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Abstract. We study the mixing time of the (n, k) Bernoulli–Laplace urn model, where k ∈ {0,1, . . . , n}. Consider two urns, each
containing n balls, so that when combined they have precisely n red balls and n white balls. At each step of the process choose
uniformly at random k balls from the left urn and k balls from the right urn and switch them simultaneously. We show that if k = o(n),
this Markov chain exhibits mixing time cutoff at n

4k
logn and window of the order n

k
log logn. This is an extension of a classical

theorem of Diaconis and Shahshahani who treated the case k = 1.

Résumé. Nous étudions le temps de mélange de l’urne de Bernoulli–Laplace de paramètres (n, k), où k ∈ {0,1, . . . , n}. On considère
deux urnes, chacune contenant n boules, telles que combinées elles ont exactement n boules rouges et n boules blanches. A chaque
étape du processus, on choisit au hasard k boules dans chaque urne et on les échange. Nous montrons que si k = o(n), le temps de
mélange de cette chaîne de Markov exhibe un phénomène de coupure à l’instant n

4k
logn avec une fenêtre d’ordre n

k
log logn. Ceci

donne une extension du théorème classique de Diaconis et Shahshahani qui traitait le cas k = 1.
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1. Introduction

Mixing time of card shuffling schemes and combinatorial urn models is a widely studied subject in the discrete probability
literature. Recently, there has been a lot of interest for shuffling large decks of cards and shuffling models that are actually
used in real life (see, for instance, [1,2,16] and [6]). This paper focuses on a specific shuffle of a deck of cards that is
practiced by casinos (see [16]) and can be described as follows. Fix n ∈ N and k ∈ {0,1, . . . , n}. Initially, we have an
unshuffled deck of 2n cards. At each step of the process, we cut the deck in two piles of equal size, shuffle each pile
independently and perfectly and then reassemble the deck. Finally, we move the top k cards of the reassembled deck to
the bottom and repeat the process.

As explained in [16], this card shuffling scheme is in one-to-one correspondence with the classical Bernoulli–Laplace
urn model with parameters (n, k), which is defined as follows. Initially, we have two urns, each containing n balls, so that
when combined they have precisely n red balls and n white balls. At each step of the process, we pick k balls from each
urn uniformly at random and switch them simultaneously.

Let Xt denote the number of red balls in the left urn at time t . For x, y ∈ X = {0, . . . , n}, let P t
x(y) be the probability

of having y red balls in the left urn after t steps, given that the left urn initially contained x red balls, that is

P t
x(y) = P(Xt = y|X0 = x). (1)

It has been proven by Taïbi [21] that the sequence of probability measures P t
x converges to the hypergeometric distribution

πn(j) =
(
n
j

)(
n

n−j

)
(2n

n

) , 0 ≤ j ≤ n (2)
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as t → ∞, with respect to the total variation distance

d(t)
def= max

x∈X
∥∥P t

x − πn

∥∥
TV = 1

2
max
x∈X

∑
y∈X

∣∣P t
x(y) − πn(y)

∣∣. (3)

A question which arises naturally, is to determine the rate of convergence to stationarity of the above process, which is
quantified by the mixing time

tmix(ε) = min
{
t ∈N : max

x∈X
∥∥P t

x − πn

∥∥
TV ≤ ε

}
. (4)

The mixing time of the Bernoulli–Laplace model was first studied by Diaconis and Shahshahani in [9], who proved that
for k = 1 the chain exhibits cutoff at n

4 logn with window n. Afterwards, Donnelly, Floyd and Sudbury [10] showed that
the separation distance mixing time of the Bernoulli–Laplace urn model for k = 1 exhibits cutoff as well and Belsley [3]
proved cutoff for the mixing time of distance regular graphs, which is a generalization of [9]. The mixing time of the
(n, k) Bernoulli–Laplace Markov chain for k > 1 was first studied by Nestoridi and White [16], who showed that when
k = o(n), n

4k
logn − O(n

k
) steps are necessary for the chain to approach stationarity, while n

2k
logn steps are sufficient, in

particular

n

4k
logn − c(ε)n

k
≤ tmix(ε) ≤ n

2k
log

(
n

ε

)
. (5)

They also proved that if n
2 − log6 n ≤ k ≤ n

2 then the chain mixes in a finite number of steps.
The main result of the present article provides the sharp upper bound for the mixing time of the (n, k) Bernoulli–

Laplace urn model when k = o(n), thus bridging the gap (5) from [16].

Theorem 1. The mixing time of the (n, k) Bernoulli–Laplace urn model with k = o(n) satisfies

tmix(ε) ≤ n

4k
logn + 3n

k
log logn + O

(
n

ε4k

)
(6)

for every ε ∈ (0,1).

In combination with the sharp lower bound (5) from [16], we deduce that the (n, k) Bernoulli–Laplace urn model with
k = o(n) exhibits cutoff at n

4k
logn with window n

k
log logn, i.e. that

lim
c→∞ lim

n→∞d

(
n

4k
logn − cn

k
log logn

)
= 1 and lim

c→∞ lim
n→∞d

(
n

4k
logn + cn

k
log logn

)
= 0.

The proof of Diaconis and Shahshahani for the upper bound when k = 1, relies heavily on the spectrum of the transition
matrix P . In particular, they use an upper bound for the total variation distance in terms of the �2 norm of the eigenvalues
and eigenvectors of the Markov chain (see also [15, Section 12.6]), which they then compute explicitly using spherical
function theory. This spectral approach has proven successful in many variants of the (n,1) Bernoulli–Laplace urn model,
including the works [10] and [3] mentioned above. For instance, Scarabotti [18] studied the model where we have m urns,
each containing n balls, and at each step we choose two balls that belong to different urns and switch them. He proved
that this urn model exhibits cutoff at 1

4n(m − 1) log(nm2). It is also worth mentioning that Schoolfield [19] studied
another version of the Bernoulli–Laplace Markov chain where at each step, a single ball is chosen from each urn and gets
switched, but some balls get signed during the process.

Variants of the (n, k) Bernoulli–Laplace urn model with k > 1 have also been studied via spectral techniques. Most
notably, Khare and Zhou [13] (see also [12]) analyzed the mixing time of a variety of multivariate urn models and proved
cutoff for a simpler asymmetric version of the Bernoulli–Laplace chain, where at each step we pick k balls from the left
urn, move them to the right urn, and then we pick k balls from the right urn and move them to the left. It turns out that
the eigenvalues of this model are simple enough and thus an �2 bound for the total variation distance à la Diaconis and
Shahshahani yields the sharp upper bound for the mixing time. Moreover, Khare and Zhou found a closed formula for the
eigenvalues and eigenvectors of the transition matrix (P t

x(y))x,y∈X of the (n, k) Bernoulli–Laplace model that the present
paper studies, yet, as those were significantly more complicated, they did not provide any estimates for its mixing time.
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Outline of the proof

In contrast to the proofs of all the aforementioned results, throughout our proof we only make use of the first two eigen-
values and eigenvectors of our Markov chain. Beyond that, the proof is based on a coupling argument which is organized
in 4 steps (each corresponding to a different subsection of Section 3). Let (Xt ) and (Yt ) be two copies of the Bernoulli–
Laplace urn model with k = o(n) swaps with X0 ∈ {0,1, . . . , n} being fixed and Y0 ∼ πn. Recall that Xt and Yt denote
the number of red balls in the left urn after t steps at each configuration of the chain.

Step 1. Using the first two eigenvalues and eigenvectors of the Markov chain (see Sections 2.2 and 2.3 below), we
show that at time t = n

4k
logn (which, recall, is the desired mixing time) both Xt and Yt are of the order n

2 + O(
√

n) with
high probability. In particular, at this time, Xt and Yt are with high probability at most O(

√
n) apart.

Step 2. Starting at time n
4k

logn we run the two chains independently. A well-known hitting time lemma, (see Sec-
tion 2.4) along with a combinatorial decomposition of the Markov chain, assures that with high probability the two
configurations will be at distance O(

√
k logn) away from each other within O(n

k
) steps. We note that to make the anal-

ysis possible, it is important to know that both chains will remain at distance, say, n
4 from n

2 for O(n
k
) additional steps,

which is a consequence of Doob’s maximal inequality (see Proposition 5).
Step 3. After the two chains get at distance O(

√
k logn) from each other, we use a monotone coupling that was

introduced in [16] (see Section 2.1) which guarantees that with high probability they will reach distance o(
√

k) within
3n
k

log logn steps.
Step 4. Finally, we use a classical result of Diaconis and Freedman from [5] to show that after the two configurations

get to distance o(
√

k) from one another, then their total variation distance becomes o(1) after a single step.
We note that when k = no(1), Theorem 1 can be proven along the lines of a proof of Levin, Luczak and Peres [14], who

showed that the mixing time of Glauber dynamics for the mean-field Ising model exhibits cutoff in the high temperature
regime. This is explained in detail in Remarks 11 and 14 below. However, a straightforward adaptation of the technique
of [14] appears insufficient to prove the sharp upper bound for asymptotically larger values of k = o(n) due to a number
of technical complications, which are amended by the strategy outlined in Steps 1-4 above.

We conclude with a couple of natural open questions.

Question 1. What is the mixing time of the (n, k) Bernoulli–Laplace model when k/n → λ ∈ (0, 1
2 )?

Question 1 was studied in [16], where it was shown that

logn

2 log(1 − 2λ)−1
− c(ε) ≤ tmix(ε) ≤ log( n

ε
)

2λ(1 − λ)
. (7)

We warn the reader that there exists a misprint in the statement of [16, Theorem 4], where the lower bound of the above
result is wrongfully claimed to be 1

4λ logn, while in fact they prove the inequality that we present in (7). We conjecture
that the lower bound in (7) is sharp.

In view of the well known connection between mixing times and logarithmic Sobolev inequalities (see [7]), one is
tempted to ask whether Theorem 1 (and perhaps even an answer to Question 1) can be recovered via the evaluation of the
log-Sobolev constant of the chain.

Question 2. What is the log-Sobolev constant of the (n, k) Bernoulli–Laplace urn model?

Finally, we wish to note that a version of the (n, k) Bernoulli–Laplace urn model with multiple urns (generalizing the
model of [18]) was studied in [16] and some estimates for its mixing time were obtained. As adapting the strategy of
the present work to treat this model seems to require multiple technical (and perhaps even conceptual) modifications, we
choose not to pursue it here; however we believe that the following question is of interest.

Question 3. What is the mixing time of the many-urn Bernoulli–Laplace model?

Asymptotic notation

In what follows we use the convention that for a, b ∈ [0,∞] the notation a � b or b = O(a) (respectively a � b or
a = O(b)) means that there exists a universal constant c ∈ (0,∞) such that a ≥ cb (respectively a ≤ cb). Moreover,
a 	 b stands for (a � b) ∧ (a � b). Finally, we write a = o(b) if a is a function of b with limb→∞ a/b = 0.
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2. Preliminaries

In this section, we will present various simple properties of the Bernoulli–Laplace urn model along with some classical
estimates, which we shall later use for the proof of Theorem 1. Here and throughout, we will denote by (Xt ) the Bernoulli–
Laplace chain on {0,1, . . . , n} with transition matrix

P(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑min{i,n−j,k−j+i}
m=0

(
i
m

)(
n−i
k−m

)(
n−i

j−i+m

)(
i

k−j+i−m

)
(
n
k

)2 , if i ≤ j,

∑min{i,n−j,k}
m=i−j

(
i
m

)(
n−i
k−m

)(
n−i

m−i+j

)(
i

k+i−j−m

)
(
n
k

)2 , if i > j

(8)

and starting point X0 and by (Yt ) another copy of the chain with Y0 distributed according to the stationary measure πn.
The pair (P,πn) is a reversible Markov chain.

We also note that the Bernoulli–Laplace urn model posesses the following symmetry. If (Xt ) is the Bernoulli–Laplace
chain with k out of n balls being swapped at each step and (X̃t ) is the chain where instead n − k out of n balls are being
swapped at each step, then the mixing time of (Xt ) coincides with the mixing time of (X̃t ). This is a consequence of the
bijection constructed as follows: when two sets of k balls are swapped in (Xt ), then the complements of those sets are
swapped in (X̃t ). In particular, from now on we will always assume that k ≤ n

2 .

2.1. A combinatorial coupling

Recall that if μ,ν are probability measures on the spaces (�,F ) and (�′,F ′) respectively, then a coupling C of μ and ν
is a probability measure on (� × �′,F ⊗ F ′) whose marginals are μ and ν, i.e. such that for A ∈ F and B ∈ F ′,

C
({

(x, y) : x ∈ A
}) = μ(A) and C

({
(x, y) : y ∈ B

}) = ν(B).

The first ingredient needed for the proof of Theorem 1 is a coupling of two instances of the Bernoulli–Laplace chain,
constructed in [16], which was used there to show the suboptimal upper bound

tmix(ε) ≤ n

2k
log

(
n

ε

)

for the mixing time of the Bernoulli–Laplace model with k = o(n) swaps. According to this coupling, let (Xt ) and (Yt )

be two instances of the Bernoulli–Laplace chain. Recall that Xt and Yt is the number of red balls in the left urn in each
of them after t steps. For each time t ≥ 0, label the balls in both realizations of the chain as follows. First, label the balls
in the left urns using the numbers {1, . . . , n} so that all red balls preceed all white balls in the ordering induced by this
labeling. Then, do the same for the right urns using the numbers {n + 1, . . . ,2n}. Now, choose A and B two subsets of
{1, . . . , n} and {n + 1, . . . ,2n} respectively, each of cardinality k, and swap the balls indexed by A in the left urns with
those indexed by B in the right. Finally, denote by Xt+1 and Yt+1 the updated number of red balls in each of the left urns
and remove the labels. One can easily check that, by the construction of this coupling, we always have

|Xt+1 − Yt+1| ≤ |Xt − Yt |. (9)

Furthermore, it was shown in [16] that if |Xt − Yt | = 1 for some t ≥ 0 and (Xt+1, Yt+1) is generated according to the
coupling above, then

E
(|Xt+1 − Yt+1||Xt,Yt

) = 1 − 2k(n − k)

n2
. (10)

Imitating the proof of the path coupling theorem of Bubley and Dyer (see [4] or [15, Theorem 14.6]), one gets the
following proposition by iterating (10) along suitable paths.

Proposition 2. Let (Xt ) and (Yt ) be two instances of the Bernoulli–Laplace chain with k swaps coupled as in the discus-
sion above. For r ∈ (0,∞), let

τcouple(r)
def= min

{
t : |Xt − Yt | ≤ r

}
. (11)
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Then, for every t ∈ (0,∞),

P
(
τcouple(r) > t |X0, Y0

) ≤
(

1 − 2k(n − k)

n2

)t |X0 − Y0|
r

. (12)

2.2. Eigenvalues and eigenvectors

As mentioned in the introduction, the proof of Diaconis and Shahshahani [9] for the cutoff behavior of the Bernoulli–
Laplace urn model with k = 1 ball being swaped at each step relied on a spectral bound for the total variation distance
that was firstly used in [8] and a careful estimation of the eigenvalues of the walk. Let (Wt ) be a Markov chain on a state
space �. Recall that λ ∈ [−1,1] is an eigenvalue of (Wt) corresponding to the eigenvector f : � →R, if

E
(
f (Wt+1)|Wt

) = λf (Wt) (13)

for every (equivalently, for some) t ≥ 0. Since (Xt ) is an irreducible, aperiodic and reversible chain on {0,1, . . . , n}, it
has n + 1 real eigenvalues 1 = λ0 and λ1, . . . ,λn ∈ (−1,1) which depend on both n and k. An explicit description of the
eigenvalues and eigenvectors of the Bernoulli–Laplace urn model for a general number of swaps at each step is known
(see, e.g., [9] and [16]). The eigenvectors are instances of the dual Hahn polynomials (see [13]) and if fi(x) is the ith
eigenvector, then the corresponding eigenvalue is fi(k).

As the exact expressions for these eigenvectors and eigenvalues are complicated, an efficient estimation, in the spirit of
[9], of the spectral bound for the total variation distance seems intractable. Our analysis below relies solely on the precise
values of two eigenvalues and eigenvectors of (Xt ), which correspond to the linear and quadratic dual Hahn polynomials
respectively. In particular, using that the function f1(x) = 1 − 2x

n
is an eigenfunction with corresponding eigenvalue

λ1 = f1(k) and that the function

f2(x) = 1 − 2(2n − 1)x

n2
+ 2(2n − 1)x(x − 1)

n2(n − 1)
(14)

is an eigenfunction corresponding to the eigenvalue λ2 = f2(k), we derive the following identities.

Lemma 3. For every t ≥ 0, we have

E(Xt |X0) = n

2
−

(
1 − 2k

n

)t(
n

2
− X0

)
(15)

and

Var(Xt |X0) = n2

4(2n − 1)
+ n2(n − 1)

2(2n − 1)
f2(k)tf2(X0) − n2

4

(
1 − 2k

n

)2t(
1 − 2X0

n

)2

. (16)

Proof. Iterating the following eigenvalue property

E

(
1 − 2Xt

n

∣∣∣Xt−1

)
=

(
1 − 2k

n

)
·
(

1 − 2Xt−1

n

)
, (17)

we get that

E

(
1 − 2Xt

n

∣∣∣X0

)
=

(
1 − 2k

n

)t(
1 − 2X0

n

)
,

which is equivalent to (15). For (16), notice that

f1(x)2 = 1

2n − 1
+ 2n − 2

2n − 1
f2(x), (18)

therefore by similar reasoning as above, we have

E

((
1 − 2Xt

n

)2∣∣∣X0

)
= 1

2n − 1
+ 2n − 2

2n − 1
f2(k)tf2(X0).
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Hence,

Var(Xt |X0) = n2

4
Var

(
1 − 2Xt

n

∣∣∣X0

)

= n2

4(2n − 1)
+ n2(n − 1)

2(2n − 1)
f2(k)tf2(X0) − n2

4

(
1 − 2k

n

)2t(
1 − 2X0

n

)2

,

which is precisely (16). �

2.3. Variance bounds

The following estimates are a straightforward consequence of Lemma 3. Recall that the stationary measure πn defined in

(2) has mean n
2 and variance n2

4(2n−1)
	 n.

Lemma 4. Let t ≥ n
4k

logn. Then

∣∣∣∣E(Xt |X0) − n

2

∣∣∣∣ ≤ √
n and Var(Xt |X0) ≤ n. (19)

Proof. By Lemma 3, we see that

∣∣∣∣E(Xt |X0) − n

2

∣∣∣∣ ≤
(

1 − 2k

n

)t

n ≤ e− logn
2 n = √

n.

Using (18) again, we can rewrite (16) as

Var(Xt |X0) = n2

4(2n − 1)

(
1 −

(
1 − 2k

n

)2t)
+ n2(n − 1)

2(2n − 1)
f2(X0)

(
f2(k)t −

(
1 − 2k

n

)2t)
. (20)

Notice that f2(X0) ≥ f2(n/2) = − 1
2(n−1)

and, by (18),

0 ≤
(

1 − 2k

n

)2t

− f2(k)t =
(

1

2n − 1
+ 2n − 2

2n − 1
f2(k)

)t

− f2(k)t ≤ 1, (21)

since f2(k) ≤ max{f2(0), f2(n)} = 1. Therefore, we deduce that

Var(Xt |X0) ≤ n2

2(2n − 1)
≤ n,

which concludes the proof of (19). �

It is an immediate consequence of Lemma 4 in combination with Chebyshev’s inequality that for t ≥ n
4k

logn and
r ∈ (0,∞), we have

P

(∣∣∣∣Xt − n

2

∣∣∣∣ > r

∣∣∣X0

)
≤ P

(∣∣Xt −E(Xt |X0)
∣∣ > r − √

n|X0
) ≤ n

(r − √
n)2

. (22)

In particular, for κ1 ∈ (2,∞), we deduce that

P

(∣∣∣∣Xt − n

2

∣∣∣∣ > κ1
√

n

∣∣∣X0

)
� 1

κ2
1

. (23)

Using a martingale argument, we will show that for r � √
n, the chain (Xt ) will remain at distance at least r from n

2 for
at least a constant multiple of n

k
additional steps, with probability of the same order as in (22). This will be of central

importance in the ensuing discussion.
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Proposition 5. Let 0 ≤ t1 ≤ t2. If k = o(n), then for every r ∈ (0,∞) we have

P

( ⋃
t∈[t1,t2]

{∣∣∣∣Xt − n

2

∣∣∣∣ > r

}∣∣∣X0

)
�

exp(
4k(t2−t1)

n
)n2

r2
max

{
1

n
,min

{
f2(k)t2 , f2(X0)

}}
. (24)

In particular, if |X0 − n
2 | ≤ A

√
n, where A ∈ (0,∞), then for t0 ∈ N and γ ∈ (0,∞), we have

P

( ⋃
t∈[t0,t0+γn/k]

{∣∣∣∣Xt − n

2

∣∣∣∣ > r

}∣∣∣X0

)
� A2e4γn

r2
(25)

and

P

( ⋃
t∈[t0,t0+ n

k
log logn]

{∣∣∣∣Xt − n

2

∣∣∣∣ > r

}∣∣∣X0

)
� A2n(logn)4

r2
. (26)

Proof. Notice that for t ≥ 0,∣∣∣∣Xt − n

2

∣∣∣∣ > r ⇐⇒
∣∣∣∣1 − 2Xt

n

∣∣∣∣ >
2r

n

and define

Mt
def= 1 − 2Xt

n

(1 − 2k
n

)t
, (27)

which is a martingale because of (17). Then, we have{
sup

t∈[t1,t2]

∣∣∣∣1 − 2Xt

n

∣∣∣∣ >
2r

n

}
⊆

{
sup

t∈[t1,t2]
|Mt | > 2r

n(1 − 2k
n

)t1

}

and therefore

P

( ⋃
t∈[t1,t2]

{∣∣∣∣Xt − n

2

∣∣∣∣ > r

}∣∣∣X0

)
≤ P

(
sup

t∈[t1,t2]
|Mt | > 2r

n(1 − 2k
n

)t1

∣∣∣X0

)
.

By Doob’s maximal inequality, we get

P

(
sup

t∈[t1,t2]
|Mt | > 2r

n(1 − 2k
n

)t1

∣∣∣X0

)
≤ n2

r2

(
1 − 2k

n

)2t1

E
(|Mt2 |2|X0

)

= n2

r2

(
1 − 2k

n

)−2(t2−t1)

E
(
f1(Xt2)

2|X0
)
�

exp(
4k(t2−t1)

n
)n2

r2
E

(
f1(Xt2)

2|X0
)
.

Moreover, (18) gives the estimate

E
(
f1(Xt2)

2|X0
) = 1

2n − 1
+ 2n − 2

2n − 1
f2(k)t2f2(X0) � max

{
1

n
,f2(k)t2f2(X0)

}
,

and (24) follows since f2(x) ≤ 1 for every x ∈ {0,1, . . . , n}. If additionally, |X0 − n
2 | ≤ A

√
n,

f2(X0) ≤ f2

(
n

2
+ A

√
n

)
(18)≤ f1

(
n

2
+ A

√
n

)2

� A2

n
,

therefore, (24) implies that

P

( ⋃
t∈[t0,t0+γn/k]

{∣∣∣∣Xt − n

2

∣∣∣∣ > r

}∣∣∣X0

)
� e4γn2

r2
· A2

n
= A2e4γn

r2
,
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which is exactly (25). Similarly,

P

( ⋃
t∈[t0,t0+ n

k
log logn]

{∣∣∣∣Xt − n

2

∣∣∣∣ > r

}∣∣∣X0

)
� e4 log lognn2

r2
· A2

n
= A2n(logn)4

r2
,

which completes the proof. �

For γ ∈ [0,∞), let tn,k(γ)
def= n

4k
logn + γn

k
. Since

f2(k)tn,k(γ) ≤ f1(k)2tn,k(γ) =
(

1 − 2k

n

) n
2k

logn+ 2γn
k 	 1

ne4γ ,

it follows from equation (24) that for every κ, γ ∈ (0,∞), we have

P

( ⋃
t∈[tn,k(0),tn,k(γ)]

{∣∣∣∣Xt − n

2

∣∣∣∣ > κ
√

n

}∣∣∣X0

)
� e4γ

κ2
, (28)

which improves upon (23) up to the universal constants in the right hand side. For fixed κ, γ ∈ (0,∞), consider the event

Eκ,γ =
{∣∣∣∣Xt − n

2

∣∣∣∣ ≤ κ
√

n, for every t ∈ [
tn,k(0), tn,k(γ)

]}
. (29)

Then (28) can be rewritten as P(Ec
κ,γ) � e4γ/κ2, where Ec

κ,γ is the complement of Eκ,γ .

2.4. Hitting time estimates

Throughout the proof, we will make use of the following well-known hitting time lemma appearing, e.g., in [15, Propo-
sition 17.20].

Lemma 6. Let (Zt ) be a non-negative supermartingale adapted to the filtration (Ft ) and τ be a stopping time. Suppose
that

• Z0 = z0,
• |Zt+1 − Zt | ≤ B , for every t ≥ 0 and
• there exists σ ∈ (0,∞) such that Var(Zt+1|Ft ) > σ2 on the event {τ > t}.
Then, for every u > 12B2/σ2, we have

P(τ > u) ≤ 4z0

σ
√

u
. (30)

A straightforward application of Lemma 6 combined with Proposition 5 and Proposition 2 is sufficient to prove cutoff
for the Bernoulli–Laplace chain with k = no(1) balls being swapped at each step. This is carried out in detail in Remark 11
and Remark 14. To prove cutoff for asymptotically larger values of k, one needs to take into account that even though
‖Xs+1 − Xs‖∞ = 2k for every s ≥ 0, if t ≥ n

4k
logn, then

E
(|Xt+1 − Xt ||X0

)
�

√
k. (31)

This can be proven by first applying Jensen’s inequality

E
(|Xt+1 − Xt ||X0

) ≤
√
E

(|Xt+1 − Xt |2|X0
)

and then employing the first two eigenvalues of the chain, as in the proof of Lemma 3. We omit the details of this
computation, since (31) will be a consequence of a more tiresome (but necessary for the proof) technical statement below
(see Lemma 9).



Cutoff for the Bernoulli–Laplace urn model with o(n) swaps 2629

3. Proof of Theorem 1

We proceed with the proof of the main result of this article. The argument is divided in 4 subsections, each reflecting one
of the steps explained in the outline presented in the introduction.

3.1. Getting at distance O(
√

n)

Let (Xt ) and (Yt ) be two instances of the Bernoulli–Laplace chain with k = o(n) swaps at each step, where the initial
state X0 ∈ {0,1, . . . , n} is fixed and Y0 is distributed according to the stationary measure πn. We will first show that with
high probability, at time n

4k
logn, the difference |Xt −Yt | is smaller than a constant multiple of

√
n. The variance estimate

(23) of Section 2.3 along with the union bound immediately imply the following lemma.

Lemma 7. Let (Xt ), (Yt ) be two copies of the Bernoulli–Laplace chain with k swaps. For κ1 ∈ (0,∞), let

τ1(κ1)
def= min

{
t : Xt,Yt ∈

(
n

2
− κ1

√
n,

n

2
+ κ1

√
n

)}
. (32)

Then,

P

(
τ1(κ1) >

n

4k
logn

∣∣∣X0, Y0

)
� 1

κ2
1

. (33)

Proof. Let t0 = n
4k

logn. Then

P

(
τ1(κ1) >

n

4k
logn

∣∣∣X0, Y0

)
≤ P

(∣∣∣∣Xt0 − n

2

∣∣∣∣ > κ1
√

n

∣∣∣X0

)
+ P

(∣∣∣∣Yt0 − n

2

∣∣∣∣ > κ1
√

n

∣∣∣Y0

)
(23)
� 1

κ2
1

,

which is precisely (33). �

3.2. Getting at distance O(
√

k logn)

Let (Xt ) and (Yt ) be two instances of the Bernoulli–Laplace chain as before. We will now argue that if (Xt ) is independent
of (Yt ) after the stopping time τ1(κ1) of Lemma 7, then with high probability the difference |Xt −Yt | will become smaller
than O(

√
k logn) within O(n

k
) steps.

Recall that in the combinatorial description of the chain, we denote by Xt the number of red balls in the left urn
after t steps. For each s ≥ 0, we will define a new pair of (time inhomogeneous) Markov chains (Xleft

s ) and (X
right
s ) on

{0,1, . . . , n} with the property that for every t ≥ 0,

Xleft
2kt

d= Xt and X
right
2kt

d= n − Xt, (34)

where
d= denotes equality in distribution. For time s = 0, denote by Xleft

0 = X0 and X
right
0 = n − X0. For each time

s ∈ {1, . . . , k} pick a ball uniformly at random from the left urn and place it in a storage space by the right urn. We will
refer to the balls placed in the storage space as unavailable balls and to the rest as available balls. Notice that for every
s ∈ {1, . . . , k}, after the sth ball has been moved from left to right, there are n− s balls in the left urn and n+ s balls in the
right urn, s of which are unavailable. For each time s ∈ {k + 1, . . . ,2k} pick an available ball uniformly at random from
the right urn and place it in the left urn. Finally, after k balls have been moved back to the left urn, label all unavailable
balls as available, place them in the right urn and restart the process. After s steps of this process, denote by Xleft

s the

number of red balls in the left urn and by X
right
s the number of available red balls in the right urn. It is evident from the

construction that

Xleft
2k

d= X1 and X
right
2k

d= n − X1.

To define Xleft
s and X

right
s for general s ≥ 0, repeat the above process periodically after 2k steps; then (34) clearly holds for

any t ≥ 0. Notice that for every s ≥ 0, this construction gives

Xleft
s+1 − Xleft

s ∈ {−1,0,1}, (35)
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yet the same does not hold for (X
right
s ). Similarly, one can define the decomposed chains (Yleft

s ), (Y
right
s ) corresponding to

(Yt ). The following is a consequence of the hitting time estimate of Lemma 6.

Lemma 8. Let (Xt ), (Yt ) be two independent copies of the Bernoulli–Laplace chain with k = o(n) swaps and let
(Xleft

s ), (X
right
s ) and (Yleft

s ), (Y
right
s ) be the decomposed chains constructed above. Assume that the initial states satisfy

X0, Y0 ∈ ( n
2 − κ1

√
n, n

2 + κ1
√

n) for some κ1 ∈ (0,∞). Consider the stopping time

τmatch
def= min

{
s : Xleft

s = Yleft
s or X

right
s = Y

right
s

}
. (36)

Then, for every γ1 ∈ (0,∞) and large enough values of n, we have

P(τmatch > γ1n|X0, Y0) � κ1√γ1
. (37)

Proof. For s ≥ 0, let Fs = σ(Xleft
r ,X

right
r ,Yleft

r ,Y
right
r )r≤s be the σ-algebra generated by the path of the two decomposed

chains up to time s. For Lemma 6 to be applied, it is important that the decomposed chains remain close to n
2 . To this end,

consider the truncated stopping time

τ̃match
def= τmatch ∧ min

{
2ks : max

r∈[0,s]

∣∣∣∣Xr − n

2

∣∣∣∣ ∨
∣∣∣∣Yr − n

2

∣∣∣∣ >
n

4

}
. (38)

By equation (25) of Proposition 5, we have

P(τmatch > γ1n|X0, Y0) = P(̃τmatch > γ1n|X0, Y0) + P(̃τmatch ≤ γ1n < τmatch|X0, Y0)

� P(̃τmatch > γ1n|X0, Y0) + κ2
1e

2γ1

n
, (39)

since

τ̃match ≤ γ1n < τmatch =⇒ max
t∈[0,γ1n/2k]

∣∣∣∣Xt − n

2

∣∣∣∣ ∨
∣∣∣∣Yt − n

2

∣∣∣∣ >
n

4
.

and X0, Y0 ∈ ( n
2 − κ1

√
n, n

2 + κ1
√

n). Consider the stochastic process Ws = Xleft
s − Yleft

s and let Zs = Ws∧τmatch . It follows
from (35) and (36) that Zs ≥ 0 for every s ≥ 0. Furthermore, (Zs) is a super-martingale. To see this, notice that for

s < τmatch, we have Xleft
s > Yleft

s and X
right
s < Y

right
s . Therefore, if r

def= s(mod 2k) ∈ {0,1, . . . , k − 1}, then

E
(
Xleft

s+1 − Y left
s+1|Fs

) − (
Xleft

s − Yleft
s

) = −Xleft
s

n − r
+ Yleft

s

n − r
= Yleft

s − Xleft
s

n − r
< 0

and if r ∈ {k, k + 1, . . . ,2k − 1}, then

E
(
Xleft

s+1 − Y left
s+1|Fs

) − (
Xleft

s − Yleft
s

) = X
right
s

n − r + k
− Y

right
s

n − r + k
= X

right
s − Y

right
s

n − r + k
< 0.

A similar calculation, shows that for s < τ̃match and r ∈ {0,1, . . . , k − 1},

Var(Zs+1|Fs) = Var
(
Xleft

s+1|Fs

) + Var
(
Yleft

s+1|Fs

) = Xleft
s (n − r − Xleft

s )

(n − r)2
+ Yleft

s (n − r − Yleft
s )

(n − r)2

≥ 2( n
4 − k)(n

4 − r − k)

n2
� 1

for n large enough, where the first identity follows from the independence of (Xleft
s ) and (Yleft

s ) and the second to last
inequality from the definition of τ̃match. The same holds true if r ∈ {k, k + 1, . . . ,2k − 1}. Therefore, applying Lemma 6
for the stopping time τ̃match, we get that

P(̃τmatch > γ1n|X0, Y0) � κ1
√

n√γ1n
= κ1√γ1

. (40)
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Combining (39) and (40), we finally deduce that

P(τmatch > γ1n|X0, Y0) � κ1√γ1
+ κ2

1e
2γ1

n
� κ1√γ1

for large enough values of n. �

We will also need the following technical lemma, which is in the spirit of Proposition 5.

Lemma 9. Let (Xt ) be the Bernoulli–Laplace chain with k = o(n) swaps and starting point X0 ∈ ( n
2 −κ1

√
n, n

2 +κ1
√

n)

for some κ1 ∈ (0,∞). Then, for every γ1 ∈ (0,∞) and κ2 ∈ (0,∞), we have

P

( ⋃
t∈[0,γ1n/2k]
r∈{1,...,k}

{∣∣∣∣Xleft
2kt − Xleft

2kt+r − r

2

∣∣∣∣ ∨
∣∣∣∣Xright

2kt − X
right
(2t+1)k+r − r

2

∣∣∣∣ > κ2
√

k logn

}∣∣∣X0

)
�

κ2
1e

2γ1

κ2
(41)

and

P

( ⋃
t∈[0,γ1n/2k]

⋃
r∈{1,...,k}

{∣∣∣∣Xleft
2kt − Xleft

(2t+1)k+r − k − r

2

∣∣∣∣ > κ2
√

k logn

}∣∣∣X0

)
�

κ2
1e

2γ1

κ2
. (42)

Proof. We can clearly assume that κ2 ≥ 100κ2
1e

2γ1 , since otherwise the conclusion is trivial. We will first prove (41).
Consider the event

Eκ2,γ1

def=
{∣∣∣∣Xt − n

2

∣∣∣∣ ≤ κ2
√

n, for every t ∈ [0, γ1n/2k]
}

(43)

and notice that equation (25) of Proposition 5 implies that P(Ec
κ2,γ1

) � κ2
1e

2γ1/κ2
2. Hence, if

Fκ2,γ1

def=
⋂

t∈[0,γ1n/2k]

⋂
r∈{1,...,k}

{∣∣∣∣Xleft
2kt − Xleft

2kt+r − r

2

∣∣∣∣ ∨
∣∣∣∣Xright

2kt − X
right
(2t+1)k+r − r

2

∣∣∣∣ ≤ κ2
√

k logn

}
, (44)

then

P
(
F c

κ2,γ1
|X0

)
� P

(
F c

κ2,γ1
|Eκ2,γ1

) + κ2
1e

2γ1

κ2
2

. (45)

We will control the probability involving the terms where Xleft appears, and the ones involving Xright can be bounded
similarly. To this end, consider the random variable

Z
def= max

t∈[0,γ1n/2k]
max

r∈{1,...,k}

∣∣∣∣Xleft
2kt − Xleft

2kt+r − r

2

∣∣∣∣
and notice that for every t ∈ N and r ∈ {1, . . . , k}, the difference Xleft

2kt − Xleft
2kt+r conditioned on the value of Xleft

2kt is a
hypergeometric random variable with parameters (n,Xleft

2kt , r), i.e.

P
(
Xleft

2kt − Xleft
2kt+r = j |Xleft

2kt

) =
(Xleft

2kt
j

)(n−Xleft
2kt

r−j

)
(
n
r

) , where j ∈ {0,1, . . . , r}. (46)

Therefore, on Eκ2,γ1 we have∣∣∣∣E(
Xleft

2kt − Xleft
2kt+r |Xleft

2kt

) − r

2

∣∣∣∣ =
∣∣∣∣ rXleft

2kt

n
− r

2

∣∣∣∣ ≤ k

n

∣∣∣∣Xleft
2kt − n

2

∣∣∣∣ ≤ κ2k√
n

= o(
√

k)

and thus, by the triangle inequality,

P(Z > κ2
√

k logn|Eκ2,γ1) ≤ P

(
Z′ > 1

2
κ2

√
k logn

∣∣∣Eκ2,γ1

)
, (47)
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where

Z′ def= max
t∈[0,γ1n/2k]

max
r∈{1,...,k}

∣∣Xleft
2kt − Xleft

2kt+r −E
(
Xleft

2kt − Xleft
2kt+r |Xleft

2kt

)∣∣.
By symmetry of the event Eκ2,γ1 , it suffices to bound

P

(
Z′′ > 1

4
κ2

√
k logn

∣∣∣Eκ2,γ1

)
,

where

Z′′ def= max
t∈[0,γ1n/2k]

max
r∈{1,...,k}

Xleft
2kt − Xleft

2kt+r −E
(
Xleft

2kt − Xleft
2kt+r |Xleft

2kt

)
.

Let Ht,r
def= Xleft

2kt − Xleft
2kt+r . Then, for every h ∈ (0,∞), Jensen’s inequality gives

exp
(
hE

(
Z′′|Eκ2,γ1

)) ≤ E
(
exp

(
hZ′′)|Eκ2,γ1

)
≤

�γ1n/2k�∑
t=0

k∑
r=1

E
(
exp

(
h
(
Ht,r −E

(
Ht,r |Xleft

2kt

)))|Eκ2,γ1

)

=
�γ1n/2k�∑

t=0

k∑
r=1

E
(
E

(
exp

(
h
(
Ht,r −E

(
Ht,r |Xleft

2kt

)))|Eκ2,γ1 ,Xleft
2kt

))
, (48)

where the last equality is the tower property of the conditional expectation. Fix t ∈ {0, . . . , �γ1n/2k�} and r ∈ {1, . . . , k}.
On Eκ2,γ1 , we have Xleft

2kt ∈ ( n
2 − κ2

√
n, n

2 + κ2
√

n) and, moreover, P(Eκ2,γ1) � 1, since κ2 ≥ 100κ2
1e

2γ1 . Consequently,

E
(
exp

(
h
(
Ht,r −E

(
Ht,r |Xleft

2kt

)))|Eκ2,γ1 ,Xleft
2kt

)
� E

(
exp

(
h
(
Ht,r −E

(
Ht,r |Xleft

2kt

)))∣∣∣Xleft
2kt ∈

(
n

2
− κ2

√
n,

n

2
+ κ2

√
n

))
(49)

Recall that Ht,r = Xleft
2kt − Xleft

2kt+r is distributed according to the hypergeometric distribution with parameters (n,Xleft
2kt , r)

when conditioned on the value of Xleft
2kt . Therefore, it is well known (see [11, Section 6] or [20, Theorem 2.2]) that since

k = o(n),

E

(
exp

(
h
(
Ht,r −E

(
Ht,r |Xleft

2kt

)))∣∣∣Xleft
2kt ∈

(
n

2
− κ2

√
n,

n

2
+ κ2

√
n

))
≤ exp

(
h2r/16

) ≤ exp
(
h2k/16

)
, (50)

which, combined with (48) and (49) gives

exp
(
hE

(
Z′′|Eκ2,γ1

))
� γ1n exp

(
h2k/16

)
.

Taking logarithms and dividing by h, we deduce that

E
(
Z′′|Eκ2,γ1

)
� logn

h
+ hk 	 √

k logn, (51)

for h 	
√

logn
k

. Finally, by Markov’s inequality, we get

P

(
Z′′ > 1

4
κ2

√
k logn

∣∣∣Eκ2,γ1

)
� E(Z′′|Eκ2,γ1)

κ2
√

k logn

(51)
� 1

κ2
.

As explained earlier, this implies that

P
(
F c

κ2,γ1
|Eκ2,γ1

)
� 1

κ2
,
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which combined with (45) completes the proof of (41). To deduce (42) from (41), notice that

Xleft
2kt − Xleft

(2t+1)k+r = (
Xleft

2kt − Xleft
(2t+1)k

) − (
X

right
2kt − X

right
(2t+1)k+r

)
,

hence

P

( ⋃
t∈[0,γ1n/2k]

⋃
r∈{1,...,k}

{∣∣∣∣Xleft
2kt − Xleft

(2t+1)k+r − k − r

2

∣∣∣∣ > κ2
√

k logn

}∣∣∣X0

)

≤ P

( ⋃
t∈[0,γ1n/2k]
r∈{1,...,k}

{∣∣∣∣Xleft
2kt − Xleft

2kt+r − r

2

∣∣∣∣ ∨
∣∣∣∣Xright

2kt − X
right
(2t+1)k+r − r

2

∣∣∣∣ >
1

2
κ2

√
k logn

}∣∣∣X0

)
(41)
�

κ2
1e

2γ1

κ2
,

which concludes the proof of the lemma. �

Combining Lemma 8 with Lemma 9, we deduce the following proposition.

Proposition 10. Let (Xt ), (Yt ) be two independent copies of the Bernoulli–Laplace chain with k = o(n) swaps such that
X0, Y0 ∈ ( n

2 − κ1
√

n, n
2 + κ1

√
n) for some κ1 ∈ (0,∞). For κ2 ∈ (0,∞), consider the stopping time

τ2(κ2)
def= min

{
t : |Xt − Yt | ≤ 2κ2

√
k logn and Xt,Yt ∈

(
n

2
− κ2

√
n,

n

2
+ κ2

√
n

)}
. (52)

Then, for every γ1 ∈ (0,∞), we have

P

(
τ2(κ2) >

γ1n

k

∣∣∣X0, Y0

)
� κ1√γ1

+ κ2
1e

2γ1

κ2
. (53)

Proof. Consider the events Eκ2,γ1 and Fκ2,γ1 of (43) and (44) as well as

Gκ2,γ1

def=
⋂

t∈[0,γ1n/2k]

⋂
r∈{1,...,k}

{∣∣∣∣Xleft
2kt − Xleft

(2t+1)k+r − k − r

2

∣∣∣∣ ≤ κ2
√

k logn

}

and

Hγ1

def= {τmatch ≤ γ1n}.
Then, by equations (25), (37), (41) and (42), we have

P
(
Ec

κ2,γ1
∪ F c

κ2,γ1
∪ Gc

κ2,γ1
∪ H c

γ1
|X0, Y0

)
� κ1√γ1

+ κ2
1e

2γ1

κ2
. (54)

We now claim that

Eκ2,γ1 ∩ Fκ2,γ1 ∩ Gκ2,γ1 ∩ Hγ1 ⊆
{

τ2(κ2) ≤ γ1n

k

}
, (55)

which, along with (54), proves (53).
To see this, suppose that the events Eκ2,γ1,Fκ2,γ1,Gκ2,γ1 and Hγ1 occur simultaneously. In particular, τmatch ≤ γ1n. Let

r = τmatch(mod 2k) and notice that if r = 0, then

Xτmatch/2k = Xleft
τmatch

= Yleft
τmatch

= Yτmatch/2k,

which in particular implies that τ2(κ2) ≤ γ1n/2k. We can therefore assume that r ∈ {1, . . . ,2k − 1}.
First, suppose that r ∈ {1, . . . , k}, in which case Xleft

τmatch
= Yleft

τmatch
. Then, since Fκ2,γ1 occurs and also the inequality

�τmatch/2k� ≤ γ1n/2k holds, we get

|X�τmatch/2k� − Y�τmatch/2k�| ≤
∣∣∣∣Xleft

2k�τmatch/2k� − Xleft
τmatch

− r

2

∣∣∣∣ +
∣∣∣∣Yleft

2k�τmatch/2k� − Yleft
τmatch

− r

2

∣∣∣∣ ≤ 2κ2
√

k logn,

which implies that τ2(κ2) ≤ γ1n/2k.
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If r ∈ {k + 1, . . . ,2k − 1}, it could be that either Xleft
τmatch

= Yleft
τmatch

or X
right
τmatch = Y

right
τmatch . In the former case, using the fact

that Gκ2,γ1 occurs, we deduce that

|X�τmatch/2k� − Y�τmatch/2k�| ≤
∣∣∣∣Xleft

2k�τmatch/2k� − Xleft
τmatch

− k − r

2

∣∣∣∣ +
∣∣∣∣Yleft

2k�τmatch/2k� − Yleft
τmatch

− k − r

2

∣∣∣∣
≤ 2κ2

√
k logn

and in the latter case, because Fκ2,γ1 occurs,

|X�τmatch/2k� − Y�τmatch/2k�| =
∣∣Xright

2k�τmatch/2k� − Y
right
2k�τmatch/2k�

∣∣
≤

∣∣∣∣Xright
2k�τmatch/2k� − X

right
τmatch − r − k

2

∣∣∣∣ +
∣∣∣∣Yright

2k�τmatch/2k� − Y
right
τmatch − r − k

2

∣∣∣∣ ≤ 2κ2
√

k logn.

The above complete the proof of the claim (55) and (53) follows. �

Remark 11. A more straightforward application of Lemma 6, shows that under the assumption that the initial states
satisfy X0, Y0 ∈ ( n

2 − κ1
√

n, n
2 + κ1

√
n) for some κ1 ∈ (0,∞), the difference |Xt − Yt | will become at most O(k) within

O(n
k
) steps. Notice that this improves upon Proposition 10 in the range k � logn.

We can clearly assume that k <
√

n, since otherwise already |X0 − Y0| � k. Suppose that X0 > Y0 and consider the
stopping time

T
def= min{t : Xt − Yt < 4k}. (56)

Since for every t ≥ 0 we have

‖Xt+1 − Xt‖∞ = ‖Yt+1 − Yt‖∞ = 2k,

it is clear that XT ≥ YT and thus |XT − YT | < 4k. Similarly to the proof of Lemma 8, consider the truncated stopping
time

T̃
def= T ∧ min

{
t : max

r∈[0,t]

∣∣∣∣Xr − n

2

∣∣∣∣ ∨
∣∣∣∣Yr − n

2

∣∣∣∣ >
n

4

}
(57)

and notice that, by (25),

P

(
T >

γ1n

k

∣∣∣X0, Y0

)
� P

(
T̃ >

γ1n

k

∣∣∣X0, Y0

)
+ κ2

1e
4γ1

n
. (58)

Now let Wt = Xt − Yt and Zt = Wt∧T . It follows from the discussion above that Zt ≥ 0 for every t ≥ 0 and furthermore,
if t < T , then

E(Wt+1|Ft )
(17)=

(
1 − 2k

n

)
(Xt − Yt ) < Xt − Yt = Wt,

where Ft = σ(Xr,Yr)r≤t . In other words, (Zt ) is a non-negative supermartingale. As in the proof of Lemma 8, a straight-
forward calculation involving the eigenvalues of the chain shows that for t < T̃ , we have

Var(Wt+1|Ft ) � k.

Therefore, Lemma 6 applied to the stopping time T̃ shows that for u � k, we have

P(T̃ > u|X0, Y0) � κ1
√

n√
ku

.

Thus, since n
k

≥ k, we deduce that for γ1 ∈ (0,∞),

P

(
T̃ >

γ1n

k

∣∣∣X0, Y0

)
� κ1√γ1

,
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which combined (58) proves the claim. In Remark 14 below, we explain why this observation is sufficient to show that
the Bernoulli–Laplace chain with k swaps exhibits cutoff for k = no(1) but it appears that the more delicate treatment
of Lemma 8 and Lemma 9 is needed for asymptotically larger values of k, e.g., to preserve the non-negativity of the
supermartingale (Zt ).

3.3. Getting at distance o(
√

k)

Let (Xt ) and (Yt ) be two instances of the Bernoulli–Laplace chain with k = o(n) swaps. In this subsection we will show
that if (Xt ) and (Yt ) are coupled according the coupling of Section 2.1 after the stopping time τ2(κ2) of Proposition 10
then with high probability the difference |Xt − Yt | will become asymptotically smaller than

√
k within n

k
log logn steps.

Lemma 12. Let (Xt ) and (Yt ) be two instances of the Bernoulli–Laplace chain with k swaps, coupled as in Section 2.1,
such that X0, Y0 ∈ ( n

2 − κ2
√

n, n
2 + κ2

√
n) and |X0 − Y0| ≤ κ2

√
k logn for some κ2 ∈ (0,∞). For κ3 ∈ (0,∞), consider

the stopping time

τ3(κ3)
def= min

{
t : |Xt − Yt | ≤

√
k

log logn
and Xt,Yt ∈

(
n

2
− κ3

√
n(logn)2,

n

2
+ κ3

√
n(logn)2

)}
. (59)

Then, we have

P

(
τ3(κ3) >

n

k
log logn

∣∣∣X0, Y0

)
�

κ2
2

κ2
3

. (60)

Proof. Recall that we assume that k ≤ n
2 . Following the notation (11) of Proposition 2, let

τcouple

( √
k

log logn

)
def= min

{
t : |Xt − Yt | ≤

√
k

log logn

}
.

Then, by (12), we know that

P

(
τcouple

( √
k

log logn

)
>

n

k
log logn

∣∣∣X0, Y0

)
≤

(
1 − 2k(n − k)

n2

) n
k

log logn

κ2
√

logn log logn

≤
(

1 − k

n

) n
k

log logn

κ2
√

logn log logn ≤ κ2 log logn√
logn

. (61)

Also, notice that by the definition of τ3(κ3), we have

{
τ3(κ3) >

n

k
log logn

}
⊆

{
τcouple

( √
k

log logn

)
>

n

k
log logn

}

∪
⋃

t∈[0, n
k

log logn]

{∣∣∣∣Xt − n

2

∣∣∣∣ ∨
∣∣∣∣Yt − n

2

∣∣∣∣ > κ3
√

n(logn)2
}
.

Finally, by (26), we derive the estimate

P

( ⋃
t∈[0, n

k
log logn]

{∣∣∣∣Xt − n

2

∣∣∣∣ ∨
∣∣∣∣Yt − n

2

∣∣∣∣ > κ3
√

n(logn)2
}∣∣∣X0, Y0

)
�

κ2
2

κ2
3

,

which along with the last inclusion and (61) imply (60). �

For technical purposes, it will be important to know that |Xt − Yt | = o(
√

k) and |Xt − n
2 | ∨ |Yt − n

2 | = O(
√

n)

simultaneously, instead of the weaker bound |Xt − n
2 | ∨ |Yt − n

2 | = O(
√

n(logn)2) which was shown in Lemma 12. This
refinement is achieved in the following proposition.
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Proposition 13. Let (Xt ), (Yt ) be two instances of the Bernoulli–Laplace chain with k swaps, coupled as in Section 2.1

such that X0, Y0 ∈ ( n
2 −κ3

√
n(logn)2, n

2 +κ3
√

n(logn)2) and |X0 −Y0| ≤
√

k
log logn

for some κ3 ∈ (0,∞). For κ4 ∈ (0,∞),
consider the stopping time

τ4(κ4)
def= min

{
t : |Xt − Yt | ≤

√
k

log logn
and Xt,Yt ∈

(
n

2
− κ4

√
n,

n

2
+ κ4

√
n

)}
. (62)

Then, we have

P

(
τ4(κ4) >

2n

k
log logn

∣∣∣X0, Y0

)
� 1

κ2
4

. (63)

Proof. Observe that, by the monotonicity property (9) of the coupling, for every t ≥ 0 we have

|Xt − Yt | ≤
√

k

log logn
,

therefore

τ4(κ4) = min

{
t : Xt,Yt ∈

(
n

2
− κ4

√
n,

n

2
+ κ4

√
n

)}
. (64)

Also, using (15) we get that for t ≥ 2n
k

log logn,

∣∣∣∣E(Xt |X0) − n

2

∣∣∣∣ ≤
(

1 − 2k

n

) 2n
k

log logn∣∣∣∣X0 − n

2

∣∣∣∣ ≤ κ3
√

n(logn)2

(logn)4
= o(

√
n), (65)

and the same holds for Yt . Combining this with (64) we deduce that

P

(
τ4(κ4) >

2n

k
log logn

∣∣∣X0, Y0

)
≤ P

(∣∣Xt∗ −E(Xt∗ |X0)
∣∣ ∨ ∣∣Yt∗ −E(Yt∗ |Y0)

∣∣ >
1

2
κ4

√
n

∣∣∣X0, Y0

)
,

where t∗ = 2n
k

log logn. Finally, it immediately follows from the proof of Lemma 4 that also Var(Xt |X0) ≤ n for every
t ≥ 0, thus by Chebyshev’s inequality

P

(∣∣Xt∗ −E(Xt∗ |X0)
∣∣ >

1

2
κ4

√
n

∣∣∣X0

)
� Var(Xt∗ |X0)

κ2
4n

≤ 1

κ2
4

,

and similarly for (Yt ); thus (63) follows. �

Remark 14. Recall that in Remark 11, it was shown that if X0, Y0 ∈ ( n
2 − κ1

√
n, n

2 + κ1
√

n) for some κ1 ∈ (0,∞), then
within O(n

k
) steps, the difference |Xt −Yt | will become at most O(k). An argument identical to that of Lemma 12 shows

that if (Xt ) and (Yt ) are coupled according to the coupling of Section 2.1 and |X0 −Y0| � k, then within O(n
k

logk) steps
t , we will have Xt = Yt with high probability. By standard considerations (see, e.g. [15, Chapter 5]), this implies that the
mixing time of the Bernoulli–Laplace chain with k swaps is

tmix ≤ n

4k
logn + O

(
n

k
logk

)
. (66)

Therefore, this simple argument is sufficient to prove that the chain exhibits cutoff at n
4k

logn with window of size n
k

logk

when log k = o(logn) or, in other words, k = no(1). Notice that the size of the window given by this approach is better
than the one claimed in Theorem 1 when k ≤ (logn)O(1).

3.4. Proof of Theorem 1

We are now in position to complete the proof of the main result of this article, namely Theorem 1. The simple main idea
is the following. Fix κ4 ∈ (0,∞). If a starting point X0 ∈ ( n

2 − κ4
√

n, n
2 + κ4

√
n) is fixed, then the distribution of X1 is

approximately a Gaussian with mean X0 + o(
√

k) and variance of the order of k. Similarly, under the same condition for



Cutoff for the Bernoulli–Laplace urn model with o(n) swaps 2637

Fig. 1. The approximate distributions of Xt and Yt for t = 1,2 if |X0 − Y0| 	 √
k.

Fig. 2. The approximate distributions of X1 and Y1 if |X0 − Y0| = o(
√

k).

Y0, the distribution of Y1 is approximately a Gaussian with mean Y0 + o(
√

k) and variance proportional to k. Therefore,
if |X0 −Y0| = o(

√
k), then X1 and Y1 have to be o(1)-close in total variation distance (see also Figures 1 and 2). To make

this intuition precise, we first show a lemma based on the work [5] of Diaconis and Freedman, where they studied the
total variation distance of sampling with and without replacement.

Lemma 15. Let X0, Y0 ∈ ( n
2 − κ4

√
n, n

2 + κ4
√

n) for some κ4 ∈ (0,∞). Then,

‖X1 − Y1‖TV � ‖B1 − B2‖TV + κ4

√
k

n
, (67)

where B1 ∼ Bin(k, 1
2 ) and B2 − (X0 − Y0) ∼ Bin(k, 1

2 ).

Proof. By the definition of the Bernoulli–Laplace chain, we have that

X1 − X0 = H1 − H2, (68)

where H1 ∼ Hyper(n,n − X0, k) is the number of red balls removed from the right urn and H2 ∼ Hyper(n,X0, k) is the
number of red balls removed from the left urn and H2 is independent of H1. Similarly, Y1 − Y0 ∼ H3 − H4, where H3 ∼
Hyper(n,n − Y0, k) and H4 ∼ Hyper(n,Y0, k) is independent of H3. Consider binomial distributions M1 ∼ Bin(k,

X0
n

),

M2 ∼ Bin(k,1− X0
n

), M3 ∼ Bin(k,
Y0
n

) and M4 ∼ Bin(k,1− Y0
n

). According to [5, Theorem (3)], for every i ∈ {1,2,3,4},

‖Hi − Mi‖TV ≤ 4k

n
. (69)

Moreover, if B ∼ Bin(k, 1
2 ), it is well-known (see, e.g., [17]) that

‖M1 − B‖TV �
√

k

∣∣∣∣1

2
− X0

n

∣∣∣∣ � κ4

√
k

n
, (70)

since X0 ∈ ( n
2 − κ4

√
n, n

2 + κ4
√

n) and the same holds for M2,M3,M4. Combining (68), (69) and (70), we deduce that
if B1 ∼ Bin(k, 1

2 ) and B2 − (X0 − Y0) ∼ Bin(k, 1
2 ), then

‖X1 − Y1‖TV � ‖B1 − B2‖TV + k

n
+ κ4

√
k

n
� ‖B1 − B2‖TV + κ4

√
k

n
,

as we wanted. �

We will also need the following simple computation.
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Lemma 16. Let B1,B2 be two random variables such that B1 ∼ Bin(k, 1
2 ) and B2 − g(k) ∼ Bin(k, 1

2 ) for some function

g(k) ∈ Z with g(k) = o(
√

k) as k → ∞. Then,

‖B1 − B2‖TV = o(1), as k → ∞. (71)

Proof. Let

μ(x)
def=

(
k

x

)
1

2k
, x ∈ {0,1, . . . , k}

be the law of B1 and

ν(x)
def=

(
k

x − g(k)

)
1

2k
, x ∈ {

g(k), g(k) + 1, . . . , g(k) + k
}

be the law of B2. A straightforward computation shows that there exists a point x∗ ∈ {g(k), . . . , k} such that μ(x) ≥ ν(x)

if and only if x ≤ x∗. Therefore,

‖B1 − B2‖TV =
x∗∑

x=0

(
μ(x) − ν(x)

) = P

(
x∗ − g(k) < Bin

(
k,

1

2

)
≤ x∗

)

≤ P

(
−g(k)

2
< Bin

(
k,

1

2

)
− k

2
≤ g(k)

2

)
= P

(
−g(k)√

k
<

Bin(k, 1
2 ) − k

2√
k/2

≤ g(k)√
k

)
= o(1),

where the first inequality follows from the unimodality of Bin(k, 1
2 ) and the last equality follows from the central limit

theorem, since g(k) = o(
√

k) as k → ∞. �

Proof of Theorem 1. We can clearly assume that k → ∞ as n → ∞ since the case k = O(1) is covered by Remarks
11 and 14. Let (Xt ) and (Yt ) be two instances of the Bernoulli–Laplace chain with X0 ∈ {0,1, . . . , n} being fixed and
Y0 ∼ πn. Combining Lemma 7, Proposition 10, Lemma 12 and Proposition 13, we see that if τ4(κ4) is defined by (62),
then for every κ1,κ2,κ3,κ4 ∈ (0,∞),

P

(
τ4(κ4) >

n

4k
logn + 3n

k
log logn + γ1n

k

∣∣∣X0, Y0

)
� 1

κ2
1

+ κ1√γ1
+ κ2

1e
2γ1

κ2
+ κ2

2

κ2
3

+ 1

κ2
4

. (72)

Choosing κ1 	 γ1/4
1 , κ2 	 κ2

1e
3γ1 , κ3 	 κ2e

γ1 and κ4 	 γ1, we finally get

P

(
τ4(γ1) >

n

4k
logn + 3n

k
log logn + γ1n

k

∣∣∣X0, Y0

)
� 1√γ1

+ 1
4
√γ1

+ 1

eγ1
+ 1

γ2
1

� 1
4
√γ1

. (73)

Moreover, Lemmas 15 and 16 imply that

‖Xτ4(γ1)+1 − Yτ4(γ1)+1‖TV = o(1) as n → ∞, (74)

therefore a combination of (73) and (74) yields that for every x ∈ {0,1, . . . , n},

t ≥ n

4k
logn + 3n

k
log logn + γ1n

k
=⇒ ∥∥P x

t − πn

∥∥
TV � 1

4
√γ1

, (75)

or, tmix(ε) ≤ n
4k

logn + 3n
k

log logn + O( n

ε4k
), which completes the proof of Theorem 1. �
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