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Abstract. We combine the method of exchangeable pairs with Stein’s method for functional approximation. As a result, we give a
general linearity condition under which an abstract Gaussian approximation theorem for stochastic processes holds. We apply this
approach to estimate the distance of a sum of random variables, chosen from an array according to a random permutation, from a
Gaussian mixture process. This result lets us prove a functional combinatorial central limit theorem. We also consider a graph-valued
process and bound the speed of convergence of the distribution of its rescaled edge counts to a continuous Gaussian process.

Résumé. Nous combinons la méthode des paires échangeables avec la méthode d’approximation fonctionnelle de Stein. De cette
facon, nous obtenons une condition générale de linéarité sous laquelle un résultat abstrait d’approximation Gaussienne est valide. Nous
appliquons cette approche a I’estimation de la distance entre une somme de variables aléatoires, choisies dans un tableau par le biais
d’une permutation aléatoire, et un mélange de processus Gaussiens. A partir de ce résultat, nous prouvons un théoréme central limite
fonctionnel combinatoire. Nous considérons également un graphe aléatoire et fournissons des bornes pour la vitesse de convergence
de 1a loi de son nombre d’arétes (aprés un changement d’échelle) vers un processus Gaussien continu.
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1. Introduction

In [32] Stein observed that a random variable Z has the standard normal law if and only if

EZf(Z)=Ef'(2) (1.1)
for all smooth functions f. Therefore, if, for a random variable W with mean zero and variance 1,

[Ef'(W) —EWf(W)| (1.2)

is close to zero for a large class of functions f, then the law of W should be approximately Gaussian. In [33], Stein
combined this observation with his exchangeable-pair approach. Therein, for a centred and scaled random variable W,
its copy W' is constructed in such a way that (W, W’) forms an exchangeable pair and the linear regression condition:

E[W — W|W]=-W (1.3)

is satisfied for some A > 0. This, in many cases, simplifies the process of obtaining bounds on the distance of W from the
normal distribution.
This approach was extended in [29] to examples in which an approximate linear regression condition holds:

E[W —W|W]=—-AW +R
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for some remainder R. A multivariate version of the method was first described in [9] and then in [27]. In [27], for an
exchangeable pair of d-dimensional vectors (W, W’) the following condition is used:

E[W —W|W]=—-AW +R (1.4)

for some invertible matrix A and a remainder term R. The approach of [27] was further reinterpreted and combined with
the approach of [9] in [24].

On the other hand, in the seminal paper [1], Barbour addressed the problem of providing bounds on the rate of con-
vergence in functional limit results (or invariance principles as they are often called in the literature). He observed that
Stein’s logic of [32] may also be used in the setup of the Functional Central Limit Theorem. He found a condition, similar
to (1.1), characterising the distribution of a standard real Wiener process. Combined with Taylor’s theorem, it allowed
Barbour to obtain a bound on the rate of convergence in the celebrated Donsker’s invariance principle.

This paper is an attempt to combine the method of exchangeable pairs with functional approximations. We provide a
novel approach to bounding distances of stochastic processes from Gaussian processes. Our approach is influenced by the
setup of [29] and [1].

1.1. Motivation

We are motivated by a number of (finite-dimensional) examples studied in Stein’s method literature using exchangeable
pairs, which could be extended to the functional setting. Functional limit results play an important role in applied fields.
Researchers often choose to model discrete phenomena with continuous processes arising as scaling limits of discrete
ones. The reason is that those scaling limits may be studied using stochastic analysis and are more robust to changes in
local details. Questions about the rate of convergence in functional limit results are equivalent to ones about the error
those researchers make. Obtaining bounds on a certain distance between the scaled discrete and the limiting continuous
processes provides a way of quantifying this error.

We consider two main examples. The first one is a combinatorial functional central limit theorem. The second one
considers a process representing edge counts in a graph-valued process created by unveiling subsequent vertices of a
Bernoulli random graph as time progresses.

The former is a functional version of the result proved qualitatively in [19] and quantitatively in [10] and an extension
of the main result of [2]. It considers an array {X; ; :7, j =1,...,n} of i.i.d. random variables, which are then used to
create a stochastic process:

1 [nt]
ndi ZXin(i)a (1.5)
n

i=1

where s,f is the variance of Z?:l Xz (i) and 7 is a uniform random permutation on {1, ..., n}. The motivation for studying
this and similar topics comes from permutation tests in non-parametric statistics. Similar setups, yet with a deterministic
array of numbers, and in a finite-dimensional context, have also been considered by other authors (see [35] for one of the
first works on this topic and [5,18,25] for quantitative results).

The second example, which considers Bernoulli random graphs, goes back to [20]. It was first studied using ex-
changeable pairs in a finite-dimensional context in [28], where a random vector whose components represent statistics
corresponding to the number of edges, two-stars and triangles is studied. The authors bound its distance from a normal
distribution. We consider a functional analogue of this result, concentrating, for simplicity, only on the number of edges.
Our approach can, however, be also extended to encompass the number of two-stars and triangles using a multivariate
functional exchangeable-pair methodology which we leave for future work. All of those statistics are often of interest in
applications, for example, when approximating the clustering coefficient of a network or in conditional uniform graph
tests.

1.2. Contribution of the paper

The main achievements of the paper are the following:

(a) An abstract approximation theorem (Theorem 4.1), providing a bound on the distance between a stochastic process Y,
valued in R and a Gaussian mixture process. The theorem assumes that the process Y, satisfies the linear regression
condition

E{Df (Y)Y, — Yu]|Ya} = —2aDf (Y)[Ya] + Ry,
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for all functions f in a certain class of test functions, some A, > 0 and some random variable Ry = R¢(Y,). Cru-
cially, the bound in Theorem 4.1 is derived with respect to a class of test functions so rich that the bound approaching
zero fast enough, under certain assumptions, implies the law of Y, converging weakly in the Skorokhod and uni-
form topologies on the Skorokhod space. The exact conditions under which this convergence occurs are stated in
Proposition 2.2. Theorem 4.1 is used in the derivation of the remaining results of this paper.

A novel functional combinatorial central limit theorem. In Theorem 5.1, we establish a bound on the distance be-
tween process (1.5) and a Gaussian mixture, piecewise constant process. Furthermore, a qualitative result showing
convergence in distribution of process (1.5) to a continuous Gaussian limiting process is provided in Theorem 5.5.
Thus, we extend [2], where similar results were proved under the assumption that all the X; ;’s fori, j =1,...,n are
deterministic. Our bound is also an extension of [10], where a bound on the rate of weak convergence of the law of
é Y"1 Xiz() to the standard normal distribution is obtained.

A novel functional limit theorem for a statistic corresponding to edge counts in a Bernoulli random graph, together
with a bound on the rate of convergence. We consider a Bernoulli random graph G (n, p) on n vertices with edge
probabilities p. Letting I; ;, for i, j =1, ..., n be the indicator that edge (i, j) is present in the graph, we study a
scaled statistic representing the number of edges:

L tJ— =
T,()="—"5— > L. te[0.1].

i,j=1
Theorem 6.3 provides a bound on the distance between the law of the process
t—T,@) —ET,@#), te]0,1] (1.6)

and the law of a piecewise constant Gaussian process. Theorem 6.4 bounds the distance between the law of (1.6)
and the distribution of a continuous Gaussian process. Weak convergence of the law of (1.6) in the Skorokhod and
uniform topologies on the Skorokhod space to that of the continuous Gaussian process follows from the bound as a
corollary.

Stein’s method of exchangeable pairs

idea behind the exchangeable-pair approach of [33] was the following. In order to obtain a bound on a distance

between the distribution of a centred and scaled random variable W and the standard normal law, one can bound (1.2) for
functions f coming from a suitable class. Supposing that we can construct a W’ such that (W, W’) is an exchangeable

pair

and (1.3) is satisfied, we can write

O=E[(f(W)+ £ (W))(W - W)]
=E[(f(W) = fOM)(W = W)] +2E[ f(WE[W — W|W]]
=E[(f(W)— fOW)(W —W)]+ 2AE[Wf(W)].

It follows that

B[WF ()] = 3 B[(7W) — F(W))(W — W]

Therefore, using Taylor’s theorem,

[E[f'(W)] - EB[Wf(W)]|
= ELy' 0]+ o BL (V) = ) (W = W)
||f”||oo

1
< |Ef' W) = B (W) (W — w')?| +

E|W — W[’

3

<171 E[E] v - wyw ] -]+ ”f””°°E|w W

< ||]P2)|L|oo \/Var[E[(W —wRw]] + Ilf”lloo

which provides the desired bound.
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Before the publication of [9,24,27] the method was restricted to one-dimensional approximations. It was, however,
also used in the context of non-normal approximations (e.g [7,8,30]). More recently several authors have extended and
applied the method. Dobler extended it to Beta distribution in [14] and Chen and Fang used it for the combinatorial CLT
[10].

1.4. Stein’s method in its generality

The aim of the general version of Stein’s method is to find a bound of the quantity |E,, s — E,A|, where u is the target
(known) distribution, v, is the approximating law and 4 is chosen from a suitable class of real-valued test functions .
The procedure can be described in terms of three steps. First, an operator A4 acting on a class of real-valued functions is
sought, such that

(Vf € Domain(A) E, Af = O) — v=u,
where p is our target distribution. Then, for a given function & € H, the following Stein equation:
Af =h—E,h

is solved. Finally, using properties of the solution and various mathematical tools (among which the most popular are
Taylor’s expansions in the continuous case, Malliavin calculus, as described in [26], and coupling methods), a bound is
sought for the quantity |E, A f|.

1.5. Functional Stein’s method

Approximations by laws of stochastic processes have not been covered in the Stein’s method literature very widely, with
the notable exceptions of [1,2,11,12,31] and recently [3,6,13,21,22]. In [31], Stein’s method is developed for approxima-
tions by abstract Wiener measures on a real separable Banach space. References [3,21] establish a method for bounding
the speed of weak convergence of continuous-time Markov chains satisfying certain assumptions to diffusion processes.
Reference [22], on the other hand, treats multi-dimensional processes represented by scaled sums of random variables
with different dependence structures and establishes bounds on their distances from continuous Gaussian processes. The
recent reference [6] introduces a Dirichlet structure and the corresponding Gamma calculus in an infinite-dimensional
context and combines it with the methodology of [31] to derive bounds on distances from Gaussian random variables
valued in Hilbert spaces.

The bounds in references [1,2,21,22] are obtained with respect to convergence-determining classes of test functions
and weak convergence results in the Skorokhod topology follow from the bounds as corollaries. These references all use
and adapt the setup of [1]. Therein, the author studies Donsker’s theorem saying that for a sequence of i.i.d. real random
variables (X,,)7° ; with mean zero and unit variance, the random process

Lot
Y, (0)=n""2>"X;, 1€[0.1] (1.7)
i=1

converges in distribution to the standard Brownian motion with respect to the Skorokhod topology. Through a careful
and technical application of the general Stein’s method philosophy explained above, and a subsequent repetitive use of
Taylor’s theorem, Barbour [1] proved a powerful estimate on a distance between the law of Y,, in (1.7) and the Wiener
measure. Specifically, he considered test functions g acting on the Skorokhod space D([0, 1], R) of cadlag real-valued
maps on [0, 1], such that g takes values in the reals, does not grow faster than a cubic, is twice Fréchet differentiable and
its second derivative is Lipschitz. Denoting by Z Brownian motion on [0, 1] and adopting the notation of (1.7), his result
says that

E|X{|? + /logn
N ,

where C, is a constant, independent of n, yet depending on the (carefully defined) smoothness properties of g. Among the
applications and extensions considered by Barbour are an analysis of the empirical distribution function of i.i.d. random
variables and the Wald—Wolfowitz theorem often used to construct tests in non-parametric statistics [34].

The results of [3,11-13] consider a totally different setup. Therein, the authors develop a Stein theory on a Hilbert
space using a Besov-type topology. Their bounds do not imply weak convergence in the Skorokhod topology and, for

|Eg(Y,) —Eg(Z)| < C,
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most of the natural examples one can consider, the continuous mapping theorem does not apply in the setting they work
with. For instance, as opposed to the results of [1], those of [11] do not allow one to draw conclusions about convergence
of the supremum of a process. For these reasons, the setup we use to obtain the bounds in the current paper is analogous
to that of the former class of references [1,2,21,22]. We consider it more flexible than the one of the class of references
[3,11-13]. It is also more suited for applications to processes belonging to the widely-used Skorokhod space than the one
of [31], which only caters for separable Banach spaces.

1.6. Structure of the paper

The paper is organised as follows. In Section 2 we introduce the spaces of test functions which will be used in the main
results. We also quote a proposition showing that, under certain assumptions, they determine convergence in distribution
under the uniform topology. In Section 3 we set up the Stein equation for approximation by a pre-limiting process
and provide properties of the solutions. In Section 4 we provide an exchangeable-pair condition and prove an abstract
exchangeable-pair-type approximation theorem. Section 5 is devoted to the functional combinatorial central limit theorem
example and Section 6 discusses the graph-valued process example.

2. Spaces M, M', M2, M°

The following notation is used throughout the paper. For a function w defined on the interval [0, 1] and taking values in
a Euclidean space, we define

lwll= sup |w(®)|.
t€l0,1]

We also let D = D([0, 1], R) be the Skorokhod space of all cadlag functions on [0, 1] taking values in R. We will often
write EW[-] instead of E[-|W].
Let us define:

I fllz := sup BRI

wep 1+ [wl?

and let L be the Banach space of continuous functions f : D — R such that || f||z < oco. Following [1], we now let
M C L consist of the twice Fréchet differentiable functions f, such that:

|D? f (w+h) — D* f(w)|| < kglAll, 2.1

for some constant X ¢, uniformly in w, h € D. By D* f we mean the k-th Fréchet derivative of f and the norm of a k-linear
form B on L is defined to be || B|| = supy. =1} | Bl%, ..., h]|. Note the following lemma, which can be proved in an
analogous way to that used to show (2.6) and (2.7) of [1]. We omit the proof here.

Lemma 2.1. For every f € M, let:

. [f(w)] IDf (w)| ID? f (w)]| ID?f(w+h) — D* f(w)]|
| fllaz := sup — 3+t sup ———> + sup —————+ sup .
weD 1+ ”w” weD 1+ ”w” weD 1+ ”w” w,heD ”h”

Then, for all f € M, we have || f||y < 00.

For future reference, we let M! C M be the class of functionals g € M such that:

lg(w)] I D?g(w 4 h) — D?g(w)]
gy := sup ——— =+ sup || Dg(w)|| + sup || ng(w) H + sup < 00 2.2)
weD 1 + ||LU|| weD weD w,heD ”h”
and M? C M be the class of functionals g € M such that:
w Dg(w D?g(w D%g(w+h) — D?g(w
Il = sup lg(w)] + sup | Dg(w)l + sup ID"g(w)l| + sup ID"g( ) gw)l oo, (23)

wep LHIWIP * wep T+ llwll  wep T+ Ilwll  waep 171l
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We also let M be the class of functionals g € M such that:

D? h) — D?
ligllp0 := sup |g(w)| + sup || Dg(w)]| + sup | D2g(w)| + sup 1D7g(w + 1) sl
weD weD weD w,heD ”h”

We note that M° ¢ M' ¢ M? c M. The next proposition is [2, Proposition 3.1] and shows conditions, under which
convergence of the sequence of expectations of a functional g under the approximating measures to the expectation of g
under the target measure for all g € M° implies weak convergence of the measures of interest.

Proposition 2.2 (Proposition 3.1 of [2]). Suppose that, for each n > 1, the random element Y, of D is piecewise constant
with intervals of constancy of length at least r,,. Let (Ln)n>1 be random elements of D converging in distribution in D,
with respect to the Skorokhod topology, to a random element Z € C ([0, 1], R). If:

|Eg(Yn) — Eg(Zy)| < CTuligl po (2.4)

for each g € M° and if T,,10g*>(1/r,) 220, then the law of Y, converges weakly to that of Z in D, in both the uniform
and the Skorokhod topologies.

3. Setting up Stein’s method for the pre-limiting approximation

The steps of the construction presented in this section will be similar to those used to set up Stein’s method in [1] and
[22]. After defining the process D, whose distribution will be the target measure in Stein’s method, we will construct a
process (W, (-, u) : u > 0) for which the target measure is stationary. We will then calculate its infinitesimal generator .4,
and take it as our Stein operator. Next, we solve the Stein equation .4, f = g using the analysis of [23] and prove some
properties of the solution f,, = ¢, (g), with the most important one being that its second Fréchet derivative is Lipschitz.

3.1. Target measure
Let
n
D)= Y Ziipiy.in@®, t€01], 3.1)
i]eees im:1

where Z;, . ;,’s are centred Gaussian and:

,,,,,

(A) the covariance matrix X, € RO™x0™) of the vector Z is positive definite, where Z € R™) is formed out of the

Zi,....i, s in such a way that they appear in the lexicographic order.
(B) The collection {J;,, .. i, € D(0,1],R) :iy,...,in € {1,...,n}} is independent of the collection {Zil,...,im :
i1,...,im €{1,...,n}}. A typical example would be J;;, ;, =14 for some measurable set A;;, ;-

Remark 3.1. It is worth noting that processes D, taking the form (3.1) often approximate interesting continuous Gaus-
sian processes very well. An example is a Gaussian scaled random walk, i.e. D, of (3.1), where all the Zil,‘,.,,‘m’s are
standard normal and independent, m =1 and J; = 1;/,,1) for all i =1, ..., n. It approximates Brownian Motion. By
Proposition 2.2, under several assumptions, proving by Stein’s method that a piece-wise constant process Y, is close
enough to process D, proves Y,,’s convergence in law to the continuous process that D, approximates.

Now let {(X;,,..;,,w),u >0) :i1,...,in =1,...,n} be an array of i.i.d. Ornstein—-Uhlenbeck processes with sta-
tionary law AN(0, 1), independent of the Jiy,....im 8- Consider ﬂ(u) = (Z)'2Xu), where X(u) € R is formed
out of the X;,, ;,(u)’s in such a way that they appear in the same order as the Zil ,,,,, in S appear in Z. Write

Uiy, iy (M) = (‘lj((u))l(i1 ,,,,, i, using the bijection I : {(i1, ..., i) ti1,....in=1,...,n} = {1,...,n™}, given by:
LG, im) = (= D" e (it = D+ i, (32)

Consider a process:

iyenny im=1

It is easy to see that the stationary law of the process (W, (-, 1)), >0 is exactly the law of D,,.
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3.2. Stein equation
By [22, Propositions 4.1 and 4.4], the following result is immediate:

Proposition 3.2. The infinitesimal generator of the process (Wy (-, u))y>0 acts on any f € M in the following way:
Auf () = =Df w)[w] +ED? f (w)[Dy, Dy].

Moreover, for any g € M such that Eg(D,,) =0, the Stein equation A, f, = g is solved by:
o
fn=¢n(g)=_/ Tyugdu, 3.3)
0
where (T, f)(w) =E[ f(we™ + V1 — e=24D,,(-)]. Furthermore, for g € M:

2 4
(A) | Dén(e)w)| < IIgIIM(l + gIIWII2 + gEIIDnHz),

1 E|D,
®) [D26u()w)] < ||g||M(5 + @ + ”3 ”),
D¢, (g)(w + 1) — D*¢y(g) (W)l |ID?(g + ¢)(w + h) — D*(g + c)(w) ||
© < sup ,
T w.heD 3|1A]|

for any constant function ¢ : D — R and for all w, h € D. Moreover, for all g € M, as defined in (2.2),
A) Do) )] < liglip
2 1
B) [ D*du(e)(w)| < AL
and for all g € M?, as defined in (2.3),

| D) )] < llglp-

4. An abstract approximation theorem

We now present a theorem which provides an expression for a bound on the distance between some process Y, and D,,,
defined by (3.1), provided that we can find some Y/, such that (Y, Y},) is an exchangeable pair satisfying an appropriate
condition.

Theorem 4.1. Assume that (Y,,Y),) is an exchangeable pair of D([0, 1], R)-valued random variables such that:
EY'Df (Yn)[Y}, = Ya] = =2u Df (Y)[Yal + Ry, @.1)

where EYn[.] := E[-[Y,], for all f € M, some X, > 0 and some random variable Ry = Ry(Y,). Let D,, be defined by
(3.1). Then, for any g € M:

|Eg(Y,) — Eg(D,)| < €1 + €2+ €3
where

o sl

3

1
€= bR Esz(Yn)[Yn - Y;, Y, — Y;l] - ]Esz(Yn)[Dns D, ]|,
n

1
e3=—|ER/]|,
3 An| 1l

and f = ¢,(g), as defined by (3.3).
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Remark 4.2 (Relevance of terms in the bound). Term €| measures how close Y, and Y/, are and how large A, is. Term
€2 corresponds to the comparison of the covariance structure of Y, — Y/, and D,,. Estimating this term usually requires
some effort yet is possible in several applications (see Theorem 5.1 and 6.3 below). Term €3 measures the error in the
exchangeable-pair linear regression condition (4.1).

Remark 4.3. The term

1

S ED2f (V) [Ya = Y, Yo = Y, ] = ED?f (Y,)[Dy, Dy ]

in the bound obtained in Theorem 4.1 is an analogue of the second condition in [24, Theorem 3]. Therein, a bound
on approximation by A'(0, £) of a d-dimensional vector X is obtained by constructing an exchangeable pair (X, X’)
satisfying:

EX[X' = X]=AX+E and EX[(X'—X)(X' - X)"]=2AS +E'

for some invertible matrix A and some remainder terms E and E’. In the same spirit, Theorem 4.1 could be rewritten to
assume (4.1) and:

EY"D? f (Yo)[Y, = Yo, Y, = Yy ] = 20, D* f (Y,)[Dy, D, ] + R
The bound would then take the form:

llgllae 3 1 1
|Eg(Y,) —Eg(D,)| < WE[“ (Y. = Y,)|"]+ 3 ER |+ E'ERH'

Remark 4.4. While Theorem 4.1 is formulated for univariate stochastic processes belonging to the Skorokhod space
D([0, 1], R), its proof below is valid for processes belonging to D([0, 1], R?), for any p > 1.

We only present the univariate case here since in the modern approach to multivariate Stein’s method of exchangeable
pairs, presented in [24,27,28], the exchangeable-pair condition for multivariate approximations is written not in terms of
areal A,, asin (4.1), but in terms of a matrix-valued coefficient A, as in (1.4).

While it is possible to rewrite condition (4.1) appropriately, in terms of a matrix A, prove a corresponding bound and
use it in interesting applications, we think of it as a separate problem and leave it for future research.

Proof of Theorem 4.1. Our aim is to bound |Eg(Y,) — Eg(D,)| by bounding |EA, f(Y,)|, where f is the solution to
the Stein equation:

Anf =g —EgDy),
for A, defined in Proposition 3.2. Note that, by exchangeability of (Y,, Y},) and (4.1):
0=E(Df(Y,) + Df(Y))[Yn —Y,]
=E(Df(Y}) = Df (Y))[Yn — Y, ]+ 2E{EY" Df (Y,)[ Y — Y, ]}
=E(Df(Y},) = Df (Yn)[Yn — Y, ] +22,EDf (Y,)[Yn] — 2ER

and so:

1
EDf (Ya)[Yn] = 7 [E(Df(Ya) — DF(Y,))[Yn — Y,] +2ER;}.

n

Therefore:

|EA, f(Ys)| = [EDf(Y)[Yn]l — ED? £ (Y,)[Dy, Dy]|

1 1
= 'n E(Df (Yn) — Df(Y},))[Yn — Y, ] —ED? £ (Yu)[Dy, Du] + A—ERf‘

1
2An

E(Df (V) ~ DF (Y,)[¥a — ¥}] = 5-ED* F(¥,)[¥s = Y. Yo — V]

21

=
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1 1
+ ‘ZA ED?f(Y)[Ya = Y,. Y, =Y, ] —ED?f(Y,)[D,.D,]| + X—|ERf|
n n
llglla ELN
<—E||Y,—-Y —I|ER
= 12A, [H n HH ] + Jon | f|
1 2 ! / 2
+ 2)\’ ED f(Yn)[Yn - Yna Y}‘l - Yn] - ED .f(Y"l)[Dna Dn] )
n
where the last inequality follows by Taylor’s theorem and Proposition 3.2. (]

5. A functional combinatorial central limit theorem

In this section we consider a functional version of the result proved in [19]. Our object of interest is a stochastic process
represented by a scaled sum of independent random variables chosen from an n x n array. Only one random variable
is picked from each row and for row i, the corresponding random variable is picked from column 7 (i), where 7 is a
random permutation on [rn] = {1, ..., n}. Theorem 5.1 establishes a bound on the distance between this process and a
pre-limiting process and Theorem 5.5 shows convergence of this process, under certain assumptions, to a continuous
Gaussian process.

Our analysis in this section is similar to that of [2], where the summands in the scaled sums are chosen from a
deterministic array. The authors therein also establish bounds on the approximation by a pre-limit Gaussian process
and show convergence to a continuous Gaussian process. Furthermore, they establish a bound on the distance from the
continuous Gaussian process for a restricted class of test functions. For random arrays the situation is more involved.

Our setup is analogous to the one considered in [10], where a bound on the rate of convergence in the one-dimensional
combinatorial central limit theorem is obtained using Stein’s method of exchangeable pairs.

5.1. Introduction

Let X={X;j :i, j € [n]}, where [n] = {1,2,...,n}, be an n x n array of independent R-valued random variables, where
n>2,EX;; =c;j, VarX;; = al%. >0 and E|X;; |3 < 00. Let w be a uniform random permutation of [n], independent of

X. Suppose that ¢;. = c.; =0 where ¢;. = > "_| L = EX;r) and c.; = Y I, “L. Furthermore, for

./=1 n n
l — J—
s}% = Z al%. + — Cizj (5.1)
n & n—1 &
i,j=1 i,j=1
let
1 |nt] 1 n
Y, ()= . ZXm(i) = ZXin(i)]l[i/n,l](t), te€[0,1].
ni n

i=1

We note that s,% = Var[Z?:1 Xix(i)], by the first part of [10, Theorem 1.1]. The process Y,, is similar to the process
Y considered in [2] and defined by (1.4) therein with the most important difference being that we allow the X;;’s to be
random, whereas the authors in [2] assumed them to be deterministic. Bounds on a distance between one-dimensional
distributions of Y, and a normal distribution have been obtained via Stein’s method in [10, Theorem 1.1].

5.2. Exchangeable pair setup

Select uniformly at random two different indices 7, J € [n] and let:

1 1 1 1

Y, =Y, — — Xtz Lii/n1] — —XieHLn) + — Xtz L) + — X sz L /n11-
Sn Sn Sn Sn

Note that (Y,, Y},) is an exchangeable pair and that for all f € M:

EY {Df(Y)[Y, - Y,]}

1
= S—EY” {Df YD) X1z Lty + X sz Lian) — Xt Lm0 — Xz Liml}

n
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1 n
T = 1s, iJZ_:I EY'{Df (Y[ Xiz()Lii/n, 11 + X j(pL1j/n 11 = Xin(jy Liifn, 11 = X jeiy Lj/m, 11}

_ 2 2 N o
= n_1 Df(Yn)[Yn] I’l(l’l — l)Sn i]X::IE Df(Yn)[Xz,ﬂ(])]l[l/n,l]]~
Therefore:
, 2 2 . :
EX{Df (Y)[Y, = Yu]} = == Df (Yu)[Y,l + prPR—T ,-,-Zzl Df (Y [EY"[Xi 2 ()1 Lji/n11]. (5.2)

So condition (4.1) is satisfied with

n

Z Df (Y)[EY"[Xiz(jyILii/n11]-
ij=1

2
Ap = d Rr=——-—
"Tn—1 an ! nn—1)s,

5.3. Pre-limiting process
Now let Z; = \/% Y X(Zi — % Y i1 Zj1), for X' = {Xl’; 21, j € [n]} being an independent copy of X and Z;;’s
i.i.d. jointly standard normal, jointly independent of X U X”. Then, let

1 [nt]
D,()=—3 Z, t€l01]. (5.3)
"=l

We will compare the distribution of Y, with the distribution of D,,. D, is a conceptually easy process with the same
covariance structure as Y. It is constructed in a way similar to the process in [2, (3.13)]. Note that Z; has mean zero for
all i and

J— 1< ?
52 _ 2 4 4
EZ}= — l 1E[X”]E[<le . ,-2 12,,) }

1 1 & 1 <
= > E[Xuxl-k]EKZu - szl) (Zik - ZZn)]
1<l#k=n j=1 j=I1
|~ ) 1
=1
1 n
=-) EX}
n
=1

1 " n
=33 (2(n - I)Z]EXizl +2Z]Exl%’r>
=1 r=1
1 n
= W( Z E[(Xix — Xil)z] +2 Z EXiEX; + 221@){%)

1<k#l<n 1<k#l<n r=1
1 2 ~
=55\ 2 ElXu—X)’]+2) o] (5.4)
1<k#l<n r=1

as ¢;. =0, and, for i # j,

U B R N
EZIZ] = P Z E(XlkX][)E[<Z,k — ; erk) (Z][ - ;ZZrl
r=1 r=1

k,l=1
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n

1
=——— Zcikcjk
nn—1) P

1
=370 T (22( EX;)EX jx —2(n — 1) Z]Ex,k]EX,k)

k=1

1
:W_D(Z Z EX”EXJ']C—Z Z EXikEXjk>

ISk;élgn 1§k7élfl’l
1
== 2 Bk = XX = X0, (5.5)
I<k#l<n

5.4. Pre-limiting approximation
We have the following theorem, comparing the distribution of Y, and D,,:

Theorem 5.1. ForY,, defined in Section 5.1, D, defined in Section 5.3 and any g € ML, as defined in (2.2),

|Eg(Y,) — Eg(D,)|

< % S TEIX0P + SEIXi P X | + OF| Xt PEI Xy + SE| X4 PEIX o
Sn 1<i,jk,l,u<n

+ 4E| X |E| X [EIX ji| + 2E|Xix |EIXit |E| X i | + 6E|Xik |EIX 1 1B Xiu | + 2E[| Xk |1 X k1]
+AE| X X i |E| X | 4+ 4 X 0 X |EIX | 4 8E X i | B X1 [E| X iy 4 2K X e X1 X |

2
‘|‘2E|Xuk|]E|Xlk|E|Xjk| + E(2|Xlk| + 6|X]l| (ZE|X1r| +

gl gl <
M M 2
Jn + n2s? Zaij'

ij=1

+

Remark 5.2 (Relevance of terms in the bound). The first long sum in the bound corresponds to €; and (to a large

extent) € of Theorem 4.1. It represents the usual Berry—Esseen third moment estimate arising as a result of applying

2 ..
Taylor’s theorem. Term % also comes from the estimation of €;. The last term corresponds to €3.

Remark 5.3. Assuming that s, = O(4/n), we obtain that the bound in Theorem 5.1 is of order ﬁ

Remark 5.4. If we assume that E| X ,~k|3 < Bz foralli,k=1,...,n then the bound simplifies in the following way

g )

n

E Ctrcjr

i,jr=1

43/33112 86,
(n— l)s n(n — 1)s

[Eg(Yn) —EgDn)| < llgllpn (

We will use Theorem 4.1 to prove Theorem 5.1. In the proof, in Step I, we justify why Theorem 4.1 may indeed be used
in this case. In other words, we check that D,, of (5.3) satisfies the conditions D, of Theorem 4.1 is supposed to satisfy
and that the exchangeable-pair condition for Y, holds. In Step 2 we bound terms €; and €3 coming from Theorem 4.1.
This is relatively straightforward due to the Y,, and Y/, of Section 5.2 being constructed in such a way that they are close
to each other and Ry of the same subsection being small. Then, in Step 3, we treat the remaining term using a strategy
analogous to that of the proof of [2, Theorem 2.1]. The strategy is based on Taylor’s expansions and considering copies
of Y,, which are independent of some of the summands in Y. Finally, we combine the estimates obtained in the previous
steps to obtain the assertion.

Proof of Theorem 5.1. We adopt the notation of Sections 5.1, 5.2 and 5.3. Furthermore, we fix a function g € M, as
defined in (2.2) and let f = ¢, (g), a solution to the Stein equation for D, as defined in (3.3).
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Step 1. We note that D, can be expressed in the following way:

n 4

1 o X
D,=)" (Zil - ZZﬂ)Ji,z, where J; (1) = ﬁﬂ[i/n,l](l),
j=1

i,I=1

which, together with (5.2), lets us apply Theorem 4.1.
Step 2. For the first term in Theorem 4.1, for any g € M

gl

n—1Dglln
€ = _
122,

E|Y, - v, | = =)

B[V, - Y, |’
‘We note that:

3 16
E|Y,-Y,| < S—3(E|X1nu>|3 +EIX sz +EIX 1z P +EIXsznl?)

n

16
=— Z(E|Xiﬂ(i)|3 +EIX jr ()P +ElXir (P + E|Xjn(i)|3)
n(n—1)s; Py

32
=——— Z(EIXm(i)|3 +ElXiz (%)
n(n —1)s; vy

64 3
=253 Z E[Xij"
mij=1

Hence,

Bliglly +
e1 < —4- Y EIX;I.

3ns3
nogj=1

Furthermore, by Proposition 3.2:

1 n
€= v .ZlEDf(Yn)[Xin(j)ﬂ[i/n,l]]
J:

1 n
= ‘— > EDF(Y)[XijLji/n ]
i =

1 n
<lglh —E| D Xijli/nn
R P

el || o [
M

<=M \EY Xy
= s, N = ij
2[lg |l 31 Z” )
< o5
s, ~ L

i,j=1
_ el
==

where we have used Doob’s L? inequality in the second inequality and (5.1) in the last one.
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(5.6)

(5.7)

Step 3. We will follow a strategy similar to that of [10]. Define a new permutation 7;x; coupled with 7, such that:

L(miju) = L(m|w (@) =k, 7(j) =1),
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where £(-) denotes the law. As noted in [10, (3.14)], we can construct it in the following way. For 7;; denoting the
transposition of i, j:

T, ifl=n(j),k=m(@),
e if1=m(j), k #m(),
Tijkl = . . .
T Te-1(py, ifl #mw(j), k=m(),
T Ta1y,i* Ta=l(k),j * Tijo ifl (), k#£m@).
We also let

1 n
Yoijk = o Z Xirz @ Liit im0
"=l
Then L(Y,ijki) = E(Y,l |7(i) =k, (j) =) (recalling that £(-) denotes the law). Also, for each choice of i # j, k # [
let XUk .= {X”kl ', j' € [n]} be the same as X := {Xij: i, j € [n]} except that {X;x, Xi;, X jk, X j;} has been replaced

by an 1ndependent copy (X!, X}, X]k, X/l} Then let

n
ikt 1 ikl
Yoo == D X Lt
n , 1

and note that Yiljkl is independent of {X;x, Xi1, X jk, X j1} and E(Y;j kl) = L(Y,) (where L denotes the law).

Now, by Lemma A.1, proved in the appendix, for €; of Theorem 4.1,

@=|5 FOYD[(Yr=Y,). Y, = Y,] —ED?*f(Y,)[Dy, D,]
<A+B (5.8)
where
1 Xix — Xi)* 27 "
Tl —1)s2 Z ]E{[ : n = - e 1](D2f(Yn,ijkl) -D*f(Y jkl))[ll[z/n 1] i/n,l]]}

M1<i,jk,l<n

i#j,k#l

1 Xik = XiD(Xj1 = Xji) 5 5
+ n(n —1)s2 Z ]EH: 2n ZlZ/i|

nl<i,jkl<n

i#j,k#l

(D*f(Yn,ijit) — D*f(Y ljkl))[]l[l/n 11 Lj/n, 11]}
(5.9)

1 X —Xi)* 22 7,
~lnt=Ds? 3 E{[ 2n _n—1i|D fvi )[ﬂ[z/nuﬂ[z/nl]}

"1<ljkl<n

i#j,k#l

1 Kix = XiDXji = Xji) 5 5
+n(n—1)s Z E”: 2n Zlei|

n<i,jkl<n

i#j,k#l

'sz(YU l)[ﬂ-[l/n 1 Lj/nt ]H

Recalling that Y5* is independent of {X;x, X1, X jx, X j1} and LYZ™) = L(Y,),

1 X — X 2}
n(n — 1)s2 > ]E[ n Tz 1i|E{D2f(Yn)[]l[i/n,1]]l[i/n,l]]}

nl<i,jkl<n

i#j,k#l
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1 Xix = XiDXj—Xjx) 5 4 2
+m Z E[ o — Z;Zj \E{D* f (Y)[Liijn,11 Lij/m 111}
nl<i,jkl<n
i#j,k#l
_llgllar
S ) Z%
(n— I)Sn I1<i#j<nr=1
_ gl Z o2 (5.10)
T p22 ij’ :

nogj=1

where the inequality follows by (5.4), (5.5) and Proposition 3.2. Furthermore, by Lemma A.2, proved in the appendix,
gl ps
< ﬁ > (EIXul + SEIXuPEIXal + 9B X “EIX 1| + SEI Xt PEIX i
nein Sn 1<i,j,k,l,u<n
+ 14E| Xt || X3 [EIX j1| + 2BI Xk [EI Xt |B Xiu | + 6EIX i |EIX 1 |E Xiu | + 2E[| Xue |1 X ik |*]
+AE| X X i | B X | 4+ 4B X i X ik [EIX 1| + SEIX i [E| X ik [E|X 1| + 2E| Xk X ik X ji|

Zc,,cj, )} 5.11)

We now use (5.6),(5.7),(5.8),(5.10),(5.11) to obtain the assertion. O

+ 2E|Xuk|]E|Xlk|E|XJk| + E(2|Xlk| + 6|le| (ZE|XH”| +

5.5. Convergence to a continuous Gaussian process

Theorem 5.5. Let X and Y, be as defined in Section 5.1 and suppose that for all u, t € [0, 1],

1 nt] lnu] n 1 s oo
pore— ZZZEX,kX,k< i ;> 2 o (u, ) (5.12)
i=1 j=1k=1

and

1 |nt] |lnu] n
n— 0o 2

QZ D EXuXj—> oD, 1) (5.13)

i=1 j=11=1

pointwise for some functions o, c® : [0, 11> — R.. Suppose furthermore that
sup n2 } ZZV&]I [X7] (5.14)
Sn =1 i=1
and
1 |nt] n 2 P
17
n i=1 \I=1

pointwise for some function ¢ : [0, 1] - Ry and

1
lim 71@[ sup |XZ ]:o 5.16
n—oo 5, /_}’l—l . ’"P”’ il ll’ ( )

Then (Y, (t),t € [0, 1]) converges weakly in the uniform topology to a continuous Gaussian process (Z(t), t € [0, 1]) with
the covariance function o .
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Remark 5.6. Assumption (5.13) could also say that

|nt] lnu] n

=2 Y Y EXxy

Sn izl j=1 =1

simply converges pointwise rather than giving the limit a name. However, we will use o in the proof so it is convenient
to use it in the formulation of the Theorem as well.

Remark 5.7. Assumption (5.15) is necessary for the limiting process in Theorem 5.5 to be continuous. It essentially
corresponds to the the assumption that the quadratic variation of the following process

lnt] n

D (1) = Jl_ DY XiZa

i=11=1

converges to the function ¢ pointwise in probability, which then implies the weak convergence of the process Dﬁ,l) to a
continuous process. While it is relatively easy to show that D,(f) =D, — D,gl) converges to a continuous limit, we had to
explicitly add this assumption to ensure that D,, does as well.

The proof of Theorem 5.5 will be similar to the proof of [2, Theorem 3.3]. The pre-limiting approximand D,,, defined
in Section 5.3, will be expressed as a sum of two parts. In Steps I and 2 we prove that each of those parts is C-tight (i.e.
they are tight and for each of them any convergent subsequence converges to a process with continuous sample paths).
In Step 3 we show that the assumptions of Theorem 5.5 trivially imply the convergence of the covariance function of
D,,, which together with C-tightness implies the convergence of D, to a continuous process. Theorem 6.3 will then be
combined with Proposition 2.2 to show convergence of Y,, to the same limiting process. Finally, the combinatorial central
limit theorem for random arrays, proved in [19] and analysed in [10], will imply that Z is Gaussian.

Proof of Theorem 5.5. We will use the notation of Sections 5.1 and 5.3.
Step 1. Note that D, = D,(,l) + Df,z) , Where:

[nt] n nt] n

DV (1) = Jl_ZZX;/,Z,I, DP (1) = \/1—22"1’32’

i=11=1 i=1[=1

for Z] = % 27:1 Zji.
Now, note that, by (5.15):

DP), B ey

pointwise, where (-) denotes quadratic variation. Therefore, by [16, Chapter 7, Theorem 1.4] and using (5.16), we obtain
that Df,l) converges weakly in the Skorokhod topology on D[0, 1] to a continuous Gaussian process with independent
increments.

We now recall that the Skorokhod space is equipped with a metric (topologically equivalent to the Skorokhod metric)
with respect to which it is complete. It is also universally measurable by the discussion at the beginning of [15, Chap-
ter 11.5]. Since it is also separable and D,gl) = Z1, for some continuous process Zj, in the Skorokhod topology, [15,
Theorem 11.5.3] implies that (D"),> is C-tight.

Step 2. Also, note that for u > ¢ s.t. |[nu| > |nt] +1,

E[|D,(12)(u) - D,(2)(l)| X, 0,1 €n]] = n(n—1)s2 l)s Z(

_ lnu] —nt]

- n(n—l)sn =

Lnu) 2
Z X il)
=|nt]+1

[nu]

Z X2
nt]+1

l1i=
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and
E[|DP ) — D(2)(t)| 1X/,i,l €[n]] =0, foru>ts.t [nu]=|nt].
Since (DY |X7}, 1,1 € [n]) is Gaussian for u, such that |nu] > |nt] + 1,
E[DP ) - DX (1)[* = 3E{(E[[DP ) - DX 1) *| X};, 1,1 € [n1])°}

2
] — )\ (s
3< n(n — l)s,% > E(Z Z Xii

I=1i=|nt|+1

IA

LnuJ . |_I’llJ 2 n nu] 5 n nu]
3( nn — 1)32 > Z Z EXi +Z Z EX ) )
n I=1i=|nt]+1 =1 i=|nt]+1
2
C(%) (5.17)
n—

for some constant C, by (5.14). Now, note that:

IA

\nt] lnu] n

1
Cov(DP (1. DY W) = 5 >~ 3" Y EXu X1 = 0Pt w),

ni=1 j=1I=1

by (5.13). Consider a mean zero Gaussian process Z, with covariance function EZ,(t)Z>(u) = o ® (¢, u). The finite
dimensional distributions of Dflz) converge to those of Z,. We can now construct D,(,2) and Z, on the same probability
space and use Skorokhod’s representation theorem, Fatou’s lemma and (5.17) to conclude that:

E(|Za(u) — Zo(0)|*) < lim E(|D{ o) - DP1)|") < Cu—1).

By [4, Theorem 12.4], we can assume that Z, € C[0, 1]. Now, note that for 0 <f <v <u < 1:

EDO @) - D20 PP w) - D[ < VEDPLw) - DL 0)['EPP ) - DP )]

517 C(anJ — [nt])(lnu] — |nv))
- (n—1)2

< Cu—1)7

for some constant C. Therefore, by [4, Theorem 15.6], Df,z) => Z in the Skorokhod and uniform topologies and so, by
[15, Theorem 11.5.3], D is C-tight.
Step 3. Since both Df,l) and Df,z) are C-tight, so is their difference D,,. Now:

|\nt] lnu] n

1
Cov(D, (1), Dy (u)) = I)ZZ > E{XuXji(Zix — Zi)(Zj1 — Z1)}

i=1 j=1k,I=1

|nt] |nu] n
1
= ST o 2 2 B X i Zik — 202k - Zo)

i=1 j=1k=1

|nt] [nu] n
2(n -1 ZZZEXZkXJk( i,j ;) ontat o(u,t),

i=1 j=1k=1

by (5.12) and we obtain that D,, converges to a random element Z € C[0, 1] with covariance function ¢ in distribution
with respect to the uniform and Skorokhod topologies.

Proposition 2.2 and Theorem 5.1 therefore imply that (Y, (#), ¢ € [0, 1]) converges weakly to (Z(t),t € [0, 1]) in the
uniform topology. Using, for example, [10, Theorem 1.1], we conclude that Z is a Gaussian process. ([
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6. Edge and two-star counts in Bernoulli random graphs

In this section we consider a process representing a properly rescaled number of edges in a Bernoulli random graph with
a fixed edge probability and |nt] edges for ¢ € [0, 1]. A similar setup has been considered in [28], where the authors
established a bound on the distance between a three-dimensional vector consisting of a rescaled number of edges, a
rescaled number of two-stars and a rescaled number of triangles in a G(n, p) graph and a three-dimensional Gaussian
vector. We first compare our process to a pre-limiting Gaussian processes with paths in D([0, 1], R) and bound the
distance between the two in Theorem 6.3. Then, in Theorem 6.4, we bound the distance of our process from a continuous
Gaussian process.

6.1. Introduction

Let us consider a Bernoulli random graph G (n, p) on n vertices with edge probabilities p.

Let I; , = I;; be the Bernoulli(p)-indicator that edge (i, j) is present in this graph. These indicators, for (i, j) €
{1,...,n)? are independent. We will look at a process representing at each ¢ € [0, 1] the re-scaled total number of edges
in the graph formed out of the given Bernoulli random graph by considering only its first |nf] vertices and the edges
between them:

Lnt]

T, () = == L"” 23 h= % S on

i,j=1 I<i<j<|nt]
Let Y, (1) =T, () —ET, () fort € [0, 1].

Remark 6.1. Note that, for all # € [0, 1], ET,, () = L";Jz_z (L’”J) p. Furthermore, note that, by an argument similar to that
of [28, Section 5], the variance of T, () — ET,, (¢) is given by

t] —2)(
3%#19(1_17)_

Remark 6.2. While one might often be interested in the asymptotic properties of the number of two-stars or the number
of triangles in the above mentioned Bernoulli random graph, it is difficult to prove useful exchangeable-pair conditions
for those. Specifically, one encounters several problems which were overcome in [28] (in the finite-dimensional setting)
with the so-called embedding method (introduced in [28, Section 3]). Indeed, the problem becomes easier when the
distribution of the number of edges, the number of two-stars and the number of triangles is considered jointly rather than
considering the one-dimensional marginal laws separately. We therefore leave the problem of establishing bounds on the
functional approximations of those statistics for further research, related to the multivariate method of exchangeable pairs
(cf. Remark 4.4).

6.2. Exchangeable pair setup

We now construct an exchangeable pair, as in [28], by picking (/, J) according to P[I =i, J = j] = (}lj forl <i<j<

n.If I =i, J = j, wereplace I; ; = I;; by an independent copy Ii/’j = Ij/',i and put:

/ _ LntJ —2 /
T, (D) =To(0) = =5 (11, = 17.5) Titm 100 n 11 0)-

We also let Y/, (t) = T),(t) — ET,(¢) and note that, for Y,, = (Y,,(t), ¢ € [0, 1]) and Y}, = (Y, (¢), ¢ € [0, 1]), (Y., Y},)
forms an exchangeable pair. We note that for any f € M, as defined in Section 2,

EY {Df (X)[T, ~Tu]}

:EYn{Df(Yn)[%(llj -1, J)]l[]/n 1007 /n, l]i“

I)ZEY {DF O[] =2) (8 ; = L) Liismiintimn] | T =1, T = j}

i<j

3(n
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1 2
= _me(Yn)[Tn] + mPZDf(Yn)[(Ln'J — 2)Lijm, 1100 /11
2

1
= — = Df (Y)[Ta() —ET, ()]

()

i<j

and so
EY'Df (Y)Y, = Yu] = —2u Df (Y)[Yal,

where

2

Therefore, condition (4.1) is satisfied with A, of (6.1) and Ry =0.
6.3. A pre-limiting process

Let Z;; =0forall i € [n] ={1,..., n}. Furthermore, assume that the collection {Z;; : i, j € [n],i # j} is jointly centred
Gaussian with the following covariance structure:

p(1—p) =k i=] i .
EZijZy={ 2 = 'm0 7
0, otherwise.

Let

Lt ]
D, =(lnt] —2) Y Zj, t€l0,1].

i,j=1
6.4. Distance from the pre-limiting process

We first give a theorem providing a bound on the distance between Y, and the pre-limiting piecewise constant Gaussian
process.

Theorem 6.3. Let Y, be defined as in Section 6.1 and D,, be defined as in Section 6.3. Then, for any g € M,
1 -1
[Eg(Yn) — EgD,)| < cllglun".

In Step 1 of the proof, which is based on Theorem 4.1, we estimate term € thereof. It involves bounding the third
moment of |Y, — Y/ | for Y/, constructed in Section 6.2. In Step 2 we treat €3, which requires some more involved
calculations. Term €3 is equal to zero as Ry of Section 6.2 is equal to zero.

Proof of Theorem 6.3. We adopt the notation of Sections 6.1, 6.2, 6.3. We will apply Theorem 4.1. Let g € M and let
f =¢(g), as defined in (3.3).
Step 1. First note that

(n—2)>
n6

—2)3
SR ANEE EC= VR

where the second inequality follows because |17 j — 1 ; ;| < 1. Therefore,

llglla 3 llgllpm
€< WE[”Yn -Y, ] < i

(6.2)
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Step 2. For €3 in Theorem 4.1, we wish to bound

€)=

FOYD[Yn =Y, Y, —Y,] —ED? f(Y,)[Dy, Dy]

10 = D g2 £ (V) [Ty = Ty T — T,] — ED? (Y, [D,, D, 1|

For fixed i, j € {1, ...,n}, let Yﬁ,J be equal to Y, except for the fact that /;; is replaced by an independent copy, i.e. for
allr € [0, 1] let:

lnt] —2

T (1) = T, (1) — 7(151 - I,'/j)]l[i/n,l]ﬂ[j/n,l](t)

and let Y (1) = T (1) — ET, (¢).
By noting that the mean zero Z;; and Z;/; are independent for i # i’ or j # k, we obtain:

—1
&= " RD? f (V[T - T, T, - ) (63)
n n
- ZEDZf(Yn)[ZZ,'k(LWJ—2)1[i/n,l]m[k/n1 Z ij(ln] =2 Jl[i/n,l]m[j/n,l]}
Jik=1 i=1 i=1
1
:‘4_4 > E{Wij —2pLj+ p)D* FY)[(ln] = 2)Liismint/mrs (1] = 2)Liismint/ma ]}
1<i#j<n
n
— Y AB@Zi)’ED? F (Y ) [(1n-] = 2) i /m ij/m 11 (L] = 2)]1[1'/'1,110[1‘/",11]}‘
ij=1
1
= > E{<4—4(Iij_2P1ij+P)_]E(Zij)2)
I<i#j<n "
D2 F (Y[ (L) = 2)Lismnntizmns (-] = 2)Lii/min J/n»lJ]”
= Z ]E{4L4(1ij—2plij+l7)
I<i#j<n "
(D2 (Y) = D F(Y))[(1n-) = 2)Lgism it gm s (L) — 2)1[1'/"»11“[//"~11]”
I (TR | ©
I<i#j<n

where (6.4) follows from Proposition 3.2. Now,

[y =il | <~ |1u 1351

and so, by (6.4),
lgllaa iy gl
<o Y Bl =2plh+pllly - 1] = =5 (6.5)

I<i#j<n

where the last inequality holds because |I;; —2pl;; + p| <1 and |I;; — Il.’j| <l1foralli,je{l,...,n}.
Using Theorem 4.1 together with (6.5) and (6.2) gives the desired result. U
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6.5. Distance from the continuous process

‘We now establish a bound on the rate of convergence of Y, to a continuous Gaussian process whose covariance is the limit
of the covariance of D,. We do this by bounding the distance between D,, and the continuous process via the Brownian
modulus of continuity and using Theorem 6.3.

Theorem 6.4. Let Y, be defined as in Section 6.1 and let Z be defined by:

_ 1/2
Z(t)z(w) B(?), 1€l0,1],

where B is a standard Brownian Motion. Then, for any g € M*:
[Eg(Yn) —Eg(Z)| < lIgllp (9" +90n~"2/logn).

Remark 6.5. Theorem 6.4, together with Proposition 2.2, implies that Y,, converges to Z in distribution with respect to
the Skorokhod and uniform topologies.

In Step 1 of the proof of Theorem 6.4, we provide a coupling between D, and a standard Brownian motion. Using this
Brownian motion, we construct a process Z, having the same distribution as D;,. In Step 2 we couple Z,, and Z and bound
the first two moments of the supremum distance between them, using the Brownian modulus of continuity. In Step 3 we
use those bounds together with the Mean Value Theorem to obtain Theorem 6.4.

Proof of Theorem 6.4. Step 1. Let B be a standard Brownian motion and let Z,, be defined by:

(lnt] —2)5/p(1 — p)B< Lnt](lnt] — 1))
n\/i n? ’

Now, note that D,, D Z.,,. To see this, observe that for all u,t € [1/n, 1],

Zn (t) =

1—
ED, (D, (1) = (Lnt] —2)(Lnu) —2) | n(t Aw) |([n(t Aw) | — 1)7]](2”4]9)

=EZ,()Z (u). (6.6)

Step 2. We let Z and Z,, be coupled in such a way that Z is constructed as in Theorem 6.4, using the same Brownian
Motion B, as the one used in the construction of Z,. In Lemma A.3, proved in the appendix, we derive bounds for
moments of the supremum distance between Z and Z,,:

3 36./logn
E|Z, — ZI| < —— + Y228,
V2n ﬁ
5 49]ogn
E|Z, - Z|? < = + =22, 6.7)
n n

1
EIZ|* < .
2
Step 3. We note that | Dg(w)|| < |/gll)2(1 4+ ||w||) and therefore, by (6.7):

MVT
[Eg(Z) - Eg@,)| = E sup [Dg(Z+ @~ D)2 - Al

< lglweE] sup (14 |2+ e —2)|)I1Z - Z ]
c€l0,1]
< N8Iy E[IZ ~ Zll + IZNIZ — Zu ]| + |12 = Z, ]
< gy [EIZ ~Z ]l + BIZIPEIZ - 2,12 + EIZ — Z, ]

3 5
||g||Mz<(+72f +5>n_1 +9on—1/2.Fogn>,

which, together with Theorem 6.3 gives the desired result. ([
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Remark 6.6. The representation of Z in terms of a Brownian motion comes from a careful analysis of the limiting
covariance of D,,. Indeed, (6.6) provides an explicit derivation of the covariance, which converges to the covariance of Z.

Appendix: Technical details of the proofs of Theorems 5.1, and 6.4
A.1. Technical details of the proof of Theorem 5.1

Lemma A.1. In the setup of Theorem 6.3 and for €, defined by Theorem 4.1,

€= KIEDZf(Yn)[Yn ~Y,,Y, - Y,] —ED*f(Y,)[D,,D,]
<A+ B,
for
1 X —Xu)® 2} v
T hm = 1)s2 Z E{[ kzn l _n_l](sz(Yn,ijkl)_sz( T i1 i/n,l]]}

nl<i,jkl<n

i#j,k#l

1 Z E{[(Xik—xil)(le—xjk) _2i2j:|
n(n —1)s2 2n

M1<i,jk,l<n

i#j,k#l

(D?f (Yn,ijut) — D* (Y5 v/ D Liizn 115 Lij/n, 1]]}

! K- X2 27 1.2
=12 E - 2 D2 (Y[ 1
T —1)s2 Z {[ n P f( )[ li/n 0L /n 1]
n<i,jkil<n
i#j,k#l
1 X = XiDXj—Xji) 5 5 |2 vkl
T 2 E” ™ = ZiZj |D* f (Y3 ") (L /may. Lpjman) |-
M 1<i,jkl<n
i#jk#l

Proof. Note that

! Esz(Yn)[(Yn - Y;,)a Yn - Y;;] - Esz(Yn)[Dm Dn]

622‘

2An
n—1
= ‘TEDZf(Yn)[Yn - Y;/p Y, — Y;,] - Esz(Yn)[Dns D, ] (A1)
and
1 / / 2
FOYD)[Yn =Y, Yy =Y, | —ED” f(Y,)[Dy, Dy]
1 n
=352 Z E{(Xiz@) — Xin(j))2D2f(Yn)[]l[i/n,1]1[i/n,1]]}
n =1
Z {Xizy — Xin () X jn(jy — Xjn(i))sz(Yn)[ll[i/n,l], 1pj/mal} — ED? f(Y,)[Dy, Dy]
nij=1
1 ) )
= 32— )52 Z E{ (X — Xi?- sz(Yn)[]l[i/n,l]]l[i/n,l]]|7T(l) =k, w(j)=1}

" <i,jk,l<n

i#j,k#l



Functional Stein’s method with exchangeable pairs 2561

1 Xixk = XiD(Xj1 — X i) | 2 : :
T E D2 FOY,) [y 11, 1 ‘n — k() =1
n(n_l)sglg‘%;lin {[ o FYDAin 10, Liyn, ]| @) ()
i j kA
1 A A 1 ~
-3 Z E[Zi Z;1ED? £ (Yo)[Lii /n11s Lij/m 11l — = Ds? Z E[Z,'Z]Esz(Yn)[]l[i/n,I],]l[i/n,ll]
St 1<izj<n T i<
1
= —— E{(Xix — Xi)?D? f (Yo.ije) (i fn.111pi
2n2(n_1)s’2'1<i.j2kl<n {(Xix i)" D f (Y iji) [Lgi /n 11 L1 /n, 1)
it j kel
1 X — Xin)(Xj1 — Xji) 5
+ w1 = D52 > E{ o D7 f (Yn,ijre) (i /n,11 Lpj/n,11]
m1<i,jk,l<n
i j kA
1 PN
vt Z E[Zizj]]Esz(Yn,ijkl)[]l[i/n,l]a]l[j/n,l]]
n(n—1Ds; 1<i,j.k,l<n
ik j kA
1 N
- E[ZIED? £ (Yn,ije) [L1i fn, 11> Lii fm,11]- (A.2)
2.2
n(n —1)%s; 1<i,j.ki<n
i j kAl
Now, the lemma follows by taking the absolute value in (A.2) and combining it with (A.1). (]

Lemma A.2. For A of (5.9),

gl 3 2 2
AS e Y. AEIXul + SEIXik|EIXul® + TEI X EIX j1|

m<i,jklu<n
+ SEIX | *EIX ji| + 16E| Xk [EI Xy |EIX ji| + 2E|X ;4 |E| X [E| X |
+4E| Xy [EI X |E|X jg | + 6E| Xk |E| X ik [EIX ji| + 2E| Xk [E| Xk B X ji |

1 n
+ ;(2E|Xik| + 2EI1X ji| + 2E| Xur| + 2E[X 1) - Z(]Elxir|2 + leircjrl) ¢

r=1

Proof. Let us adopt the notation of the proof of Theorem 5.1. Define index sets Z = {i, j, 7 Yk), n ! (D} and J =
{k,1, (i), w(j)}. Then, letting S = é Zi,¢z X'z 11i'jn,11, W can write:

1 ijki 1 ijkl
Yo.iju =S+ 5, Y Ximpu@lumn, YT =S+ 5 Y Xilon L
i'el i'eT
Since S depends only on the components of X outside the square Z x J and {w (i) : i ¢ Z}, S is independent of:
ijki
{Xil, Xk, Xik, Xjis Z Xirgiiu ity Z Xi/,,(i/)},
i'el i'el

given w1 (k), w1 (1), 7 (D), 7 (j).
Note that, by Proposition 3.2,

. L Y)2 72
A< ”g”Ml Z E{HYn,ijkl_Yizjkl”Q(Xlk Xi) _ ]EZl

n(n—l)s,%l<ijkl<n 2n n—1
i) kAl
Xie — Xi) (X1 — X . .
+’( ik ll;f/l Jjl /k) —E(ZiZj) )}
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lgllp ijkl
= nn—Ds; 2 ER [ Ximuw) = Xitwa

n<i,jkil<n ‘i'el

i#j,k#l
X — Xi)?2  EZ? X — X)X — X .
(| Xik i Ll (Xik i (X1 jk)_]E(ZiZj)
2n n—1 2n
llgllp ikl ikl ijkl i jkl
= n(n— 1)s3 Z (X — m(l)| + X1 = /ﬂ(/)‘ + X0k — anl(k),k} + [ X100 — Xyrl(l),z|)
n<i,jk,l<n
i#j,k#l
(| Xk — Xi)? B EZ? Xix = XinD(Xji — X ji)
2n n—1 2n
gl p ijkl ijkl ijkl
< Sntn— 1753 Yo Bl + X [ X+ X | Xl + (X5
Sn 1<i,j,k,l<n
i#j,k#l
jki .
+ X100+ |X” 1(1)J|)(|Xﬂc|2 + X1 4 21Xk Xir| 4+ 2EI Zi 1 4+ 1 Xk X 1|+ 1 X it X ji|
+ X X il + | Xa X il + 2 — D|E(Z: Z))])}
gl
W > B (Xl +E Xl 41Xl + EIX jul + [ Xuk| + Bl X k| + 1 Xt | + E[ X os])
Sn 1<i,j,k,l,u<n
i#j,k#l
2 n
: <|X,-k|2 + 1Xal? + 20 Xa Xl + = D JBIXir 4 1XieX ji] + 1 Xie X i
r=1
+ |XllX/l| + |XllXjk| + - Zc”’cl" )}
gl s
ﬁ > AEIXal + SEIXi|*E| X | + 9E| Xit|’EIX ji| + SE|Xix Bl X ji |
Sn 1<i,j.k,l,u<n
+ 4E| Xt |E| X [EIX j1| + 2B|Xik [EI Xt |E| Xiu | + 6EIX i [EIX 1 |E| X7 | + 2E[| X1 X ik |*]
+AEXux Xix [E[Xir| + 4B X1 Xix [E| X ji | + 8E| Xy |E| X ik [EI X 1| + 2E| Xoux Xix X ji |
+ 2B | X,k [EI Xk [BI X | + E(2|Xlk|+6|xﬂ| (ZEIXWI + Zc,-rcjr)}
r=1
which finishes the proof. (]

A.2. Technical details of the proof of Theorem 6.4

Lemma A.3. Using the notation of Step 2 of the proof of Theorem 6.4,

36./logn
E|Z, —Z] < — + Y 28"
V2n Jn
5 491ogn
ElZ, - Z|? < = + =22,
n n

E||Z|* <

NI~

Proof. Note the following
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1. By Doob’s L? inequality,

E[ sup [B()[] <2 and bl =2 )3 foranirero. . (A.3)
te(0,1] n n
2. Using [17, Lemma 3] and the fact that
i )(lnt) 1) _ 5| _ |t = LntJ)(m+Lnu>‘+g<3
n? - n? n-n
we obtain
Lnt|(lnt) — 1) R 30,/31og(3)
E| sup Bl ————— —B(t ) <——— (A4
1€[0,1] n? nl/2 /7 log(2)
Now, we can bound E||Z, — Z]| in the following way:
vp(l—p) [ lnt] —2 <LntJ(LntJ —1)> 2 }
E|Z, —Z < ——F B —tB(t
12, ~ 2] A S o ()
\/P(I—P){ [ <LntJ—2 ) 2 ]
— K — — 1 |B(¢
B V2 tes[l(l)l,)l] n ()
+IE[ sup |nt] —Z‘B(LntJ(anlJ - 1)) —B(?) “
t€l0,1] n n
(A.3),<(A.4) p(d—Dp) <§ n 304/3logn )
- V2 n o nl/2 /rlog(2)
- i+36«/10gn'
T Vo NG

Similarly, using Doob’s L? inequality and [17, Lemma 3],

2
ElZ, — ZI? < ME[ sup |1 _ZB<L"”(L"2’J - D) — 1B(12) }
2 refoyl 1 n
2 2
<pid-p (JE[ sup (L’"J —2 —t)B(tz) :|+]E|: sup 13(7“1”“";J - 1)> ~B(1?) D
2 1€10,1] n 1€10,1] n

_18p(1—p)  135p(1 - p)log3n)
- n? log(2) n
491ogn

<5+
~ n? n

Furthermore, by Doob’s L? inequality,

1— 1
E|Z|? < ME[ sup t2|B1(t2)|2] <2p(l—-p)<-.
2 rel0.1] 2
This finishes the proof. O
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