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The bouncy particle sampler is a Markov chain Monte Carlo method
based on a nonreversible piecewise deterministic Markov process. In this
scheme, a particle explores the state space of interest by evolving according
to a linear dynamics which is altered by bouncing on the hyperplane perpen-
dicular to the gradient of the negative log-target density at the arrival times
of an inhomogeneous poisson process (PP) and by randomly perturbing its
velocity at the arrival times of a homogeneous PP. Under regularity condi-
tions, we show here that the process corresponding to the first component
of the particle and its corresponding velocity converges weakly towards a
randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of
the ambient space goes to infinity. RHMC is another piecewise determinis-
tic nonreversible Markov process where a Hamiltonian dynamics is altered
at the arrival times of a homogeneous PP by randomly perturbing the mo-
mentum component. We then establish dimension-free convergence rates for
RHMC for strongly log-concave targets with bounded Hessians using cou-
pling ideas and hypocoercivity techniques. We use our understanding of the
mixing properties of the limiting RHMC process to choose the refreshment
rate parameter of BPS. This results in significantly better performance in our
simulation study than previously suggested guidelines.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2613
2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2615

2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2615
2.2. The bouncy particle sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2616
2.3. Randomized Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617
2.4. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617

2.4.1. RHMC as scaling limit of BPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617
2.4.2. Dimension-free convergence rates for RHMC . . . . . . . . . . . . . . . . . . . . . . . . . . 2620

2.5. Empirical results for different functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2624
3. Proof of weak convergence result—Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2626

3.1. Feller property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2626
3.1.1. Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2626

3.2. Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2629
3.2.1. Proofs of equations (3.10) and (3.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2630
3.2.2. Proof of (3.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2633
3.2.3. Proof of (3.11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2642
3.2.4. Proofs of (3.6) and (3.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643

4. Proofs of Wasserstein rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643

Received March 2020; revised November 2020.
MSC2020 subject classifications. Primary 65C05, 60F17; secondary 60J25.
Key words and phrases. Bouncy particle sampler, coupling, randomized Hamiltonian Monte Carlo, weak con-

vergence, hypocoercivity.

2612

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/20-AAP1659
http://www.imstat.org
mailto:deligian@stats.ox.ac.uk
mailto:doucet@stats.ox.ac.uk
mailto:dpaulin@ed.ac.uk
mailto:bouchard@stat.ubc.ca
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


RHMC AND THE BOUNCY PARTICLE SAMPLER 2613

4.1. Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643
4.2. Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2646

5. Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2646
5.1. Strong continuity in H 1(π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648
5.2. Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2649

5.2.1. From H 1 to L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2654
Appendix: Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2655
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660

1. Introduction. Assume one is interested in sampling from a target probability density
on Rd which can be evaluated pointwise up to an intractable normalizing constant. In this
context one can use Markov chain Monte Carlo (MCMC) algorithms to sample from, and
compute expectations with respect to the target measure. Despite their great success, standard
MCMC methods, such as the ubiquitous Metropolis–Hastings algorithm, tend to perform
poorly on high-dimensional targets. To address this issue, several new methods have been
proposed over the past few decades. Popular alternatives include the Metropolis-adjusted
Langevin algorithm (MALA) [53, 54], Hamiltonian, or Hybrid, Monte Carlo (HMC) [25]
and slice sampling [44].

Recently, a novel class of nonreversible, continuous-time MCMC algorithms based on
piecewise-deterministic Markov processes (PDMP) has appeared in applied probability [10,
43], automatic control [39], physics [41, 45, 49] statistics and machine learning [6, 7, 14,
15, 47, 57, 61]. Most of the current literature revolves around two piecewise-deterministic
MCMC (PDMCMC) schemes: the bouncy particle sampler (BPS) [15, 49] and the zig-zag
sampler [7]. A practical advantage of the BPS and zig-zag algorithms is that in many mod-
els it is possible to simulate their piecewise linear paths without time-discretization [15]. In
contrast, methods based on either diffusions or Hamiltonian paths require time discretiza-
tion and moreover their performance is known to collapse if the discretization is too coarse.
Despite the increasing interest in these piecewise linear PDMCMC algorithms, our theoreti-
cal understanding of their properties remains limited, although a fair amount of progress has
been achieved recently in establishing geometric ergodicity; see [23, 26] for BPS and [11, 30]
for zig-zag. However, all of these results tend to provide convergence rates that deteriorate
with the dimension and thus fail to capture the empirical performance of these PDMCMC
algorithms on high-dimensional targets.

Scaling limits have become a very popular tool for analysing and comparing MCMC al-
gorithms in high-dimensional scenarios since their introduction in the seminal paper [51];
see, for example, [5, 52]. They have been used to establish the computational complexity of
the most popular MCMC algorithms, which is O(d2) for random walk Metropolis (RWM),
O(d4/3) for MALA and O(d5/4) for HMC; here computational complexity is defined in
terms of the expected squared jump distance. In this direction, the recent work of Bierkens
et al. [8] has established scaling limits for both zig-zag and global BPS for high-dimensional
standard Gaussian targets. They obtain the scaling limits of several finite dimensional statis-
tics, namely the angular velocity, the log-density and the first coordinate. In this context, it is
shown that zig-zag has algorithmic complexity O(d) for all three types of statistics, whereas
global BPS has complexity O(d) for angular momentum and O(d2) for the other two types
of statistics. Benefits of zig-zag over global BPS are to be expected in this scenario. Indeed,
when applied to a product target, the zig-zag sampler factorises into independent components
and is closely related to Local-BPS (LBPS); see [15, 49]. The standard (global) BPS studied
herein and in Bierkens et al. [8], just like RWM, MALA and HMC, is an algorithm whose
dynamics do not distinguish between product and nonproduct targets.
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In the present paper, we also study scaling limits for BPS on a very general class of targets
that greatly extends the i.i.d. scenario, and its variants, often considered in the literature;
see, for example, [5, 8, 51, 52]. We concentrate on the first coordinate and its corresponding
velocity in a regime which differs from the one considered in [8] in the following three ways:
(a) [8] considers BPS with the location evolving at unit speed, whereas in our scenario the
velocity is Gaussian, therefore with speed scaling like

√
d in the dimension; (b) [8] considers

scaling limits for the first coordinate of the location process only, whereas we look at both
location and velocity; and finally (c) [8] rescales time with a factor d , whereas we obtain
our limiting process on the natural time scale. As a result we obtain a different scaling limit
which suggests that BPS has algorithmic complexity O(d3/2) if one is interested on low-
dimensional projections, at least on weakly dependent targets. This is in agreement with the
empirical results reported in [15]. Given the different regimes and different objects studied
in [8] and the present paper, it is not surprising that the two scaling limits differ significantly,
with our bound being tighter and seemingly better at capturing the empirical behaviour of
the process. In [8] the first location coordinate converges to a Langevin diffusion, whereas in
the present paper the process tracking the first location and velocity components converges to
a piecewise deterministic Markov process known as randomized Hamiltonian Monte Carlo
(RHMC). Although the corresponding Fokker–Planck equation was studied in Dolbeault et
al. [24], using a related approach to ours, RHMC was first studied in a Monte Carlo context
in [14].

To the best of our knowledge, our result is the first in the literature establishing a direct link
between BPS and Hamiltonian dynamics. It is our understanding that the Langevin diffusion
obtained in [8] can be obtained from RHMC by a further limiting procedure similar to the
overdamped regime of the Langevin equation. In addition, the assumptions under which our
scaling limit is obtained allow much more complex dependence structures than those con-
sidered in the literature; see, for example, [3–5, 17, 51, 52, 62], where the target is assumed
to factorise or to possess a hierarchical structure. In addition, in the scenario we consider all
dimensions have an impact, in contrast with the Hilbert-space setting; see, for example, [38],
where only a fixed, finite number of dimensions is significant.

The second part of the paper is concerned with the convergence properties of RHMC.
This process was studied in [14] where it was established that it is geometrically ergodic.
However, it is not clear whether such an approach can provide dimension independent con-
vergence rates. The earlier work of [24] studies the corresponding Fokker–Planck equation,
tracking the evolution of densities rather than conditional expectations. In recent years, there
has been great success in obtaining dimension-free convergence rates of MCMC schemes for
strongly log-concave targets with bounded Hessians; see, for example, [13, 20, 27, 28, 37].
In particular, in relation to HMC, the papers [13, 37] use coupling techniques to obtain con-
vergence rates in terms of Wasserstein or total variation distances, but these usually leverage
independent momentum refreshment to obtain a Markov process in the location components
only. We establish here these convergence rates in weighted Wasserstein distance using cou-
pling ideas, and also in L2 using hypocoercivity; see, for example, [48, 58]. The rates we
provide may generally not be the optimal ones for specific scenarios. However, the optimal
rates for a specific scenario can be obtained by solving a multivariate optimisation problem.
Dolbeault et al. [24] also uses hypocoercivity, albeit with a much different flavour, and does
not seem to provide explicit rates. After the first version of the present paper appeared online,
the approach of [24] was extended in Andrieu et al. [1] to cover several PDMPs, including
BPS, zig-zag and RHMC. Even more recently, the paper [36] appeared online, proving L2

rates for three PDMPs (BPS, zig-zag and RHMC).
The approach in [24] and [1] is quite distinct to ours. In particular [1] also obtain

dimension-free bounds for RHMC under similar assumptions; their explicit rates have a com-
plex dependency on various parameters of the problem and therefore a detailed comparison



RHMC AND THE BOUNCY PARTICLE SAMPLER 2615

with the explicit rates in our Theorem 5 was not performed in [1]. In Remark 11 we perform
a comparison, and find that in the strongly convex and smooth setting, neither of these two
approaches outperforms the other in all cases, sometimes the bound of [1] is sharper, while
in other scenarios our bound is sharper. Their approach is quite general but much less direct
for RHMC than ours, as they rely on generic results by Dolbeault, Mouhot and Schmeiser.
The approach in [36] is entirely different from [1] and ours, using sophisticated PDE methods
to analyse the Fokker–Planck equations of the PDMP directly. In Remark 11, we include a
detailed comparison with our results. In general, we find that the bounds in [36] for RHMC
are sharper than ours in the condition number M/m, but the constant of proportionality is not
explicitly stated, and might be nontrivial to obtain reasonably small constants.

In addition the bounds of [1] and [36] for BPS suggest that its computational cost scales
like O(d2). This seems to capture the worst case scenario and agrees, for example, with re-
sults [8] for the log-density of the target, which recommends scaling the refreshment rate
with the dimension. Our results suggest that when one is interested in low-dimensional pro-
jections, then it is computationally more efficient to not scale the refreshment rate with the
dimension, achieving computational cost of order O(d3/2). Empirical results in Section 2.5
seem to suggest that this may also be the case for certain classes of functions depending on
all the coordinates, such as the sum of all coordinates. A common scenario where this type of
scaling limit is extremely relevant is, for example, that of Bayesian inference where typically
one may only be interested in estimating the posterior means, variances and covariances of
the high-dimensional state components (this is a set of one- and two- dimensional marginals).
Finally, it is intuitively clear that the log-density will not mix well in a high-dimensional target
for the global BPS; see [8] for a detailed study. We conjecture that the functions that exhibit
this type of behaviour form a low-dimensional subspace of L2(π). Recently [9] has obtained
very detailed results on the whole spectrum of the one-dimensional zig-zag process, it would
be interesting if similar results could be obtained for BPS in high-dimensional scenarios.

Apart from the intrinsic interest of the RHMC process, our motivation for studying its
convergence rates is as follows. In the scaling literature for MCMC the limiting processes
are usually Langevin diffusions. These have very well understood convergence rates which,
at least under additional assumptions, are dimension-free. Therefore, in high-dimensions the
cost of running the (time-rescaled) algorithm serves as a proxy for its computational com-
plexity. In our case, the algorithm ran on its natural time scale converges to RHMC, which as
we establish here, also enjoys dimension-free convergence rates under appropriate assump-
tions. Therefore the cost of running BPS for a unit of process time serves as a proxy for its
algorithmic complexity.

The next section contains the statements of the main results of the paper along with neces-
sary notation and definitions. The remaining sections contain the proofs of the main results.

2. Main results.

2.1. Notation. For x ∈ R, let x+ = max{x,0}. Let k ≥ 1. For vectors u, v ∈ Rk we write
|v| and (u, v) for the Euclidean norm and inner product respectively. For matrices A,B ∈
Rk×k we write A � B if B − A is positive-definite. For a function f : Rk �→ R we write
∇f , ∇2f for its (weak) gradient and Hessian respectively. When considering functions f =
f (a, b), where a, b ∈ Rk , that is, f :R2k �→R, we will write ∇af , ∇bf to denote the gradient
with respect to the variables a ∈ Rk and b ∈ Rk respectively. Allowing a slight abuse of
notation, for vector valued functions f : Rd → Rk , we will also write ∇f for the Jacobian
matrix of derivatives.

For Z = Rk , with k ∈ N, let C0(Z) denote the space of continuous functions f : Z �→ R

that vanish at infinity. Recall that C0(Z) is a Banach space with respect to the ‖ · ‖∞ norm,
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which is defined as usual through ‖f ‖∞ = sup |f |. Also let C∞
c (Z) be the space of infinitely

differentiable functions f :Z �→R with compact support.
For a measure π on Z , we will write L2(π) for the usual, real Hilbert space, and 〈·, ·〉, ‖ · ‖

to denote the inner product and norm in L2(π) respectively, whereas L2
0(π) will denote the

orthogonal complement of the constant functions, that is, functions with mean zero under the
distribution π . Finally for f : Z →Rd and g : Z →Rd , with d ≥ 1, we also write

〈f,g〉 =
∫

π(dz)
(
f (z), g(z)

)
.

It will be clear from the context whether 〈·, ·〉 is applied to R− or Rd -valued functions. We
also define

H 1 := H 1(π) := {h ∈ L2
0(π) : ∇xh,∇vh ∈ L2(π)

}
,

the Sobolev space of centred functions in L2(π) with weak derivatives in L2(π) and for
f,g ∈ H 1(π) we will denote the inner product and norm on H 1(π) with 〈〈·, ·〉〉H 1(π) and
‖ · ‖H 1(π) respectively, where

〈〈f,g〉〉H 1(π) = 〈∇xf,∇xg〉 + 〈∇vf,∇vg〉.

2.2. The bouncy particle sampler. Let Z := R×R and for n ≥ 1, define the Borel prob-
ability measure πn(dz) on Zn with density w.r.t. Lebesgue measure given by

πn(z) = πn(x,v) ∝ exp
{−Un(x) − |v|2/2

}
, (x,v) ∈ Zn,

where Un :Rn �→R+ is a potential.
For (x,v) ∈ Zn, define

(2.1) Rn(x)v := v − 2
(∇Un(x),v)

|∇Un(x)|2 ∇Un(x).

The vector Rn(x)v can be interpreted as a Newtonian collision on the hyperplane orthogonal
to the gradient of the potential Un, hence the interpretation of x as a position, and v, as a
velocity.

The bouncy particle sampler (BPS), first introduced in [49] and in a statistical context in
[15], defines a πn-invariant, nonreversible, piecewise deterministic Markov process (PDMP)
{Zn(t) : t ≥ 0} = {(X(t),V (t)) : t ≥ 0} taking values in Zn whose generator An, for smooth
enough functions f : Zn �→R, is given by

Anf (x,v) = (∇f (x,v),v
)+ max

{
0,
(∇Un(x),v

)}[
Rnf (x,v) − f (x,v)

]
+ λref

[
Qα,nf (x,v) − f (x,v)

]
,

where

Rnf (x,v) := f
(
x,Rn(x)v

)
,

Qα,nf (x,v) := 1

(2π)n/2

∫
Rn

e−|ξ |2/2f
(
x, αv +

√
1 − α2ξ

)
dξ ,

for 0 ≤ α < 1 and a positive refreshment rate λref > 0. We also write Zn(t) = (Z
(1)
n (t), . . . ,

Z
(n)
n (t)) where Z

(k)
n (t) = (X

(k)
n (t),V

(k)
n (t)) ∈ Z is the kth component. The original formula-

tion of the BPS algorithm corresponds to α = 0, that is, refreshment occurs independently.
The generalization α > 0 [57] consists in refreshments that are performed according to an
auto-regressive process.
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2.3. Randomized Hamiltonian Monte Carlo. We define here RHMC as this is the process
we will obtain as the weak limit of Z

(1)
n (t) = (X

(1)
n (t),V

(1)
n (t)) ∈ Z as n → ∞. Define the

Hamiltonian

(2.2) H(x, v) = W(x) + |v|2/2,

for (x, v) ∈Z and the corresponding probability density on Z
(2.3) π(x, v) = π̄ (x) · ψ(v) ∝ exp

{−W(x) − |v|2/2
}
.

The Hamiltonian dynamics associated to (2.2) is an ordinary differential equation in Z of
drift (∇vH,−∇xH) = (v,−∇W). The RHMC process, denoted {Zt : t ≥ 0}, can then be
defined following Davis ([22], Section 24) as a PDMP with deterministic dynamics given by
Hamiltonian dynamics with respect to H , fixed jump rate λref > 0 and jump kernel

(2.4) Qαf (x, v) := 1

(2π)n/2

∫
e−|ξ |2/2f

(
x,αv +

√
1 − α2ξ

)
dξ,

for some 0 ≤ α < 1. We will write {P t : t ≥ 0} for the semigroup corresponding to {Zt : t ≥
0}, that is,

P tf (z) = E
[
f (Zt)|Z0 = z

]
.

It has been shown, [14], that RHMC admits π as an invariant distribution.
It can also be shown that for f ∈ C∞

c (Z), the generator of the semigroup {P t : t ≥ 0} is
given by

(2.5) Af (x, v) = (∇xf, v) − (∇vf,∇W) + λref
[
Qαf (x, v) − f (x, v)

]
.

The refreshment is done in an auto-regressive manner. From now on, we will restrict our-
selves for BPS and RHMC to 0 < α < 1. The reason for using α > 0 is that it allows us to
establish the Feller property which greatly simplifies the rest of the proofs. Since the autore-
gressive process mixes exponentially fast there is no loss in terms of mixing potentially at the
cost of more frequent refreshments, something which has also been observed empirically.

REMARK 1. As one of the referees kindly suggested, one may attempt to couple the pro-
cess with α = 0 with the process at αn = o(1) in order to extend the result to the case α = 0.
Unfortunately, the obvious line of attack requires one to couple the full n-dimensional veloc-
ity vector at refreshments, so the maximal coupling deteriorates with the growing dimension;
this approach would require a quantitative version of Theorem 1. It is possible that a different
coupling can be used, but we did not pursue this issue further.

2.4. Main results.

2.4.1. RHMC as scaling limit of BPS. Before stating our weak convergence result,
we will make some assumptions. We consider a sequence of targets πn on Rn × Rn

where πn(x,v) = π̄n(x)ψn(v), with ψn a standard n-dimensional Gaussian and π̄n(x) =
exp[−Un(x)] for a sequence of potentials Un : Rn → [0,∞) satisfying the following as-
sumptions.

ASSUMPTION 1. The potential Un ∈ C2(Rn) is m-strongly convex with M-Lipschitz
gradient

(2.6) mI � ∇2Un(x) � MI, x ∈ Rn,with 0 < m ≤ M < ∞,

and Un achieves its minimum at 0, that is, Un(0) = 0 and ∇Un(0) = 0.
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ASSUMPTION 2. The marginal density of the first component of π̄n is fixed and is given
by

f (x) :=
∫

π̄n(x,x2:n)dx2:n.

We assume that f (x) = exp[−W(x)] for a potential W ∈ C∞(R; [0,∞)) such that
lim|x|→∞ W(x) = ∞ and∫

e−W(x)(∣∣W ′′(x)
∣∣+ ∣∣W ′(x)

∣∣2)dx < ∞.

Let {Zt : t ≥ 0} be the RHMC process with potential W and write A for its generator given
in (2.5). The following theorem is our first main result.

THEOREM 1. Suppose Assumptions 1 and 2 hold, 0 < α < 1, λref > 0 and that the BPS
process {Zn(t) : t ≥ 0} is initialized at stationarity, that is, Zn(0) ∼ πn. Then the process
{Z(1)

n (t) : t ≥ 0} corresponding to the first location and velocity components of the BPS pro-
cess converges weakly to the RHMC process {Zt : t ≥ 0} as n → ∞.

We would like to stress that there is no time-rescaling in the above result, and that the
sequence of targets is not assumed to factorise into independent components, or to converge
towards an infinite dimensional measure as the dimension n → ∞.

REMARK 2. Notice that Assumption 1 allows for the standard scenario where the target
factorises in n i.i.d. copies which corresponds to Un(x) = ∑n

i=1 U(xi), for an m-strongly
convex potential U ∈ C2(R) with U ′′ ≤ M . Indeed in this case the Hessian matrix is diagonal
and given by (∇2Un(x))i,j = U ′′(xi)δi,j ≥ 0. This was the scenario considered in an earlier
version of the present paper. In fact, in this i.i.d. scenario the convexity assumption can be
removed and the upper bound on U ′′ can be replaced by an upper bound on U(k) for any k,
at the expense of additional technical complexity.

REMARK 3. From the proof (in particular, the bounds (3.14), (3.15), (3.16), (3.17),
(3.18)) it is clear that the result remains true when m, M in Assumption 1 are allowed to
depend on n, if in addition we assume that

(2.7)

mnn → ∞,
Mn

mn

= o
(
n1/4), M3

n

m
3/2
n

= o
(
n1/2),

M3
n

m2
n

= o
(
n1/2), M2

n

mn

= o

(
n1/2

(log(n))1/2

)
.

REMARK 4. Scaling limits for non i.i.d. targets have appeared in the past. Bédard [3]
studied targets that factorise into independent, but not identically distributed components;
results on hierarchical targets can be found in [4, 62] and references therein. The case of
Gibbs measures with finite range interactions was studied in [17]. Mattingly et al. [38] proved
that a sequence of algorithms targeting finite dimensional projections of a measure admitting
a density with respect to a reference Gaussian measure on a Hilbert space, converge to a
Hilbert space-valued stochastic differential equation.

REMARK 5. To illustrate Theorem 1 in Figure 1 we have plotted the paths of the BPS
process and the equi-energy contours of the Hamiltonian corresponding to the deterministic
dynamics of RHMC. The target distribution has potential U(x) =∑n

i=1 |xi |b/2 and we have
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FIG. 1. Convergence of the BPS process to RHMC in high dimensions for U(x) = |x|b/2.

tested two values of b, b = 2 (Gaussian) and b = 4. These figures show the first coordinate
of the position and velocity vectors. As we can see, as the dimension increases, the paths of
BPS indeed appear more and more similar to the contours of the Hamiltonian.

REMARK 6. Theorem 1 can be straightforwardly extended to any fixed, finite number of
coordinates d > 1. In this case the limiting process will be RHMC in Rd × Rd with respect
to the potential W :Rd →R given by

W(x) = − log
∫

π̄n(x,xd+1:n)dxd+1:n, x ∈ Rd,

with W satisfying a d-dimensional version of Assumption 2.

Sketch of proof. The full proof of this result is quite lengthy and will be given in Section 3.
However, we now give the key idea without going into technical details, for the simpler i.i.d.
scenario where Un(x) =∑n

i=1 U(xi), for U : R �→ [0,∞). In this case the limiting process
has potential W ≡ U . Under the assumptions of Theorem 1 let Zn = (Xn,V n) ∼ πn and
let f : R × R → R be smooth. We now consider the generator An of BPS targeting πn and
the generator A of RHMC targeting π , the marginal of the first location momentum pair
under πn, applied to the function f . By inspecting An(f ), A(f ) we find that the terms cor-
responding to the deterministic flow of BPS and the refreshment events coincide exactly with
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corresponding terms in A(f ). We therefore only have to consider the term corresponding to
the “bounce events”, that is,

max
{
0,
(∇Un(X),V

)}[
f

(
X1,V1 − 2

(∇Un(X),V )

|∇Un(X)|2 U ′(X1)

)
− f (X1,V1)

]
,

and show that on average it is close to −(∇vf,∇U) = −U ′(X1)∂vf (X1,V1).
To see why this is true, after a Taylor expansion we can see that the bounce part of the BPS

generator is close to

−2 max
{

0,
(∇Un(X),V )

|∇Un(X)|
}
(∇Un(X),V )

|∇Un(X)| ∂vf (X1,V1)U
′(X1).

Looking closer one can see that

(∇Un(X),V )

|∇Un(X)| =
∑n

i=1 U ′(Xi)Vi√∑n
i=1 U ′(Xi)2

,

and since the (Vi)i are i.i.d. standard Gaussians it is easily seen that∑n
i=1 U ′(Xi)Vi√∑n

i=1 U ′(Xi)2

∣∣∣∣(Xi)
n
i=1 ∼N (0,1).

It now seems plausible that, letting ξ ∼ N (0,1), we have

E

{
max

{
0,
(∇Un(X),V

)}[
f

(
X1,V1 − 2

(∇Un(X),V )

|∇Un(X)|2 U ′(X1)

)
− f (X1,V1)

]∣∣∣X1,V1

}
≈ −2E

[
max{0, ξ}ξ ]∂vf (X1,V1)U

′(X1) = −∂vf (X1,V1)U
′(X1) = −(∇vf,∇U).

2.4.2. Dimension-free convergence rates for RHMC. We consider the RHMC process on
the target

π(x,v) = π̄ (x) · ψ(v) ∝ exp
{−U(x) − |v|2/2

}
,

defined on Z := Rd × Rd for π̄(·) a strongly log-concave target distribution on Rd having
a potential with bounded Hessian. This is a standard assumption adopted in [13, 20, 27, 28,
37].

ASSUMPTION 3. Assume that U ∈ C2(Rd) and that for some 0 < m < M , and all x,v ∈
Rd

(2.8) m(v,v) ≤ (v,∇2U(x)v
)≤ M(v,v).

The following proposition, whose proof is given in the Appendix, shows that the expected
number of bounces per unit time for BPS in stationary distribution is O(

√
d).

PROPOSITION 2. Suppose that π̄(x) ∝ exp(−U(x)) is a probability density on Rd . Then
the BPS process on Z targeting π̄ ⊗ ψ and initialized at stationarity, has the following ex-
pected number of bounces per unit time:

	b := EX∼π,V ∼N(0,Id )

[(∇U(X),V
)
+
]
,

for any choice of refreshment rate λref and auto-regressive parameter α. Moreover, if π̄ sat-
isfies Assumption 3, then we have

(2.9)

√
m(d − 1/2)√

2π
≤ 	b ≤

√
Md√
2π

.
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Wasserstein distance. For t ≥ 0, let Z(1)(t) = (X(1)(t),V (1)(t)) denote a path of the RHMC
process. We couple this with another path Z(1)(t) = (X(2)(t),V (2)(t)) such that their refresh-
ments happen simultaneously and the same multivariate normal random variables are used
for updating their velocities. Therefore the difference between the paths Z(1)(·) and Z(2)(·)
stems only from the different initialisations. Then the coupled process (Z(1)(t),Z(2)(t)) is
Markov and we write L1,2 for the corresponding generator. Notice that the 2 × 2 real valued
matrix

(2.10) A :=
(
a b

b c

)
,

is positive definite, denoted A � 0, if and only if a > 0, c > 0 and b2 < ac. For such a matrix,
let

d2
A

(
Z1(t),Z2(t)

)
:= a

∥∥X(2)(t) − X(1)(t)
∥∥2 + 2b

〈
X(2)(t) − X(1)(t),V (2)(t) − V (1)(t)

〉
+ c
∥∥V (2)(t) − V (1)(t)

∥∥2

denote a distance function called weighted distance. It is equivalent up to constant mul-
tiplicative factors to the standard Euclidean distance on R2d and the standard Euclidean
distance corresponds to the special case a = 1, b = 0, c = 1. However, due to the effect
of the generator L1,2 on d2

A(Z1(t),Z2(t)), it will never be a contraction when b = 0, and
thus weighting this distance is essential for obtaining convergence rates. Note that for ev-
ery p ≥ 1, the Wp-Wasserstein distance of two distributions ν1, ν2 on R2d is defined as
Wp(ν1, ν2) = (infX1∼ν1,X2∼ν2 E(|X1 − X2|p))1/p , where the infimum is taken over all cou-
plings with marginals ν1 and ν2.

Our main result in this section is the following.

THEOREM 3. Suppose that 0 ≤ α < 1, Assumption 3 holds and let

λref = 1

1 − α2

(
2
√

M + m − (1 − α)m√
M + m

)
, μ = (1 + α)m√

M + m
− αm3/2

2(M + m)
.

Then there exist constants a, b and c depending on m, M and α, stated explicitly in (4.8),
such that the corresponding matrix A is positive definite, and for any t ≥ 0 we have

(2.11) L1,2d
2
A

(
Z1(t),Z2(t)

)≤ −μ · d2
A

(
Z1(t),Z2(t)

)
.

This directly implies that for any initial distribution ν on R2n, for all t ≥ 0, we have the
following bounds on the 2-Wasserstein distance to the stationary distribution:

(2.12) W2
(
P tν,π

)2 ≤ C2e
−μtW2(ν,π)2,

for C2 = a+c+
√

(a+c)2−4(ac−b2)

a+c−
√

(a+c)2−4(ac−b2)
. Moreover, for every f ∈ L2

0(π), for all t ≥ 0

(2.13)
∥∥P tf

∥∥2 ≤ min
(
Ce−μt ,1

)‖f ‖2,

where C = ac+b2+2
√

acb2

ac−b2 .

REMARK 7. Due to the nonreversibility of RHMC, the convergence rates in Wasserstein
distance do not directly imply bounds on the asymptotic variance for every function in L2(π),
but only for Lipschitz functions. The argument for extending this contraction rate to all of
L2(π), can be found in the second half of the proof of Theorem 5. This is based on the fact
that Lipschitz functions are dense in L2(π).
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REMARK 8. These results seem to suggest that choosing α close to 1 increases the con-
vergence rate μ approximately by a factor of 2, at the expense of a higher refreshment rate.
Hence in practice some tradeoff needs to be made between additional computational cost and
the increased convergence rate. By Proposition 2, we know that the rate of bounces according

to the stationary distribution is at least
√

m(d−1/2)√
2π

, which will be significantly higher than the

rate 1
1−α2 (2

√
M + m− (1−α)m√

M+m
) in high dimensions, provided that

√
M+m

m
· 1

d−1/2 · 1
1−α2 � 1.

The choice α = 0.9 is reasonable in most scenarios.

REMARK 9. We have been able to verify using Mathematica that if M/m ≥ 5, and we
choose λref ≤ 1

2 · 1
1−α2 (2

√
M + m − (1−α)m√

M+m
) (half the value recommended in Theorem 3),

then the contraction (2.11) cannot hold for any choice of a, b and c. In general, if we
choose λref = r

1−α2 (2
√

M + m − (1−α)m√
M+m

) for some r > 1 (i.e., r times the refreshment rate
recommended in Theorem 3), then it seems based on extensive experiments that the rate
μ = 1

r
( (1+α)m√

M+m
− αm3/2

2(M+m)
) is attained (i.e., μ drops by a factor r); no values of a, b and c

result in double the same rate. Obtaining a formula that describes sharp rates μ for a general
choice of λref seems difficult with our method of proof, as the inequalities that need to be
checked in this case depend on many variables, and the calculations become intractable. We
include in the electronic supplementary material Mathematica code that checks, for given
values of m, M , α, λref, μ, whether there exist a, b and c such that (2.13) holds, and returns
a possible choice of these parameters if they exist.

As we shall see in the next proposition, it is possible to obtain faster convergence rates, that
is, larger μ, for Gaussian target distributions. For this result, we consider a weighted distance
of the form

(2.14) d2
D

(
Z1(t),Z2(t)

) := 〈Z2(t) − Z1(t),D
(
Z2(t) − Z1(t)

)〉
,

where D is a real valued 2d × 2d positive definite matrix.

PROPOSITION 4. Suppose that π̄ is Gaussian and its inverse covariance matrix H sat-
isfies mI � H � MI . Let

λref = 2
√

m

1 − α
, μ =

√
m

3
.

Then there exists a 2d × 2d real valued matrix D such that for any t ≥ 0 we have

(2.15) L1,2d
2
D

(
Z1(t),Z2(t)

)≤ −μ · d2
D

(
Z1(t),Z2(t)

)
.

Moreover, for every f ∈ L2
0(π), we have

(2.16)
∥∥P tf

∥∥2 ≤ min
(
Ce−μt ,1

)‖f ‖2,

where C = ac+b2+2
√

acb2

ac−b2 .

Hypocoercivity. Our next convergence result is based on the hypocoercivity approach; see,
for example, [24, 32, 42, 55, 58]. Our result will be stated in terms of the modified Sobolev
norm 〈〈h, h〉〉1/2, where

(2.17) 〈〈h,h〉〉 := a‖∇vh‖2 − 2b〈∇xh,∇vh〉 + c‖∇xh‖2,

which again for a, c > 0 and b2 < ac defines a norm equivalent to the H 1 norm. In particular
following the calculations in [58], by Young’s inequality we get(

1 + |b|√
ac

)[
a‖∇vh‖2 + c‖∇xh‖2]≥ 〈〈h,h〉〉 ≥

(
1 − |b|√

ac

)[
a‖∇vh‖2 + c‖∇xh‖2].



RHMC AND THE BOUNCY PARTICLE SAMPLER 2623

By the Efron–Stein–Steele inequality [56] and the fact that π(x, v) = π(x)ψ(v) is the prod-
uct of two independent distributions, we have

‖h‖2 = Varπ(h) ≤ Varψ
(
Eπ(h)

)+ Varπ
(
Eψ(h)

)
,

for any h ∈ L2
0(π). Now by using the Poincaré inequality [16] and the strong log-concavity

of the distributions π and ψ , it is not difficult to show that

a‖∇vh‖2 + c‖∇xh‖2 ≥ a · 1 · Varψ
(
Eπ(h)

)+ c · m · Varπ
(
Eψ(h)

)≥ min(a, cm)‖h‖2.

Therefore convergence in the 〈〈·, ·〉〉 norm implies convergence in L2
0(π).

THEOREM 5. Suppose that Assumption 3 holds and let α ∈ [0,1) and

λref = 1

1 − α2

(
2
√

M + m − (1 − α)m√
M + m

)
, μ = (1 + α)m√

M + m
− αm3/2

2(M + m)
.

Then there exist constants a, b, c depending on m, M and α such that a > 0, c > 0, b2 < ac,
and for every f ∈ D(B) ⊂ H 1(π) ⊂ L2

0(π), with B , D(B) as defined in (5.1),

(2.18)
d

dt

〈〈
P tf,P tf

〉〉≤ −μ
〈〈
P tf,P tf

〉〉
.

Moreover, for every f ∈ L2
0(π) and t ≥ 0, we have

(2.19)
∥∥P tf

∥∥2 ≤ min
(
Ce−μt ,1

)‖f ‖2,

where C = ac+b2+2
√

acb2

ac−b2 .

REMARK 10. Although (2.18) only implies variance bounds for functions in H 1, we are
able to extend this to functions in L2(π) in the second half of the proof of Theorem 5, given
in Section 5.2. As our rates are the same as in Theorem 3, the optimal choice of α can be
done as discussed in Remark 8.

Since the first-coordinate process of BPS converges to RHMC, whose mixing we estab-
lished above, in the natural time-scale the computational cost of running BPS for one time
unit serves as a proxy for its algorithmic complexity. This cost is proportional to the num-
ber of total events per time unit, including bounces and refreshments. Proposition 2 shows

that the expected number of bounces per unit time under Assumption 3 is at least
√

m(d−1/2)

2
√

π
,

which is much larger than the expected number of refreshments (λref) if the refreshment rate
is chosen as recommended by Theorems 3 and 5 (as long as M/m � d and α is not too
close to 1). Therefore in these cases it is justified to choose λref in order to maximize the
contraction rate μ of the limiting RHMC process.

Since each bounce has a computational cost of order O(1) in terms of gradient evalua-
tions, our results suggests that BPS scales like O(d1/2) in gradient evaluations under our
assumptions. This is the scaling observed in the simulations presented in the next section.

REMARK 11. We state here the rates for RHMC obtained by [1] and [36] under the
same set of assumptions on the potential, that is, mId � ∇2U(x) � MId . Both papers show
L2 bounds of the form ∥∥P tf

∥∥≤ Ce−μt‖f ‖ for every f ∈ L2
0(π).

The convergence rate μ in [1] in this setting is shown to satisfy the inequality α(ε0) ≤ μ ≤
3α(ε0). After some calculations with Mathematica, we were able to show that

m2

30
≤ α(ε0) ≤ m2

5
for 0 < m < 1 and 0.03 ≤ α(ε0) ≤ 0.11 for m > 1,
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when the optimal choice of refreshment rate is chosen as

λ
opt
ref = 8 − 2

√
2 + 4

√
3√

2
≈ 8.5583.

Assuming α = 0 (no autoregressive part in the velocity refreshments), our results yield

μ = m√
M + m

for the choice λref = 2
√

M + m − m√
M + m

.

We can see that for large values of M/m, the convergence rate of [1] is sharper, while for
smaller values, our rates are sharper. We note that the conditions in [1] are quite general,
and only require a Poincaré inequality, hence they are applicable even without strong con-
vexity. [36] shows that for RHMC, the convergence rate is μ = �(

mλref
(
√

(m)+λref)
2 ), which is

maximized when λref = �(
√

m), yielding μ = �(
√

m). The dependence of these results on
the parameters m, M improves upon [1] and our paper, but the constant of proportionality is
not known.

In the case of BPS, both [1] and [36] shows rates of the form μ = �(
√

d). The depen-
dence on the parameters m and M is sharper in [36] compared to [1], but the constant of
proportionality is unknown. In contrast with these results, our high-dimensional limit argu-
ment (Theorem 1) shows that for functions that only depend on a single coordinate (or on
a fixed number of coordinates), in high dimensions, the convergence occurs according to a
dimension independent rate μ as long as we choose the refreshment rate appropriately, at
λref = �(1). This is useful in particular for situations where we are interested in estimating
the posterior mean.

2.5. Empirical results for different functions. In this section, we show some simulation
results about the computational cost of the BPS for a d-dimensional standard normal target,
and seven different test functions defined as follows:

f1(x) = x1 (first coordinate),

f2(x) =
d∑

i=1

xi (sum of all coordinates),

f3(x) =
d−1∑
i=1

sin(xi + xi+1) (a sum of sines depending on two component each),

f4(x) = |x| (radius),

f5(x) = |x|2
2

=
d∑

i=1

x2
i

2
(log-density),

f6(x) = x2
1 (square of first coordinate),

f7(x) = x1x2 (product of first and second coordinates).

In order to estimate the effective sample sizes, we have run 100 parallel BPS simulations with
106 events per simulation, starting from the Gaussian target distribution. The autoregressive
parameter α was set as α = 0. Figure 2 shows the number of events required for one effec-
tive sample for dimensions d = 10, 100, 1000 and 10,000 for these seven functions, with
refreshment parameter choices λref = 1 (as suggested by Theorems 3 and 5) and λref = √

d

(as suggested by [8] and Table 1 of [1]). The number of events is a correct proxy for the
computational cost as each event requires one gradient evaluation (see Section 2.3 of [15]
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FIG. 2. Number of BPS events per effective sample for 7 different functions for standard Gaussian target as a
function of the dimension, with two different scalings of the refreshment rate λref in terms of the dimension.
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for the description of the implementation of BPS for Gaussian targets). As we can see, if the
refreshment rate is chosen as λref = 1, these simulation results show O(

√
d) scaling in the

number of events required for an effective sample for all of the functions except the radius
and the log-density (f4 and f5). In contrast, the choice λref = √

d seems to require signifi-
cantly more events per effective sample, with O(d) scaling observed empirically. In the cases
of the radius and the log-density, the choice λref = √

d still seems to require O(d) events per
effective sample, while λref = 1 is doing worse, approximately O(d4/3) events per effective
sample is required. The scaling limits for this function were studied in [8], who has recom-
mended choosing λref = O(

√
d) to obtain the best mixing for the log-density, consistently

with our empirical results.
To sum up, we can see that if the goal of the simulation is to estimate the posterior mean

or posterior covariance matrix, or other quantities only depending a small subset of the co-
ordinates, then choosing λref as recommended by Theorems 3 and 5 yield good empirical
performance (O(

√
d) scaling in the number of events required for an effective sample). For

functions depending on all of the coordinates the situation is more complicated, and the best
choice of λref is strongly function dependent in this case.

3. Proof of weak convergence result—Theorem 1. The proof will be based on a se-
quence of auxiliary results. First we will show that the RHMC semigroup {P t : t ≥ 0}, acting
on the Banach space C0(Z) with the sup-norm is Feller, and that the space C∞

c (Z) is a core
for its generator given in (2.5), in the sense that C∞

c is dense in D(A) with respect to the
norm ||| · ||| := ‖f ‖∞ + ‖Af ‖∞. This, and a sequence of auxiliary results, will allow us to
apply [29], Corollary 8.6, to prove Theorem 1.

3.1. Feller property. Recall that in the context of Theorem 1, we have d = 1 and Z = R2.
A Markov process taking values in Z , with transition semigroup {P t : t ≥ 0}, is called a Feller
process and {P t : t ≥ 0} a Feller semigroup, if it satisfies the following two properties:

Feller property: for all t ≥ 0 and f ∈ C0(Z) we have P tf ∈ C0(Z), and
Strong continuity: ‖P tf − f ‖∞ → 0 as t → 0 for f ∈ C0(Z).

PROPOSITION 6. Suppose that W : R �→ [0,∞) is continuously differentiable and
lim|x|→∞ W(x) = ∞. Then the RHMC process {Zt }t≥0 with generator A given by (2.5)
with Hamiltonian H(x, v) = W(x) + |v|2/2, α ∈ (0,1) and λref > 0 is a Feller process. If
in addition W ∈ C∞(R), then C∞

c (R) is a core for its generator.

Note that a more technical approach proposed recently in Holderrieth [33] requires weaker
assumptions.

3.1.1. Proof of Proposition 6. Before we proceed let us first define the resolvent operator
for λ > 0

Rλf (z) :=
∫ ∞

0
e−λsP sf (z)ds =

∫ ∞
0

e−λsEz[f (Zs)
]
ds.

The proof will proceed as follows. First we will first show that Rλ : C0(Z) → C0(Z), and
then use [12], Corollary 1.23, to establish that {P t : t ≥ 0} has the Feller property, that is, for
all t ≥ 0 P t : C0(Z) → C0(Z). Once the Feller property is established by [12], Lemma 1.4,
to prove strong continuity, it suffices to prove the weaker statement P tf (z) → f (z), for all
f ∈ C0(Z) and z ∈ Z . We now establish this property. Let T1, T2, . . . be the arrival times of
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the jumps. Then we have for h > 0

P hf (z) − f (z) = Ez[f (Zh)
]− f (z)

= Ez[f (Zh)1{T1 ≥ h}]− f (z) +Ez[f (Zh)1{T1 < h}]
= f

(

(h, z)

)
e−λrefh − f (z) + E,

where we write 
(z, t) for the solution of the Hamiltonian dynamics at time t initialized at
z0 = z. It is well known that if H :R×R →R is continuously differentiable everywhere then

(z, s) is well defined for all s > 0 (see, e.g., [18], Theorem 1.186), H(
(z, s)) = H(z) for
all s > 0 and 
(z,h) → z as h → 0. Since f is bounded it easily follows that as h → 0

|E | ≤ ‖f ‖∞
(
1 − e−λrefh

)→ 0.

Since 
(z,h) → z as h → 0, the result follows.

Proof of the Feller property. From [19], equation (2.6), we know that we can express the
resolvent kernel as follows for a measurable set A:

(3.1) Rλ(z,A) =
∞∑

j=0

J
j
λ Kλ(z,A),

where

Kλ(z,A) :=
∫ ∞

0
e−λs−λrefs1A

(

(z, s)

)
ds,(3.2)

Jλ(z,A) :=
∫ ∞

0
λrefe

−λs−λrefsQα

(

(z, s),A

)
ds,(3.3)

with 
(z, s) = 
((x, v), s) as defined above.
We will now show that Rλf ∈ C0(Z) for any f ∈ C0(Z). This follows from the next

result.

LEMMA 1. W ∈ C1(R; [0,∞)), W(x) → ∞ as |x| → ∞ and let f ∈ C0(Z). Then, for
any λ > 0, we have Jλf,Kλf ∈ C0(Z) and ‖Jλf ‖∞ ≤ λref/(λ + λref)‖f ‖∞. In particular

Rλf =
∞∑

j=0

J
j
λ Kλf ∈ C0(Z).

PROOF OF LEMMA 1. Let λ > 0 and let us first look at Kλ. Suppose now that f ∈ C0(Z)

and that zn → z. Then∣∣Kλf (z) − Kλf (zn)
∣∣≤ ∫ ∞

0
λrefe

−λs−λrefs
∣∣f (
(z, s)

)− f
(

(zn, s)

)∣∣ds → 0,

by the bounded convergence theorem, since f is bounded and the functions s �→
|f (
(z, s)) − f (
(zn, s))| vanish pointwise by the continuity of f and the continuous de-
pendence of the solution {
(z, s) : s ≥ 0} on the initial condition; see, for example, [18],
Theorem 1.3. This establishes that Kλf is continuous.

Next we prove that Kλf vanishes at infinity. Let ε > 0 be arbitrary. Since W(x) → ∞ as
|x| → ∞, the level sets HL := {z : H(z) ≤ L} are compact and Z =⋃

L>0{z : H(z) ≤ L}.
Therefore we can find L = L(ε) such that |f (z)| < ε(λ + λref) for z /∈ HL. For all such z,
since H(
(z, s)) = H(z) for all s > 0, we have that∣∣Kλf (z)

∣∣≤ ∫ ∞
0

e−λs−λrefs
∣∣f (
(z, s)

)∣∣ds

< ε(λ + λref)

∫ ∞
0

e−λs−λrefs ds = ε.

Thus we conclude that for all λ > 0 we have Kλ : C0(Z) → C0(Z).
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Now we move on to Jλ. First notice that for any f ∈ C0(Z) we have Qαf is also contin-
uous. To see why let zn = (xn, vn) → z = (x, v) and notice that as d = 1∣∣Qαf (zn) − Qαf (z)

∣∣
≤ 1√

2π

∫ ∞
−∞
∣∣f (xn,αvn +

√
1 − α2ξ

)− f
(
x,αv +

√
1 − α2ξ

)∣∣e−ξ2/2 dξ → 0,

by the bounded convergence theorem, since f is continuous and bounded, and therefore Qαf

is continuous. Next, for any δ > 0 we can choose a compact set Kδ such that |f (z)| < δ for
z /∈ Kδ . In particular, since Kδ is compact, for any δ > 0 we can also find Mδ > 0 such that

Kδ ⊂ {(x, v) : |x|, |v| ≤ Mδ

}
.

Fix ε ∈ (0,1/2) and choose zε such that �(zε) = 1 − ε/2, where � is the cumulative distri-
bution function of the standard normal distribution. Then∣∣Qαf (z)

∣∣≤ ε‖f ‖∞ + 1√
2π

∫ zε

ξ=−zε

∣∣f (x,αv +
√

1 − α2ξ
)∣∣e−ξ2/2 dξ.

Then for all z = (x, v) and ξ such that |x| > Mε , |v| > (Mε + zε)/α and |ξ | < zε we have∣∣αv +
√

1 − α2ξ
∣∣≥ α|v| −

√
1 − α2|ξ | ≥ α|v| − |ξ | ≥ Mε + zε − zε > Mε.

Therefore for such z we have that∣∣Qαf (z)
∣∣≤ ε‖f ‖∞ + 1√

2π

∫ zε

ξ=−zε

∣∣f (x,αv +
√

1 − α2ξ
)∣∣e−ξ2/2 dξ

< ε‖f ‖∞ + ε√
2π

∫ zε

ξ=−zε

e−ξ2/2 dξ,

and since ε > 0 is arbitrary it follows that Qαf ∈ C0(Z).
Observe that Jλf (z) = λrefKλQαf (z). Therefore if f ∈ C0(Z), since we have already

shown that Qα : C0(Z) → C0(Z) and Kλ : C0(Z) → C0(Z), it follows that Jλf ∈ C0(Z).
Finally, since clearly ‖Qαf (
(z, s))‖∞ ≤ ‖f ‖∞

‖Jλf ‖∞ = sup
z

∣∣∣∣∫ ∞
0

λrefe
−λs−λrefsQαf

(

(z, s)

)
ds

∣∣∣∣
≤
∫ ∞

0
λrefe

−λs−λrefs
∥∥Qαf

(

(z, s)

)∥∥∞ ds

≤
∫ ∞

0
λrefe

−λs−λrefs‖f ‖∞ ds = λref

λ + λref
‖f ‖∞,

and since λ > 0 we can see that this is a strict contraction. From this, it follows that the
sequence

n∑
j=0

J
j
λ Kλf,

is Cauchy in the Banach space (C0(Z),‖ · ‖∞), whence the conclusion follows. �

C∞
c is a core. Define the semigroup {Qt : t ≥ 0}, where for each t ≥ 0 Qt : C0(Z) �→

C0(Z) is defined through Qtf (z) = f (
(z, t)), with 
(z, t) denoting as before the solution
of the Hamiltonian dynamics started from z at time t . It can be easily shown that the generator
of Qt is given for f ∈ C∞

c (Z) by

Bf (x, v) = (∇xf, v) − (∇vf,∇U(x)
)
,

that is the first two terms of the generator A of RHMC.
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Let f be supported on a compact set K . By our assumptions on the Hamiltonian H , there
exists L > 0 such that K ⊆ HL := {(x, v) : H(x, v) ≤ L}. Letting z /∈ HL, for all t ≥ 0,
we have by definition H(
(z, t)) = H(z) and thus 
(z, t) /∈ HL. Therefore Qtf will have
compact support.

Notice next, since W ∈ C∞(R), that for any t ≥ 0 the mapping z �→ 
(z, t) is infinitely
differentiable; see, for example, [18], Exercise 1.185. From this and the above discussion we
conclude that for any f ∈ C∞

c (Z) and t ≥ 0 we have Qtf ∈ C∞
c . Therefore from Davies

[21], Theorem 1.9, and since C∞
c (Z) ⊂ C0(Z) is dense, we conclude that C∞

c is a core for
B , and in particular that for any f ∈ D(B), there exists a sequence {fn : n ≥ 0} ⊂ C∞

c (Z)

such that

‖fn − f ‖∞ + ‖Bfn − Bf ‖∞ → 0.

Since the operator λref[Qα −I ] is clearly bounded on C0(Z) for any α, it follows that D(A) =
D(B), and that for the sequence {fn} above we also have

‖fn − f ‖∞ + ‖Afn −Af ‖∞ → 0,

proving that C∞
c (Z) is a core for A.

3.2. Proof of Theorem 1. Recall that we write {Zn(s) : s ≥ 0} for BPS initialized from
πn, the generator of which we denote with An, and write {Z(1)

n (s) : s ≥ 0} for its first compo-
nent. In addition let

Fn
t := σ

{
Zn(s) : s ≤ t

}
and Gn

t := σ
{
Z(1)

n (s) : s ≤ t
}
.

Let εn → 0 be monotone and to be specified later on. All expectations will be with respect
to the path measure of BPS started from πn. We proceed with the usual construction. For
some function f : Z → R, that is f is a function only of Z

(1)
n , such that f ∈ C∞

c , smooth
with compact support, we define

ξn(t) := ε−1
n

∫ εn

0
E
[
f
(
Z(1)

n (t + s)
)|Gn

t

]
ds,(3.4)

φn(t) := ε−1
n E

[
f
(
Z(1)

n (t + εn)
)− f

(
Z(1)

n (t)
)|Gn

t

]
.(3.5)

Abusing notation, we will also write f for the mapping Zn �→ R given by f (z1, . . . , zn) =
f (z1). We have already established that (A,C∞

c ) generates the strongly continuous semi-
group {P t : t ≥ 0} corresponding to RHMC. To apply [29], Corollary 8.6 of Chapter 4, we
need to check the following:

• Strongly separating algebra: the closure of the linear span of C∞
c contains an algebra that

strongly separates points; see [29], Section 3.4, for the definition. This is obvious since
C∞

c (Z) strongly separates points and is dense in the algebra C0(Z), since any function in
C0(Z) can be approximated arbitrarily well by functions in Cc(Z) by multiplying with,
and then convolving with appropriate mollifiers.

• Generator convergence: for each f ∈ C∞
c (Z) and T > 0, for ξn, φn as defined in (3.4),

(3.5)

sup
n

sup
t≤T

E
[∣∣ξn(t)

∣∣]< ∞,(3.6)

sup
n

sup
t≤T

E
[∣∣φn(t)

∣∣]< ∞,(3.7)

lim
n→∞E

[∣∣ξn(t) − f
(
Z(1)

n (t)
)∣∣]= 0,(3.8)

lim
n→∞E

[∣∣φn(t) −Af
(
Z(1)

n (t)
)∣∣]= 0,(3.9)
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and in addition

(3.10) lim
n→∞E

{
sup

t∈Q∩[0,T ]
∣∣ξn(t) − f

(
Z(1)

n (t)
)∣∣}= 0,

and for some p > 1

(3.11) sup
n→∞

E

[(∫ T

0

∣∣φn(s)
∣∣pds

)1/p]
< ∞.

3.2.1. Proofs of equations (3.10) and (3.8). Since condition (3.8) is implied by (3.10),
we will establish (3.10).

First recall that for each n, BPS is nonexplosive. To see why, for each x, v, let L > |v| > 0
and consider

τn,L := inf
{
t ≥ 0 : Zn(t) /∈ B

(
x,L2)× B(0,L)

}
.

Letting

σx
n,L2 := inf

{
t ≥ 0 : Xn(t) /∈ B

(
x,L2)}, σ v

n,L := inf
{
t ≥ 0 : V n(t) /∈ B(0,L)

}
,

we have

τn,L = σx
n,L21

{
σx

n,L2 < σv
n,L

}+ σv
n,L1

{
σx

n,L2 ≥ σv
n,L

}
≥ L1

{
σx

n,L2 < σv
n,L

}+ σv
n,L1

{
σx

n,L2 ≥ σv
n,L

}≥ L ∨ σv
n,L,

where the first inequality follows, since on the event {σx
L2 ≥ σv

L} the maximum speed up to
σx

L2 is less than L. Since |V n(t)| only changes at the arrivals of a homogeneous Poisson
process with rate λref > 0, it is clear that as L → ∞, σv

n,L → ∞ and therefore τn,L → ∞.
Fix T > 0. Since BPS is nonexplosive for every n and δ > 0 we can find a Kn,δ > 0 such

that

P
[

sup
t≤T +1

∣∣Zn(t)
∣∣≥ Kn,δ

]
≤ δ.

For δn → 0 and by a diagonal argument, we can find a sequence Kn,δn such that

P
[

sup
t≤T +1

∣∣Zn(t)
∣∣≥ Kn,δn

]
≤ δn → 0.

We will write Gn for the event

Gn :=
{

sup
t≤T +1

∣∣Zn(t)
∣∣≤ Kn,δn

}
.

Then we have for εn → 0, to be specified later on,

E
[

sup
t∈[0,T ]∩Q

∣∣ξn(t) − f
(
Z(1)

n (t)
)∣∣]

= E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
f
(
Z(1)

n (t + r)
)− f

(
Z(1)

n (t)
)|Gn

t

]
dr

∣∣∣∣]

= E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{
f
(
Z(1)

n (t + r)
)− f

(
Z(1)

n (t)
)|Fn

t

}|Gn
t

]
dr

∣∣∣∣]

≤ E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{(

f
(
Z(1)

n (t + r)
)− f

(
Z(1)

n (t)
))

1Gn |Fn
t

}|Gn
t

]
dr

∣∣∣∣]

+E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{(

f
(
Z(1)

n (t + r)
)− f

(
Z(1)

n (t)
))

1Gc
n
|Fn

t

}|Gn
t

]
dr

∣∣∣∣]
:= J1 + J2.
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For the term J2 we have for p > 1

(3.12)

J2 ≤ 2‖f ‖∞E
[

sup
t∈[0,T ]∩Q

E
[
1Gc

n
|Gn

t

]]
≤ 2‖f ‖∞E

[(
sup

t∈[0,T ]∩Q
E
[
1Gc

n
|Gn

t

])p]1/p

≤ 2‖f ‖∞
p

p − 1
E
[
E
[
1Gc

n
|Gn

T

]p]1/p ≤ 2‖f ‖∞
p

p − 1
E
[
1p

Gc
n

]1/p

= 2‖f ‖∞
p

p − 1
δ1/p
n ,

where we used Jensen’s inequality, the fact that for each n, {E[1Gc
n
|Gn

t ] : t ≥ 0} is a Gn
t -

martingale and Doob’s martingale inequality.
We proceed with the term J1 as follows:

J1 ≤ E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{[

f
(
Z(1)

n (t + r)
)− f

(
Z(1)

n (t)
)]

× 1Gn1
{
τ ref

1 (t) > εn

}|Fn
t

}|Gn
t

]
dr

∣∣∣∣]
+E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{[

f
(
Z(1)

n (t + r)
)− f

(
Z(1)

n (t)
)]

× 1Gn1
{
τ ref

1 (t) ≤ εn

}|Fn
t

}|Gn
t

]
dr

∣∣∣∣]
=: J1,1 + J1,2,

where we denote by τ ref
1 (t) the first refreshment time after time t . Since refreshment happens

independently we can bound J1,2

J1,2 ≤ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0

(
1 − e−λrefεn

)
dr

∣∣∣∣]≤ 2‖f ‖∞λrefεn → 0.

We control the term J1,1 in two steps. To keep notation short we introduce the notation
G′

n(t) := {τ ref
1 (t) > εn}. Then

J1,1 ≤ E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{[

f
(
X(1)

n (t + r),V (1)
n (t + r)

)
− f

(
X(1)

n (t),V (1)
n (t + r)

)]
1Gn1G′

n(t)|Fn
t

}|Gn
t

]
dr

∣∣∣∣]
+E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{[

f
(
X(1)

n (t),V (1)
n (t + r)

)
− f

(
X(1)

n (t),V (1)
n (t)

)]
1Gn1G′

n(t)|Fn
t

}|Gn
t

]
dr

∣∣∣∣]=: J1,1,1 + J1,1,2.

For the first term, since only the location component changes we have

J1,1,1 ≤ ‖∂xf ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{∣∣X(1)

n (t + r) − X(1)
n (t)

∣∣
× 1Gn1G′

n(t)|Fn
t

}|Gn
t

]
dr

∣∣∣∣]
≤ ‖∂xf ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
εn

∣∣V (1)
n (t)

∣∣× 1Gn1G′
n(t)

∣∣Fn
t }∣∣Gn

t

]
dr

∣∣∣∣],



2632 DELIGIANNIDIS, PAULIN, BOUCHARD-CÔTÉ AND DOUCET

where the second inequality follows from the linear dynamics of BPS, since on the event
G′

n(t) there is no refreshment event and therefore the norm of the velocity component does
not change. Finally, recalling the definition of the event Gn we obtain

J1,1,1 ≤ ‖∂xf ‖∞εnKn,δn.

Next we have to control the term J1,1,2 for which we point out that, since there is no re-
freshment event, the velocity will remain constant on the interval [t, t + εn] unless there is a
bounce. Writing σ1(t) for the arrival time of the first bounce after time t we thus have

J1,1,2

= E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{[

f
(
X(1)

n (t),V (1)
n (t + r)

)
− f

(
X(1)

n (t),V (1)
n (t)

)]
1
{
σ1(t) < εn

}
1Gn1G′

n(t)|Fn
t

}|Gn
t

]
dr

∣∣∣∣]
≤ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{
1
{
σ1(t) < εn

}
1Gn1G′

n(t)|Fn
t

}|Gn
t

]
dr

∣∣∣∣]

≤ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
E
{
1
{
σ1(t) < εn

}|Fn
t

}|Gn
t

]
dr

∣∣∣∣]

≤ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E

[
E

{[
1

− exp
(
−
∫ εn

0

(∇Un

(
Xn(t + s)

)
,V n(t + s)

)
+ ds

)]∣∣∣Fn
t

}∣∣∣Gn
t

]
dr

∣∣∣∣],
where we dropped the indicators in order to be able to compute the probability of no bounce.
We again decompose according to the event Gn in order to proceed

J1,1,2

≤ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E

[
E

{[
1

− exp
(
−
∫ εn

0

(∇Un

(
Xn(t + s)

)
,V n(t + s)

)
+ ds

)]
1Gn

∣∣∣Fn
t

}∣∣∣Gn
t

]
dr

∣∣∣∣]
+ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E

[
E

{[
1

− exp
(
−
∫ εn

0

(∇Un

(
Xn(t + s)

)
,V n(t + s)

)
+ ds

)]
1Gc

n

∣∣∣Fn
t

}∣∣∣Gn
t

]
dr

∣∣∣∣].
Since the integrand is bounded above by 1, a calculation similar to the one for the term J2
in (3.12) shows that the second term above vanishes as n → ∞, and therefore using the
inequality 1 − exp(−x) ≤ x for x > 0 we have for p > 1

J1,1,2

≤ Cδ1/p
n + 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

×
∫ εn

0
E

[
E

{∫ εn

0

∣∣∇Un

(
Xn(t + s)

)∣∣∣∣V n(t + s)
∣∣ds1Gn

∣∣∣Fn
t

}∣∣∣Gn
t

]
dr

∣∣∣∣]
≤ Cδ1/p

n
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+ 2‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

×
∫ εn

0
E

[
E

{∫ εn

0

(
1

2

∣∣∇Un

(
Xn(t + s)

)∣∣2 + 1

2

∣∣V n(t + s)
∣∣2)ds × 1Gn

∣∣∣Fn
t

}∣∣∣Gn
t

]
dr

∣∣∣∣]
≤ Cδ1/p

n

+ 2C‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

×
∫ εn

0
E

[
E

{∫ εn

0

(
M
∣∣Xn(t + s)

∣∣2 + ∣∣V n(t + s)
∣∣2)ds × 1Gn

∣∣∣Fn
t

}∣∣∣Gn
t

]
dr

∣∣∣∣]
since |∇Un(x)| = |∇Un(x) − ∇Un(0)| ≤ M|x| by Assumption 1

≤ Cδ1/p
n

+ 2CM‖f ‖∞E

[
sup

t∈[0,T ]∩Q

∣∣∣∣ε−1
n

∫ εn

0
E
[
Cεn

∣∣Zn(t + s)
∣∣21Gn

∣∣Fn
t }∣∣Gn

t

]
dr

∣∣∣∣]
≤ Cδ1/p

n + 2C‖f ‖∞εnK
2
n,δn

.

We choose εn such that εnK
2
n,δn

→ 0.

3.2.2. Proof of (3.9). Next we prove (3.9). First, by stationarity notice that we can equiv-
alently check

E
[∣∣φn(0) −Af

(
Z(1)

n (0)
)∣∣]→ 0.

Notice first that f ∈ D(Ãn), the domain of the extended generator, since f is smooth and
bounded (see [22], Theorem 26.14)

φn(0) = ε−1
n E

[
f
(
Z(1)

n (εn)
)− f

(
Z(1)

n (0)
)|Gn

0
]

= ε−1
n E

[∫ εn

0
Ãnf

(
Zn(s)

)
ds +Rn(s)

∣∣∣Gn
0

]
= ε−1

n E

[∫ εn

0
Ãnf

(
Zn(s)

)
ds
∣∣∣Gn

0

]
,

where we used the facts that Rn(t) is an Fn
t -martingale and Fn

t ⊆ Gn
t , whence

E
[
Rn(s)|Gn

0
]= E

{
E
[
Rn(s)|Fn

0
]|Gn

0
}= 0.

We also notice that gn := Ãnf ∈ Dom(Ãn) the domain of the extended generator. Therefore

φn(0) = ε−1
n

∫ εn

0
E
[
gn

(
Zn(s)

)|Gn
0
]
ds

= ε−1
n

∫ εn

0
E

[
Ãnf

(
Zn(0)

)+ ∫ s

0
Ãngn

(
Zn(r)

)+R′
n(s)dr

∣∣∣Gn
0

]
ds

= ε−1
n

∫ εn

0
E

[
Ãnf

(
Zn(0)

)+ ∫ s

0
Ãngn

(
Zn(r)

)
dr
∣∣∣Gn

0

]
ds,

where, from [22], Theorem 26.12, it follows that the local martingale {R′
n(s) : s ≥ 0} is

actually a proper martingale, and therefore using the same arguments as before, for s > 0,

E
[
R′

n(s)|Gn
0
]= 0.
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Then we have

(3.13)

E
[∣∣φn(0) −Af

(
Z(1)

n (0)
)∣∣]≤ E

[∣∣E[Ãnf
(
Zn(0)

)|Gn
0
]−Af

(
Z(1)

n (0)
)∣∣]

+E

{∣∣∣∣ε−1
n

∫ εn

0
E

[∫ s

0
Ãngn

(
Zn(r)

)
dr
∣∣∣Gn

0

]
ds

∣∣∣∣}
≤ E

[∣∣E[Ãnf
(
Zn(0)

)|Gn
0
]−Af

(
Z(1)

n (0)
)∣∣]

+ ε−1
n

∫ εn

0

∫ s

0
E
{
E
[∣∣Ãngn

(
Zn(r)

)∣∣|Gn
0
]}

dr ds

:= E
[∣∣E[Ãnf

(
Zn(0)

)|Gn
0
]−Af

(
Z(1)

n (0)
)∣∣]+Rn,

applying Jensen’s inequality conditionally. Finally by the tower law and by stationarity of
{Zn(t) : t ≥ 0} when initialized from πn

Rn = ε−1
n

∫ εn

0

∫ s

0
E
{
E
[∣∣Ãngn

(
Zn(r)

)∣∣|Gn
0
]}

dr ds

= ε−1
n

∫ εn

0

∫ s

0
E
{∣∣Ãngn

(
Zn(r)

)∣∣}dr ds = εn

2
E
{∣∣Ãngn

(
Zn(0)

)∣∣}.
Error term. We will now control this error term. Recall first that for f ∈ C∞

c (Z) ⊂ D(An)

we have

Anf (x,v) = (∇f (x),v
)
) + max

{
0,
(∇Un(x),v

)}[
Rnf (x,v) − f (x,v)

]
+ λref

[
Qf (x,v) − f (x,v)

]
,

Rnf (x,v) := f

(
x,v − 2

(∇Un(x),v))

|∇Un(x)|2 ∇Un(x)

)
,

Qα,nf (x,v) := 1

(2π)n/2

∫
Rn

e−|ξ |2/2f
(
x, αv +

√
1 − α2ξ

)
dξ .

Potentially abusing notation, for n ≥ 1 and x ∈ Rn we define a mapping Rn(x) : Rn �→ Rn

through

Rn(x)v := v − 2
(∇Un(x),v)

|∇Un(x)|2 ∇Un(x),

with the convention that Rn(x)v = 0, when ∇Un(x) = 0.
We decompose the generator An into three parts

An = A(1)
n +A(2)

n +A(3)
n ,

where

A(1)
n f (x,v) = d

dt
f (x + tv,v)

∣∣∣∣
t=0

,

A(2)
n f (x,v) = max

{
0,
(∇Un(x),v

)}[
Rnf (x,v) − f (x,v)

]
,

A(3)
n f (x,v) = λref

[
Qf (x,v) − f (x,v)

]
.

REMARK 12. Notice that when f is differentiable we have

A(1)
n f (x,v) = 〈∇f (x),v

〉
,

however, for A(1)
n f (x, v) to be well defined we only need that t �→ f (x + tv,v) is absolutely

continuous; see Davis [22], Chapter 2.22.

Therefore when considering Angn = AnAnfn we will need to consider all possible com-
binations A(i)

n A(j)
n since the operators do not necessarily commute.
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Case i = 1. Using the fact that f (x,v) = f (x1, v1), where we write (x1, v1) for the first
location and velocity components of (x,v), the first term reduces to

A(1)
n A(1)

n f (x,v) = d

dt

(∇f (x),v
)∣∣∣∣

t=0
= d

dt

∂

∂x
f (x1 + tv1, v1)v1

∣∣∣∣
t=0

= ∂2f

∂x2 (x1, v1)v
2
1 .

Since f ∈ C∞
c (R×R), it follows that ∂2

xf (x, v) is also continuous and compactly supported
and therefore bounded. Thus

E

∣∣∣∣∂2f

∂x2

(
X(1), V (1))(V (1))2∣∣∣∣≤ ∥∥∥∥∂2f

∂x2

∥∥∥∥∞E
[(

V (1))2]≤ ∥∥∥∥∂2f

∂x2

∥∥∥∥∞ = O(1),

since under πn, V (1) is centered Gaussian with unit variance.
The second term (see Remark 12) takes the form

A(1)
n A(2)

n f (x,v) = d

dt
A(2)

n f (x + tv,v)

∣∣∣∣
t=0

= d

dt
max

{
0,
(∇Un(x + tv),v

)}∣∣∣∣
t=0

[
Rf (x,v) − f (x,v)

]
+ d

dt

[
Rf (x + tv,v) − f (x + tv,v)

]∣∣∣∣
t=0

max
{
0,
(∇Un(x),v

)}
=: J1 + J2.

For J1, since by Assumption 1 ∇Un is M-Lipschitz∣∣max
{
0,
(∇Un(x + hv),v

)}− max
{
0,
(∇Un(x),v

)}∣∣
≤ ∣∣(∇Un(x + hv),v

)− (∇Un(x),v
)
)
∣∣≤ Mh|v|2.

Therefore we have that, for h ∈ (0,1)

h−1∣∣max
{
0,
(∇Un(x + hv),v

)}− max
{
0,
(∇Un(x),v

)}∣∣≤ M|v|2 ∈ L1(π),

since the Vi are standard normal random variables. In addition since f is bounded it follows
that Rf (x,v) ≤ ‖f ‖∞. Therefore by the dominated convergence theorem, we can exchange
the h → 0 limit and expectation to obtain

π [J1] ≤ 2‖f ‖∞E

[∣∣∣∣ d

dt
max

{
0,
(∇Un(X + tV ),V

)}∣∣∣∣
t=0

∣∣∣∣]
≤ 2‖f ‖∞E

[
lim
h→0

h−1∣∣(∇Un(X + hV ),V
)− (∇Un(X),V

)∣∣]
≤ 2‖f ‖∞ME

[|V |2]= O(Mn).

For J2 a lengthy but straightforward calculation shows that

d

dt
Rf (x + tv,v)

∣∣∣∣
t=0

= d

dt
f

(
x1 + tv1, v1 − 2

(∇Un(x + tv),v))

|∇Un(x + tv)|2 ∂1Un(x + tv)

)∣∣∣∣
t=0

= ∂xf

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(x)

)
v1
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− 2∂vf

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(x)

)
d

dt

(
(∇Un(x + tv),v)

|∇Un(x + tv)|2 ∂1Un(x + tv)

)∣∣∣∣
t=0

= (R∂xf )(x,v)v1 − (R∂vf )(x,v) × U(x,v),

where

U(x,v) := d

dt

(
2
(∇Un(x + tv),v)

|∇Un(x + tv)|2 ∂1Un(x + tv)

)∣∣∣∣
t=0

= 2

|∇Un(x)|2
{(

v,∇U2
n (x)v

)
∂1Un(x) + (∇Un(x),v

) n∑
j=1

∂2
j,1Un(x)vj

}

− 1

|∇Un(x)|4
{
2∂1Un(x)

(∇Un(x),∇2Un(x)v
)(∇Un(x),v

)}
,

and thus by Assumption 1∣∣U(x,v)
∣∣≤ 2

|∇Un(x)|2
{
M
∣∣∇Un(x)

∣∣|v|2 + M|v|2∣∣∇Un(x)
∣∣}

+ 1

|∇Un(x)|4
{
2M
∣∣∇Un(x)

∣∣3|v|2},
whence∣∣U(x,v)max

{
0,
(∇Un(x),v

)
)
}∣∣≤ C|v|

|∇Un(x)|
{
M
∣∣∇Un(x)

∣∣|v|2 + M|v|2∣∣∇Un(x)
∣∣}

+ C|v|
|∇Un(x)|3

{
M
∣∣∇Un(x)

∣∣3|v|2}≤ CM|v|3.
Thus overall,∣∣∣∣ d

dt
Rf (x + tv,v)

∣∣∣∣
t=0

max
{
0,
(∇Un(x),v

)}∣∣∣∣≤ ‖∂xf ‖∞|v|2∣∣∇Un(x)
∣∣+ CM‖∂vf ‖∞|v|3.

On the other hand∣∣∣∣ d

dt
f (x + tv,v)

∣∣∣∣
t=0

max
{
0,
(∇Un(x),v

)
)
}∣∣∣∣≤ ‖∂xf ‖∞

∣∣∇U(x)
∣∣|v|2.

Thus overall we have that, using the fact that (V1, . . . , Vn) are i.i.d. standard Gaussians and
Lemma A.3 in the Appendix

π
[|J2|]≤ CE

[∣∣∇Un(X)
∣∣]E[∣∣V 2∣∣]+ CME

[|V |3]
≤ CM1/2n3/2 + CMn3/2 = O

(
Mn3/2)

and thus we have that π [|A(1)
n A(2)

n f |] = O(Mn3/2).
For the final term, since Qf (x,v) = Qf (x1, v1) we have

A(1)
n A(3)

n f (x,v) = d

dt
A(3)

n f (x + tv,v)

∣∣∣∣
t=0

= λref
d

dt

[
Qf (x1 + tv1, v1) − f (x1 + tv1, v1)

]∣∣∣∣
t=0

= λref
[
Q(∂xf )(x1 + tv1, v1) − ∂xf (x1, v1)

]
v1,

by an application of dominated convergence. We can easily see from the above that
π [A(1)

n A(3)
n f ] = O(1) as n → ∞.
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Case i = 2. For the first term A(2)
n A(1)

n f , notice first that since f (x,v) = f (x1, v1) we have

A(1)
n f (x,v) = ∂xf (x1, v1)v1 =: h(x1, v1).

Therefore

Rnh(x,v) = ∂xf

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(x)

)(
v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(x)

)
,

whence

Rnh(x,v) − h(x,v) = v1
[
Rn∂xf (x,v) − ∂xf (x,v)

]
− 2Rn∂xf (x,v)

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(x),

and thus

E
∣∣A(2)

n A(1)
n f (X,V )

∣∣≤ E
[∣∣(∇Un(X),V

)∣∣× |V1| ×
∣∣Rn∂xf (X,V ) − ∂xf (X,V )

∣∣]
+ 2E

[∣∣(∇Un(X),V
)∣∣× ∣∣∣∣Rn∂xf (X,V )

(∇Un(X),V )

|∇Un(X)|2 ∂1Un(x)

∣∣∣∣]
≤ (‖Rn∂xf ‖∞ + ‖∂xf ‖∞

)
E
[|V | × |V1|]E[∣∣∇Un(X)

∣∣]
+ 2‖Rn∂xf ‖∞E

[
(∇Un(X),V )2

|∇Un(X)|2
∣∣∂1Un(x)

∣∣]
≤ (‖Rn∂xf ‖∞ + ‖∂xf ‖∞

)
E
[|V | × |V1|]E[∣∣∇Un(X)

∣∣]
+ 2‖Rn∂xf ‖∞E

[∣∣∂1Un(X)
∣∣],

where for the second term we used the tower law and the fact that conditionally on X,
(∇Un(X),V ) is Gaussian with mean 0 and variance |∇Un(X)|2. Using the Cauchy–Schwarz
inequality and Lemma A.3 from the Appendix we have

E
∣∣A(2)

n A(1)
n f (X,V )

∣∣≤ (‖Rn∂xf ‖∞ + ‖∂xf ‖∞
)
CM

√
nE
[|V1|2]1/2

E
[|V |2]1/2

+ 2‖Rn∂xf ‖∞E
[∣∣∇Un(X)

∣∣]= O(Mn).

For the next term A(2)
n A(2)

n f first we write

A(2)
n A(2)

n f (x,v) = max
{
0,
(∇Un(x),v

)}[
RnA(2)

n f (x,v) −A(2)
n f (x,v)

]
.

Then notice that

RnA(2)
n f (x,v) = max

{
0,

(
∇Un(x),v − 2

(∇Un(x),v)

|∇Un(x)|2 ∇Un(x)

)}

×
[
Rnf

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(X)

)

− f

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(X)

)]
= max

{
0,
(∇Un(x),−v

)}
×
[
Rnf

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(X)

)

− f

(
x1, v1 − 2

(∇Un(x),v)

|∇Un(x)|2 ∂1Un(X)

)]
,
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and therefore that∣∣RnA(2)
n f (x,v) −A(2)

n f (x,v)
∣∣≤ 2‖f ‖∞

∣∣(∇Un(x),v
)∣∣,∣∣A(2)

n A(2)
n f (x,v)

∣∣≤ 2‖f ‖∞
(∇Un(x),v

)2
.

Thus

E
∣∣A(2)

n A(2)
n f (X,V )

∣∣≤ C‖f ‖∞E
[(∇Un(X),V

)2]
≤ C‖f ‖∞E

{
E
[(∇Un(X),V

)2|X]}
using the fact that conditionally on X, (∇Un(X),V ) is Gaussian

= C‖f ‖∞E
{∣∣∇Un(X)

∣∣2}= O(Mn)

from Lemma A.3 in the Appendix.
Next we consider the term A(2)

n A(3)
n f . Since f is bounded, it easily follows that A(3)

n f is
also bounded and therefore that∣∣A(2)

n A(3)
n f (x,v)

∣∣= max
{
0,
(∇Un(x),v

)}∣∣RnA(3)
n f (x,v) −A(3)

n f (x,v)
∣∣

≤ 2λref‖f ‖∞ max
{
0,
(∇Un(x),v

)}
.

Therefore

E
∣∣A(2)

n A(3)
n f (X,V )

∣∣≤ CE
∣∣(∇Un(X),V

)∣∣≤ CE
[(∇Un(X),V

)2]1/2 = O
(
M1/2n1/2),

from Lemma A.3 and calculations similar to the previous term.

Case i = 3. The first term to consider is

A(3)
n A(1)

n f (x,v)

= λref
[
QA(1)

n f (x,v) −A(1)
n f (x,v)

]
= λref

∫ [
A(1)

n f
(
x1, αv1 +

√
1 − α2ξ

)−A(1)
n f (x,v)

]
φ(ξ)dξ

= λref

∫ [
∂xf

(
x1, αv1 +

√
1 − α2ξ

)(
αv1 +

√
1 − α2ξ

)− ∂xf (x1, v1)v1
]
φ(ξ)dξ,

where φ denotes the standard normal density. Since ‖∂xf ‖∞ < ∞ we have

E
∣∣A(3)

n A(1)
n f (X,V )

∣∣≤ λref‖∂xf ‖∞E
[∣∣αV1 +

√
1 − α2ξ

∣∣+ |V1|]= O(1),

as n → ∞.
For the second term we have, using Jensen’s inequality on the Markov kernel Q,

E
∣∣A(3)

n A(2)
n f (X,V )

∣∣≤ λrefE
[∣∣QA(2)

n f (X,V )
∣∣]+ λrefE

[∣∣A(2)
n f (X,V )

∣∣]
≤ λrefE

[
Q
(∣∣A(2)

n f
∣∣)(X,V )

]+ λrefE
[∣∣A(2)

n f (X,V )
∣∣].

At this point notice that Q is πn-invariant and therefore

E
[
Q
(∣∣A(2)

n f
∣∣)(X,V )

]= E
[∣∣A(2)

n f (X,V )
∣∣],

whence we conclude that

E
∣∣A(3)

n A(2)
n f (X,V )

∣∣≤ 2λrefE
[∣∣A(2)

n f (X,V )
∣∣]

≤ 4λref‖f ‖∞E
[∣∣(∇Un(X),V

)∣∣]
= 4

√
2

π
λref‖f ‖∞E

[∣∣∇Un(X)
∣∣]= O

(
M1/2n1/2),
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using Lemma A.3 and the fact that conditionally on X, (∇Un(X),V ) is a mean zero Gaussian
with variance |∇Un(X)|2.

Finally, by similar arguments as above the last term is given by

E
∣∣A(3)

n A(3)
n f (X,V )

∣∣≤ 2λrefE
[∣∣A(3)

n f (X,V )
∣∣]

≤ 4λ2
ref‖f ‖∞ = O(1).

Overall we have shown that the error term defined in (3.13) satisfies

(3.14) Rn = εn

2
E
[∣∣AnAnf

(
Zn(0)

)∣∣]= O
(
Mn3/2εn

)= o(1),

since we have chosen εn such that εnn
2 → 0, as n → ∞.

Main term. Having controlled the error term, we now focus on the main term given by

E
[∣∣E[Ãnf

(
Zn(0)

)|Gn
0
]−Af

(
Z(1)

n (0)
)∣∣],

where we recall that Ãn is the extended generator. Notice that for f (x,v) = f (x1, v1),

Anf (x,v) = ∂xf (x1, v1)v1 + max
{
0,
(∇Un(x),v

)}[
Rnf (x,v) − f (x,v)

]
+ λref

[
Qf (x1, v1) − f (x1, v1)

]
,

Af (x1, v1) = ∂xf (x1, v1)v1 − ∂vf (x1, v1)W
′(x1) + λref

[
Qf (x1, v1) − f (x1, v1)

]
,

and thus the first and third terms are in fact identical and will cancel out. We thus only have
to consider the difference of the second terms. We apply a first order Taylor expansion

E
[
max

{
0,
(∇Un(X),V

)}[
Rnf (X,V ) − f (X,V )

]|Gn
0
]

= E

[
max

{
0,
(∇Un(X),V

)}
×
[
f

(
X1,V1 − 2

(∇Un(X),V )

|∇Un(X)|2 ∂1Un(X)

)
− f (X1,V1)

]∣∣∣Gn
0

]
= E

[
max

{
0,
(∇Un(X),V

)}
× ∂vf (X1,V1)

{
−2

(∇Un(X),V )

|∇Un(X)|2 ∂1Un(X)

}∣∣∣Gn
0

]
+ E1,

where E1 is the remainder. At this point notice that, by the tower law and the fact that
(∇Un(X),V ) is Gaussian conditionally on X,

(3.15)

E|E1| ≤ ‖∂vf ‖∞E

[ |(∇Un(X),V )|3|∂1Un(X|)
|∇Un(X)|4

]

= ‖∂vf ‖∞E

{ |∂1Un(X)|
|∇Un(X)|4E

[∣∣(∇Un(X),V
)∣∣3|X]}

≤ C‖∂vf ‖∞E

{ |∂1Un(X)||∇Un(X)|3/2

|∇Un(X)|4
}

≤ C‖∂vf ‖∞E

{ |∇Un(X)|5/2

|∇Un(X)|4
}

= C‖∂vf ‖∞E

{
1

|∇Un(X)|3/2

}

≤ C‖∂vf ‖∞
[

1

(nm)3/2 +
(√

M

m

)3/2
exp
(
− nm2

4M2

)
+ m3/2

2nM3/4n

]
by Lemma A.5 in the Appendix, which tends to 0 as n → ∞.
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Finally, having controlled the error terms, to complete the proof of (3.9), it remains to
show that the following term vanishes:

Eπ

[∣∣∂vf (X1,V1)
∣∣

×
∣∣∣∣E[max

{
0,
(∇Un(X),V

)}(−2(∇Un(X),V )

|∇Un(X)|2
)
∂1Un(X)

∣∣∣X1,V1

]
− W ′(X1)

∣∣∣∣].
First notice that, since V2, . . . , Vn are independent of V1 and X, we can write

I (X1,V1)

:= E

[
max

{
0,
(∇Un(X),V

)}((∇Un(X),V )

|∇Un(X)|2
)
∂1Un(X)

∣∣∣X1,V1

]

= E

{
∂1Un(X)

|∇Un(X)|2E
[
max

{
0,
(∇Un(X),V

)}2|X,V1
]∣∣∣X1,V1

}

= E

{
∂1Un(X)

|∇Un(X)|2E
[

max

{
0, ∂1Un(X)V1 +

√√√√ n∑
j=2

[
∂jUn(X)

]2 × ξ

}2∣∣∣∣X,V1

]∣∣∣∣X1,V1

}

= E

{
∂1Un(X)

|∇Un(X)|2 max

{
0, ∂1Un(X)V1 +

√√√√ n∑
j=2

[
∂jUn(X)

]2 × ξ

}2∣∣∣∣X1,V1

}
,

where ξ is a standard Gaussian random variable, independent from X and V1. Continuing we
have

I (X1,V1) = E

{
∂1Un(X)

|∇Un(X)|2 max

{
0,

√√√√ n∑
j=2

[
∂jUn(X)

]2 × ξ

}2∣∣∣X1,V1

}
+ E2(X1,V1)

where

E2(X1,V1) ≤ CE

{ |∂1Un(X)|3
|∇Un(X)|2

∣∣∣X1,V1

}
+ CE

{ |∂1Un(X)|2
|∇Un(X)|

∣∣∣X1,V1

}
=: E2,1(X1,V1) + E2,2(X1,V1).

We control the first term using the Cauchy–Schwarz inequality as follows:

E
[
E2,1(X1,V1)

]≤ CE

{ |∂1Un(X)|4
|∇Un(X)|4

}1/2
E
{∣∣∂1Un(X)

∣∣2}1/2

and since |∂1Un(x)|2/|∇Un(x)|2 ≤ 1

(3.16)

≤ CE

{ |∂1Un(X)|
|∇Un(X)|

}1/2
E
{∣∣∂1Un(X)

∣∣2}1/2

≤ CM1/2
[

M2

m2
√

n
+ M2E|X1|

m3/2n1/2 + M

m

√
logn

n
+ 1

n

]1/2

by Lemmas A.4, A.3 in the Appendix, where we used the fact that by Assumption 1 we have
that E|X1| < ∞ (this follows, e.g., by the L1 Poincaré inequality applied on the function
f (X) = X1; see Corollary 1.9 of [2]).
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For the second error term we have, again using the Cauchy–Schwarz inequality,

(3.17)

E
[
E2,2(X1,V1)

]= CE

{ |∂1Un(X)|2
|∇Un(X)|

}

≤ E

{ |∂1Un(X)|2
|∇Un(X)|2

}1/2
E
{∣∣∂1Un(X)

∣∣2}1/2

≤ CE

{ |∂1Un(X)|
|∇Un(X)|

}1/2
E
{∣∣∂1Un(X)

∣∣2}1/2

≤ CM1/2
[

M2

m2
√

n
+ M2E|X1|

m3/2n1/2 + M

m

√
logn

n
+ 1

n

]1/2

as before.
Finally notice that

E

[
max

{
0,

n∑
j=2

∂jUn(X)Vj

}(−2
∑n

j=2 ∂jUn(X)Vj

|∇Un(X)|2
)
∂1Un(X)

∣∣∣∣X1,V1

]

= −2E
{
E

[max{0,
∑n

j=2 ∂jUn(X)Vj }2

|∇Un(X)|2 ∂1Un(X)
∣∣∣X]∣∣∣X1,V1

}

= −2E
{
E

[
1{ξ > 0}(

∑n
j=2[∂jUn(X)]2)ξ2

|∇Un(X)|2 ∂1Un(X)
∣∣∣X]∣∣∣X1,V1

}
,

where ξ is an independent standard Gaussian

= −E

{
∂1Un(X)

(
∑n

j=2[∂jUn(X)]2)

|∇Un(X)|2
∣∣∣X1,V1

}
= −E

{
∂1Un(X)|X1,V1

}+ E3(X1,V1),

where

(3.18)

E
[∣∣E3(X1,V1)

∣∣]≤ E

[ |∂1Un(X)|3
|∇Un(X)|2

]

≤ CM1/2
[

M2

m2
√

n
+ M2E|X1|

m3/2n1/2 + M

m

√
logn

n
+ 1

n

]1/2
,

by calculations similar to those for the error term E2,1. Finally

−E
{
∂1Un(X)|X1,V1

}= −
∫

∂
∂x1

Un(x1;x2:n)e−Un(x1;x2:n) dx2:n∫
e−Un(x1;x2:n) dx2:n

= −
∂

∂x1

∫
Un(x1;x2:n)e−Un(x1;x2:n) dx2:n∫

e−Un(x1;x2:n) dx2:n

= −
∂

∂x1

∫
e−Un(x1;x2:n) dx2:n∫

e−Un(x1;x2:n) dx2:n
= − ∂

∂x1
log
∫

e−Un(x1;x2:n) dx2:n

= − ∂

∂x1
log e−W(x1) = W ′(x1).

Overall we have shown that

E

[
max

{
0,
(∇Un(X),V

)}(−2(∇Un(X),V )

|∇Un(X)|2
)
∂1Un(X)

∣∣∣X1,V1

]
= W ′(X1) + E2 + E3,
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where E[|E2|],E[|E3|] → 0 as n → ∞. Therefore we have

Eπ

[∣∣∂vf (X1,V1)
∣∣

×
∣∣∣∣E[max

{
0,
(∇Un(X),V

)}(−2(∇Un(X),V )

|∇Un(X)|2
)
∂1Un(X)

∣∣∣X1,V1

]
− W ′(X1)

∣∣∣∣]→ 0

as n → ∞.

3.2.3. Proof of (3.11). Next we need to verify (3.11) for some p > 1 for which we pro-
ceed as follows:

E

[(∫ T

0

∣∣φn(t)
∣∣p dt

)1/p]p
≤ E

[∫ T

0

∣∣φn(t)
∣∣p dt

]
=
∫ T

0
E
[∣∣φn(t)

∣∣p]dt

=
∫ T

0
E
[∣∣ε−1

n E
{
f
(
Z(1)

n (t + εn)
)− f

(
Z(1)

n (t)
)|Gn

t

}∣∣p]dt

=
∫ T

0
E

[∣∣∣∣ε−1
n E

{∫ εn

0

(
Ãnf

(
Z(1)

n (t + s)
)+ Rt+s

)
ds
∣∣∣Gn

t

}∣∣∣∣p]dt

and using the fact that E[Rt+s |Gn
t ] = E[E[Rt+s |Fn

t ]|Gn
t ] = 0,

=
∫ T

0
E

[∣∣∣∣ε−1
n

∫ εn

0
E
{
Ãnf

(
Z(1)

n (t + s)
)|Gn

t

}
ds

∣∣∣∣p]dt

and by Jensen’s inequality,

≤
∫ T

0
E

[
ε−1
n

∫ εn

0
E
{∣∣Ãnf

(
Z(1)

n (t + s)
)∣∣p|Gn

t

}
ds

]
dt

=
∫ T

0
ε−1
n

∫ εn

0
E
[
E
{∣∣Ãnf

(
Z(1)

n (t + s)
)∣∣p|Gn

t

}]
ds dt

=
∫ T

0
ε−1
n

∫ εn

0
E
[∣∣Ãnf

(
Z(1)

n (t + s)
)∣∣p]ds dt

= TE
[∣∣Ãnf

(
Z(1)

n (0)
)∣∣p],

by stationarity. Next recalling the decomposition of Ãn into A(i)
n , i = 1,2,3 notice that

sup
x,v

∣∣A(1)
n f (x, v)

∣∣= sup
x,v

∣∣∂xf (x, v)v
∣∣< ∞,

since (x, v) �→ ∂xf (x, v)v is continuous and has compact support, since f has compact sup-
port. Similarly, it follows easily that ‖A(3)

n f ‖∞ < ∞ and therefore the only term we have to
control corresponds to A(2)

n . For this term notice that

E
[∣∣A(2)

n f
(
Z(1)

n (0)
)∣∣p]

= E

[∣∣∣∣max
{
0, (∇Un(X,V )

}[
f

(
X1,V1 − 2

(∇Un(X,V )

|∇Un(X)|2 ∂1Un(X)

)
− f (X1,V1)

]∣∣∣∣p]

≤ 2p‖∂vf ‖∞E

[ |(∇Un(X,V )|2p|∂1Un(X)|p
|∇Un(X)|2p

]

≤ 2p‖∂vf ‖∞E

{
E

[ |(∇Un(X,V )|2p|∂1Un(X)|p
|∇Un(X)|2p

∣∣∣X]}

≤ 2p‖∂vf ‖∞E

{
E

[ |∇Un(X)|p|∂1Un(X)|p
|∇Un(X)|2p

∣∣∣X]}≤ 2p‖∂vf ‖∞ = O(1).
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3.2.4. Proofs of (3.6) and (3.7). Notice that (3.6) follows immediately since ‖f ‖∞ < ∞,
whereas (3.7) follows from calculations similar to the ones used to prove (3.11).

4. Proofs of Wasserstein rates.

4.1. Proof of Theorem 3. Let X̃(t) := X(2)(t) − X(1)(t) and Ṽ (t) := V (2)(t) − V (1)(t)

denote the differences between the two paths in position and momentum. Ignoring for the
moment the refreshment events, (X̃(t), Ṽ (t)) will evolve according to the Hamiltonian dy-
namics, that is,

(4.1)

X̃′(t) = Ṽ (t),

Ṽ ′(t) = −(∇U
(
X(2)(t)

)− ∇U
(
X(1)(t)

))= −H(t)X̃(t) where

H(t) :=
∫ 1

s=0
∇2U

(
sX(1)(t) + (1 − s)X(2)(t)

)
ds.

By convexity, we can see that H(t) satisfies that mI � H(t) � MI where I denotes the
identity matrix, where we write A � B to denote that B −A is positive definite. The effect of
the generator L1,2 on |X̃(t)|2, 〈X̃(t), Ṽ (t)〉 and |Ṽ (t)|2 is given by

(4.2)

L1,2
∣∣X̃(t)

∣∣2 = 2
〈
X̃(t), Ṽ (t)

〉
,

L1,2X̃(t)
T
Ṽ (t) = ∣∣Ṽ (t)

∣∣2 − X̃(t)
T H(t)X̃(t) − λref(1 − α)X̃(t)

T
Ṽ (t),

L1,2
∣∣Ṽ (t)

∣∣2 = −2Ṽ (t)
T H(t)X̃(t) − λref

(
1 − α2)∣∣Ṽ (t)

∣∣2.
The claim of Theorem 3 is equivalent to showing that −μ ·d2

A(Z1(t),Z2(t))−L1,2d
2
A(Z1(t),

Z2(t)) ≥ 0. This can be expressed as

−μ · d2
A

(
Z1(t),Z2(t)

)− L1,2d
2
A

(
Z1(t),Z2(t)

)
= −μa

∣∣X̃(t)
∣∣2 + 2

[−μb + λref(1 − α)b − a
]
X̃(t)

T
Ṽ (t)

+ [−cμ + λref
(
1 − α2)c − 2b

]∣∣Ṽ (t)
∣∣2

+ 2bX̃(t)
T H(t)X̃(t) + 2cṼ (t)

T H(t)X̃(t).

Let

X :=
( ∣∣X̃(t)

∣∣2 X̃(t)
T
Ṽ (t)

X̃(t)
T
Ṽ (t)

∣∣Ṽ (t)
∣∣2
)

, P :=
(
X̃(t)

T H(t)X̃(t) Ṽ (t)
T H(t)X̃(t)

Ṽ (t)
T H(t)X̃(t) Ṽ (t)

T H(t)Ṽ (t)

)
,

V :=
( −μa −a + bλref(1 − α) − μb

−a + bλref(1 − α) − μb −cμ + cλref
(
1 − α2)− 2b

)
, W :=

(
2b c

c 0

)
.

We have

−μ · d2
A

(
Z1(t),Z2(t)

)− L1,2d
2
A

(
Z1(t),Z2(t)

)= Tr(V X + WP),

so our goal is to show that Tr(V X + WP) ≥ 0 for all the possible X, P . Using the fact that
mI � H(t) � MI , we have 0 � mX � P � MX. Let Y := P −mX, and Z := MX−P , then
Y � 0, Z � 0, and for M > m, we have

X = Y + Z

M − m
, P = MY + mZ

M − m
,
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and hence

Tr(V X + WP) = 1

M − m

(
Tr
(
(V + MW)Y + (V + mW)Z

))
.

When M = m, we have H(t) = MI and P = MX, hence

Tr(V X + WP) = Tr
(
(V + MW)X

)
.

Note that in both cases, Tr(V X +WP) ≥ 0 if both V +MW � 0 and V +mW � 0. This can
be equivalently written as the following set of inequalities:

−μa + 2Mb ≥ 0,(4.3)

−μa + 2mb ≥ 0,(4.4)

−cμ + cλref
(
1 − α2)− 2b ≥ 0,(4.5) (−a + bλref(1 − α) − μb + Mc

)2 ≤ (−μa + 2Mb)
(−cμ + cλref

(
1 − α2)− 2b

)
,(4.6) (−a + bλref(1 − α) − μb + mc

)2 ≤ (−μa + 2mb)
(−cμ + cλref

(
1 − α2)− 2b

)
.(4.7)

These inequalities correspond to the diagonal elements and the determinants of V + mW

and V + MW being nonnegative. As we have stated, let λref = 1
1−α2 (2

√
M + m − (1−α)m√

M+m
),

μ = (1+α)m√
M+m

− αm3/2

2(M+m)
. Moreover, let

a := 1,

b := 1 + α − α( m
M+m

)3/4 + 3
4

αm
M+m

2
√

M + m
,

c := 1 + α − α
2 ( m

M+m
)1/2

M + m
.

(4.8)

Notice that by the change of variables m → 1, M → M/m, and updating a, b, c and μ and λ

with these new values, inequalities (4.3)–(4.7) are kept invariant (they have this homogeneity
property). Hence, without loss of generality, we can assume that m = 1. For the choice of a,
b, c as in (4.8), the five inequalities can be shown to hold for every possible 0 ≤ α < 1 and
M using, for example, Mathematica. Hence the bound (2.11) follows.

Now we are going to show the Wasserstein bounds. Note that the matrix A satisfies that

λmin(A) = a+c−
√

(a+c)2−4(ac−b2)

2 and λmax(A) = a+c+
√

(a+c)2−4(ac−b2)

2 , hence by defining

W2,dA
(ν1, ν2) =

(
inf

X1∼ν1,X2∼ν2
dA(X1,X2)

2
)1/2

,

then using the assumption b2 < ac, we have W2(νP t ,π)2 ≤ 1
λmin(A)

W2,dA
(νP t ,π)2. Let

Z1(0), Z2(0) be coupled according to the optimal coupling of ν and π according to W2 dis-
tance satisfying that E(|Z1(0) − Z2(0)|2) = W2(ν,π)2 (existence is shown by Theorem 4.1
of [59]). Using (2.11) along with Grönwall’s lemma, and the definition of the Wasserstein
distance, it follows that

W2
(
νP t ,π

)2 ≤ 1

λmin(A)
W2,dA

(
νP t ,π

)2 ≤ 1

λmin(A)
E
(
d2
A

(
Z1(t),Z2(t)

))
≤ e−μt

λmin(A)
E(d2

A

(
Z1(0),Z2(0)

)≤ λmax(A)

λmin(A)
e−μtW2(ν,π)2,

hence (2.12) follows.
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To show our L2 bounds, we are also going to study the adjoint process (P t )∗. Using the
exact same coupling as before, the dynamics (4.1) ran backwards in time becomes

(4.9)
X̃′(t) = −Ṽ (t),

Ṽ ′(t) =H(t)X̃(t),

with H(t) defined as in (4.1). For the velocity updates, forward in time we had v′ =
αv + √

1 − α2Z where Z ∼ N(0, Id). Since in stationary we have v, v′ ∼ N(0, Id) and
E(v(v′)T ) = ρId , one can see that the updates backward in time are still the same. Hence
the effect of the adjoint becomes

(4.10)

L∗
1,2
∣∣X̃(t)

∣∣2 = −2X̃(t)
T
Ṽ (t),

L∗
1,2X̃(t)

T
Ṽ (t) = ∣∣Ṽ (t)

∣∣2 − X̃(t)
T H(t)X̃(t) + λref(1 − α)X̃(t)

T
Ṽ (t),

L∗
1,2
∣∣Ṽ (t)

∣∣2 = 2Ṽ (t)
T H(t)X̃(t) − λref

(
1 − α2)∣∣Ṽ (t)

∣∣2.
Notice that this is very similar to the forward case (4.2), except that we need to replace Ṽ (t)

by −Ṽ (t). Based on this, by repeating the previous argument for A′ := ( a −b
−b c

)
, we have

(4.11) L∗
1,2d

2
A′
(
Z1(t),Z2(t)

)≤ −μ · d2
A′
(
Z1(t),Z2(t)

)
,

where a, b and c are defined as in (4.8).
Hence we have shown that the adjoint process is also a contraction with the same rate μ,

but with respect to a different metric dA′ instead of dA used for the forward process. Now we

are going to show that d2
A and d2

A′ are equivalent up to a constant factor C := ac+b2+2
√

acb2

ac−b2 .

Notice that for any z1, z2 ∈ R2d ,

(4.12) d2
A(z1, z2)/C ≤ d2

A′(z1, z2) ≤ d2
A(z1, z2) · C,

as long as A � CA′ and A′ � CA, and by rearrangement, this is equivalent to(
a(C − 1) −b(1 + C)

−b(1 + C) c(C − 1)

)
� 0 and

(
a(C − 1) b(C + 1)

b(C + 1) c(C − 1)

)
� 0,

which holds for C defined as above.
For f :R2d →R, let

‖f ‖Lip,dA
:= sup

z1,z2∈R2d ,z1 �=z2

|f (z1) − f (z2)|
dA(z1, z2)

,

be its Lipschitz coefficient with respect to the dA distance. Then based on (2.11), (4.11) and
(4.12), for any t ≥ 0, f :R2d →R, have∥∥(P t )∗P tf

∥∥
Lip,dA

≤ √
C
∥∥(P t )∗P tf

∥∥
Lip,dA′ ≤ √

C exp
(
−μt

2

)∥∥P tf
∥∥

Lip,dA′

≤ C exp
(
−μt

2

)∥∥P tf
∥∥

Lip,dA
≤ C exp(−μt)‖f ‖Lip,dA

.

Based on Propositions 29 and 30 of [46] with κ = 1 − C exp(−μt), it follows that for any
t >

log(C)
μ

, the reversible kernel (P t )∗P t has as spectral radius of at most C exp(−μt). Thus
for every f ∈ L2

0(π), we have

(4.13)
∥∥P tf

∥∥2 = 〈f,
(
P t )∗P tf

〉≤ ‖f ‖∥∥(P t )∗P tf
∥∥≤ Ce−μt‖f ‖2,

and the claim of the theorem follows by noticing that ‖P tf ‖2 ≤ ‖f ‖2 for every t ≥ 0.
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REMARK 13. We note that for any given λref > 0, μ > 0, the contraction rate of
d2
A(Z1(t),Z2(t)) is at least μ as long as there are constants a, b, c such that a > 0, c > 0,

b2 < ac and inequalities (4.3)–(4.7) hold. Unfortunately due to the nonlinearity of these in-
equalities we did not manage to find an analytical expression for the largest possible μ for
a given λref (and then the largest possible μ for any λref). The reader can possibly slightly
improve these rates by numerical optimization for a given α, m and M . Note, however, that
in our numerical experiments, it seems that the choices of λref as stated leads to μ that is
close to optimal in most of the domain 0 ≤ α < 1, and 0 < m ≤ M (i.e., if we increase μ by
a few percent, typically there is no longer a λref > 0 and parameters a, b, c satisfying all of
the inequalities).

4.2. Proof of Proposition 4. Assume without loss of generality that m = 1 (the general
case can be obtained from this by rescaling). Let D := ( aH bI

bI cI

)
be a block matrix. Then

d2
D

(
Z1(t),Z2(t)

)= aX̃(t)
T
HX̃(t) + 2bX̃(t)

T
Ṽ (t) + c

∣∣Ṽ (t)
∣∣2,

and the effect of the generator on these terms equal

L1,2X̃(t)
T
HX̃(t) = 2X̃(t)

T
HṼ (t),(4.14)

L1,2X̃(t)
T
Ṽ (t) = ∣∣Ṽ (t)

∣∣2 − X̃(t)
T
HX̃(t) − λref(1 − α)X̃(t)

T
Ṽ (t),(4.15)

L1,2
∣∣Ṽ (t)

∣∣2 = −2Ṽ (t)
T
HX̃(t) − λref

(
1 − α2)∣∣Ṽ (t)

∣∣2.(4.16)

We have

−μ · d2
D

(
Z1(t),Z2(t)

)− L1,2d
2
D

(
Z1(t),Z2(t)

)
= 2
[−μb + λref(1 − α)b

]
X̃(t)

T
Ṽ (t) + [−cμ + λref

(
1 − α2)c − 2b

]∣∣Ṽ (t)
∣∣2

+ (2b − μa)X̃(t)
T
HX̃(t) + 2(c − a)Ṽ (t)

T
HX̃(t).

Let X and P be defined as in the proof of Theorem 3, and let

V :=
(

0 bλref(1 − α) − μb

bλref(1 − α) − μb −cμ + cλref
(
1 − α2)− 2b

)
, W :=

(
2b − μa c − a

c − a 0

)
.

Then we have −μ · d2
D(Z1(t),Z2(t)) − L1,2d

2
D(Z1(t),Z2(t)) = Tr(V X + WP), and using

the same argument as in the proof of Theorem 3, it follows that Tr(V X + WP) ≥ 0 if both
V + MW � 0 and V + mW � 0. This can be verified (e.g., by Mathematica) for the choices

λref = 2
√

m/(1 − α), μ =
√

m
3 , a = 1, b = 1

4 , c = 1. The proof of (2.16) is analogous to the
proof of (2.13). First we show that for D′ := ( aH −bI

−bI cI

)
,

(4.17) L∗
1,2d

2
D′
(
Z1(t),Z2(t)

)≤ −μ · d2
D′
(
Z1(t),Z2(t)

)
,

then use the same argument as previously.

5. Proof of Theorem 5. The generator of the RHMC process will be denoted by A and
it is given for smooth enough functions by

Af (x, v) = 〈∇xf, v〉 − 〈∇U,∇vf 〉 + λref
[
Qαf (x, v) − f (x, v)

]
,

where recall that α ∈ (0,1) and

Qαf (x, v) := 1√
2π

d

∫
e−ξ ′ξ/2f

(
x,αv +

√
1 − α2ξ

)
dξ .
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Hypo-coercivity, exponential convergence and asymptotic variance. In the context of
MCMC one is interested in optimising the computational resources needed to produce an
estimate of a certain precision. For this reason we are also interested in understanding the
asymptotic variance. Geometric ergodicity is enough to show that a large class of functions,
determined by the Lyapunov function, have finite asymptotic variance. However, since the
convergence rates are not explicit in the parameters of the process, geometric ergodicity often
does not allow one to optimise the asymptotic variance.

Usually controlling the asymptotic variance for a large enough class of functions is closely
related to establishing a spectral gap, that is showing that the L2(π) spectrum of the gener-
ator L lies in {z ∈ C : �z ≤ −μ}, for some μ > 0. In the reversible case, it is well known
that geometric ergodicity is equivalent to having a spectral gap, but in the nonreversible case
this is no longer true; see [34] and references therein (although it may be equivalent to a
spectral gap on a different Banach space). For reversible processes, an L2-spectral gap is also
equivalent to coercivity of the associated Dirichlet form, that is, 〈−Lf,f 〉 ≥ μ‖f ‖2, for all
f ∈ L2

0(π). Moreover, coercivity is equivalent to ‖P tf ‖ ≤ e−μt‖f ‖, for all f ∈ L2
0(π), for

all Markov processes, whether reversible or not. For this reason, and perhaps abusively, coer-
civity is sometimes in the literature referred to as a spectral gap, or a spectral gap inequality.
Another reason is that, an inequality of the form 〈−Lf,f 〉 ≥ μ‖f ‖2 is often easy to prove,
for example, for diffusions, by rewriting the Dirichlet form in a form involving the Sobolev
norm and then applying a Poincaré inequality.

Interestingly enough, however, for nonreversible processes it is possible that coercivity
fails to hold, although we still have ‖P tf ‖ ≤ Ce−μt‖f ‖, for all f ∈ L2

0(π), for some C > 1.
This is not possible for reversible processes, since one can use spectral calculus to show
that ‖P tf ‖ ≤ Ce−μt‖f ‖, for all f ∈ L2

0(π) also implies the same inequality with C ≡ 1.
This fact is actually observed for piecewise deterministic Markov processes such as the BPS
and zig-zag samplers; see [7, 15, 49]. This class of processes also includes RHMC. Although
geometric ergodicity has been established for BPS [23, 26], zig-zag (see [11, 30]) and RHMC
[14], an easy calculation shows that, writing L for the generator of any of the above processes,
we have 〈Lf,f 〉 = 0 for any function f ∈ L2(π) such that f (x, v) = f (x), that is functions
of the location only. The reason for this is that the Dirichlet form E(f, f ) := 〈Lf,f 〉 only
captures the symmetric part of the generator L, which in these processes only affects the
velocity component, whereas the location component is only affected by the anti-symmetric
part of the generator. This means that although BPS, zig-zag and RHMC are geometrically
ergodic, we certainly cannot have an inequality of the form 〈−Lf,f 〉 ≥ μ‖f ‖2 for all f ∈
L2

0(π). However, it may still be true that these processes admit a spectral gap in the classical
sense, and in fact this has been shown for one-dimensional zig-zag in Bierkens and Lunel [9].
Notice, however, that in the nonreversible case, a classical spectral gap requires additional
work, and potentially assumptions, to guarantee exponential decay of the semigroup; see [9],
Section 4.2.

In fact, this situation arises very often in so called kinetic equations which include, for
example, the underdamped Langevin processes. For such processes a range of methods have
been developed recently that are widely termed as hypocoercivity; see [24, 32, 58] and ref-
erences therein. In fact, such methods have already been applied to piecewise deterministic
Markov processes; see [42]. Although this approach is often quite deep and involved, the un-
derlying principle is that of adjusting the norm, or metric, in which the convergence is stud-
ied. This principle has been extremely successful recently, for example, in the convergence
of HMC when log-concavity fails locally in [13]. In the case of hypocoercive estimates, the
principle is to move from the L2 norm to a stronger norm, usually some form of Sobolev
norm.
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5.1. Strong continuity in H 1(π). We will establish that the abstract Cauchy problem

∂u(t, z)

∂t
=Au,

u(0, z) = f,

where the class of initial conditions f will be specified in the sequel, admits a unique solution
in H 1(π) given by u(t, z) := P tf (z). This will justify computing the time derivatives of
〈〈P tf,P tf 〉〉.

Before we proceed we will need to introduce some additional notation. We decompose the
generator A of RHMC into its symmetric and antisymmetric component as follows:

Af (x, v) = Bf (x, v) + λref(−S)f,

where

(5.1) Bf := 〈∇xf, v〉 − 〈∇vf,∇U〉, Sf := [I − Qα]f.

As before we write {P t : t ≥ 0} for the semigroup of transition kernels of RHMC, but in this
section we slightly change our point of view and consider it as a semigroup on L2(π), that
is, P t : L2(π) → L2(π). Its generator will be given by A for smooth enough functions.

In fact, even more is true as we will next show that P t is also strongly continuous as a
semigroup on H 1(π). To see why, first recall that the anti-symmetric operator B generates
the Hamiltonian flow z �→ 
(t, z) with respect to H(x,v) = U(x) + |v|2/2. Let us write
{T t : t ≥ 0} for the semigroup generated by B , that is, T tf (z) = f (
(t, z)) for z ∈ Z . Then
given a smooth function f ∈ H 1(π), from the chain rule we have

∇T tf (z) = ∇f
(

(t, z)

)∇z
(t, z).

From the variational equations of the Hamiltonian dynamics (see Section 6.1.2 of [40])
and the upper bounds M and 1 of the Hessians of U(x) and ‖v‖2

2 it follows that for
C = max(1,M), we have ‖∇z
(t, z)‖ ≤ eCt for every t ≥ 0. Using this, we conclude that∥∥∇xT

tf
∥∥2 + ∥∥∇vT

tf
∥∥2 ≤ e2Ct

∫∫
π(dz)

[∣∣∇xf
(

(t, z)

)∣∣2 + ∣∣∇vf
(

(t, z)

)∣∣2]
= e2Ct

∫∫
π(dz)

[∣∣∇xf (z)
∣∣2 + ∣∣∇vf (z)

∣∣2],
by stationarity of the flow. By an approximation argument we can further show that T t :
H 1(π) → H 1(π) for all t ≥ 0. Finally {T t : t ≥ 0} is strongly continuous on H 1(π), since

(5.2)

∥∥∇T sf − ∇f
∥∥2 =

∫ ∣∣∇f
(

(s, z)

)∇z
(s, z) − ∇f (z)
∣∣2π(dz)

≤
∫ ∣∣∇f

(

(s, z)

)[∇z
(s, z) − I
]∣∣2π(dz)

+
∫ ∣∣∇f

(

(s, z)

)− ∇f (z)
∣∣2π(dz)

≤
∫ ∣∣∇f

(

(s, z)

)∣∣2∣∣∇z
(s, z) − I
∣∣2π(dz)

+
∫ ∣∣∇f

(

(s, z)

)− ∇f (z)
∣∣2π(dz)

≤
∫ ∣∣∇f

(

(s, z)

)∣∣2∣∣∇z
(s, z) − I
∣∣2π(dz)

+ 2
∫ ∣∣T s∇f (z) − ∇f (z)

∣∣2π(dz).
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Since g := ∇f ∈ L2(π), for every ε > 0 there is a smooth, compactly supported function gε

such that ‖g − gε‖L2(π) < ε. Then∫ ∣∣T sg(z) − g(z)
∣∣2π(dz) =

∫ ∣∣T sg(z) − T sgε(z) + T sgε(z) − gε(z) + gε(z) − g(z)
∣∣2π(dz)

≤
∫

π(dz)
∣∣g(
(s, z)

)− gε

(

(s, z)

)∣∣2 +
∫

π(dz)
∣∣g(z) − gε(z)

∣∣2
+
∫

π(dz)
∣∣gε

(

(s, z)

)− gε(z)
∣∣2

= 2‖g − gε‖ +
∫

π(dz)
∣∣gε

(

(s, z)

)− gε(z)
∣∣2

≤ 2ε +
∫

π(dz)
∣∣gε

(

(s, z)

)− gε(z)
∣∣2.

For every fixed ε > 0, the second term vanishes by bounded convergence. Since ε > 0 is
arbitrary this shows that ‖T s∇f − ∇f ‖2 → 0 as s → 0.

Going back to (5.2), notice that the first term also vanishes by the dominated convergence
theorem, since |∇z
(s, z) − I | ≤ 2eCs uniformly in z, |∇z
(s, z) − I | → 0 pointwise. Thus
T t is strongly continuous and therefore it admits a densely defined generator, which we de-
note by B ,

B :D(B) ⊆ H 1(π) → H 1(π).

Again it is straightforward to check that B has the expression given earlier.
In addition notice that S is a bounded operator on H 1(π). To see why first notice that an

easy calculation, which will be provided later on in Section 5.2 for completeness, shows that
∇xQα = Qα∇x and ∇vQα = αQα∇v whence

‖∇xQαf ‖2 + ‖∇vQαf ‖2 ≤ ‖Qα∇xf ‖2 + α‖Qα∇vf ‖2 ≤ C
(‖∇xf ‖2 + ‖∇vf ‖2),

since Qα is a contraction on L2(π). Therefore, applying [50], Theorem 3.2, the operator
A := B + λref(−S) has domain D(B) and generates a strongly continuous on H 1(π), which
we will denote again by {P t : t ≥ 0}. This implies that for every f ∈ D(B), P tf ∈ D(A)

for all t ≥ 0 and AP tf = P tAf . This essentially shows that given f ∈ D(B) the abstract
Cauchy problem

∂u(t, z)

∂t
=Au,

u(0, z) = f,

admits a unique solution in H 1(π) given by u(t, z) := P tf (z).

5.2. Proof of Theorem 5. We introduce some additional notation to keep the presentation
concise. First recall the decomposition A= B + λref(−S) where

Bf = 〈∇xf, v〉 − 〈∇vf,∇U〉, Sf = [I − Qα]f,

and let us define the Dirichlet form E(f, g) := 〈f,Sg〉. We will also write A := ∇v , C := ∇x .
From [58], page 40, or an easy calculation, we have

[A,B] = AB − BA = ∇x and [B,C] = ∇2U · ∇v = ∇2U · A.

Since P t = exp(tA), where A is the generator of the RHMC process, an easy calculation
shows that for all f,g ∈ D(B) we have

d

dt

〈
P tf,P tg

〉∣∣∣∣
t=0

= 〈Af,g〉 + 〈f,Ag〉,
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This also implies that

d

dt

〈
P tf,P tf

〉∣∣∣∣
t=0

= 2〈Af,f 〉 = −2λrefE(f, f ),

since B is antisymmetric, in the sense that 〈Bf,g〉 = −〈f,Bg〉.
We want to compute d〈〈P tf , P tf 〉〉/dt |t=0. To keep notation to a minimum we will write

h rather than P tf . We proceed by computing the derivative of each term individually,

d

dt
‖Ah‖2 = 2〈Ah,AAh〉 = −2λref〈Ah,ASh〉 + 2〈Ah,ABh〉,

d

dt
〈Ch,Ah〉 = 〈Ch,A(−λrefS + B)h

〉+ 〈C(−λrefS + B)h,Ah
〉
,

d

dt
‖Ch‖2 = 2〈Ch,CAh〉 = −2λref〈Ch,CSh〉 + 2〈Ch,CBh〉.

Term one. We now compute the first term which is given by

−2λref〈Ah,ASh〉 + 2〈Ah,ABh〉.
Notice that

∂

∂vi

Qαf (x,v) = ∂

∂vi

E
[
f
(
x, αv +

√
1 − α2ξ

)]
= E

[
αfvi

(
x, αv +

√
1 − α2ξ

)]
= αE

[
fvi

(
x, αv +

√
1 − α2ξ

)]
,

where to keep notation clear we write ∂G(x,v)/∂vi to denote the derivative of the expression
G(x, v) w.r.t. vi , whereas we write fvi

(x, αv +√
1 − α2ξ) to denote the derivative of f w.r.t.

vi evaluated at αv + √
1 − α2ξ .

The above calculation shows that AQα = αQαA and therefore

−λref〈Ah,ASh〉 = λref
〈
Ah,A(Qα − I )h

〉
= λref〈Ah,AQαh〉 − λref〈Ah,Ah〉
= λrefα〈Ah,QαAh〉 − λref〈Ah,Ah〉
= λref

〈
Ah, (αQα − I )Ah

〉
= λref

〈
Ah,α(Qα − I )Ah

〉− (1 − α)λref〈Ah,Ah〉
= −λrefα〈Ah,SAh〉 − (1 − α)λref〈Ah,Ah〉.

Continuing we have

〈Ah,ABh〉 = 〈Ah, (AB − BA)h
〉+ 〈Ah,BAh〉

= 〈Ah, [A,B]h〉+ 0 = 〈Ah,Ch〉,
since by the anti-symmetry of B , it follows that 〈g,Bg〉 = 0 for any g.

Term two. We next compute the second term〈
Cf,A(−λrefS + B)f

〉+ 〈C(−λrefS + B)f,Af
〉
.

First we compute the derivative along B

〈ABh,Ch〉 + 〈Ah,CBh〉 = 〈ABh,Ch〉 + 〈Ah,BCh〉 + 〈Ah, [C,B]h〉
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and using that B∗ = −B

= 〈ABh,Ch〉 − 〈BAh,Ch〉 + 〈Ah, [C,B]h〉
= 〈[A,B]h,Ch

〉+ 〈Ah, [C,B]h〉
= 〈Ch,Ch〉 + 〈Ah, [C,B]h〉
= ‖Ch‖2 − 〈Ah,∇2UAh

〉
.

To compute the derivative along S first notice that CQα = QαC, where in the r.h.s. we ten-
sorise Qα allowing it to act on each component separately, in the sense that

∂

∂xi

E
[
f
(
x, αv +

√
1 − α2ξ

)]= E

[
∂

∂xi

f
(
x, αv +

√
1 − α2ξ

)]
.

Therefore

−λref〈ASh,Ch〉 − λref〈Ah,CSh〉
= λref

〈
A(Qα − I )h,Ch

〉+ λref
〈
Ah,C(Qα − I )h

〉
= λref

〈
(αQα − I )Ah,Ch

〉+ λref
〈
Ah, (Qα − I )Ch

〉
= αλref

〈
(Qα − I )Ah,Ch

〉+ (α − 1)λref〈Ah,Ch〉 + λref
〈
Ah, (Qα − I )Ch

〉
= −(1 + α)λref〈SAh,Ch〉 − (1 − α)λref〈Ah,Ch〉,

where we used again the fact that Qα is positive.

Term three. Using the same arguments as before we have

〈Ch,CQαh〉 =
d∑

i=1

〈
∂

∂xi

h,
∂

∂xi

Qαh

〉

=
d∑

i=1

〈
∂

∂xi

h,Qα

∂

∂xi

h

〉
= 〈Ch,QαCh〉,

where we are overloading the inner product by allowing it to take both vectors and scalars
as arguments, in the case of scalars it integrates the product, in the case of vectors the vector
inner product. Therefore

−λref〈Ch,CSh〉 = λref
〈
Ch,C(Qα − I )h

〉= −λref〈Ch,SCh〉.
The next one is

〈Ch,CBh〉 = 〈Ch,CBh〉
= 〈Ch,BCh〉 − 〈Ch, [B,C]h〉= 0 − 〈Ch,∇2U · Ah

〉
.

Combining all the terms. We now have the tools to compute the derivative of

〈〈h,h〉〉 := a‖Ah‖2 − 2b〈Ch,Ah〉 + c‖Ch‖2,

which, after multiplying by −1, is given by

− d

dt
〈〈h,h〉〉

= −a
d

dt
‖Ah‖2 + 2b

d

dt
〈Ah,Ch〉 − c

d

dt
‖Ch‖2

= 2a
[
λref(1 − α)‖Ah‖2 + λrefα〈SAh,Ah〉 − 〈Ah,Ch〉]
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+ 2b
[‖Ch‖2 − 〈∇2UAh,Ah

〉− (1 + α)λref
〈
S1/2Ah,S1/2Ch

〉− (1 − α)λref〈Ah,Ch〉]
+ 2c

[
λref〈SCh,Ch〉 + 〈∇2UAh,Ch

〉]
= 2aλref(1 − α)‖Ah‖2 − 2

(
a + (1 − α)bλref

)〈Ah,Ch〉 + 2b‖Ch‖2

− 2b
〈∇2UAh,Ah

〉+ 2c
〈∇2UAh,Ch

〉
+ 2aλrefα〈SAh,Ah〉 + 2cλref〈SCh,Ch〉 − 2(1 + α)bλref〈SAh,Ch〉.

REMARK 14. At this stage we can rewrite the above inequality as

(5.3)

−1

2

d

dt
〈〈h,h〉〉 ≥ [a(1 − α)λref − bM

]‖Ah‖2 + b‖Ch‖2 − ‖JAh‖‖Ch‖

+ aαλref
∥∥S1/2Ah

∥∥2 + cλref
∥∥S1/2Ch

∥∥2

− (1 + α)bλref
∥∥S1/2Ah

∥∥∥∥S1/2Ch
∥∥,

where S1/2 is the positive, self-adjoint square root of S, and

Jf := (aI + (1 − α)bλrefI − c∇2U
)
f,

which is also self-adjoint, since ∇2U is symmetric, whence its norm is given by

sup
‖f ‖=1

∣∣〈Jf,f 〉∣∣= sup
‖f ‖=1

∣∣[a + bλref(1 − α)
]〈f,f 〉 − c

〈∇2Uf,f
〉∣∣

= sup
‖f ‖=1

max
{[

a + bλref(1 − α)
]〈f,f 〉 − c

〈∇2Uf,f
〉
,

c
〈∇2Uf,f

〉− [a + bλref(1 − α)
]〈f,f 〉}

≤ sup
‖f ‖=1

max
{(

a + (1 − α)λrefb
)‖f ‖ − cm‖f ‖,

cM‖f ‖ − (a + (1 − α)λrefb
)‖f ‖}

= max
{
a + (1 − α)λrefb − cm, cM − a − (1 − α)λrefb

}
.

Therefore, if we can find a, b, c > 0, such that b <
√

4aαc/(1 + α) and

4
[
a(1 − α)λref − bM

]
b > max

{
cM − a − (1 − α)λrefb, a + (1 − α)bλref − cm

}2
,

then the RHS of (5.3) is a positive definite quadratic form. In principle this can be used to
optimise the convergence rates among norms of the form (2.17).

We take a slightly different approach. Our goal is to show that for every h, we have
d
dt

〈〈h,h〉〉 ≤ −μ〈〈h,h〉〉, or equivalently

− d

dt
〈〈h,h〉〉 − μ〈〈h,h〉〉 ≥ 0.

After rearrangement, we obtain that

(5.4)

− d

dt
〈〈h,h〉〉 − μ〈〈h,h〉〉

= a
(
2λref(1 − α) − μ

)‖Ah‖2 − 2
(
a + (1 − α)bλref − μb

)〈Ah,Ch〉
+ (2b − cμ)‖Ch‖2 − 2b

〈∇2UAh,Ah
〉+ 2c

〈∇2UAh,Ch
〉

+ 2aλrefα〈SAh,Ah〉 + 2cλref〈SCh,Ch〉 − 2(1 + α)bλref〈SAh,Ch〉.
We will use the following two lemmas.
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LEMMA 2. If V,W,Z,A ∈ R2×2 are symmetric matrices such that 0 � A, −Z � A,
A � V +mW and A � V +MW , then Tr(V X +WP +ZQ) ≥ 0 for all symmetric matrices
X, P , Q such that 0 � Q � X and mX � P � MX.

PROOF OF LEMMA 2. First, suppose that M = m. By the assumptions we have P = mX,
A � 0 and Z + A � 0. Note that if S, T are symmetric positive semidefinite matrices, then
Tr(ST ) ≥ 0. Using this fact, it follows that

Tr(V X + WP + ZQ) = Tr
(
(V + mW)X + ZQ

)≥ Tr
(
AX + (Z + A)Q − AQ

)
≥ Tr

(
A(X − Q)

)≥ 0.

Now suppose that M > m. Let

A1 = Z + A, A2 = A,

A3 = 1

M − m
(V + MW − A), A4 = 1

M − m
(V + mW − A).

Then A1, A2, A3, A4 � 0, and

V = A2 − mA3 + MA4, W = A3 − A4, Z = A1 − A2.

So

V X + WP + ZQ = (A2 − mA3 + MA4)X + (A3 − A4)P + (A1 − A2)Q

= A1Q + A2(X − Q) + A3(P − mX) + A4(MX − P).

Using positive definiteness of both terms in the matrix products, we have

Tr(A1Q),Tr
(
A2(X − Q)

)
,Tr
(
A3(P − mX)

)
,Tr
(
A4(MX − P)

)≥ 0,

and therefore

Tr(V X + WP + ZQ) ≥ 0. �

Now we are ready to complete the proof of Theorem 5.

PROOF OF THEOREM 5. Let a := 1, and

b := 1 + α − α( m
M+m

)3/4 + 3
4

αm
M+m

2
√

M + m
,

c := 1 + α − α
2 ( m

M+m
)1/2

M + m
,

X :=
(

‖Ah‖2 〈Ah,Ch〉
〈Ah,Ch〉 ‖Ch‖2

)
,

P :=
(〈∇2U(x)Ah,Ah

〉 〈∇2U(x)Ah,Ch
〉〈∇2U(x)Ah,Ch

〉 〈∇2U(x)Ch,Ch
〉) ,

Q :=
(〈SAh,Ah〉 〈SAh,Ch〉
〈SAh,Ch〉 〈SCh,Ch〉

)
,

V :=
(

2a(1 − α)λref − aμ −a − (1 − α)bλref + bμ

−a − (1 − α)bλref + bμ 2b − cμ

)
,
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W :=
(−2b c

c 0

)
,

Z :=
(

2aαλref −(1 + α)bλref
−(1 + α)bλref 2cλref

)
,

A :=

⎛⎜⎜⎜⎝
4(−3 + 2m − 2M)(−1 + α)

3
√

m + M(1 + α)
−(−3 + 2m − 2M)(−1 + α)

3(m + M)

−(−3 + 2m − 2M)(−1 + α)

3(m + M)
−(−3 + 2m − 2M)(−1 + α)(1 + α)

3(m + M)3/2

⎞⎟⎟⎟⎠ .

Using the fact that x3/4 − 3/4x ≥ 0 for x ∈ [0,1/2], it is easy to check that b2 < ac. Using
the assumption that mI � ∇2U � MI , we have mX � P � MX. Moreover, using the fact
that 0 � S � I , we have 0 � Q � X. Based on (5.4) and the above definitions it follows that

(5.5) − d

dt
〈〈h,h〉〉 − μ〈〈h,h〉〉 = Tr(V X + WP + ZQ).

One can check, for example, using Mathematica, that for every M ≥ 1, 0 ≤ α < 1, the
inequalities 0 � A, −Z � A, A � V + mW and A � V + MW hold for A defined as
above. Therefore (5.7) follows from Lemma 2, and by Grönwall’s lemma, this implies that
〈〈P tf,P tf 〉〉 ≤ exp(−μt)〈〈f,f 〉〉.

5.2.1. From H 1 to L2. To show our L2 bound, we study the reversed process. Denote
the variant of the scalar product 〈〈·, ·〉〉 when b is replaced by −b by 〈〈·, ·〉〉′, that is,

(5.6) 〈〈h,h〉〉′ := a‖∇vh‖2 + 2b〈∇xh,∇vh〉 + c‖∇xh‖2.

Then by repeating the same arguments as above with v replaced by −v everywhere, one can
show that we have

(5.7)
d

dt

〈〈(
P ∗)t f,

(
P ∗)t f 〉〉′ ≤ −μ

〈〈(
P ∗)t f,

(
P ∗)t f 〉〉′,

and hence 〈〈(P ∗)tf, (P ∗)tf 〉〉′ ≤ exp(−μt)〈〈f,f 〉〉′. Similar to the previous proofs, we can
show that 〈〈·, ·〉〉 and 〈〈·, ·〉〉′ are equivalent up to the same constant factor C, and〈〈(

P t )∗P tf,
(
P t )∗P tf

〉〉≤ C2 exp(−2μt)〈〈f,f 〉〉.
In addition, there exist constants C1,C2 > 0 such that 〈〈f,f 〉〉 ≤ C1‖∇f ‖2 and ‖f ‖2 ≤
C2〈〈f,f 〉〉. Thus, letting f be k-Lipschitz we have∥∥(P t )∗P tf

∥∥2 ≤ C2
〈〈(

P t )∗P tf,
(
P t )∗P tf

〉〉′
≤ C2 exp(−2μt)〈〈f,f 〉〉′

≤ C1C2 exp(−2μt)‖∇f ‖2 ≤ C1C2k
2 exp(−2μt).

Choose t such that C1C2k
2e−2μt =: 1 − κ < 1 and define the self-adjoint operator Q =

(P t )∗P t . Iterating the above we have for n ≥ 1 that∥∥Qnf
∥∥2 ≤ C1C2(1 − κ)2nk2 =: C(f )(1 − κ)2n.

The rest is similar to the proof of Proposition 2.8 from Hairer et al. [31]. Let f be k-Lipschitz,
and without loss of generality also assume that ‖f ‖ = 1. Let νf be the spectral measure
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corresponding to the self-adjoint operator Q applied to the function f . In particular, since
‖f ‖ = 1, νf is a probability measure. Then∥∥Qnf

∥∥2 =
∫ 1

−1
t2nνf (dt)

=
∫ 1

−1
t2n(2n+2m)/(2n+2m)νf (dt)

≤
(∫ 1

−1
t2(n+m)νf (dt)

) 2n
2(n+m)

= (∥∥Qn+mf
∥∥2) 2n

2(n+m)

≤ [C(f )(1 − κ)2(n+m)] 2n
2(n+m)

≤ C(f )
2n

2(n+m) (1 − κ)2n,

and letting m → ∞ we get for any k-Lipschitz f∥∥Qnf
∥∥2 ≤ ‖f ‖2(1 − κ)2n,

noticing that the upper bound is independent of the Lipschitz constant. Since Lipschitz func-
tions are dense we conclude. �

REMARK 15. Given any λref > 0, μ > 0, the contraction d
dt

〈〈h,h〉〉 ≤ −μ〈〈h,h〉〉 holds
as long as there exists coefficients a, b, c ∈ R and a 2 × 2 real valued symmetric matrix A

such that a > 0, c > 0, b2 < ac and 0 � A, −Z � A, A � V + mW and A � V + MW (with
V and W defined as above). Note that as in the proof of Theorem 3, due to the nonlinearity of
the constraints we did not manage to find an analytical expression for the largest possible μ

for a given λref, and the largest possible μ for any λref. However, we believe that the choice of
λref and μ as given here is close to optimal in most of the parameter range 0 < m ≤ M < ∞,
0 ≤ α < 1.

APPENDIX: AUXILIARY RESULTS

Notice that using the independence of X and Z, and the fact that the standard normal
distribution is isotropic, we have

EX∼π,Z∼N(0,Id )

[(∇U(X),Z
)
+
]= E

(∣∣∇U(X)
∣∣)E[(w,Z)+

]
,

where w is an arbitrary fixed d-dimensional unit vector. Now noticing that (w,Z) is a one-
dimensional standard normal random variable, it follows that E[(w,Z)+] = ∫∞

x=0
1√
2π

x ×
exp(−x2

2 )dx = 1√
2π

. Hence the key part of the proof is to find lower and upper bounds on

E
(∣∣∇U(X)

∣∣)= ∫
x∈Rd |∇U(x)|e−U(x) dx∫

x∈Rd e−U(x) dx
.

By shifting U , we can assume without loss of generality that U(0) = 0 and ∇U(0) = 0 (hence
the minimum is taken in the origin 0). Let Sd

1 denote the d-dimensional unit sphere, then by
writing the above integrals along half-lines, we have

(A.1)

E
(∣∣∇U(X)

∣∣)=
∫
u∈Sd

1

∫∞
r=0 |∇U(ru)|e−U(ru)rd−1 dr du∫

u∈Sd
1

∫∞
r=0 e−U(ru)rd−1 dr du

≥
∫
u∈Sd

1

∫∞
r=0 | ∂

∂r
U(ru)|e−U(ru)rd−1 dr du∫

u∈Sd
1

∫∞
r=0 e−U(ru)rd−1 dr du

.
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If we could lower bound the ratios of the one-dimensional integrals∫∞
r=0 | ∂

∂r
U(ru)|e−U(ru)rd−1 dr∫∞

r=0 e−U(ru)rd−1 dr
,

then a lower bound for E(|∇U(X)|) follows by rearrangement. This is shown in the following
lemma.

LEMMA A.1. Let d ∈ Z≥1, m ∈ R>0, and let V : R≥0 → R be a differentiable function

such that x �→ V (x) − mx2

2 is convex, and V ′(0) = 0. Let A = ∫∞
0 xd−1e−V (x) dx and B =∫∞

0 V ′(x)xd−1e−V (x) dx. Then B ≥ √
2m

�(d+1
2 )

�( d
2 )

A.

PROOF. First let d = 1. Then B = ∫∞
0 (−e−V (x))′ dx = e−V (0). We have V (x) ≥ V (0) +

mx2

2 for x ≥ 0, so A ≤ ∫∞
0 e−V (0)−mx2

2 dx = e−V (0)
√

π
2m

=
√

π
2m

B , so B ≥ √
2m �(1)

�( 1
2 )

A.

Now let d ≥ 2. Then

B =
∫ ∞

0

((−xd−1e−V (x))′ + (d − 1)xd−2e−V (x))dx = (d − 1)

∫ ∞
0

xd−2e−V (x) dx,

so the claim is equivalent to
∫∞

0 (c − x)xd−2e−V (x) dx ≥ 0, where c = �( d
2 )

�( d−1
2 )

·
√

2√
m

(here

we have used �(d+1
2 ) = d−1

2 �(d−1
2 )). The function x �→ V (x) − mx2

2 is convex, and its
derivative at x = 0 is 0, so this function is monotone increasing on R≥0. Hence V (x) ≥
V (c) + m

2 (x2 − c2) if x ≥ c, and V (x) ≤ V (c) + m
2 (x2 − c2) if x ≤ c. Thus∫ ∞

0
(c − x)xd−2e−V (x) dx ≥

∫ ∞
0

(c − x)xd−2e−V (c)−m
2 (x2−c2) dx

= e
m
2 c2−V (c)

∫ ∞
0

(c − x)xd−2e−m
2 x2

dx.

We have
∫∞

0 xαe−m
2 x2

dx = 1
2(m

2 )− α+1
2 �(α+1

2 ) for every m > 0 and α > −1. So∫ ∞
0

(c − x)xd−2e−V (x) dx

≥ e
m
2 c2−V (c) 1

2

(
c

(
m

2

)− d−1
2

�

(
d − 1

2

)
−
(

m

2

)− d
2
�

(
d

2

))
= 0. �

The following lemma will be used to find a simpler lower bound for the ratio
�( d+1

2 )

�( d
2 )

.

LEMMA A.2. If s > 0, then
�(s+ 3

4 )

�(s+ 1
4 )

>
√

s.

PROOF. Let φ(s) := 1√
s

�(s+ 3
4 )

�(s+ 1
4 )

for s > 0. Stirling’s formula implies that lims→∞ φ(s) =
1. For s > 0 we have φ(s) > 0 and (

φ(s+1)
φ(s)

)2 = 1 − 1
(1+s)(1+4s)2 < 1, so φ(s) > φ(s + 1).

Thus φ(s) > φ(s + 1) ≥ φ(s + n) for every n ∈ Z≥1, and taking n → ∞ we get φ(s) > 1.
�

Taking s = d− 1
2

2 for d ∈ Z≥1, we get

(A.2)
�(d+1

2 )

�(d
2 )

>

√
d − 1

2

2
.

The next lemma will show the upper bound.
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LEMMA A.3. Suppose that the potential U : Rn → R satisfies Assumption 1. Then
for every 1 ≤ i ≤ n, we have E((∂iU(X))2) ≤ M , implying that E(|∇Un(X)|2) ≤ nM and
E(|∇Un(X)|) ≤ √

nM .

PROOF. By Jensen’s inequality, we have

E
(∣∣∇U(X)

∣∣)≤ [E(∣∣∇U(X)
∣∣2)]1/2 =

[
E(

d∑
i=1

(
∂iU(X)

)2]1/2

.

Here

E
((

∂iU(X)
)2)= ∫

x∈Rd (∂iU(x))2 exp(−U(x))dx∫
x∈Rd exp(−U(x))dx

,

and from integration by parts, it follows that for every 1 ≤ i ≤ d , we have∫
x∈Rd

(
∂iU(x)

)2 exp
(−U(x)

)
dx

=
∫
x−i∈Rd−1

∫
xi∈R

(
∂iU(x)

)2 exp
(−U(x)

)
dxi dx−i

=
∫
x−i∈Rd−1

{[−∂iU(x) exp
(−U(x)

)]∞
xi=−∞ +

∫
xi∈R

∂2
i U(x) exp

(−U(x)
)

dxi

}
dx−i

=
∫
x−i∈Rd−1

∫
xi∈R

∂2
i U(x) exp

(−U(x)
)

dxi dx−i ≤ M

∫
x∈Rd

exp
(−U(x)

)
dx.

The second and third claims now follow by summing up in i, and using Jensen’s inequality.
�

PROOF OF PROPOSITION 2. The result follows from Lemmas A.1, A.2 and A.3. �

LEMMA A.4. Suppose that Un(X) :Rn →R with mI d � ∇2Un(X) � MI d . Then

E

[
∂1Un(X)V1

(
∑n

j=1[∂jUn(X)]2)1/2

∣∣∣X1,V1

]
→ 0 as n → ∞.

PROOF.

E

[
∂1Un(X)V1

(
∑n

j=1[∂jUn(X)]2)1/2

∣∣∣X1,V1

]
≤ E

[ |∂1Un(X)|
|∇Un(X)|

∣∣∣X1

]
· |V1|.

Let us denote X−1 := (X2, . . . ,Xn), then X−1 given X1 has a conditional distribution with
density that is proportional to exp(−Un(X−1,X1)), which is a log-concave function of X−1,
with Hessian bounded between m and M . By Theorem 5.2 of [35], L(X−1|X1) satisfies a
log-Sobolev inequality with constant C := m−1. The functions |∇Un(X)| and |∂1Un(X)| are
M-Lipschitz in X−1 given a fixed X1, and hence by Herbst’s argument (see equation (5.8) on
page page 95 of [35]),

P
(∣∣∂1Un(X)

∣∣−E
(∣∣∂1Un(X)

∣∣|X1
)≥ t |X1

)≤ exp
(
−t2 · 2m

M2

)
,

P
(∣∣∇Un(X)

∣∣−E
(∣∣∇Un(X)

∣∣|X1
)≤ −t |X1

)≤ exp
(
−t2 · 2m

M2

)
.

Conditionally on X1, define the event Gt as

Gt := {∣∣∂1Un(X)
∣∣−E

(∣∣∂1Un(X)
∣∣|X1

)
< t and

∣∣∇Un(X)
∣∣−E

(∣∣∇Un(X)
∣∣|X1

)
> −t

}
,
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then by the above bounds, we have P(Gt |X1) ≥ 1 − 2 exp(−t2 · 2m
M2 ) for every t ≥ 0. Let

Gc
t denote the complement of Gt . Assuming that 0 < t < E(|∇Un(X)||X1), the quantity of

interest can be bounded as

E

[ |∂1Un(X)|
|∇Un(X)|

∣∣∣X1

]
= E

[ |∂1Un(X)|
|∇Un(X)| · 1Gt

∣∣∣X1

]
+E

[ |∂1Un(X)|
|∇Un(X)| · 1Gc

t

∣∣∣X1

]

≤ E(|∂1Un(X)||X1) + t

E(|∇Un(X)||X1) − t
+ 2 exp

(
−t2 · 2m

M2

)
,

(A.3)

where we have used the fact that |∂1Un(X)|
|∇Un(X)| ≤ 1. By Lemma 9 and equation (A.2), it follows

that for any n ≥ 2,

E
(∣∣∇Un(X)

∣∣|X1
)≥ E

(∣∣∂−1Un(X)
∣∣|X1

)≥√m(n − 3/2),

where ∂−1Un(X) denotes the gradient vector without the first component. By Lemma 11,

E
(∣∣∂1Un(X)

∣∣)≤ √
M.

Note that |∂−1Un(X−1,X1) − ∂−1Un(X−1,X
′
1)| ≤ M|X1 − X′

1|, and by Proposition 19 of
[60], it follows that

W1
(
L(X−1|X1),L

(
X−1|X′

1
))≤ M

m

∣∣X1 − X′
1
∣∣,

therefore g(X1) := E(|∂1Un(X)||X1) is M2

m
-Lipschitz in X1. By log-Sobolev inequality and

Herbst’s argument, for any s ≥ 0, we have

P
(∣∣X1 −E(X1)

∣∣≥ s
)≤ 2 exp

(−s2 · 2m
)
.

Therefore, it follows that
√

M ≥ E[g] = E
[
g(X1) − g

(
E(X1)

)]+ g
(
E(X1)

)
≥ −

∫ ∞
r=0

P
[
g(X1) − g

(
E(X1)

)≤ −r
]
dr + g

(
E(X1)

)
≥ −

∫ ∞
r=0

P

[∣∣X1 −E(X1)
∣∣≥ r

m

M2

]
dr + g

(
E(X1)

)≥ −
∫ ∞
r=0

2 exp
(
−r2 2m3

M4

)
dr

≥ g
(
E(X1)

)− 2
√

(π/2)M4/m3 ≥ g
(
E(X1)

)− 3
M2

m3/2 .

Thus g(E(X1)) ≤ 4 M2

m3/2 , which implies by the Lipschitz property that implying that

E
(∣∣∂1Un(X)

∣∣|X1
)= g(X1) ≤ 4

M2

m3/2 + M2

m

∣∣X1 −E(X1)
∣∣.

By simple algebra, t =
√

log(n)M2/(2m) satisfies that for n ≥ 3/2 + 2 log(n)M2

m2 , we have

t ≤ 1
2

√
m(n − 3/2). By combining the above bound with (A.3) and using this t , we have

E

[ |∂1Un(X)|
|∇Un(X)|

∣∣∣X1

]
≤ 4 M2

m3/2 + M2

m
|X1 −E(X1)| +

√
log(n)M2/(2m)

1
2

√
m(n − 3/2)

+ 2

n
,

as long as n ≥ 3/2 + 2 log(n)M2

m2 . This tends to 0 as n → ∞. �
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LEMMA A.5. Suppose that Un satisfies Assumption 1 and let X ∼ π̄n. Then for any
α > 0

lim
n→∞E

[
1

|∇Un(X)|α
]

= 0.

PROOF OF LEMMA A.5. We have

(A.4) E

[
1

|∇Un(X)|α
]

=
∫ ∞
t=0

P

[
1

|∇Un(X)|α ≥ t

]
dt = P

[∣∣∇Un(X)
∣∣≤ t−1/α]dt.

The function |∇Un(x)| is M-Lipschitz in x, so by the log-Sobolev inequality and Herbst’s
argument (see [35]), for any s ≥ 0, we have

P
(∣∣∇Un(x)

∣∣≤ E
(∣∣∇Un(x)

∣∣)− s
)≤ exp

(
−s2 · 2m

M2

)
.

In the proof of Proposition 2, we have shown that E(|∇Un(x)|) ≥
√

n − 1
2

√
m, hence for any

s ≥ 0,

(A.5) P

(∣∣∇Un(x)
∣∣≤
√

n − 1

2

√
m − s

)
≤ exp

(
−s2 · 2m

M2

)
.

This bound will be used to control P[|∇Un(X)| ≤ t−1/α] for small and intermediate values
of t . However, for large t , the above concentration bound is not sufficiently sharp, as it does
not tends to zero as t → ∞. Hence we will use a different argument, that upper bounds the
density of π̄n and the volume of the space where |∇Un(X)| ≤ r .

First, note that by Assumption 1, we have Un(0) = 0 and Un is minimized in 0. Using the
lower and upper bounds on the Hessian of Un, it follows that m

2 |x|2 ≤ Un(x) ≤ M
2 |x|2. These

bounds correspond to the log-likelihoods of Gaussian densities, so the normalising constant
of Un can be bounded as

(A.6)
(2π)n/2

Mn/2 ≤
∫
x∈Rd

exp
(−Un(x)

)
dx ≤ (2π)n/2

mn/2 .

Moreover, using the bounds on the Hessian of Un, it follows that |∇Un(X)| ≤ r implies that
|X| ≤ r

m
. Since the volume of a ball of radius r

m
in Rn is

Vn = πn/2

�(n
2 + 1)

(
r

m

)n

≤ 6
(

r

m

)n

,

it follows that

(A.7) P
(∣∣∇Un(X)

∣∣≤ r
)≤ P

(
|X| ≤ r

m

)
≤ 6

Mn/2

(2π)n/2

(
r

m

)n

.

Let a := (
√

n − 1
2

√
m/2)−α , and b = (m

√
2π

2
√

M
)−α . By upper bounding P[|∇Un(X)| ≤ t−1/α]

by 1 for 0 ≤ t ≤ a, by exp(− (n− 1
2 )m2

2M2 ) for a < t ≤ b (using (A.5)), and by 6t−n/α(
√

M

m
√

2π
)n

for t > b, by (A.4), for n > α, we have

E

[
1

|∇Un(X)|α
]

≤
(√

n − 1

2

√
m/2

)−α

+
(

m
√

2π

2
√

M

)−α

· exp
(
−(n − 1

2)m2

2M2

)

+ 6
( √

M

m
√

2π

)n b− n
α
+1

n
α

− 1
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≤
(√

n − 1

2

√
m/2

)−α

+
(

m
√

2π

2
√

M

)−α

· exp
(
−(n − 1

2)m2

2M2

)

+ 6
(√

M

m

)α 2−n

n
α

− 1

which tends to 0 as n → ∞. �
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