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We study a class of Markov processes that combine local dynamics,
arising from a fixed Markov process, with regenerations arising at a state-
dependent rate. We give conditions under which such processes possess
a given target distribution as their invariant measures, thus making them
amenable for use within Monte Carlo methodologies. Since the regeneration
mechanism can compensate the choice of local dynamics, while retaining the
same invariant distribution, great flexibility can be achieved in selecting local
dynamics, and the mathematical analysis is simplified. We give straightfor-
ward conditions for the process to possess a central limit theorem, and ad-
ditional conditions for uniform ergodicity and for a coupling from the past
construction to hold, enabling exact sampling from the invariant distribution.
We further consider and analyse a natural approximation of the process which
may arise in the practical simulation of some classes of continuous-time dy-
namics.

1. Introduction. In this work we study a broad class of continuous-time Markov pro-
cesses X which are defined by superimposing regenerative dynamics onto an existing
continuous-time Markov process Y on state space E. The precise definition of the process
is given in Section 2, but X can be seen informally as a Markov process with infinitesimal
generator Lμ given by

(1) Lμf (x) = Qf (x) + κ(x)

∫ (
f (y) − f (x)

)
μ(y)m(dy),

where Q denotes the infinitesimal generator of the process Y .
We will refer to the function κ as the regeneration rate and to μ as the regeneration density.

Collectively, κ and μ constitute the global dynamics. We will refer to the dynamics defined
by the process Y as the local dynamics. For example, we may choose the local dynamics to
be a Brownian motion on R

d or a continuous-time jump process, such as a suitably-defined
Metropolis–Hastings chain embedded in continuous time.

Fundamental to the introduction of this class of Markov processes—which we term Re-
store processes as they are Randomly Exploring and STOchastically REgenerating—is that
the global regenerative dynamics we introduce can enrich the existing local dynamics of Y in
a compensatory manner, such that the invariant distribution of X is known. This is of partic-
ular application within Monte Carlo methodology as the dynamics can often be chosen, and
the process straightforwardly simulated, such that its invariant distribution coincides with a
prescribed target density of interest, π .
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This incorporation of global regenerative dynamics to enrich an existing continuous-time
Markov process Y introduces a number of directions for both theoretical and methodological
innovation, which we explore in this paper. Since the process naturally exhibits regenera-
tions, mathematical analysis of the Restore process is simplified considerably. Indeed, the
traditional approach of analysing Markov chains, in the sense of Meyn and Tweedie (1993),
crucially relies on the identification of regeneration times.

Thus the Restore process forms the basis of a new approach to Monte Carlo sampling,
which we term the Restore sampler. The Restore sampler also provides a simple recipe for in-
troducing (nonreversible) rejection-free moves to existing samplers. This can be done in cases
where standard Markov chain Monte Carlo (MCMC) algorithms may exhibit poor mixing.
This is discussed in Sections 3.2.

The Restore process is an instance of a “resurrected” or “returned” process, which in-
stantaneously returns to the state space after being killed. Such processes have been uti-
lized extensively within probability literature. Their use goes back to the very foundations
of Markov chain theory, Doob (1945), but such processes have been harnessed particularly
effectively in the study of quasi-stationarity. See, for instance, Bartlett ((1960), Section 3.4),
Darroch and Seneta (1965), Collet, Martínez and San Martín ((2013), Chapter 4.4), Barbour
and Pollett (2010, 2012), Benaim, Cloez and Panloup (2018), Wang, Roberts and Steinsaltz
(2020), Wang and Steinsaltz (2019). For example, such processes have been to used to ap-
proximate quasi-stationary distributions, and in this context, Darroch and Seneta (1965) noted
that for discrete-time, finite state space resurrected processes, the invariant distribution could
be “made into almost any distribution”. The work of this paper demonstrates that for contin-
uous time and general state spaces, this is also the case.

The idea of identifying regeneration times within a given MCMC sampler goes back to
Mykland, Tierney and Yu (1995), using the very elegant splitting technique of Nummelin
(1978). The area has continued to develop actively, as seen, for instance, in the contributions
of Brockwell and Kadane (2005), Gilks, Roberts and Sahu (1998), Hobert et al. (2002), Lee,
Doucet and Latuszyński (2014), Minh, Minh and Nguyen (2012). The idea of hybridising sep-
arate dynamics has also had a long history, see, for instance, Murdoch (2000), Murdoch and
Green (1998), Tierney (1996), although these typically involve combining separate MCMC
chains which are already themselves π -invariant. The Restore process offers practitioners
considerable scope to design highly optimised sampling algorithms due to the flexibility of
being able to “hybridise” dynamics which are separately not π -invariant.

Unlike traditional MCMC methods, the Restore sampler is a fundamentally continuous-
time sampler, as the inhomogeneous Poisson clock dictating the regeneration events is cru-
cial for aligning the local and global dynamics. In a similar vein, the class of piecewise-
deterministic Markov processes (PDMPs, Davis (1984)), and quasi-stationary Monte Carlo
methods (QSMC) also make use of an inhomogeneous Poisson process to drive the pro-
cess towards the target distribution π ; see Vanetti et al. (2017), Wang et al. (2019). Notable
examples of such methods include the Bouncy Particle Sampler, Bouchard-Côté, Vollmer
and Doucet (2018), the Zig-zag Sampler, Bierkens, Fearnhead and Roberts (2019), ScaLE,
Pollock et al. (2020) and ReScaLE, Kumar (2019).

Sampling algorithms which rely upon continuous-time dynamics often require some form
of approximation for their practical implementation, and the resulting approximate process
can exhibit algorithmic instability, or possess an approximate invariant distribution which
is intractable. However, there is considerable scope and promise to understand the effect
of such approximations with the Restore process, due to the global regenerative dynamics
with which it is constructed and the ease with which it can be mathematically analysed (for
instance, in the sense of Asmussen and Glynn (2007)). In Section 5.2, we consider one natural
approximation to the Restore process in which the regeneration rate is truncated.
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1.1. Summary of results. We begin in Section 2 by formally introducing the Restore
process on an abstract state space E, and in Section 3 we will establish the following.

CONTRIBUTION 1 (π -invariance: Theorems 16, 22). Assume that we are given a positive
target density π on E, a regeneration density μ with on E, and an interarrival process Y with
infinitesimal generator Q with adjoint Q∗. We assume that we have chosen a constant C > 0
such that

(2) Q∗π + Cμ ≥ 0.

Under a range of settings and regularity conditions, to be detailed in Section 3, the resulting
Restore process with interarrival dynamics Y , regeneration rate κ and regeneration density μ

has invariant density π .

We consider the following two indicative settings: symmetric diffusion processes and
continuous-time jump processes.

In Section 4, we study limiting properties of the Restore process and will present the
following results.

CONTRIBUTION 2 (Central limit theorem: Theorem 24). Writing (Tn) for the regenera-
tion times, then for appropriate functions f , where σ 2

f is the asymptotic variance defined in
(18), then under appropriate regularity conditions the following holds for the Restore process:

√
n

(∫ Tn

0 f (Xs)ds

Tn

− π [f ]
)

d→ N
(
0, σ 2

f

)
.

Under additional assumptions, we will derive uniform ergodicity and a coupling from the
past (CFTP) construction (following Propp and Wilson (1996)), which is particularly useful
in the context of Monte Carlo simulation, since it allows us to obtain an exact draw from the
target π .

CONTRIBUTION 3 (Uniform ergodicity, CFTP: Proposition 26, Theorem 27). Assume
that the regeneration rate κ is uniformly bounded away from 0 and basic regularity conditions
hold. Then the Restore process is uniformly ergodic. Furthermore, there is a straightforward
coupling from the past construction.

Indeed, in Theorem 28, we show that the classical rejection sampler is a special case of
this coupling from the past construction.

In Section 5, we discuss some practical considerations related to the Restore sampler,
and in particular we present a result concerning the error incurred when running one natural
approximation of the Restore process.

CONTRIBUTION 4 (Truncated rate: Theorem 30, Proposition 32). When the interarrival
process is a diffusion and κ is bounded away from 0, consider running the Restore process
with a truncated version of the regeneration rate κM :

κM := κ ∧ M.

Writing πM for the invariant distribution of the resulting approximate process, we provide a
bound on the error ‖πM − π‖1 in total variation and show it vanishes to 0 as the truncation
level M → ∞.

Some simple examples highlighting various aspects of the Restore sampler are given in
Section 6. To conclude, in Section 7 we discuss the limitations of our approach, and possible
future directions. Some technical proofs are omitted from the body of the text for readability,
but can found in the Appendix.
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2. The Restore process. First we formalize the informal definition of the Restore pro-
cess given in the Introduction. We define the process in a general, abstract framework.

Let (E,m) be a measure space, where E is a Radon topological space with its Borel σ -
algebra E and m is a σ -finite Radon measure on E , for example, Rd equipped with Lebesgue
measure. We assume that we are given a right process Y = (�′,F ′,F ′

t , Yt ,P
0
x) evolving on E.

Right processes are an abstract class of right-continuous strong Markov processes. We do not
repeat their precise definition, which is highly technical, here; the interested reader is referred
to Sharpe ((1988), Chapter 20), instead we give a list of examples in the following lemma.

LEMMA 1. The following processes are examples of right processes: deterministic right-
continuous flows, Feller processes, Markov jump processes.

PROOF. See Sharpe ((1988), Exercises 8.8, 9.27 and 14.18). �

REMARK 2. Recall that a Feller process is a Markov process on a locally compact, Haus-
dorff, second countable space E, whose semigroup (Pt ) is strongly continuous on C0(E), the
set of continuous functions vanishing at infinity. Examples of Feller processes include Lévy
processes, Sharpe ((1988), page 50), and diffusions such as the ones studied in Demuth and
van Casteren ((2000), Chapter 1).

For a general initial distribution ν we write P
0
ν = ∫E ν(dx)P0

x . Let κ : E → R
+ = [0,∞)

be a locally bounded measurable function, the regeneration rate. Define the lifetime τ∂ as

(3) τ∂ := inf
{
t ≥ 0 :

∫ t

0
κ(Ys)ds ≥ ξ

}
,

where ξ ∼ Exp(1), independent of Y . Set inf∅ = ∞.
Fix a probability measure νμ on (E,m), the regeneration distribution. We define the Re-

store process X = (Xt)t≥0 to be the process given by

(4) Xt =
∞∑
i=0

1[Ti,Ti+1)(t) Y
(i)
t−Ti

,

where (Y (0), τ (0)) is a realisation of (Y, τ∂) with Y0 = x, and (Y (i), τ (i))∞i=1 are i.i.d. real-
isations of (Y, τ∂) under P0

νμ
, namely with Y0 ∼ νμ. The (Ti)

∞
i=0 are given by T0 = 0, and

Tn =∑n−1
i=0 τ (i), for each n = 1,2, . . . .

This defines a Markov process X = (�,F,Ft ,Xt ,Px) with state space (E,m). For an
arbitrary initial distribution ν, as usual we set Pν = ∫ dν(x)Px . In future, the regeneration
measure νμ will be given by a density function μ with respect to the reference measure m,
and hence for its semigroup we will write {P μ

t : t ≥ 0}. We will then refer to this process
as the Restore process with interarrival dynamics Y , regeneration rate κ , and regeneration
density μ.

LEMMA 3. Let Y be a right process on the Radon space (E,m) with Radon measure m,
κ : E →R

+ a locally bounded measurable function, and μ a probability measure on E. Then
the resulting Restore process X = (�,F,Ft ,Xt ,Px) with interarrival dynamics Y , locally
bounded nonnegative regeneration rate κ and regeneration density μ defines a right process
with state space (E,m). In particular, X is right-continuous and strong Markov. Moreover,
Tn → ∞ almost surely.

PROOF. See Appendix A.1. �
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3. Invariance. Suppose we are given a probability measure νπ on E, our target measure
of interest. We will assume throughout that the target measure νπ and regeneration measure
νμ are given by density functions π , μ respectively with respect to the reference measure m,
namely

νπ(dx) = π(x)m(dx), νμ(dx) = μ(x)m(dx).

We would like to construct a Restore process X whose invariant distribution coincides with π .
In this section we formulate conditions in several settings under which this is possible.

We consider the following settings: when the interarrival process Y is a symmetric diffu-
sion, and when the interarrival process is a jump process. This latter situation includes, for
example, the case when the state space E is countable.

Writing Q for the generator of the process Y , define the regeneration rate κ : E →R by

(5) κ(x) := Q∗π(x)

π(x)
+ C

μ(x)

π(x)
, x ∈ E.

We will make rigorous sense of this expression in the subsequent sections.

REMARK 4. Because of the flexibility provided by the constant C in (5), in practice we
do not require μ or π to be normalized in order to compute κ .

Given the formal generator (1), we can make intuitive sense of the expression (5) from the
following formal manipulations:

νπQf =
∫

π(x)(Qf )(x)m(dx) =
∫ (

Q∗π
)
(x)f (x)m(dx).

Taking f ≡ 1 the constant function, we see that
∫

Q∗π(x)m(dx) = 0, since Q1 ≡ 0. Then,

νπ

[
κ
(
νμ[f ] − f

)]= νπ

[
π−1(Q∗π + Cμ

)]
νμ[f ] − νπ

[
π−1f Q∗π

]− Cνπ

[
π−1μf

]
= 0 − m

[
f Q∗π

]+ C
(
m[μf ]m[μ] − m[μf ]).

This final bracket is 0 since m[μ] = 1, as νμ is a probability measure. This allows us to
conclude that

νπ

[
Lμf
]= νπ [Qf ] − νπ

[
κ
(
νμ[f ] − f

)]= m[πQf ] − m
[
f Q∗π

]= 0.

This calculation shows that our κ is indeed of the right form to ensure invariance of νπ .
We emphasize again that the preceding calculations are formal and do not constitute a

rigorous proof. In order to turn this into a full proof, one must first show that the operator
Lμ given in (1) is indeed the generator of the Restore process (as constructed in Section 2),
carefully noting the domain D(Lμ). We must then establish that the above calculations hold
for a collection of functions f ∈ D, and prove that D constitutes a core of the generator.

REMARK 5. Turning these calculations into a proof in a general setting is difficult for
several reasons. First, establishing that Lμ is the generator of the Restore process is compli-
cated since κ is not necessarily bounded, thus the Restore process is not necessarily Feller in
the sense of Remark 2. This prevents us from straightforwardly establishing dissipativity, via
the positive maximum principle, which would enable the application of general reformula-
tions of the Hille–Yosida theorem such as Theorem 7.1 of Ethier and Kurtz (1986). Second,
proving that a collection of functions D constitute a core for the generator is generally chal-
lenging. For recent advances on this topic for PDMPs, see the work of Durmus, Guillin and
Monmarché (2018).
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These difficulties associated with working in a general operator-theoretic setting are our
motivation for considering our two specific settings separately; the diffusion setting, and the
jump process setting. Indeed, one of the key contributions of this work is that in each setting
we will give a proof of invariance which avoids using the full generator approach and the
highly technical difficulties outlined above.

Once invariance is established, in order to approximate integrals we can make use of the
following result. Recall that a nonnegative random variable is nonlattice if it is not concen-
trated on a set of the form {δ,2δ, . . .} for any δ > 0.

THEOREM 6. Suppose that the Restore process X, as in the conclusion of Lemma 3,
is defined on a metric space E, its semigroup P

μ
t maps continuous functions to continuous

functions for each t ≥ 0, has a unique stationary distribution π , that Eμ[τ∂ ] < ∞, and that
the lifetimes are nonlattice. Then for any bounded measurable function f : E → R, we have
that

(6) νπ [f ] = Eμ[∫ τ (0)

0 f (Xs)ds]
Eμ[τ (0)] ,

and furthermore we have almost sure convergence of the ergodic averages: as t → ∞,

1

t

∫ t

0
f (Xs)ds → νπ [f ].

PROOF. By Theorem 1.2 of Asmussen ((2003), Chapter 6), and uniqueness of the station-
ary distribution, it follows that (6) holds. Convergence of the ergodic averages then follows
from the following arguments from renewal theory: First split f into positive and negative
parts, so we may assume that f is nonnegative. Writing (N(t))t≥0 for the renewal process of
complete lfietimes before time t , we may thus bound∫ TN(t)

0
f (Xs)ds ≤

∫ t

0
f (Xs)ds ≤

∫ TN(t)+1

0
f (Xs)ds.

By the strong law of large numbers for renewal processes, Theorem 1 of Grimmett and Stirza-
ker ((2001), 10.2), we know that N(t)/t → 1/Eμ[τ (0)] almost surely. We can conclude the

argument by then applying the strong law of large numbers to
∫ TN(t)

0 f (Xs)ds/N(t) and sim-
ilarly for the upper bound. �

3.1. Symmetric diffusions. We first consider Restore when the underlying process is
a symmetric diffusion on E = R

d . For a smooth C∞ function A : Rd → R consider the
stochastic differential equation (SDE)

(7) dYt = ∇A(Yt )dt + dBt, Y0 = x,

on R
d where B is a standard Brownian motion on R

d . Define the smooth function γ :Rd →
R by

γ (y) = exp
(
2A(y)

)
, y ∈ R

d,

and define a measure � on R
d by

d�(y) = γ (y)dy,

where dy denotes Lebesgue measure on R
d .

We are thus working on (E,m) = (Rd,�). This is an example of a Radon space with a
Radon measure.
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ASSUMPTION 7 (Underlying process). A : Rd → R is a smooth C∞ function, and the
SDE (7) has a unique weak solution. The process Y has a continuous symmetric transition
density p0(t, x, y) on (0,∞)×R

d ×R
d with respect to �, which satisfies the BASSA condi-

tions of Demuth and van Casteren ((2000), Chapter 1.B). In particular, the diffusion is Feller,
hence a right process.

The BASSA conditions of Demuth and van Casteren ((2000), Chapter 1.B) are technical,
and in Section 3.1.1 we will give examples of diffusions satisfying them.

The semigroup of the diffusion Y is given for each t ≥ 0 by

(8) E
0
x

[
f (Yt )

]= ∫ p0(t, x, y)f (y)d�(y),

for functions f where this integral makes sense. Under Assumption 7, the semigroup (8)
maps C0(R

d)—continuous functions vanishing at ∞—into C0(R
d) and is strongly continu-

ous on C0(R
d) with generator −L0. Hence we can also write the semigroup as

E
0
x

[
f (Yt )

]= [exp
(−tL0)f ](x).

The action of the generator on smooth compactly supported f is given by

−L0f = 1

2
f + ∇A · ∇f.

Note that we are writing L0 for minus the generator, as is done in Demuth and van Casteren
(2000).

Under Assumption 7, the semigroup is also strongly continuous on

Lp(�) :=
{
f :Rd →R measurable,

∫
Rd

∣∣f (x)
∣∣p d�(x) < ∞

}
,

for each 1 ≤ p < ∞. When we want to emphasize the underlying function space we may
write −L0

p for the corresponding generators on Lp(�) and D(L0
p) ⊂ Lp(�) for their respec-

tive dense domains.
We now assume that the target distribution and regeneration distributions are defined by

density functions with respect to � denoted π,μ ∈ L1(�) respectively.

ASSUMPTION 8 (Densities). The target density π ∈ L1(�), is positive on R
d and is

twice continuously differentiable with
∫

π d� = 1. The regeneration density μ is in L1(�)

and is nonnegative, with
∫

μd� = 1. Furthermore, π and μ are square-integrable—that is, in
L2(�)—and π is in the domain D(L0

2).

REMARK 9. Let us emphasize that we are writing π and μ for densities with respect
to the measure �, which may not necessarily be Lebesgue measure. Later on we will write
π̄ := πγ for the density with respect to Lebesgue measure.

For our proofs we take π , μ to be normalized, but as noted previously this condition is not
required in practice, because of the constant C which appears in the regeneration rate.

Because L0 is a self-adjoint operator on L2(�), a sufficient condition for π ∈D(L0
2) is that

L0π ∈ L2(�). This is a well-known result; for a derivation, see, for example, Wang ((2020),
Section 3.3.3), where a preliminary version of this work can also be found.

We can now define the regeneration rate κ , under Assumption 8. First, define the partial
regeneration rate κ̃ , via

κ̃(x) := 1

π(x)

(
1

2
π(x) + ∇A · ∇π(x)

)
, x ∈ R

d .
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We define the actual regeneration rate κ as follows. Set for a given constant C > 0,

(9) κ(x) := κ̃(x) + C
μ(x)

π(x)
, x ∈ R

d .

REMARK 10. Similar to Wang et al. (2019), writing U := − logπ , an equivalent expres-
sion for κ̃ is

(10) κ̃(x) = 1

2

(−U(x) + ∣∣∇U(x)
∣∣2)− ∇A · ∇U(x).

ASSUMPTION 11 (Regeneration rate). The function κ is continuous, and C is chosen
such that κ ≥ 0.

Under Assumptions 7, 8, 11, the process Y killed at rate κ , that is, with lifetime given by
(3), can be analysed using Theorem 2.5 of Demuth and van Casteren (2000).

PROPOSITION 12. Under Assumptions 7, 8, 11, the process Y killed at rate κ , that
is, with lifetime given by (3), defines a strongly continuous sub-Markovian semigroup
{exp(−tLκ) : t ≥ 0} on C0(R

d) with symmetric, continuous kernel pκ(t, x, y). The corre-
sponding generator −Lκ = −L0−̇κ , extends −L0 − κ . In addition, it has Feynman–Kac
representation,

[
exp
(−tLκ)f ](x) =

∫
pκ(t, x, y)f (y)dm(y)

= Ex

[
exp
(
−
∫ t

0
κ(Ys)ds

)
f (Yt )

]
.

Furthermore, the semigroup is strongly continuous on Lp(�) for any 1 ≤ p < ∞. In par-
ticular, on L2(�), it is self-adjoint and possesses a self-adjoint generator.

PROOF. See Appendix A.2. �

As before, when we want to make explicit which Lp(�) space we are using, for 1 ≤ p <

∞, we will write −Lκ
p for the generator of the strongly continuous semigroup on Lp(�),

with corresponding domain D(Lκ
p) ⊂ Lp(�). The domain of the generator may be defined as

the image of the semigroup acting on Lp(�).

REMARK 13. It follows from Assumption 8 that π ∈ D(Lκ
2), since both π and μ are in

L2(�), and formally Lκπ = Cμ.

We have one final technical assumption.

ASSUMPTION 14 (Technical conditions on π , μ). We have that

(11) π ∈ D
(
Lκ

1
)
, Lκ

1π = Cμ.

Furthermore, μ is such that

(12)
∫

d�(x)μ(x)E0
x

[
sup

t∈[0,1]
∣∣κ(Yt )e

− ∫ t0 κ(Ys)ds
∣∣]< ∞.
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The condition (11) is fairly abstract, and so might be difficult to verify in a particular case,
or in a general class of processes that one may want to consider. Lemma 15 gives a sufficient
condition which we will make use of. Set

π̄ := πγ.

We write W 2,1(Rd) for the Sobolev space of measurable functions on R
d whose first and

second derivatives are integrable with respect to Lebesgue measure on R
d .

LEMMA 15. Assume that Assumptions 7, 8, 11 hold. Suppose that the drift is at most
linear in the tails: we can bound |∇A(x)| ≤ K|x|, for some K > 0, for all x outside of some
compact set. Suppose π is smooth, and that π̄ ∈ W 2,1(Rd). In addition, we require that∫

Rd

∣∣∇A(x) · ∇π̄(x)
∣∣dx < ∞,

∫
Rd

∣∣A(x)π̄(x)
∣∣dx < ∞.

Then (11) holds.

PROOF. See Appendix A.3. �

Alternatively, (11) will automatically hold whenever � is a finite measure. This is the case
whenever the underlying diffusion Y is positive recurrent, say a stable Ornstein–Uhlenbeck
process. Then under π ∈ L2(�) and μ ∈ L2(�), π ∈ D(Lκ

1) with Lκ
1π = Cμ, since in that

case L2 convergence implies L1 convergence.
The condition (12) is needed so that we can differentiate under the integral. A necessary

condition for (12) to hold is that
∫

d�(x)μ(x)κ(x) < ∞, so in particular μ cannot have tails
which are too heavy relative to π . From a computational point of view, this is reasonable
since otherwise the regeneration mechanism would be highly inefficient; the Restore process
would tend to regenerate very rapidly. Of course, a sufficient condition for (12) is that∫

d�(x)μ(x)E0
x

[
sup

t∈[0,1]
κ(Yt )
]
< ∞.

THEOREM 16. Under Assumptions 7, 8, 11, 14, the Restore process X with interarrival
dynamics Y , regeneration rate κ and regeneration density μ has invariant distribution π .

PROOF. See Appendix A.4. �

3.1.1. Examples. We now give some examples of diffusions which satisfy the assump-
tions of Theorem 16.

Sufficient conditions ensuring BASSA are given in Example 2 of Demuth and van Casteren
((2000), Chapter 1.C). In our present setting when we consider diffusions defined by (7), these
conditions can be written as

exp
(
A(x)
)≥ c−1 exp

(−c|x|2) ∀x ∈ R
d,(13)

c−1 ≤ exp
(
A(x) − A(y)

)≤ c ∀x, y ∈ R
d : |x − y| ≤ c−1(1 + |x|)−c

,(14)

for some c > 0.
Let | · | denote the �2 norm on R

d .

PROPOSITION 17. The SDE (7) with A = α|x|2 for any α ∈ R satisfies BASSA.

REMARK 18. In this case ∇A(x) = 2αx is linear. α < 0 corresponds to a (stable)
Ornstein–Uhlenbeck process, α = 0 is a Brownian motion and α > 0 is an unstable Ornstein–
Uhlenbeck process which drifts into the tails.
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PROOF. (13) clearly holds in this setting. The second condition (14) can be seen from
the reverse triangle inequality:∣∣|x|2 − |y|2∣∣= (|x| + |y|)∣∣|x| − |y|∣∣≤ (|x| + |y|)|x − y|

≤ |x| + |y|
c(1 + |x|)c ≤ 2|x|

c(1 + |x|)c + 1

c2(1 + |x|)2c
.

This is uniformly bounded over x ∈R
d for c > 1. �

3.2. Jump processes. The Restore process is inherently a continuous-time process, and
so the underlying process Y must be a continuous-time object. Suppose, however, we are
given a a discrete-time Markov transition kernel P on (E,m), with action on measurable
functions f : E →R and measures ν on E given by

(15)
Pf (x) =

∫
f (y)p(x, y)dm(y), x ∈ E,

νP (dy) =
∫

ν(dx)p(x, y)dm(y),

for some integral kernel p(x, y) on E × E, whenever these integrals make sense. Since we
have an integral kernel p(x, y), we will also think of νP as a measurable function given by

νP (y) :=
∫

ν(dx)p(x, y)

for a measure ν on E, provided this makes sense.
It is straightforward to embed P into continuous time, by specifying a measurable function

λ : E → R
+, the holding rates. We take the jump chain to be defined by the discrete-time

Markov kernel P , and just take the holding times to be independent Exp(λ(x)) times, when
currently at state x.

Such a process will be a continuous-time jump process on E, meaning it has right-
continuous, piecewise-constant sample paths. Provided they are nonexplosive, such processes
are determined by the transition kernel of the jump chain and the holding rates. See, for in-
stance, Ethier and Kurtz ((1986), Chapter 4.2).

Suppose π , μ are two densities on E with respect to m, the target density and regeneration
density respectively, where we assume π is positive. Suppose we are given a transition kernel
P on E and holding rates λ : E → R

+. We now construct the Restore process. Given a
constant C, define the regeneration rate κ to be

(16) κ(x) :=
∫

π(y)λ(y)p(y, x)m(dy) − λ(x)π(x)

π(x)
+ C

μ(x)

π(x)
, x ∈ E.

ASSUMPTION 19 (Jump process Restore). P is a transition kernel with a density as
in (15), λ : E → R

+ is measurable, strictly positive. π is a positive probability density
with respect to m, μ is a probability density with respect to m, and

∫
λ(x)π(x)m(dx) <

∞. The constant C is such that κ ≥ 0 on E. κ is locally bounded, and we have that∫
(λ(x) + κ(x))2π(x)m(dx) < ∞.

Note that such jump processes are right processes (Exercise 14.18 of Sharpe (1988)).

REMARK 20. From (16), we see that a sufficient condition for κ(x) ≥ 0 is that

Cμ(x) ≥ λ(x)π(x), x ∈ E.

Alternatively, if the underlying process is already π -invariant, so πQ0 ≡ 0, then the first term
in (16) is identically zero and any C > 0 and μ may be chosen.
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REMARK 21. When the state space E is countable, the Markov process Y is necessarily
a jump process, with law defined by a transition rate matrix Q. Probability distributions on
E are given by (possibly infinite) row vectors. In this case, the regeneration rate (16) can be
written simply as

κ(x) := (πQ)(x)

π(x)
+ C

μ(x)

π(x)
, x ∈ E,

where πQ is a row vector obtained by straightforward matrix multiplication.

This construction can also be extended to kernels P which do not possess a density as in
(15). For example, the classical Metropolis–Hastings kernel is of the form

P(x,dy) = α(x, y)q(x, y)dm(y) + (1 − j (x)
)
δx(dy),

where 0 ≤ α(x, y) ≤ 1 are the acceptance probabilities, q(x, y) is a transition density (so∫
q(x, y)dm(y) = 1 for each x ∈ E), and

j (x) :=
∫

α(x, y)q(x, y)dm(y)

are the jump probabilities. Because of the presence of the delta mass δx(dy), such kernels
cannot possess straightforward densities. However in continuous-time, these rejected moves
associated with the delta mass are not visible, and so we can modify the regeneration rate as
follows: we replace the term (πλ)P (x) in (16) by∫

dm(y)π(y)λ(y)α(y, x)q(y, x) + λ(x)
(
1 − j (x)

)
π(x).

Returning to the construction of the Restore process, we will take the interarrival dynamics
to be given by the jump process defined by P and λ, the regeneration rate to be κ and the
regeneration density μ. The resulting Restore process X is another continuous-time jump
process, and so we describe its jump chain and holding rates. This will provide a method to
simulate the process.

At x ∈ E, the transition kernel P μ(x,dy) of the jump chain is given by

P μ(x,dy) = λ(x)

λ(x) + κ(x)
P (x,dy) + κ(x)

λ(x) + κ(x)
μ(y)dm(y).

The overall holding rates in continuous time are given by

λ̄(x) = λ(x) + κ(x), x ∈ E,

that is, at x ∈ E, by the Markov property, the time until the next jump is an Exp(λ̄(x)) time.

THEOREM 22. Assume that Assumption 19 holds, and that the interarrival dynamics
defined by P and λ are nonexplosive. Then the resulting Restore process X is a nonexplosive
jump process with invariant distribution π .

PROOF. Nonexplosivity follows from Lemma 3, and the fact that the interarrival process
is assumed nonexplosive.

Let us write {Qμ
t : t ≥ 0} for the continuous-time semigroup for the Restore process X.

Our goal is to show that πQ
μ
t f = π [f ] for any continuous bounded function f : E →R,

for each t ≥ 0. To do this we compute the time derivative of the mapping t �→ πQ
μ
t f , and

show that it is 0. By time-homogeneity and the semigroup property, it is sufficient to com-
pute this derivative at t = 0. This was the approach similarly used to prove π -invariance of



714 WANG, POLLOCK, ROBERTS AND STEINSALTZ

Algorithm 1 Jump process Restore Sampler
1: initialize: X0 = x0, t0 = 0, i = 0
2: while ti < T do
3: i ← i + 1
4: simulate τ

(1)
i−1 ∼ Exp(λ(Xi−1)), τ

(2)
i−1 ∼ Exp(κ(Xi−1))

5: τi−1 ← τ
(1)
i−1 ∧ τ

(2)
i−1

6: ti ← ti−1 + τi−1

7: if τ
(1)
i−1 < τ

(2)
i−1 then

8: Xi ∼ P(Xi−1, ·)
9: else

10: Xi ∼ μ

11: end while
12: return pairs (ti,Xi)

the bouncy particle sampler in the supplementary material of Bouchard-Côté, Vollmer and
Doucet (2018).

By conditioning on the first jump, we obtain the following representation (cf. equation
(4.24) of Moyal (1957)):

Qtf (x) = e−λ̄(x)tf (x) +
∫ t

0
ds λ̄(x)e−λ̄(x)sP μ[Qt−sf ](x)

= e−λ̄(x)tf (x) +
∫ t

0
ds λ̄(x)e−λ̄(x)(t−s)P μ[Qsf ](x).

From this representation we can calculate the derivative,

dQtf (x)

dt
= −λ̄(x)e−λ̄(x)tf (x) + λ̄(x)P μ[Qtf ](x)

−
∫ t

0
ds λ̄(x)2e−λ̄(x)(t−s)P μ[Qsf ](x).

At t = 0 the definitions of λ̄ and κ imply that d
dt

πQtf = 0. The exchange of integration and
differentiation is justified by the assumption π(λ̄2) < ∞. �

In this setting, practical simulation of the Restore process is straightforward, even when
the regeneration rate is unbounded, since the interarrival process Y is piecewise-constant.
See Algorithm 1 for one possible implementation.

Algorithm 1 can be seen as a continuous-time variant of standard Metropolis–Hastings;
at each iteration we “propose” a move according to P(Xi−1, ·), which is either accepted or
rejected, depending on two exponential clocks. Upon rejecting a move, rather than remaining
at Xi−1 instead we move to a new location drawn from μ.

4. Limiting properties. In this section we consider some limiting properties of the Re-
store process. We will not a priori assume that X has invariant distribution π , but will work
in the abstract framework of Lemma 3: The underlying process Y is a right process evolving
on a Radon space (E,m), we have a locally bounded measurable function κ : E → R

+, and
we a probability measure μ on E. We consider the Restore process X with these dynamics.
We will write {P μ

t : t ≥ 0} for its semigroup.
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4.1. Central limit theorem. We first give a central limit theorem for the Restore process.
Our approach here is inspired by Hobert et al. (2002), who considered regenerative methods
for MCMC (in discrete time).

We fix a measurable function f : E →R.

ASSUMPTION 23 (Central limit theorem). We assume the basic conditions of Lemma 3.
Furthermore we assume that X is irreducible,

(17) Eμ

[
τ 2
∂

]
< ∞,

and that our function f : E →R satisfies

Eμ

[(∫ τ∂

0
f (Xs)ds

)2]
< ∞.

A sufficient condition for Assumption 23 to hold is that f is a bounded function and we
have simply the second moment condition (17). In turn, a sufficient condition for (17) is that
Assumption 25 holds, since in that case τ∂ can be stochastically dominated by an Exp(κ

¯
)

random variable.
Under Assumption 23 we will see that a central limit theorem holds. This can be easily

done since the lifetimes of the Restore process, by construction, are independent and identi-
cally distributed.

As in the construction of Restore in Section 2, set T0 = 0, let (Tn) be the successive regen-
eration times and let (τ (i)) be the lifetimes. We take the initial distribution X0 ∼ μ. Set for
each i = 0,1,2, . . . ,

Zi :=
∫ Ti+1

Ti

f (Xs)ds.

By construction the (Zi) are independent and identically distributed, with finite first and
second moments.

We can apply the strong law of large numbers to the following numerator and denominator:∫ Tn

0 f (Xs)ds

Tn

=
∑n−1

i=0 Zi∑n−1
i=0 τ (i)

→ Eμ[∫ τ (0)

0 f (Xs)ds]
Eμ[τ (0)]

almost surely as n → ∞.
Let us write

π [f ] := Eμ[∫ τ (0)

0 f (Xs)ds]
Eμ[τ (0)] .

When the process is ergodic, this corresponds to the invariant distribution of the Restore
process. It follows immediately that the random variables

Zi − τ (i)π [f ], i = 0,1,2, . . .

are independent and identically distributed and have mean 0 under Eμ.
Now we set, in analogue with the expression given in Hobert et al. (2002),

(18) σ 2
f := Eμ[(Z0 − τ (0)νπ [f ])2]

(Eμ[τ (0)])2 .

This numerator is finite by Assumption 23.
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THEOREM 24 (Central limit theorem). We have that

(19)
√

n

(∫ Tn

0 f (Xs)ds

Tn

− νπ [f ]
)

d→ N
(
0, σ 2

f

)
.

PROOF. The left-hand side of (19) can be written

√
n

( ∑n−1
i=0 Zi∑n−1
i=0 τ (i)

− νπ [f ]
)

= 1√
n

· n∑n−1
i=0 τ (i)

(
n−1∑
i=0

(
Zi − τ (i)νπ [f ])

)
.

By the strong law of large numbers and the continuous mapping theorem, n/
∑n−1

i=0 τ (i) con-
verges almost surely to (Eμ[τ (0)])−1, and in distribution also.

Hence by applying Slutsky’s lemma and the central limit theorem to the independent and
identically distributed mean zero random variables (Zi − τ (i)), we see that (19) holds. �

Let us write τ̄n := n−1∑n−1
i=0 τ (i) and f̄n :=

∫ Tn
0 f (Xs)ds

Tn
. Similar to Hobert et al. (2002), our

σ 2
f can be consistently estimated by

σ̂ 2
f :=
∑n−1

i=0 (Zi − f̄nτ
(i))2

nτ̄ 2
n

.

This is because the difference between σ̂ 2
f and∑n−1

i=0 (Zi − τ (i)νπ [f ])2

nτ̄ 2
n

converges to zero almost surely as n → ∞, and the latter is a consistent estimator for σ 2
f .

We can use this to get an estimate of the efficiency of Restore. If we let

vπ(f ) :=
∫ (

f (x) − νπ [f ])2 dπ(x),

then we can set the effective sample size neff to be

neff := vπ(f )

σ 2
f

,

which we may be able to estimate.
We see from (18), that the denominator (Eμ[τ (0)])2 will have a significant influence on the

overall variance. If Eμ[τ (0)] is small, the resulting variances of individual lifetimes may be
unacceptably large, and as such practically speaking it is important to choose the regeneration
distribution in such a way that the lifetimes are (on average) not too short. In particular, this
means choosing μ which avoids regions where the regeneration rate is particularly high.

4.2. Coupling from the past. Under additional (fairly strong) conditions, we will have
direct access to the stationary distribution of the Restore process.

ASSUMPTION 25 (Coupling from the past). There exists some κ
¯

> 0 such that m-almost
everywhere,

κ ≥ κ
¯

> 0.

We write ‖ · ‖∞ for the sup norm of a bounded function and ‖ · ‖1 for the total variation
norm signed measures; given a signed measure ν,

‖ν‖1 = sup
{∣∣ν(f )

∣∣ : f bounded, measurable,‖f ‖∞ ≤ 1
}
.
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PROPOSITION 26 (Uniform ergodicity). Assume the basic conditions of Lemma 3 hold,
and that X is irreducible. Under Assumption 25, the Restore process X is uniformly geomet-
rically ergodic, meaning that there exists a unique invariant distribution π such that∥∥νP

μ
t − π

∥∥
1 ≤ 2e−tκ

¯ ,

for any initial distribution ν and t ≥ 0.

PROOF. Fix any two arbitrary initial distributions ν1, ν2 on E. By Assumption 25 and
Poisson superposition, we can decompose the Poisson process of regeneration times as the
superposition of two independent Poisson processes: a homogeneous Poisson process N1 of
rate κ

¯
, and an inhomogeneous Poisson process N2 with rate function t �→ κ(Xt) − κ

¯
. Thus

we can couple two copies of the Restore process X, with initial distributions ν1 and ν2 respec-
tively, by constructing them to have N1 in common, and the same regeneration locations. The
two processes will then meet at the first arrival time of N1 and evolve identically thereafter.

Hence by the well-known coupling inequality (see, for instance, Thorisson (2000), Sec-
tion 1.5.4),

(20)
∥∥ν1P

μ
t − ν2P

μ
t

∥∥
1 ≤ 2e−tκ

¯ .

The Markov property (i.e., the semigroup property) then shows that for any initial distribution
ν, (νP

μ
t )t≥0 forms a Cauchy sequence in the space of probability measures equipped with

the total variation norm. By completeness, there exists a limiting probability distribution π ,
which must also be a stationary distribution, by the Markov property and the fact that P

μ
t is a

contraction in ‖ · ‖1. That is, we have πP
μ
t = π for any t ≥ 0. By irreducibility, this invariant

distribution is unique. Thus taking ν1 = ν and ν2 = π in (20) the Proposition is proven. �

In fact under Assumption 25 we can do even better than uniform ergodicity and employ
coupling from the past (CFTP), a technique pioneered by Propp and Wilson (1996) to ob-
tain exact draws from the stationary distribution π . For a related approach to exact MCMC
methods, see the recent approach of Jacob, O’Leary and Atchadé (2020) using couplings.

THEOREM 27 (Coupling from the past). Under the conditions of Lemma 3 and Assump-
tion 25, consider the Restore process X with interarrival dynamics Y , modified regeneration
rate

κ ′ := κ − κ
¯

≥ 0,

and regeneration density μ. Suppose X is irreducible and has initial distribution

X0 ∼ μ.

Let T ∼ Exp(κ
¯
) be independent of X. Then

XT ∼ π,

where π is the unique invariant distribution of the process.

PROOF. This follows from the technique of Propp and Wilson (1996). We saw in the
proof of Proposition 26 that we can realise the Poisson process of regeneration times as the
superposition of two independent Poisson processes: a homogeneous Poisson process N1
of rate κ

¯
and an inhomogeneous Poisson process N2 with rate t �→ κ ′(Xt). As in Propp

and Wilson (1996), we imagine a Restore process X, initialised from some arbitrary initial
distribution at time −∞, run until time 0. Since we have established uniform ergodicity in
Proposition 26, we know that X0 ∼ π . Let −T be the most recent arrival of N1 before time 0.
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Algorithm 2 Bounded Restore Sampler: κ ≤ M , with CFTP
1: draw run time: T ∼ Exp(κ

¯
)

2: initialize: X0 ∼ μ, t0 = 0, i = 0
3: i ← i + 1
4: ti ← ti−1 + τi−1, where τi−1 ∼ Exp(M − κ

¯
)

5: while ti < T do
6: simulate Zi ∼ L(Yτi−1 |Y0 = Xi−1)

7: with probability 1 − (κ(Xi) − κ
¯
)/(M − κ

¯
)

8: Xi ← Zi

9: else
10: Xi ∼ μ

11: i ← i + 1
12: ti ← ti−1 + τi−1, where τi−1 ∼ Exp(M − κ

¯
)

13: end while
14: simulate Z ∼ L(YT −ti−1 |Y0 = Xi−1)

15: return Z, which is drawn exactly from π

Regardless of the prior evolution of X, we know that X−T ∼ μ as −T was a regeneration
time. Since N1 and N2 are independent, X0 then has the same law as a Restore process at
time T , initialised from μ, with regeneration rate κ ′.

Since the time reverse of a homogeneous Poisson process is also a homogeneous Poisson
process, we can instead imagine initialising X0 ∼ μ and evolving an exponential time T into
the future with modified regeneration rate κ ′. �

In the case when κ is bounded above, one implementation is given in Algorithm 2. In
this case, simulation of the lifetimes τ∂ is straightforward, since it can make use of Poisson
thinning; see, for instance, Devroye ((1986), Chapter 6.2).

This CFTP implementation can be seen as a continuous-time version of the multigamma
coupler of Murdoch and Green (1998) or of the hybrid scheme of Murdoch ((2000), Sec-
tion 3). The multigamma coupler of Murdoch and Green (1998) assumes we have a discrete-
time π -invariant Markov chain whose transition kernel P satisfies P(x,dy) = f (y|x)dy,
where f (y|x) ≥ r(y), for all x, for some nonnegative function r which satisfies ρ :=∫

r(y)dy > 0. Let νr denote the probability distribution with density (proportional to) r .
Thus when simulating the chain, at each step with probability ρ, the chain will move to a
point drawn from νr , independent of the current location. This enables a CFTP construction,
the multigamma coupler; see Murdoch and Green ((1998), Section 2.1).

This uniform probability ρ is precisely what enables CFTP to be applied. It informally says
that independent of location, at each discrete time step all locations are trying to couple with
probability ρ to the same point, drawn from νr . This plays the same role as our homogeneous
rate κ

¯
, which informally states that in continuous time, at rate κ

¯
, all locations are trying to

couple to the same location, drawn from νμ.
A crucial difference between our approaches, however, is that our underlying dynamics Y

do not themselves have to be π -invariant; in fact we will see in Section 6 an example where
the local process does not possess an invariant distribution at all.

4.2.1. Example: Classical rejection sampler. We show that the classical rejection sam-
pler can be seen as a special case of the CFTP implementation of the Restore process. A sim-
ilar result was established for the Independence Sampler in Murdoch and Green (1998).
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Let π , μ be density functions on E with respect to m. We take Y to be the trivial stochastic
process on E which given its initial position Y0, has constant sample paths: almost surely,
Yt = Y0 for all t ≥ 0. Define the regeneration rate

(21) κ(x) = C
μ(x)

π(x)
, x ∈ E,

for any constant C > 0. If we were to implement the classical rejection sampler targeting π

from μ we would require the following condition:

(22) π(x) ≤ Mμ(x), x ∈ E,

for some (finite) constant M . The classical rejection sampler targeting π from μ repeatedly
draws Xn independently from μ, and accepts it with probability π(Xn)/(Mμ(Xn)), other-
wise rejects it and tries again with a new Xn+1 ∼ μ. The final accepted value Xn is an exact
draw from π .

THEOREM 28. Under (22), the CFTP implementation of the Restore process (Theo-
rem 27) with constant interarrival dynamics, regeneration rate κ as in (21) and regeneration
density μ is identical to classical rejection sampling targeting π from μ.

PROOF. We see that (22) holds if and only if Assumption 25 holds with

κ
¯

= C/M.

Under this condition in the CFTP implementation (Theorem 27) we run the Restore pro-
cess with regeneration rate

κ ′ = κ − κ
¯

= C
μ

π
− C

M

for a time T ∼ Exp(C/M).
We can simulate this Restore process iteratively by drawing for each n, Xn ∼ μ. We have

two competing independent exponential clocks, T ∼ Exp(C/M) and Tn ∼ Exp(κ ′(Xn)).
If T < Tn, all trajectories have coupled and so we terminate the algorithm and output Xn,

which is an exact draw from π . By the theory of competing exponentials this occurs with
probability

C/M

C/M + C(
μ(Xn)
π(Xn)

− 1
M

)
= π(Xn)

Mμ(Xn)
.

This is exactly the probability of acceptance for the classic rejection sampler.
If T ≥ Tn then we iterate again and draw Xn+1 ∼ μ, Tn+1 ∼ Exp(κ ′(Xn+1)). By the mem-

oryless property of the exponential distribution we have again two independent exponential
clocks as before. �

If (22) doesn’t hold, provided there is a unique invariant distribution π we can still use
ergodic averages to estimate νπ [f ] for any bounded f . Suppose we run the Restore process
with constant interarrival dynamics, regeneration rate κ as in (21) and regeneration density μ

for n complete lifetimes. The corresponding ergodic average is

1

Tn

n∑
i=1

f (Xi)τ
(i),

where Xi ∼ μ are i.i.d., conditional on Xi , τ (i) ∼ Exp(Cμ(Xi)/π(Xi)) are independent and
Tn =∑n

i=1 τ (i). Thus the estimator of π [f ] can be seen as an importance sampling-type
estimator with randomized importance weights; note CE[τ (i)|Xi] = π(Xi)/μ(Xi).
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5. Practical considerations. We consider now some practical questions related to the
Restore process.

5.1. Minimal regeneration distribution. In this section we assume that we are given some
fixed interarrival process, a positive target density π on E and a regeneration density μ on
E, which are both normalized.

The most significant challenge for implementing the Restore sampler is to ensure that the
regeneration rate is nonnegative; we need to find a constant C so that

(23) κ(x) = κ̃(x) + C
μ(x)

π(x)
≥ κ

¯
≥ 0 for all x ∈ E,

for some nonnegative constant κ
¯
. Here κ̃ is defined in (10) for the diffusion setting and for the

jump process setting is defined to be the first term on the right-hand side of (16). As shown in
the proof of Theorem 16, C = Eμ[τ∂ ] can be interpreted as the average lifetime when started
from μ.

One natural way to choose the regeneration density μ and constant C is to minimize the
number of regeneration events. That is, we would like to choose some minimal regeneration
distribution μ∗ and constant C∗ such that the regeneration rate is given by

(24) κ∗ := κ̃ + C∗ μ∗

π
= κ̃ ∨ κ

¯
.

This is entirely analogous to the choice of bounce rate for the bouncy particle sampler of
Bouchard-Côté, Vollmer and Doucet (2018), and of the canonical switching rate for the zig-
zag in Bierkens, Fearnhead and Roberts (2019). In order to satisfy (24), the appropriate choice
of density μ∗ with respect to the measure m on E is

(25) μ∗(x) := (C∗)−1[0 ∨ (κ
¯
− κ̃(x)

)]
π(x),

where

C∗ :=
∫
E

[
0 ∨ (κ

¯
− κ̃(x)

)]
π(x)dm(x),

assuming that this quantity is finite.

PROPOSITION 29 (Minimal regeneration distribution). Let μ∗, C∗ be defined as above
for some fixed κ

¯
≥ 0, where we assume μ∗ is integrable and normalized. Let μ, C be any (nor-

malized) probability measure on E and positive constant respectively such that (23) holds.
Then μ∗ minorizes μ, in the sense that there exists some ε > 0 such that for all measurable
B ⊂ E,

(26) μ(B) ≥ εμ∗(B),

and we have that

C ≥ C∗.

PROOF. From the assumption that (23) holds, we must have that κ ≥ κ∗ pointwise, from
which it follows that for each x ∈ E,

Cμ(x) ≥ C∗μ∗(x),

which establishes (26), and by integrating both sides over E it follows that C ≥ C∗. �

How one can obtain samples from μ∗ is in general not obvious, and is reminiscent of
sampling from minorising measures as in Murdoch and Green (1998). μ∗ is generally com-
pactly supported and supported around the modes of π ; its support is contained within the
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set {x ∈ E : κ̃(x) < κ
¯
}, and so often simulation is possible through straightforward rejection

sampling.
On the other hand, the computation of κ∗ is immediate, since it does not require knowledge

of C∗ or μ∗ but is simply a thresholded version of κ̃ as in (24).
When the interarrival process is already π -invariant, any nonnegative value of C can be

used. In this setting, the recent work of Caputo and Quattropani (2019), suggests that a sen-
sible way to tune C would be to choose it such that the average rate of regenerations matches
the rate of mixing of the interarrival process. Caputo and Quattropani (2019) showed that
for the similar discrete-time PageRank surfer on random (finite) graphs, the resulting mixing
time depends on the interplay between the rate of mixing of the underlying walk and the
regeneration probability.

5.2. Truncated regeneration rate. We consider now the diffusion case, as in Section 3.1.
In this case κ is typically unbounded, and the simulation of the lifetimes τ (i) is not straightfor-
ward. In some cases using layered processes it is still possible to simulate τ∂ exactly, as with
the techniques of Pollock et al. (2020). These are technically demanding, so in this section
we consider the alternative of truncating the regeneration rate. Namely, we fix some upper
bound M , and work with the truncated regeneration rate

κM := κ ∧ M.

This will introduce some approximation error, a discrepancy between the invariant distribu-
tion and π , but we will show how this error may be explicitly quantified.

In order to prove our result we will need to assume the following.
We assume that the interarrival process Y is a diffusion on R

d satisfying BASSA, and that
κ is continuous. We also assume that Assumption 25 holds, namely that we have a lower
bound

κ ≥ κ
¯

> 0.

Recall that under Assumption 25, τ∂ can be stochastically dominated by an exponential
random variable with rate κ

¯
, and hence all moments of τ∂ are finite.

In order to avoid pathologies we assume that

(27) M > inf
x∈E

κ(x).

We consider now the Restore process X with interarrival process Y , regeneration density μ

and truncated regeneration rate κM , for some given truncation level M satisfying (27).
Throughout this section we will be concerned only with the behavior of the Restore process

before the first regeneration event. As the regeneration distribution μ will not play a signifi-
cant role we will consider the local process Y , without regenerations, and explicitly augment
it with a first regeneration time. We will simply write Ex for the law of the local process Y

started from x, and consider the first arrival time τ∂ to be a random variable defined by (3).
Let us write κe

M for the excess regeneration rate over level M , that is,

κe
M := κ − κM.

Then by Poisson superposition, we can write

(28) τ∂ = τM ∧ τ e
M,

where τ∂ , τM , τ e
M are the first arrival times of inhomogeneous Poisson process with rate func-

tions t �→ κ(Yt ), t �→ κM(Yt ) and t �→ κe
M(Yt ) respectively, where these latter two Poisson

processes are independent conditional on the path t �→ Yt .
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In particular, τM and τ e
M can be written as

τM = inf
{
t ≥ 0 :

∫ t

0
κM(Ys)ds ≥ ξ1

}
,(29)

τ e
M = inf

{
t ≥ 0 :

∫ t

0
κe
M(Ys)ds ≥ ξ2

}
,(30)

where ξ1, ξ2 ∼ Exp(1) are independent of each other and of the underlying process Y .
Since we are assuming Assumption 25 holds, by the arguments of Section 4.2 it follows

that the Restore process with regeneration rate κ has a unique invariant distribution π , and
from Section 4.1 the action of π on a test function f can be written as

νπ [f ] = Eμ[∫ τ∂

0 f (Ys)ds]
Eμ[τ∂ ] ,

where here Y is the local process without regenerations and τ∂ is defined as in (3).
Similarly, the Restore process with truncated regeneration rate κM is still uniformly er-

godic and possesses a unique invariant distribution πM .
Our goal now is to bound the total variation distance

‖πM − π‖1,

as a function of M .

THEOREM 30. We have the following bound on the error:

‖πM − π‖1 ≤ 4
∫∞

0 Pμ(τ e
M ≤ t) exp(−tκ

¯
)dt

Eμ[τ∂ ] .

PROOF. See Appendix A.5. �

REMARK 31. To use this bound we need to further bound

Px

(
τ e
M ≤ t

)
.

Intuitively, if κM is a reasonable approximation for κ , then κe
M is low, and hence τ e

M tends to
be large, and so this bound is tighter.

PROPOSITION 32. Fix a regeneration distribution μ. We have that

(31)
∫ ∞

0
dt Pμ

(
τ e
M ≤ t

)
e−tκ

¯ → 0 as M → ∞.

Thus by Theorem 30 as M → ∞,

‖πM − π‖1 → 0.

PROOF. The event {τ e
M ≤ t} is contained in the event {sups≤t κ(Ys) ≥ M}. Thus, for any

fixed x

lim
M→∞Px

(
τ e
M ≤ t

)= Px

( ∞⋂
M=1

{
τ e
M ≤ t

})

≤ Px

(
sup
s≤t

κ(Ys) = ∞
)

≤ Px

(
sup
s≤t

‖Ys‖ = ∞
)

since κ is locally bounded

= 0 since Y is nonexplosive.
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By the dominated convergence theorem it follows that

lim
M→∞

∫ ∞
0

dt e−tκ
¯

∫
E

dμ(x)Px

(
τ e
M ≤ t

)= 0,

which is precisely (31). �

In order for Theorem 30 to be of practical use, we will further need bounds on

(32) Px

(
τ e
M ≤ t

)
,

which will vary given the particular situation; given the choice of the underlying diffusion Y ,
target π and regeneration density μ.

The rate at which the probabilities (32) decay as a function of M will crucially depend on
the rate at which the regeneration rate κ grows. Thus we define the following,

L(M) := sup
{
� > 0 : sup

{
κ(x) : x ∈ [−�, �]d}≤ M

}
,

which for a given truncation level M defines the largest hypercube on which no truncation
occurs.

The rate at which L(M) grows as M → ∞ will crucially dictate the rate at which the error
decays. Then let

H(M) := [−L(M),L(M)
]d ⊂ R

d,

and let

TM := inf
{
t ≥ 0 : Yt ∈ R

d \ H(M)
}

be the first hitting time of the diffusion Y (without regenerations) of the complement of
H(M). Clearly we must have

TM ≤ τ e
M.

Thus it follows that ∫ ∞
0

Px

(
τ e
M ≤ t

)
e−κ

¯
t dt ≤

∫ ∞
0

Px(TM ≤ t) e−κ
¯
t dt.

To proceed from here we require knowledge of the distribution of the hitting times TM

for the underlying diffusion Y . At this point we will specialize to the case of Brownian mo-
tion; however, a similar analysis can be performed in any situation where we have analogous
bounds on the hitting times.

By the reflection principle for one-dimensional Brownian motion we know that for any
a > 0,

P

(
sup

0≤s≤t

|Bs | > a
)

≤ 2P
(

sup
0≤s≤t

Bs > a
)

= 4P(Bt > a)

= 4
(

1 − �

(
a√
t

))
.

Here � denotes the standard univariate normal cumulative distribution function. For a multi-
dimensional standard Brownian motion, it follows that

P0(TM ≤ t) ≤ 4d

(
1 − �

(
L(M)√

t

))
.

This is because leaving a hypercube is the same as having some component leaving the inter-
val [−L(M),L(M)].
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We now make use of the well-known bound for the standard normal cumulative distribu-
tion function: for each λ > 0,

1 − �(λ) <
1√
2πλ

e−λ2/2.

This leads to the bound∫ ∞
0

P0(TM ≤ t) e−κ
¯
t dt ≤ 4d√

2π

∫ ∞
0

√
t

L(M)
e−L(M)2/(2t)e−κ

¯
t dt.

This integral can be evaluated analytically,1 to obtain∫ ∞
0

P0(TM ≤ t) e−κ
¯
t dt ≤ 4d√

2π

√
π

2κ
¯

(√
2 + 1

L(M)
√

κ
¯

)
e−√

2κ
¯
L(M)

= 2d

κ
¯

(
1 + 1

L(M)
√

2κ
¯

)
e−√

2κ
¯
L(M).

So for large values of M we have a bound that decays like

e−√
2κ

¯
L(M).

This can be used to give practical suggestions of how large to choose M in order to balance
the bias and variance of the algorithm’s output.

Suppose we are able to obtain n i.i.d. draws X1, . . . ,Xn ∼ πM , say by running the CFTP
algorithm a total of n times. For a bounded test function f , we estimate νπ [f ] by

n∑
i=1

f (Xi)

n
.

We estimate the error roughly as∣∣∣∣∣
n∑

i=1

f (Xi)

n
− νπ [f ]

∣∣∣∣∣≤
∣∣∣∣∣

n∑
i=1

f (Xi)

n
− πM(f )

∣∣∣∣∣︸ ︷︷ ︸
∼ 1√

n

+ ∣∣πM(f ) − νπ [f ]∣∣︸ ︷︷ ︸
≤‖f ‖∞‖πM−π‖TV

≈ O

(
1√
n

)
+ exp

(−√2κ
¯
L(M)

)
.

In order to balance these two terms, it is advisable to choose n and M such that

1√
n

∼ exp
(−√2κ

¯
L(M)

)

⇒ logn

2
√

2κ
¯

∼ L(M).

So this gives some indication of how to choose M , given n. This will achieve an error of
order roughly O(n−1/2). The computational cost in n will be roughly O(n logn).

6. Examples. In this section we give some univariate examples which highlight key as-
pects of our Restore methodology. A thorough investigation of the computational properties
of Restore is an important and challenging task, which is outside the scope of this present
work and will be the topic of future research.

1https://www.wolframalpha.com/input/?i=int_0%5Einfty+%5Csqrt+(t)+exp(-a%2F(2t))+exp(-t)dt

https://www.wolframalpha.com/input/?i=int_0%5Einfty+%5Csqrt+(t)+exp(-a%2F(2t))+exp(-t)dt
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6.1. Cauchy posterior. We first give an example where π has heavy tails and is multi-
modal, where we can apply coupling from the past.

This example is based on Example 3.1 of Murdoch (2000). We take

(33) π̄(x) ∝
n∏

i=1

1

1 + (yi − x)2 ,

for some observations (y1, . . . , yn) ∈ R
n, with respect to Lebesgue measure on R. (We use

the notation π̄ , since in the notation of Section 3.1, the symbol π is reserved for the target
density with respect to the measure �.)

This can be thought of as the posterior distribution for i.i.d. Cauchy(x) data, with an im-
proper uniform prior on R for x. In Example 3.1 of Murdoch (2000), the author considers a
very similar target with lighter tails. We will take the same data as Murdoch (2000), namely
n = 3 and observations (1.3,−11.6,4.4). The resulting posterior is plotted in red in Figure 1.
Our sampling approach here is similar to that of Murdoch (2000); we are also combining
local and global dynamics, but we will choose diffusive local dynamics which rapidly enter
the tails.

As such, for our underlying process, we will take the following diffusion: an unstable
Ornstein–Uhlenbeck process, described by the SDE

(34) dYt = Yt dt + dBt,

where B is a standard univariate Brownian motion. We showed in Section 3.1.1 that this dif-
fusion satisfies the BASSA conditions (Assumption 7). This diffusion, like a stable Ornstein–
Uhlenbeck process, is also a Gaussian process with known finite-dimensional distributions,
and so can be simulated easily without error.

For the regeneration distribution we will take the minimal regeneration distribution μ∗
from Section 5.1, with κ

¯
= 4. This distribution is compactly supported, and samples can be

FIG. 1. The heavy-tailed multi-modal target distribution π of (33) (red), and 30,000 samples obtained from the
CFTP implementation. These are i.i.d. draws from π .
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efficiently obtained through rejection sampling from a uniform distribution. In this setting
the regeneration rate is uniformly bounded from above, and so we can directly make use of
Poisson thinning, as in Algorithm 2. The various assumptions as in Section 3.1 are easily
verified to hold in this setting.

Thus we are able to apply the CFTP implementation (Section 4.2) to obtain independent
and identically distributed draws from π . A histogram consisting of 30,000 draws from the
CFTP implementation are plotted in Figure 1. These were obtained by running the CFTP
algorithm 30,000 times independently.

6.2. Jump Restore example. We turn now to an example of jump process Restore (Sec-
tion 3.2), where we use Restore to introduce rejection-free moves into an existing sampler.

A situation where Assumption 19 is easily checked is when P corresponds to a Markov
chain that is already π -invariant, for instance the kernel of an appropriate MCMC algorithm
targeting π . In this case we can easily embed P into continuous time without changing the
asymptotic dynamics, just by taking constant holding rates λ ≡ 1. In this case the regeneration
rate reduces to

κ(x) = C
μ(x)

π(x)
, x ∈ E,

and we see that any choice of C > 0 will ensure nonnegativity of κ . This gives a recipe to
introduce rejection-free moves to a discrete sampler in continuous time.

Consider the following example, in one dimension for ease of visualisation. Writing
φ(·;ν,σ 2) for the univariate Gaussian density with mean ν ∈ R and variance σ 2 > 0, take as
the target π on R:

π(x) = 0.1φ
(
x;−22,32)+ 0.3φ

(
x;−1,0.22)+ 0.6φ

(
x;15,12), x ∈R.

For the regeneration density μ, we take

μ(x) = 1

3

(
φ
(
x;−29,0.32)+ φ

(
x;3,12)+ φ

(
x;10,12)), x ∈ R.

We take the underlying process Y to be random walk metropolis with variance 1 embed-
ded in continuous time, with constant holding rate 1. We took the constant C = 1 in the
regeneration rate.

We have plotted a histogram after 300,000 steps of the jump chain (taking into account
holding times) in Figure 2 and in Figure 3 we have plotted the continuous-time trajectory of
the first 50,000 jump steps of this run.

7. Conclusions. In this work we have introduced and studied the Restore process, which
is obtained by enriching an existing local continuous-time Markov process with global re-
generative dynamics. We have focused particularly on how it could be applied within Monte
Carlo methodology to sample from a prescribed target density of interest, π . Surprisingly,
the Restore process enables us to combine continuous-time local and global dynamics—
neither of which is π -invariant—and by means of an inhomogeneous Poisson process com-
pensate these dynamics to ensure the process is π -stationary. The resulting sampler is simple
to implement (in many settings it is no more complex than a vanilla Metropolis–Hastings
sampler), and we readily establish a central limit theorem. Although the use of an inhomoge-
neous Poisson process has some natural affinity with recent Monte Carlo developments (such
as piecewise-deterministic MCMC methods, Bouchard-Côté, Vollmer and Doucet (2018),
Bierkens, Fearnhead and Roberts (2019) and quasi-stationary Monte Carlo methods, Pollock
et al. (2020), Wang et al. (2019)), the additional regenerative behavior provides significant
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FIG. 2. The target density π (red) and regeneration density μ (dashed) for the jump Restore example, along
with a weighted histogram of the Restore run, taking into account holding times.

benefits, both theoretically and practically. In particular, we show that the regenerative behav-
ior allows us, with verifiable conditions, to demonstrate uniform ergodicity, avoid traditional
MCMC problems such as burn-in, and even construct independent exact draws from π by a
coupling-from-the-past scheme. On the more practical side, we have discussed some of the
natural approximations a practitioner may make in implementing continuous-time samplers
for use within the Restore process, showing that the global regenerative dynamics allow us to
readily analyze such approximations, and to study and understand their effect.

FIG. 3. The continuous-time trajectory of the first 50,000 steps of the jump Restore sampler. The proportion of
regeneration moves was roughly 0.496. The red points are the regenerations.
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This work has been primarily focused on introducing and establishing fundamental results
for the Restore process, and there is considerable scope for further development. From a
practical perspective, it is of interest to consider its use in different settings, with new classes
of local and global dynamics. For instance, in the setting of continuous-time local dynamics
one could consider piecewise-deterministic Markov processes, or even ODE flows, which
will have properties particularly suited to certain problems. Or the construction of the global
dynamics—the regeneration density—might utilize other inference about the target density
π , obtained, say, by a simpler but approximate scheme. Thus in effect one could use Restore
to remove the error from existing statistical approaches. Indeed, the flexibility offered by Re-
store, in combining continuous-time local and global dynamics which are not independently
π -invariant, suggests that we are still far from espying the limits to which this general frame-
work might be extended. For instance, it may be possible to use the framework to compensate
multiple local and global dynamics, or to have global dynamics which are themselves adap-
tive to the accrued information of the process. Other prospective applications of the Restore
process include exploiting the regenerative structure of the process for use within parallel
computing architectures, embedding Restore within other Monte Carlo methodologies which
require independent exact draws from the target distribution, something that Restore (unlike
MCMC) can provide.

From a theoretical perspective, our understanding of the Restore process is nowhere near as
complete as we should like, beginning with the lack of a single unified proof of invariance of
the target distribution, and proceeding to the need for an appropriate definition of ‘efficiency’
or ‘optimality’ for choosing appropriate dynamics. Any reckoning with these notions would
have to take account of the temporally varying computational cost of simulating the process
with multiple dynamics, which is beyond the scope of this paper. Insights into issues such as
these could be particularly useful in the design of appropriate diagnostics for the process, for
instance, in situations where the verifiable CFTP conditions do not hold.

APPENDIX: PROOFS

A.1. Proof of Lemma 3. The techniques of Chapter 61 of Sharpe (1988) allow us to
identify the process Y killed at time (3) with the (sub-)process generated by the decreasing
multiplicative functional

mt := exp
(
−
∫ t

0
κ(Ys)ds

)
, t ≥ 0.

Since Y is right-continuous and κ is locally bounded, this defines a right multiplicative func-
tional. Then by Theorem 61.5 of Sharpe (1988), concerning processes which are generated by
such right multiplicative functionals, we can conclude that our killed process Y with lifetime
(3) is a right process.

The resulting Restore process X, given in (4), is formed by concatenating independent
copies of such killed processes with initial distribution μ. Exercise 14.17 of Sharpe (1988)
shows that the infinite concatenation of a series of independent and identically distributed
right processes is yet another right processes. Hence our Restore process X is indeed a right
process.

Since κ is locally bounded and Y is right-continuous, it follows that Eμ[τ∂ ] > 0. The
final statement then follows from the fact that the lifetimes (apart from possibly the first) are
independent and identically distributed.

A.2. Proof of Proposition 12. We have seen in the Proof of Lemma 3 that the killed
process can be identified with a subprocess generated by a multiplicative functional. Hence
we will seek to utilize Theorem 2.5 of Demuth and van Casteren (2000), which can be applied
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to such processes. From our Assumptions 8 and 11, it follows that κ is nonnegative and
continuous. In particular it is bounded on compact sets. Thus the potential V = κ belongs
to the so-called local Kato class. We are assuming that our underlying process Y satisfies
BASSA (Assumption 7), so we have satisfied the conditions of Theorem 2.5 of Demuth and
van Casteren (2000).

The conclusions of the Proposition are precisely the conclusions of Theorem 2.5 of
Demuth and van Casteren (2000), restated in our present setting.

A.3. Proof of Lemma 15. Recall that we write W 2,1(Rd) for the Sobolev space of mea-
surable functions on R

d whose first and second derivatives are integrable with respect to
Lebesgue measure on R

d , equipped with the corresponding Sobolev norm. Precise defini-
tions can be found in Adams (1975).

First note that the fact that π̄ ∈ W 2,1(Rd) along with the integral assumptions imply that∫
Rd

π(x)κ(x)d�(x) < ∞,

since we can write

πκγ = 1

2
π̄ − ∇A · ∇π̄ − Aπ̄ + Cμγ.

Now, as in the proof of Theorem 3.18 of Adams (1975), let f : Rd → R be a mollifier,
satisfying properties (i), (ii) and (iii) described therein with m = 2. Taking the square if nec-
essary, we can assume that f is nonnegative. In particular, f and its derivatives up to order
2 are bounded pointwise in absolute value by a constant M . We can now define similarly for
each n ∈ N, πn := fnπ , where fn(x) := f (x/n), x ∈ R

d .
Since π is smooth, the πn are a sequence of smooth, compactly supported functions with

the following properties: π̄n := γ · πn converges to π̄ = γ · π pointwise and in W 2,1(Rd) (as
in the proof of Theorem 3.18, Adams (1975)), and we have πn ≤ Mπ pointwise, uniformly
over n. This implies, in particular, that πn converges to π in L1(�).

Using the relation ∇A = ∇γ
2γ

we can relate the action of L0 on �-densities to its action on
Lebesgue densities:

(35) −γL0πn = 1

2
πn + ∇A · ∇πn = 1

2
π̄n − ∇A · ∇π̄n − (A) π̄n.

This will allow us to show that −γL0πn converges in L1(Rd)—R
d equipped with Lebesgue

measure—to
1

2
π̄ − ∇A · ∇π̄ − Aπ̄.

We consider the three terms on the right-hand side individually. Convergence of the first term
is immediate since π̄n converges to π̄ in W 2,1(R). Convergence of the third term follows
since π̄ converges to π̄ pointwise, with πn ≤ Mπ , so we can make use of the dominated
convergence theorem.

It remains to demonstrate the convergence of ∇A · ∇π̄n. We have

(36) ∇A · ∇π̄n = fn∇A · ∇π̄ + π̄∇A · ∇fn.

The first term on the right-hand side converges in L1(Rd) to ∇A · ∇π straightforwardly, by
dominated convergence, as the mollifiers are uniformly bounded by M . For the second term
of (36), first note that ∇fn(x) = n−1∇f (x/n), which is bounded (in each component) by
M/n, and the support of ∇fn is by construction within the set Bn := {y ∈ R

d : n ≤ |y| ≤ 2n}.
Thus we have ∣∣π̄(x)∇A · ∇fn(x)

∣∣≤ π̄ (x)K|x|Mn−1 1Bn(x) ≤ 2KMπ̄(x).
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Here we used the bound on the drift |∇A(x)| ≤ K|x|. Thus we can apply the dominated
convergence theorem once more to establish that π̄∇A · ∇fn is converging in L1(Rd) to the
zero function.

It follows (by reversing the application of (35)) that −L0πn converges to

1

2
π̄ − ∇A · ∇π̄ − (A) π̄ = 1

2
π + ∇A · ∇π

in L1(�). Since L0 is a closed operator, and since the sequence of smooth compactly sup-
ported functions πn belongs to D(L0

1) for each n, we have thus established that π ∈ D(L0
1).

Finally, since
∫

πκ d� < ∞, and we have that πn ≤ Mπ , we have that
∫

πnκ d� →∫
πκ d�.
Thus

Lκπn → L0π + κπ = Cμ

in L1(�). This shows that π ∈D(Lκ
1) and Lκ

1π = Cμ, concluding the proof of Lemma 15.

A.4. Proof of Theorem 16. We want to prove that π is an invariant distribution for the
Restore process X with interarrival dynamics Y , regeneration rate κ as defined in (9) with
regeneration density μ. We are in the setting (E,m) = (Rd,�).

We know that the Restore process X, formed by concatenating copies of the killed pro-
cess, is a strong Markov process; see Lemma 3 and its proof. Let {P μ

t : t ≥ 0} denotes its
semigroup.

Our goal is to show

t �→ πP
μ
t f :=

∫
d�(x)π(x)

[
P

μ
t f
]
(x) = Eπ

[
f (Xt)

]
is constant in t . By time homogeneity it suffices to show that the time-derivative is 0 at t = 0.
This is the same method used to prove π -invariance of the bouncy particle sampler in the
supplementary material of Bouchard-Côté, Vollmer and Doucet (2018).

The Restore process naturally exhibits renewal behavior, since the individual lifetimes are
independent and identically distributed. So we will seek a renewal-type representation of
the semigroup P

μ
t by conditioning on the first arrival τ∂ . Since κ is locally bounded, τ∂ is

absolutely continuous on R
+, hence will possess a density with respect to Lebesgue measure

on R
+.

Since κ is nonnegative, the semigroup exp(−tLκ) can also be expressed as[
exp
(−tLκ)f ](x) = Ex

[
f (Yt )1{τ∂ > t}],

where τ∂ is defined as in (3) for each f where the integral is well defined. Note that we have

(37) −Lκπ = −L0π − κπ = −Cμ.

This equation holds formally, where we view Lκ and L0 as formal differential operators, and
as a statement about the L1(�) generator by Assumption 14. Since we additionally assume
that in Assumption 14 that both π and μ are in L2(�) it follows that (37) also holds for the
L2(�) generator as well.

Consider

Pπ(τ∂ > t) =
∫

d�(x)π(x)

∫
d�(y)pκ(t, x, y)

=
∫

d�(y)

∫
d�(x)π(x)pκ(t, y, x)

=
∫

d�(y)
[
exp
(−tLκ)π](y),
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where the second line relies on Tonelli’s theorem to exchange the order of integration, and
uses the symmetry of pκ to replace pκ(t, x, y) by pκ(t, y, x). The final integral is well de-
fined since π ∈ L1(�) and the semigroup exp(−tLκ) maps L1(�) to itself, by Proposition 12.
Thus by strong continuity and the fact that π ∈ D(Lκ

1) (Assumption 14) we can differentiate
this expression to find

d

dt
Pπ(τ∂ > t)

∣∣∣∣
t=s

=
∫

d�(y)
[
exp
(−sLκ)(−Lκπ

)]
(y)

= −
∫

d�(y)
[
exp
(−sLκ)(Cμ)

]
(y)

= −C

∫
d�(x)μ(x)

[
exp
(−sLκ)1](x).

The second line applies (37) again, while the final equality relies once more on Assump-
tion 14 and symmetry of the semigroup.

This shows that the density on R
+ with respect to Lebesgue measure of the first arrival

time under Pπ is given by

h(s) = C

∫
d�(x)μ(x)

[
exp
(−sLκ)1](x) = C Pμ(τ∂ > s), s ≥ 0,

and that C = 1/Eμ[τ∂ ]. This allows us to represent the semigroup of the Restore process
started in π as

πP
μ
t f =

∫ t

0
CPμ(τ∂ > s)μP

μ
t−sf ds + π exp

(−tLκ)f
= C

∫ t

0
Pμ(τ∂ > t − s)μP μ

s f ds + π exp
(−tLκ)f.

Our goal is to differentiate this expression with respect to t , and to show that the derivative at
t = 0 is zero.

Consider any bounded f in D(Lκ
2). From the representation above we can see that t �→

πP
μ
t f is a continuous function. Starting from

t �→ Pμ(τ∂ > t) =
∫

d�(x)μ(x)

∫
pκ(t, x, y)d�(y)

= E
0
μ

[
exp
(
−
∫ t

0
κ(Ys)ds

)]
,

our technical assumption (12) allow us to differentiate under the integral sign to obtain

g(s) := − d

dt
Pμ(τ∂ > t)

∣∣∣∣
t=s

= E
0
μ

[
κ(Ys) exp

(
−
∫ s

0
κ(Yu)du

)]
for each s ∈ [0,1]. g is a continuous function, and will be uniformly bounded over s ∈ [0,1].

Conditioning, as above, on the first regeneration time, we then have

μP
μ
t f =

∫ t

0
g(s)μP

μ
t−sf ds + μ exp

(−tLκ)f,

showing that t �→ μP
μ
t f is also a continuous function. By Leibniz’s rule:

d

dt
πP

μ
t f

∣∣∣∣
t=s

= C

∫ s

0
g(s − u)μP μ

u f du + Cμ(1)μP μ
s f + π exp

(−tLκ)(−Lκf
)
.

Taking t = 0, we find

d

dt
πP

μ
t f

∣∣∣∣
t=0

= Cμ(f ) + π
(−Lκf

)
.
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Since we chose f ∈ D(Lκ
2), and since we assumed π ∈ D(L0

2) ∩D(Lκ
2) (Assumption 8), this

final expression is equal to

Cμ(f ) + π
(−Lκf

)= ∫ d�(x)f (x)
(
Cμ(x) + (−L0π

)
(x) − κ(x)π(x)

)
.

This will equal 0 for any such f if

κ(x) = −L0π

π
(x) + C

μ(x)

π(x)
, x ∈ R

d,

which is exactly our (9). This concludes the proof of Theorem 16.

A.5. Proof of Theorem 30. Recall the expression for the invariant distribution

νπ [f ] = Eμ[∫ τ∂

0 f (Ys)ds]
Eμ[τ∂ ] .

We can rewrite this by exchanging the order of integration. Consider the resolvent operator,
which maps measurable functions to measurable functions,

Rf (x) :=
∫ ∞

0
dt Ex

[
f (Yt )1{τ∂ > t}]

=
∫ ∞

0
dt Ex

[
f (Yt )1{τM > t}1{τ e

M > t
}]

,

where the second equality holds by (28). Note that given a bounded measurable function f ,
Rf is also a bounded measurable function, since we can bound∣∣Rf (x)

∣∣≤ ‖f ‖∞Ex[τ∂ ] ≤ ‖f ‖∞ κ
¯
−1.

Thus by Fubini’s theorem, we can write

π = μR
μR1

,

in analogue with expressions given in Wang, Roberts and Steinsaltz (2020) and Benaim,
Cloez and Panloup (2018).

The invariant distribution πM of the process with truncated rate can be represented in a
similar way. Write

πM = μRM

μRM1
,

where for bounded measurable f ,

RMf (x) =
∫ ∞

0
dt Ex

[
f (Yt )1{τM > t}].

We have that

πM − π = (μR1)μRM − (μRM1)μR
(μRM1)(μR1)

= μR1(μRM − μR) + (μR1 − μRM1)μR
(μRM1)(μR1)

.

So we would like to bound

|μRf − μRMf |
for arbitrary bounded measurable f .
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For any nonnegative bounded measurable f ,

|μRf − μRMf | ≤
∫

μ(dx)

∫
dt
∣∣Ex

[
f (Yt )1{τM > t}1{τ e

M > t
}]

−Ex

[
f (Xt)1{τM > t}]∣∣

≤
∫

μ(dx)

∫
dt Ex

[
f (Yt )

(
1 − 1
{
τ e
M > t

})
1{τM > t}]

≤ ‖f ‖∞
∫

μ(dx)

∫
dt Ex

[
1
{
τ e
M ≤ t, τM > t

}]
= ‖f ‖∞

∫
μ(dx)

∫
dt Px

(
τ e
M ≤ t, τM > t

)
.

Since we are assuming that we have a lower bound κ
¯

on the regeneration rate, and Assump-
tion 27 holds, we can stochastically bound τM ≤ τ ′ where τ ′ ∼ Exp(κ

¯
) and τ ′ is independent

of everything else. So continuing the chain of inequalities,

≤ ‖f ‖∞
∫

μ(dx)

∫
dt Px

(
τ e
M ≤ t, τ ′ > t

)
= ‖f ‖∞

∫
μ(dx)

∫
dt Px

(
τ e
M ≤ t

)
Px

(
τ ′ > t

)
= ‖f ‖∞

∫
μ(dx)

∫
dt Px

(
τ e
M ≤ t

)
e−tκ

¯ .

A universal upper bound on this quantity is ‖f ‖∞/κ
¯
.

For for a given continuous nonnegative bounded f with ‖f ‖∞ ≤ 1 we get the following
bounds:

|πMf − πf |

≤ μR1‖f ‖∞
∫

μ(dx)
∫

dt Px(τ
e
M ≤ t) e−tκ

¯ + ∫ μ(dx)
∫

dt Px(τ
e
M ≤ t) e−tκ

¯ |μRf |
(μRM1)(μR1)

≤
∫

μ(dx)
∫

dt Px(τ
e
M ≤ t) e−tκ

¯

μRM1
+
∫

μ(dx)
∫

dt Px(τ
e
M ≤ t) e−tκ

¯

μRM1

= 2
∫

μ(dx)
∫

dt Px(τ
e
M ≤ t) e−tκ

¯

μRM1

≤ 2
∫

μ(dx)
∫

dt Px(τ
e
M ≤ t) e−tκ

¯

μR1
.

Since this bound is valid for only nonnegative bounded f , in order to bound ‖πM − π‖1 we
pick up an additional factor of 2.

This concludes the proof of Theorem 30.
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