (0,0,XT )�, f (t, x, y, z) = −(z3, z3,0)� is constant. Note
that it satisfies the assumption (AM)(i)–(v). We give now two distinct solutions:

1. The first solution is given by Yt = (0,0,Wt )
�, Zt = (0,0,1)� and �t = (−t,−t,0)�.

2. The second solution is given by Y ′
t = (T − t,−(T − t),Wt )

�, Z′
t = (0,0,1)� and � ′

t = (−2t,0,0)�.
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