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Our main result is to prove almost-sure convergence of a stochastic-
approximation algorithm defined on the space of measures on a noncompact
space. Our motivation is to apply this result to measure-valued Pólya pro-
cesses (MVPPs, also known as infinitely-many Pólya urns). Our main idea is
to use Foster–Lyapunov type criteria in a novel way to generalize stochastic-
approximation methods to measure-valued Markov processes with a noncom-
pact underlying space, overcoming in a fairly general context one of the major
difficulties of existing studies on this subject.

From the MVPPs point of view, our result implies almost-sure conver-
gence of a large class of MVPPs; this convergence was only obtained until
now for specific examples, with only convergence in probability established
for general classes. Furthermore, our approach allows us to extend the defini-
tion of MVPPs by adding “weights” to the different colors of the infinitely-
many-color urn. We also exhibit a link between non-“balanced” MVPPs and
quasi-stationary distributions of Markovian processes, which allows us to
treat, for the first time in the literature, the nonbalanced case.

Finally, we show how our result can be applied to designing stochastic-
approximation algorithms for the approximation of quasi-stationary distri-
butions of discrete- and continuous-time Markov processes on noncompact
spaces.

1. Introduction. Measure-valued Pólya processes (MVPPs) are a generalization of
Pólya urns to the infinitely-many-color case. Pólya urns date back to Pólya and Eggenberger
[29], and have been thoroughly studied since then; highlights include, for example, the sem-
inal works of Athreya and Karlin [3] and Janson [37]. Although the question of generalizing
Pólya urns to infinitely-many colors was posed in 2004 in [37], MVPPs were only introduced
recently by Bandyopadhyay and Thacker [5] and Mailler and Marckert [45]. In both papers,
MVPPs are coupled with branching Markov chains on the random recursive tree.

The main idea of this article is to use stochastic-approximation methods (in the spirit of
Duflo [28] and Benaïm [7]) to prove almost-sure convergence of a class of MVPPs; the main
difficulty comes from the fact that the stochastic-approximation algorithm that we consider
is defined on the space of measures on a noncompact space.

The stochastic-approximation approach is a classical method for the study of Pólya urn
processes when the color-set is finite. For instance, in Section 2.2 of Benaïm [7], the author
introduces the reformulation of the classical Pólya urn model in terms of stochastic approxi-
mations and provide some ideas for generalizations; in Laruelle and Pagès [40], the authors
reformulate the study of several urn models in the setting of stochastic approximations, with
applications to clinical trials based on randomized urn models (see also Laruelle and Pagès
[41] with applications to optimal asset allocation in finance and Zhang [62] with applica-
tions to adaptive designs); we also refer the reader to Pemantle [52], which provides a sur-
vey of random processes with reinforcement using stochastic-approximation methods. Since
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stochastic approximation naturally applies to processes in general state spaces, it is natural to
extend the above methods to the case of MVPPs.

Our main contribution from the stochastic-approximation point of view is to prove con-
vergence of a stochastic-approximation algorithm defined on a noncompact space, namely
the set of probability measures on the color-space (being an arbitrary Polish space). To our
knowledge, very little is known for measure valued stochastic-approximation algorithm on
noncompact spaces, with some exceptions such as [38] and [44]. In the first reference, Jan-
son deals with the compactness issue by proving that the considered model can be restricted
to finite subspaces; in the second one, Maillard and Paquette prove that a specific stochas-
tic approximation on the set of measures on [0,∞) converges almost surely, using an ad
hoc coupling with the Kakutani and the uniform process. Our generalization of measure-
valued stochastic-approximation methods to noncompact state spaces is made by using ab-
stract FosterLyapunov type criteria in an original way, yielding the tightness of the stochastic-
approximation algorithm.

Our main contribution to the theory of MVPPs is to prove almost-sure convergence for
a large class of MVPPs (instead of the convergence in probability shown by Mailler and
Marckert [45]). Furthermore, we generalize the definition of measure-valued Pólya processes
to allow different colors to have different “weights”, and to allow the so-called “replacement
rule” to be random (two features that are classical in the context of Pólya urns). We are also
able to treat the “nonbalanced” case, which was not treated at all by Bandyopadhyay and
Thacker [5] or Mailler and Marckert [45].

We believe that the applications of our results go beyond the field of MVPPs: in particu-
lar, we detail an application to the approximation of quasi-stationary distributions. Consider
a Markov process that gets absorbed when it reaches a state ∂ . A quasi-stationary distribu-
tion (QSD), if it exists, is the limiting distribution of this Markov process conditioned on not
reaching ∂ (we refer the reader to [21, 48, 56] for general introductions to quasi-stationary
distributions). Given an absorbed Markov process, it is in general a hard question to prove ex-
istence and uniqueness of a QSD; an even harder question is to find an explicit formula for it.
With many applications, including the study of interacting particle systems [23, 24], of pop-
ulation dynamics [15, 58], of the simulation of metastable systems [27] and of Monte-Carlo
methods [60], numerical approximation methods for quasi-stationary distributions have at-
tracted a lot of interest during the last decades (see for instance, [32, 34, 35, 46, 50]). A
recent method introduced independently by Benaïm and Cloez [9] and by Blanchet, Glynn
and Zheng [13] makes use of a stochastic-approximation algorithm for computing quasi-
stationary distributions on finite state spaces. This method has been recently extended to
compact state space cases by Benaïm, Cloez and Panloup [10] and Wang, Roberts and Stein-
saltz [61]. We show (see Section 2.3.3) that our result can be applied to prove almost-sure
convergence of such QSD-approximation algorithms for absorbed Markov processes taking
values on a noncompact space.

1.1. Definition of the model and main result. Throughout the article, E is a Polish space
endowed with its Borel sigma-field. A measure-valued Pólya process (MVPP) is a Markov
chain (mn)n≥0 taking values in the set of measures on a Polish space E. It depends on three
parameters: its initial composition m0 a nonzero nonnegative measure on E, a sequence of
i.i.d. replacement kernels1 (R(n))n≥1 on E, and a nonnegative weight kernel P on E. We
assume that:

(T>0) almost surely, for all x ∈ E, R(n)
x is a nonnegative measure.

1A kernel (resp. a nonnegative kernel) on E is, by definition, a function from E into the set of measures (resp.

nonnegative measures) on E. In particular, for all x ∈ E, R
(n)
x is a measure on E almost surely.
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Given mn, we define mn+1 as follows: pick a random element Yn+1 of E according to the
probability distribution proportional to mnP , that is, for all Borel set A of E,

(1) P(Yn+1 ∈ A | mn) =
∫
E Px(A)dmn(x)∫
E Px(E)dmn(x)

;

and then set

mn+1 = mn + R
(n+1)

Yn+1
.

Measure-valued Pólya processes were originally introduced by [5] and [45], as a gener-
alization of d-color Pólya urns, although they did not consider “weighted” MVPPs (they
always had Px = δx for all x ∈ E). Let us recall the definition of a Pólya urn and show why
MVPPs generalize this model: A d-color Pólya urn is a Markov process (U(n))n≥0 on N

d

that depends on three parameters: the initial composition vector U(0), the replacement ma-
trix M , and weights w1, . . . ,wd ∈ (0,∞). The vector U(n) represents the content of an urn
that contains balls of d different colors; balls of color i all have weight wi . Given U(n), one
defines U(n + 1) by picking a ball at random in the urn with probability proportional to its
weight, denoting the color of this random ball ξn+1, and setting U(n + 1) = U(n) + Mξn ,
where M1, . . . ,Md are the lines of M .

If we let E = {1, . . . , d} and mn = ∑d
i=1 Ui(n)δi for all n ≥ 0, then mn is a measure-valued

Pólya process with replacement kernel

R(n)

x =
d∑

i=1

Mx,iδi (almost surely for all n ≥ 0,1 ≤ x ≤ d),

and weight kernel Px = wxδx for all 1 ≤ x ≤ d .
Therefore, the MVPP process (mn)n≥0 can be thought of as a composition measure on a

set E of colors, and the random variable Yn+1 can be seen as the color of the “ball” drawn
at time n + 1. The main advantage of this wider model is that one can consider Pólya urns
defined on an infinite, and even uncountable, set.

Our main result is to prove almost-sure convergence of the sequence (mn/mn(E))n≥0
to a deterministic measure under the following assumptions: We denote by R the common
expectation of the R(n)’s and set Q(n) = R(n)P for all n ≥ 1, and Q = RP , meaning that, for
all x ∈ E and all Borel set A ⊆ E,

Q(n)

x (A) =
∫
E

Py(A)dR(n)

x (y) and Qx(A) =
∫
E

Py(A)dRx(y).

We assume that:

(A1) for all x ∈ E, Qx(E) ≤ 1, and there exists a probability measure μ on R with posi-
tive mean such that, for all x ∈ E, the law of Q(i)

x (E) stochastically dominates μ. In
particular, setting c1 = ∫ ∞

0 x dμ(x),

0 < c1 ≤ inf
x∈E

Qx(E) ≤ sup
x∈E

Qx(E) ≤ 1;

(A2) there exists a locally-bounded lower semicontinuous function V : E → [1,+∞) such
that:

(i) for all N ≥ 0, the set {x ∈ E : V (x) ≤ N} is relatively compact;
(ii) there exist two constants θ ∈ (0, c1) and K ≥ 0 such that

Qx · V ≤ θV (x) + K (∀x ∈ E),
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(iii) and that there exist three constants r > 1, p > ln θ
ln(θ/c1)

∨ 2, A > 0 such that

E
[
R(1)

x (E)r
] ∨E

[
Q(1)

x (E)p
] ≤ AV (x) (∀x ∈ E).

Under Assumption (A1), Q is a nonnegative kernel such that supx Qx(E) ≤ 1, so that
Q − I is the jump kernel (or infinitesimal generator) of a unique sub-Markovian transition
kernel (Pt )t≥0 on E. We consider the continuous-time pure-jump Markov process (Xt)t≥0
on E ∪ {∂}, where ∂ /∈ E is an absorbing state, with Markovian transition kernel Pt + (1 −
Pt(E))δ∂ . A probability distribution ν is a quasi-stationary distribution of (Xt)t≥0 if, and
only if, there exists a probability measure α on E such that, for all Borel sets A ⊆ E,

Pα(Xt ∈ A | Xt �= ∂) −−−−→
t→+∞ ν(A),

where Pα is the law of X with initial distribution α.

(A3) the continuous-time pure jump Markov process X with sub-Markovian jump kernel
Q − I admits a quasi-stationary distribution ν ∈ P(E). We further assume that the conver-
gence of Pα(Xt ∈ · | Xt �= ∂) holds uniformly with respect to the total variation norm on
{α ∈ P(E) | α · V 1/q ≤ C}, for each C > 0, where q = p/(p − 1).

Finally, we need the following technical assumption:

(A4) for all bounded continuous functions f : E →R, x ∈ E �→ Rxf and x ∈ E �→ Qxf

are continuous.

Under these assumptions, we are able to prove almost-sure convergence of the renormal-
ized MVPP m̃n := mn/mn(E):

THEOREM 1. Under Assumptions (T>0) and (A1)–(A4), if m0 · V < ∞ and m0P · V <

∞, then the sequence of random measures (mn/n)n≥0 converges almost surely to νR with
respect to the topology of weak convergence. Moreover, supn{mnP · V 1/q/n} < +∞ almost
surely, where q = p/(p − 1).

Furthermore, if νR(E) > 0, then (m̃n)n∈N converges almost surely to νR/νR(E) with
respect to the topology of weak convergence.

REMARK 1. If R = Q, then the quasi-stationary distribution ν is a left eigenfunction for
R, with associated eigenvalue θ0 ∈ (0,1]. In particular, Theorem 1 implies that the average
mass of mn, that is, mn(E)/n, converges almost surely to θ0.

REMARK 2. The main result holds under a weaker versions of Assumption 3: namely,
the total variation distance can be replaced by any metric inducing the topology of weak
convergence (or a stronger one).

REMARK 3. To illustrate how this theorem applies, let us first consider the simple case
of a classical d-color Pólya urn of random replacement matrix M(n) with no weights, where
(M(n))n is a sequence of i.i.d. random matrices with nonnegative entries and mean M .
We assume that

∑d
i=1 Mx,i > 0 for all 1 ≤ x ≤ d and that M is irreducible. Let S =

maxd
x=1

∑d
i=1 Mx,i , and let mn = 1

S

∑d
i=1 Ui(n)δi , where Ui(n) is the number of balls of

color i in the urn at time n. One can check that (mn)n≥0 is an MVPP on E = {1, . . . , d} with
replacement kernel R(n)

x = 1
S

∑d
i=1 M

(n)

x,iδi , for all n ≥ 0 and 1 ≤ x ≤ d , such that R = M/S.
Note that, since we have no weights, R = Q. Let μ be the distribution of minx∈{1,...,d} Xx ,

where X1, . . . ,Xd are independent random variables respectively distributed as Q
(1)

1 (E), . . .,
Q

(1)

d (E). Assumption (A1) is satisfied since μ has positive mean c1 ≤ Qx(E) ≤ 1 for all
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1 ≤ x ≤ d . Assumption (A2) is automatically satisfied since the color space E is compact.
Consider the process X on E ∪ {∂} absorbed at ∂ and whose jump matrix restricted to E is
given by M/S − I . Then, since M/S is irreducible, the process X conditioned on not hitting
∂ has a unique quasi-stationary distribution ν = ∑n

i=1 viδi , which is given by the unique non-
negative left eigenvector v of M/S − I and hence of M . It is also known (see, e.g., Darroch
and Seneta [22]) that there exists C,δ > 0 such that ‖Pα(Xt ∈ · | Xt /∈ ∂)− ν‖TV ≤ Ce−δt for
all α ∈ P(E), which thus implies (A3). Finally, Assumption (A4) is trivially satisfied since
E is discrete.

Thus, Theorem 1 applies, and we get that, almost surely when n tends to infinity, m̃n →
νR/νR(E) = ν (with respect to the topology of weak convergence), and thus, U(n)/n → v,
a result that dates back to Athreya and Karlin’s work on generalized Pólya urns [3].

REMARK 4. In the original Pólya urn model, the replacement matrix is the identity and
is not irreducible. In this case, there are several quasi-stationary distributions and thus As-
sumption (A3) fails. We may thus say that the equivalent of the irreducible assumption in
Athreya and Karlin’s result is our Assumption (A3).

In Section 2 we apply our result to many more examples, and, in particular, to examples
where the color space E is infinite, and even noncompact. Before that, in the rest of this
introduction, we discuss our result and its assumptions.

1.2. Discussion of the result in view of the existing literature on MVPPs. Our definition
of a measure-valued Pólya process is more general than the definition of Bandyopadhyay and
Thacker [5] and Mailler and Marckert [45]; indeed, their model can be obtained from ours by
taking R(i) = R almost surely for all i ≥ 1 (deterministic replacement rule), and Px = δx for
all x ∈ E (no weights). [5] and [45] also make the following assumptions:

(I) 0 < m0(E) < +∞;
(B) for all x ∈ E, Rx(E) = 1;
(E) there exist two sequences (an)n≥0 and (bn)n≥0 such that the Markov chain (Wn)n≥0

on E of transition kernel (Rx)x∈E satisfies

Wn − bn

an

⇒ ν,

in distribution when n goes to infinity, independently from the initial distribution of W0.
(R) the sequences (an)n≥0 and (bn)n≥0 are such that, for all εn = o(

√
n), for all x ∈ R,

lim
n→∞

bn+x
√

n+εn
− bn

an

= f (x) and lim
n→∞

an+x
√

n+εn

an

= g(x),

where f and g are two measurable functions.

The names of the assumptions are (I) for initial composition, (B) for balance, (E) for ergod-
icity and (R) for regularity. Under these assumptions Mailler and Marckert [45] prove that (a
slightly weaker version of this result is proved by [5]):

THEOREM 2 (Mailler and Marckert [45]). If (mn)n≥0 is a MVPP that satisfies assump-
tions (I), (B), (E) and (R), then

(2) n−1mn(alogn · +blogn) → μ,

in probability when n goes to infinity, for the topology of weak convergence, where μ is the
distribution of f (	) + g(	)
, where 	 ∼N (0,1) and 
 ∼ ν are independent.
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Note that Theorem 1 applies under (I), (B), (E) and (R) if we assume additionally that
an ≡ 1 and bn ≡ 0, and it gives that

mn

n
→ ν almost surely,

which improves the convergence in probability of Theorem 2. Our theorem though does not
cover the cases of more general renormalization sequences (an)n≥1 and (bn)n≥1.

In summary, our main contributions to the theory of MVPPs are to:

(α) remove the balance hypothesis (B) and replace it by the weaker (A1);
(β) prove convergence almost sure in equation (2) when an ≡ 1 and bn ≡ 0;
(γ ) allow the weighting of the different elements of E, and to
(δ) allow the re-sampling of the replacement measures at each time-step in an i.i.d. way.

Our result was motivated by the classical Pólya urn theory (see, e.g., [37]), in which all these
features are standard. Since this paper was submitted, Janson [39] generalised Theorem 2 to
the random replacement case, thus treating (γ ) in that case. Also, Bandyopadyhay, Janson
and Thacker [4] prove almost sure convergence of a class of balanced MVPPs for which
the set of colors is countable and under a condition of strong ergodicity for the underlying
Markov chain, thus treating (β) in that case.

REMARK 5. A standard generalization of finitely-many-color Pólya urns is indeed to add
weights (or activities): each color x is given a weight w(x), and, at every time-step, one picks
a ball in the urn with probability proportional to the weights (vs. uniformly at random in the
nonweighted model) and then applies the replacement rule associated to this color (see, e.g.,
[37]). In our model, if Px = w(x)δx , where w(x) is nonnegative, then

P(Yn+1 ∈ A | mn) =
∫
A w(x)dmn(x)∫
E w(x)dmn(x)

,

which corresponds to weighting the color x by a weight w(x). The introduction of a weight
kernel is a generalization of the weight concept: one can for example see P as a noise on the
color drawn at random.

REMARK 6. Our model, assumptions and result can be easily adapted to the situation
where R(1) is a kernel from E to an other Polish state space F and P is a nonnegative kernel
from F to E. The main point of this extension is to check that the proof of Theorem 1 mainly
makes use of the properties of the composed kernel Q(1). For instance, in the d-color Pólya
urn model (see the end of Section 1.1), if

∑d
j=1 Mi,j > 0 for all i ∈ {1, . . . , d − 1} and if∑d

j=1 Md,j = 0, then one can choose E = {1, . . . , d − 1} and F = {1, . . . , d} together with

the kernels R
(i)

i,j = Ri,j = Mi,j /S for all (i, j) ∈ E × F and Pij = 1i �=dδi for all i ∈ F . In this

case, we thus have Q
(1)

i,j = Qi,j = Mi,j /S for all (i, j) ∈ E × E. If M restricted to E × E

is irreducible, we get that there exists a unique quasi-stationary distribution ν on E for the
continuous time Markov process X with infinitesimal generator Q − I (see [22]). Hence,
using our approach to MVPPs in this slightly more general context, we get that the d-color
Pólya urn converges almost surely, when n → +∞, to νR/νR(E) (which is a probability
measure on F ), a result that can be found, for example, in [37].

REMARK 7. The main idea in [5] and [45] is to show a link between the MVPP of
replacement kernel R and the Markov chain of kernel R. This relationship breaks down
if the balance assumption is not satisfied since R is no longer a probability kernel but a
sub-Markovian kernel (we can assume without loss of generality that the upper bound of
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supx Rx(E) is 1). Our main idea to relax the balance assumption is to add an absorbing
state ∂ that “makes” the transition kernel Markovian; note that this idea is similar to adding
“dummy” balls in the finitely-many-color case (see [37]). The ergodicity assumption (E) then
naturally becomes Assumption (A3) that the Markov chain has a quasi-stationary distribution.

The link between Pólya urns and quasi-stationary distributions already exists in the lit-
erature; for example, Aldous, Flannery and Palacios [2] apply the convergence results of
Athreya and Karlin [3] to approximating quasi-stationary distributions on a finite state space.
Our main result generalizes this work to the case of measure-valued Pólya processes.

REMARK 8. Another difference with [5] and [45] is that Theorem 1 naturally covers
periodic transition kernels since we consider the continuous time process associated to it,
which is never periodic.

1.3. Discussion of the assumptions. In Assumption (A1), we assume that Qx(E) is uni-
formly bounded from above by 1. If the supremum κ = supx∈E Qx(E) is finite (but larger
than 1), one can consider the process defined by m̂n := mn/κ for all n ≥ 0. One can easily
check that m̂n is an MVPP with parameters R̂(i) = R(i)/κ , P̂ = P , and Q̂ = R̂P̂ , and such
that m̂0 = m0/κ . Also, it satisfies Q̂x(E) ≤ 1 as in Assumption (A1).

For the lower bound, we assume that the random value Q(i)
x (E) stochastically dominates

an integrable probability measure μ on R with mean c1 > 0. This is used to prove that, for
any fixed c′ ∈ (θ, c1)

lim inf
n→+∞

mnP (E)

n
≥ c′,

almost surely; this is done by a coupling argument (see Lemma 3). An alternative assumption,
which may be particularly useful when Q(i)

x (E) can take negative values as in Section 1.4
below, is that there exist c1 > 0 and β > 1 such that

c1 ≤ inf
x∈E

Qx(E) ≤ sup
x∈E

Qx(E) ≤ 1 and sup
x∈E

E
∣∣Q(i)

x (E) − Qx(E)
∣∣β < +∞.(3)

For instance, in the example developed in Remark 3, take E = {1,2} and

M(n) = εn

(−1 0
0 1

)
+ (1 − εn)

(
1 2
1 0

)
,

where (εn)n≥1 is a sequence of i.i.d. Bernoulli random variables with parameter 1/2. Then
any probability measure μ on E as in Assumption (A1) has nonpositive mean, so that this
assumption is not satisfied. However, Assumption (3) is satisfied with c1 = 1.

Assumption (A2) is a Lyapunov assumption and is standard in the study of the ergodicity
of Markov processes. In Section 2, we show how to apply our main result to examples, and
therefore give examples of such Lyapunov functions. There is no general method to find Lya-
punov functions, except testing functions from classical families (polynomials, exponentials,
etc). For instance, for processes in Z, R or Rd with a drift towards 0, exponential or power
functionals of the distance to 0 often prove to be useful. Sometimes, probabilistic arguments
can help find a Lyapunov function; indeed, if, for some θ ∈ (0,1), Ex[θτK ] is finite for all
x ∈ E (where τK denotes here the first entry time in a set K of a discrete-time Markov chain
with transition probability given by Q), then V : x �→ Ex[θτK ] satisfies Qx · V ≤ θV (x) for
all x ∈ E \ K .

When Qx(E) = 1 for all x ∈ E, the existence of a Lyapunov function for Q can be used
to prove the ergodicity of the Markov process X. More precisely, if compact subsets of E

are petite sets for X, then the existence of a Lyapunov function entails the ergodicity of X

(see Meyn and Tweedie [49], for the definition of a petite set and for the deduction that X
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is ergodic) and hence Assumption (A3). Note that our proof does not seem to generalize to
the case of a weaker form of Lyapunov function (satisfying, for instance, Qx(V ) ≤ V (x) −
V 1/2(x)+C for all x ∈ E), although those weaker forms are generally sufficient to prove the
ergodicity of the process.

When Q is a sub-Markovian kernel, it has been recently proved in Champagnat and Ville-
monais [16] that the Lyapunov condition (A2-ii), with additional suitable assumptions, can
be used to prove the existence of a quasi-stationary distribution ν and to prove that the do-
main of attraction of ν contains {α ∈ P(E) | α · V 1/q < ∞}. These criteria will be used
extensively in our examples. Note that this result, when applicable, entails the existence of
a quasi-stationary distribution ν and the uniform convergence of Assumption (A3) in total
variation norm.

For conditions implying Assumption (A3), we also refer the reader to Villemonais [59]
where the case of birth and death processes is considered, to Gosselin [33], and Ferrari,
Kesten and Martínez [31] for population processes and the utility of the theory of R-positive
matrices in this matter. This is also implied by the general results provided in Champagnat
and Villemonais [17].

1.4. Removing balls from the urn. In the finitely-many-color case, it is often allowed to
remove balls from the urn, that is, the coefficients of the replacement matrix can be negative.
In Theorem 1, we have assumed that the measures (Rx)x∈E are positive, but we can in fact
consider situations where (Rx)x∈E are signed kernels as soon as they satisfy additional as-
sumptions (which are already implied by conditions (A1)–(A4) when (Rx)x∈E are positive
measures). In Section 2, we give examples that fall into this special framework.

In this section, we assume that (R(i)
x )x∈E is almost surely a signed kernel such that, for all

x ∈ E, Qx restricted to E \ {x} is a positive measure and Qx({x}) ∈ R. We assume that:

(T) for all n ≥ 0, mn is almost surely a positive measure.

In the finitely-many-color case, this assumption is called tenability. It is clearly satisfied when
Assumption (T>0) holds true. We refer the reader to [53], Definition 1.1-(iii), for a sufficient
condition for tenability in the finite state space case. As will appear in the examples section,
tenability is often naturally satisfied.

In the case when (R(i)
x )x∈E is allowed to be a signed kernel, we need to replace Assumption

(A2) by:

(A′2) there exist a locally bounded function V : E → [1,+∞) and some constants r > 1,
p > 2, q ′ > q := p/(p − 1), θ ∈ (0, c1), K > 0, A ≥ 1, and B ≥ 1, such that:

(i) for all N ≥ 0, the set {x ∈ E : V (x) ≤ N} is relatively compact.
(ii) for all x ∈ E,

Qx · V ≤ θV (x) + K and Qx · V 1/q ≤ θV 1/q(x) + K (∀x ∈ E).

(iii) for all continuous functions f : E →R bounded by 1 and all x ∈ E,

|Qx · f |q ′ ∨E
[∣∣R(i)

x · f − Rx · f ∣∣r] ∨E
[∣∣Q(i)

x · f − Qx · f ∣∣p] ≤ AV (x),

(iv) and∣∣Qx · V 1/q
∣∣q ∨ |Qx · V | ∨E

[∣∣Q(i)

x · V 1/q − Qx · V 1/q
∣∣r ] ≤ BV (x).

Assuming in addition that Assumptions (A1), (A3) and (A4) are satisfied, the conclusions
of Theorem 1 hold true. Since the set of assumptions (T), (A1), (A′2), (A3), (A4) is actually
implied (see Lemma 1 below) by the assumptions of Theorem 1, we prove this result in the
more general situation of the present subsection.
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LEMMA 1. Assumptions (T>0), (A1)–(A4) imply Assumptions (T), (A1), (A′2), (A3),
(A4).

PROOF. The fact that Assumption (T>0) implies Assumption (T) is straightforward. Fix
q = p/(p − 1); using Hölder’s inequality (q ≥ 1) and Assumption (A2-ii), we get, for all
x ∈ E, (

Qx · V 1/q)q ≤ Qx(E)q/pQx · V ≤ θV (x) + K.

Using the fact that, by concavity, for all a ≤ 1 and u ≥ 0, (1 + u)a ≤ 1 + ua , we thus get

Qx · V 1/q ≤ θ1/qV 1/q(x) + K1/q .

To prove (A′2-ii), it is thus enough to show that θ1/q < c1. This follows since, by assumption
on p,

1

q
ln θ = (1 − 1/p) ln θ <

(
1 − ln(θ/c1)

ln θ

)
ln θ = ln c1.

Now we prove (A2-iii); first note that, since q ′ := p > q > 1, we have, by Jensen’s inequality,
for all continuous function bounded by 1,

|Qx · f |q ′ ≤ E
[∣∣Q(1)

x · f ∣∣q ′] ≤ E
[
Q(1)

x (E)q
′] ≤ AV (x),

where we have used (A2-iii). Similarly, for all r ′ ∈ (1, r], using the convexity of u �→ ur ′
and

Jensen’s inequality, we get that,

E
[∣∣R(1)

x · f − Rx · f ∣∣r ′] ≤ 2r ′−1
E

[∣∣R(1)

x · f ∣∣r ′ + |Rx · f |r ′]
≤ 2r ′

E
[∣∣R(1)

x · f ∣∣r ′] ≤ A2r ′−1V (x),

and similarly for E[|Q(1)
x · f − Qx · f |p].

It only remains to prove (A2-iv). We have, using Hölder’s inequality, the fact that Qx is
nonnegative and the fact that V (x) ≥ 1,∣∣Qx · V 1/q

∣∣q = (
Qx · V 1/q)q ≤ Qx(E)q/pQx · V ≤ Qx · V

≤ θV (x) + K ≤ (θ + K)V (x).

Then, using the convexity of u �→ ur ′
and Jensen’s inequality, we get that

E
[∣∣Q(1)

x · V 1/q − Qx · V 1/q
∣∣r ′] ≤ 2r ′−1

E
[∣∣Q(1)

x · V 1/q
∣∣r ′ + ∣∣Qx · V 1/q

∣∣r ′]
≤ 2r ′

E
[(

Q(1)

x · V 1/q)r ′]
.

Now, using Hölder’s inequality, we obtain

Q(1)

x · V 1/q ≤ (
Q(1)

x · V )1/q
Q(1)

x (E)1/p.

Using again Hölder’s inequality, we have, setting � = q/r ′,

E
[(

Q(1)

x · V 1/q)r ′] ≤ E
[(

Q(1)

x · V )�r′
q

]1/�
E

[
Q(1)

x (E)
r′�

p(�−1)
](�−1)/�

≤ E
[
Q(1)

x · V ]1/�
E

[
1 + Q(1)

x (E)p
](�−1)/�

,

where we used that r ′�
p(�−1)

= r ′(q−1)
q−r ′ ≤ p for r ′ small enough in (1, r]. Using Assump-

tion (A2-ii), we get E[Q(1)
x · V ] = Qx(V ) ≤ (θ + K)V (x) and, using Assumption (A2-iii),

E[Q(1)
x (E)p] ≤ AV (x). We finally deduce that

E
[(

Q(1)

x · V 1/q)r ′] ≤ (θ + K + 1 + A)V (x),

where we have used that 1/� + (� − 1)/� = 1. This concludes the proof. �
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REMARK 9. When Qx({x}) is not bounded uniformly in x, the infinitesimal generator
Q − I may not define a unique sub-Markovian transition kernel (Pt )t≥0, and hence a unique
pure jump Markov process X (in distribution). The problem of existence and uniqueness of
such a transition kernel has been considered in great generality by Feller in [30] and is also
studied in details in [19], Chapter 2. In our case, Assumption (A2-ii) and Theorem [19], The-
orem 2.25, imply that Q − I uniquely determines a sub-Markovian semigroup (Pt )t∈[0,+∞)

and hence a unique jump-process X (in distribution). As a consequence, Assumption (A3) re-
mains unambiguous when Assumptions (T>0), (A2) are replaced by Assumptions (T), (A′2).

Plan of the paper. In Section 2, we apply Theorem 1 to several examples. In particular,
in Section 2.2, we look at examples that come from studying different characteristics (degree
distribution, protected nodes) in random recursive trees or forests. In Section 2.3, we detail
the case when the replacement kernels are the occupation measures of Markov processes, in
discrete and continuous time, and show how one can apply these results to the numerical ap-
proximation of QSDs on a noncompact space (see Section 2.3.3). Finally, Section 3 contains
the proof of Theorem 1.

2. Examples.

2.1. Markov chains.

2.1.1. Ergodic Markov chains. In [45], the following example is treated: take E = N :=
{0,1,2, . . .}, fix 0 < λ < μ, and set

Rx = λ

xμ + λ
δx+1 + xμ

xμ + λ
δx−1,

for all x �= 0, and R0 = δ1. This example is not weighted, meaning that Px = δx for all x ∈ E,
and balanced since Rx(E) = 1 for all x ∈ E. Note that the Markov chain of transition kernel
R is the M/M/∞ queue. Theorem 2 implies that this MVPP satisfies

n−1mn → γ in probability,

where γ is the stationary measure of the M/M/∞ queue, that is,

γ (x) =
(

λ

μ

)x e−λ/μ

x! (∀x ∈ N).

Let us show how our result implies almost-sure convergence of this MVPP. Note that, in
this example, the R(i) are deterministic and equal to R, Px = δx ; therefore, Q(i) = Q = R

(∀i ≥ 1). Since Rx(E) = 1 for all x ∈ N, then (A1) is satisfied (we can take μ = δ1, and thus,
c1 = 1). Assumption (A2) also holds: one can take V (x) = ex , implying that

Rx · V = λex+1 + μxex−1

λ + μx
= λe2 + μx

λ + μx
ex−1 = λe2 + μx

e(λ + μx)
V (x).

Note that

λe2 + μx

e(λ + μx)
<

2

e
⇔ x >

λ(e2 − 2)

μ
,

therefore,

Rx · V ≤ θV (x) + K,
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where θ = 2
e ∈ (0, c1) and K = supx≤λ(e2−2)/μ Rx · V . Also note that, for all r,p > 1, we

have

ER(1)

x (E)r ∨EQ(1)

x (E)p = Rx(E)r ∨ Rx(E)p = 1,

implying that (A2-iii) holds. Since the queue M/M/∞ is ergodic with stationary distribution
γ , we can infer that the continuous-time Markov process of generator R − I is also ergodic
and the domain of attraction of γ is P(N). Moreover, the same procedure as in the proof of
Lemma 1 shows that, for any q > 1, Qx · V 1/q ≤ θ1/qV (x) + K1/q , where θ1/q < 1. This
and the Foster–Lypanuov type criteria of [49] provide the uniform convergence to ν required
in Assumption (A3). Finally, since N is discrete, (A4) is trivially satisfied. Thus, Theorem 1
applies and we can conclude that if

∑
k≥0 ekm0(k) is finite, then

n−1mn → γ almost surely when n → ∞.

2.1.2. Quasi-ergodic Markov chains. Let us now consider the more general case where
E =N and, for all x ∈ E,

Rx = λxδx+1 + μxδx−1,

where (λx)x and (μx)x are families of positive numbers such that μ0 = 0, λ0 > 0,
infx≥1 μx > 0, supx μx < ∞ and λx = o(μx) when x → +∞. In this situation, the MVPP
is not weighted, so that Px = δx and Qx = Rx for all x ∈ E, and it is not balanced (hence
Theorem 2 does not apply).

We assume, without loss of generality, that supx(λx + μx) = 1, so that Qx(E) ≤ 1 for
all x ∈ E. Let μ be the Dirac mass at infx(λx + μx), which is positive. Assumption (A1) is
satisfied with this choice of μ, and c1 = infx(λx + μx). Let

V (x) = eax with a > 0 such that e−a ≤ c1/4.

Assumption (A2-i) is clearly satisfied, and (A2-ii) can be checked easily: for all x ∈ E,

Qx · V = λxea(x+1) + μxea(x−1) = V (x)
(
λxea + μxe−a)

≤ V (x) sup
y

μy

(
λx

μx

ea + e−a

)
≤ V (x)

(
λx

μx

ea + c1

4

)

≤ θV (x) + K,

where θ = c1
2 and K = max{V (y)(

λy

μy
ea + c1

4 ),with y s.t. λy

μy
ea + c1

4 ≥ c1
2 } (note that this

last set is finite by assumption and hence that K < ∞). Since Rx(E) = Qx(E) is uniformly
bounded from above, (A2-iii) is trivial for any fixed p > 2 ∨ ln θ

ln θ−ln c1
. Assumption (A4) is

also clearly satisfied in this case since E is discrete.
The same procedure as in the proof of Lemma 1 shows that Qx ·V 1/q ≤ θ1/qV (x)+K1/q ,

where θ1/q < c1 since we fixed p > ln θ
ln θ−ln c1

. Now, using Theorem 5.1 and Remark 11 in [16]
for the irreducible process X with infinitesimal generator Q − I , we deduce that there exist a
quasi-stationary distribution νQSD for X and two positive constants Cst, δ > 0 such that, for
all probability measure α ∈ E, satisfying α · V 1/q < +∞,∥∥Pα(Xt ∈ · | t < τ∂) − νQSD

∥∥
TV ≤ Cstα · V 1/qe−δt ,

which entails Assumption (A3) and provides a candidate for the long time behavior of the
MVPP mn/mn(E).
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Finally, using the fact that νQSD(Q − I ) = −λ0νQSD for some λ0 > 0 (this is a classical
property of quasi-stationary distributions, see for instance [56]) and hence that νQSDR is
proportional to νQSD, Theorem 1 entails that if

∑
k≥0 eakm0(k) is finite, then

mn

mn(E)

a.s.−−−−→
n→+∞

νQSDR

νQSDR(E)
= νQSD,

with respect to the topology of weak convergence.

2.2. Random trees. As discussed in Janson [37], Examples 7.5 and 7.6, infinitely-many-
color urns are particularly useful for the study of some functionals of random trees; we give
below two examples where our main result applies, and gives stronger convergence results.

2.2.1. Outdegree profiles.

DEFINITION 1. We define the out-degree profile of a rooted tree τ as

Out(τ ) = ∑
ν∈τ

δoutdeg(ν),

where for all node ν in τ , outdeg(ν) is the out-degree of ν (i.e., its number of children).

Out-degree profile in the random recursive tree. The random recursive tree (RRTn)n≥1 is a
sequence of random rooted trees defined recursively as follows:

• RRT1 has one node (the root);
• we build RRTn+1 from RRTn by choosing a node of RRTn uniformly at random, and

adding a child to this node.

It is straightforward to see that the sequence (Out(RRTn))n≥1 of the out-degree profile of
the random recursive tree is a MVPP on N of initial composition m1 = δ0, and replacement
kernel

Rx = −δx + δ0 + δx+1 (∀x ≥ 0).

Note that the replacement measures Rx are not positive, but the process satisfies Assumption
(T) by definition and thus this MVPP falls into the framework of Section 1.4. In this case,
Px = δx , and R(i) = R = Q almost surely for all i ≥ 1. Note that Qx(N) = 1 for all x ∈ N,
and, therefore, Assumption (A1) holds with μ = δ1 and c1 = 1.

Fix ε ∈ (0,1/2) and let V (x) = (2 − ε)x for all x ≥ 0; Assumption (A′2-i) holds, and we
have

Qx · V = −(2 − ε)x + 1 + (2 − ε)x+1 = 1 + (1 − ε)V (x),

for all q ∈ (1,2],
Qx · V 1/q = −(2 − ε)x/q + 1 + (2 − ε)(x+1)/q = 1 + (

(2 − ε)1/q − 1
)
V (x)1/q

≤ 1 + (1 − ε)V (x)1/q,

since 1/q < 1 and 2 − ε > 1. Therefore, Assumption (A′2-ii) is satisfied with θ = 1 − ε and
K = 1. Note that, for all continuous function f : N → R bounded by 1, we have, for all
q ′ ∈ (1,3]

|Qx · f |q ′ ≤ ∣∣1 − f (x) + f (x + 1)
∣∣q ′ ≤ 3q ′ ≤ 27V (x),
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since 1 ≤ V (x) for all x ∈ N. Therefore, since Q(i) = R(i) = R = Q almost surely for all
i ≥ 1, Assumption (A′2-iii) holds with A = 27. Using again that V (x) ≥ 1 for all x ∈ N, we
have

|Qx · V | = 1 + (1 − ε)V (x) ≤ (2 − ε)V (x),

and, for all q ∈ (1,2],∣∣Qx · V 1/q
∣∣q ≤ (

1 + (1 − ε)V (x)1/q)q ≤ 2qV (x),

since 2 − ε < 2. Therefore, Assumption (A′2-iv) holds and so does (A′2); note that p can be
arbitrary in (2,∞), making q arbitrary in (1,2). Note that q ′ is restricted to be in (q,3].

One can check that the Markov chain of kernel (Rx)x∈N is ergodic, with unique stationary
distribution νx = 2−x−1 (∀x ≥ 0). By [49], we obtain the uniform convergence to ν required
in Assumption (A3). Finally, (A4) holds since E = N is discrete.

Therefore, Theorem 1 applies and gives that

(4) n−1 Out(RRTn) → ν weakly, almost surely when n → ∞,

since νR = ν. Different versions of this result can be found in the literature: Bergeron, Fla-
jolet and Salvy [12], Corollary 4, prove it using generating functions, Mahmoud and Smythe
[42] prove a joint central limit theorem for the number of nodes of out-degree 0, 1 and 2,
Janson [37], Example 7.5, extends this result by considering out-degrees 0,1, . . . ,M for all
M ≥ 0, which implies (4). The approach of [42] and [37] relies on the remarkable fact that,
in that particular example, one can reduce the problem to finitely many types.

Our main contribution for this example is to prove the convergence in a stronger sense,
and thus answer a question of Janson (see Remark 1.2 [38]). Indeed, Theorem 1 also gives
that, for all q ∈ (1,2),

sup
n

Out(RRTn)

n
· V 1/q < +∞,

since Px = δx for all x, in this example. Therefore,

PROPOSITION 1. For all ε ∈ (0,1/2), for all q ∈ (1,2), for all functions f :N →R such
that f (x) = o((2 − ε)x/q) when x → ∞, we have

1

n

∫
f d Out(RRTn) →

∞∑
x=0

2−x−1f (x) almost surely when n → ∞.

Our approach also has the advantage of providing a framework that can be easily general-
ized, as, for example, in the next application to which Janson’s finitely-many-types approach
wouldn’t apply.

Out-degree profile in a random recursive forest with multiple children. Let us now con-
sider the following generalization of the random recursive tree studied above. The random
recursive forest (RRFn)n≥1 with multiple children is defined as a sequence of random rooted
forests defined recursively as follows: consider a probability measure α on {−1} ∪ {1,2, . . .}
(with 0 < α−1 < 1) and a probability measure β on {1,2, . . .};
• RRF1 has one node (the root);
• we build RRFn+1 from RRFn by choosing a node of RRFn uniformly at random, and, if

this node has at least one child,
– with probability α−1, remove the edge between the node and one of his children (hence

forming an other tree in the forest),
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– with probability αk (k ≥ 1), add k children to this node,
while, if this node has 0 child, with probability βk (k ≥ 1), add k children to this node.

We define Out(RRFn) as the sum of the out-degree profiles (see Definition 1) of the trees
composing the forest RRFn.

PROPOSITION 2. Assume that α and β both admit an exponential moment of order λ,
for some fixed λ > 0. There exists a probability distribution νQSD such that, for all q ∈ (1,2),
for all a > 0 satisfying

+∞∑
k=1

αke
ak < 2

∞∑
k=1

αk,

and for all function f : E = N →R such that f (x) = o(eax/q) when x → ∞, we have

(5)
∫

f
d Out(RRFn)

Out(RRFn)(E)
→

∫
f dνQSD almost surely when n → ∞.

PROOF. It is straightforward to see that the sequence (Out(RRFn))n≥1 of the out-degree
profile of the random recursive forest is a MVPP on N of initial composition m0 = δ0, and
random replacement kernel given, for all x ≥ 1 by

R(i)
x =

{−δx + δx−1 with probability α−1,

−δx + kδ0 + δx+k with probability αk, for all k ≥ 1,

and

R
(i)
0 = (k − 1)δ0 + δk with probability βk, for all k ≥ 1.

In particular, for all x ≥ 1,

Rx = −δx +
∞∑

k=1

kαkδ0 + α−1δx−1 +
∞∑

k=1

αkδx+k,

and

R0 =
∞∑

k=1

(k − 1)βkδ0 +
∞∑

k=1

βkδk.

We deduce that, for all x ≥ 1, Rx(E) = Mα := ∑
k∈N∪{−1} |k|αk (the first absolute moment

of α) and R0(E) = Mβ := ∑
k∈N kβk (the mean of β). From now on, we consider the MVPP

mM
n with replacement kernel R̄(i)

x := 1
M

R(i)
x , where M = Mα ∨Mβ . Although the replacement

measures R̄(i) are not positive, the process satisfies Assumption (T) by definition and thus this
MVPP falls into the framework of Section 1.4, with weight kernel P̄x = δx and Q̄(i)

x = 1
M

R(i)
x

for all x ≥ 0.
For any fixed p > 2 and q = p

p−1 ∈ (1,2), we have, for all i ≥ 1, for all x ≥ 1,

Q̄(i)

x (E) =
⎧⎨
⎩

k

M
with probability αk, for all k ≥ 1,

0 with probability α−1,

and Q̄
(i)

0 (E) = k/M with probability βk for all k ≥ 1. Thus, if we set

μ = α−1δ0 +
( ∞∑

k=1

αk

)
δ1/M,

we get that c1 = ∫
x dμ(x) = ∑

k≥1 αk/M > 0, and thus Assumption (A1) holds.
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Let us now check that (A′2) holds with V (x) = eax , where a ∈ (0, λ) satisfies
+∞∑
k=1

αke
ak < 2

∞∑
k=1

αk.

Assumption (A′2-i) is straightforward. Moreover, we have, for all x ≥ 1,

Q̄x · V = −1

M
V (x) +

∑∞
k=1 kαk

M
V (0) + 1

M
α−1V (x − 1) + 1

M

+∞∑
k=1

αkV (x + k)

≤ 1

M

(
−1 + α−1e−a +

+∞∑
k=1

αkeak

)
V (x) + 1

≤
∑

k≥1 αke
ak − ∑

k≥1 αk∑
k≥1 αk

c1V (x) + 1,

where
∑

k≥1 αke
ak−∑

k≥1 αk∑
k≥1 αk

< 1 by assumption. Similarly,

Q̄x · V 1/q ≤ 1

M

(
−1 + α−1e−a/q +

+∞∑
k=1

αkeak/q

)
V 1/q(x) + 1

≤
∑

k≥1 αke
ak − ∑

k≥1 αk∑
k≥1 αk

c1V
1/q(x) + 1,

so that (A′2-ii) is satisfied with θ =
∑

k≥1 αke
ak−∑

k≥1 αk∑
k≥1 αk

c1 ∈ (0, c1) and K = 1 ∨ Q̄0 · V . For

all x ≥ 1, for all q ′ > 1, and for all function f : N → R continuous and bounded by 1, we
have

|Q̄x · f |q ′ = 1

Mq ′

∣∣∣∣−f (x) + α−1f (x − 1) +
(∑

k≥1

kαk

)
f (0) + ∑

k≥1

αkf (x + k)

∣∣∣∣q
′

≤ A
q ′
1 V (x),

(6)

where A1 = 1 ∨ (3 + Mα/M), since V (x) ≥ 1 for all x ≥ 0; we also have

|Q̄0 · f |q ′ = 1

Mq ′

∣∣∣∣
(∑

k≥1

(k − 1)βk

)
f (0) + ∑

k≥1

βkf (k)

∣∣∣∣
≤

(
Mβ

M

)q ′
≤ 1 ≤ A1V (0),

(7)

since V (0) ≥ 1 and A1 ≥ 1 by definition. We also have that, for all r > 1,

E
[∣∣R̄(i)

x · f − R̄x · f ∣∣r ] ≤ P
(∣∣R̄(i)

x · f − R̄x · f ∣∣ ≤ 1
) + 2r−1

E
[∣∣R̄(i)

x · f ∣∣r + |R̄x · f |r]
≤ 1 + 2r−1

E
[∣∣R̄(i)

x · f ∣∣r] + 2r−1Ar
1V (x),

because of equations (6) and (7) applied to the special case q ′ = r . Note that

E
[∣∣R̄(i)

x · f ∣∣r]
= α−1

M

∣∣−f (x) + f (x − 1)
∣∣r + ∑

k≥1

αk

M

∣∣−f (x) + kf (0) + f (x + k)
∣∣r

≤ 2rα−1 + ∑
k≥1(2 + k)rαk

M
=: A2,r < +∞,
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since α admits an exponential moment, and therefore has finite polynomial moments. There-
fore, using again that V is bounded from below by 1, we get that

E
[∣∣R̄(i)

x · f − R̄x · f ∣∣r ] ≤ (
1 + 2r−1A1 + 2r−1A2,r

)
V (x),

for all x ≥ 1. A similar reasoning, using that β also has exponential moments, implies that

E
[∣∣R̄(i)

0 · f − R̄0 · f ∣∣r ] ≤ (
1 + 2r−1A1 + 2r−1A3,r

)
V (0),

where A3 = ∑
k≥1 βkk

r . Since R̄(i) = Q̄(i) almost surely, we obtain

E
[∣∣Q̄(i)

0 · f − Q̄0 · f ∣∣p] ≤ (
1 + 2p−1A1 + 2p−1A3,p

)
V (0).

Therefore, setting A = 1 + 2p−1A1 + 2p−1(A2,r ∨ A3,r ∨ A3,p), we can conclude that As-
sumption (A′2-iii) holds.

Finally, let us check Assumption (A′2-iv): for all x ≥ 1, for all � > 1 and s ≤ 2, we have

(8)

∣∣Q̄x · V 1/�
∣∣s = 1

Ms

∣∣∣∣∣−V (x)1/� + V (0)1/� + α−1V (x − 1)1/� +
+∞∑
k=1

αkV (x + k)1/�

∣∣∣∣∣
s

≤ 1

Ms

(
2 + α−1 +

+∞∑
k=1

αkeλk/�

)s

V (x)s/�

≤
(3 + ∑

k≥1 αkeλk

M

)s

V (x)s/�,

and, for all r ∈ (1, q),

E
[∣∣Q̄(i)

x · V 1/q
∣∣r ] = 1

Mr

(
α−1

∣∣−eax/q + 1 + ea(x−1)/q
∣∣r

+
+∞∑
k=1

αk

∣∣−eax/q + k + ea(x+k)/q
∣∣r)

≤ V (x)1/q

Mr

(
α−13r + 3r−1

∑
k≥1

αk

(
1 + kq + eak))

≤ B1V (x)1/q,

(9)

where B1 = 32(α−1 +∑
k≥1 αk(1+k2 + eλk)/M < +∞. Similar calculations hold for x = 0;

we thus now reason as if equations (8) and (9) also hold for x = 0. Applying equation (8) to
� = s = 1 gives that |Qx · V | ≤ B2V (x) for all x ≥ 0, where B2 = (3 + ∑

k≥1 αkeλk)/M .
Applying equation (8) to � = s = q gives that |Qx · V 1/q |q ≤ B3V (x)1/q for all x ≥ 0, where
B3 = ((2 + ∑

k≥1 αkeλk)/M)q . Finally, applying equation (8) to � = q and s = r , and using
equation (9), we get that

E
[∣∣Q̄(i)

x · V 1/q − Q̄x · V 1/q
∣∣r ]

≤ 2r−1(
E

[∣∣Q̄(i)

x · V 1/q
∣∣r ] +E

[∣∣Q̄x · V 1/q
∣∣r ])

≤ 2r−1
(
B1V (x)r/q +

(
2 + ∑

k≥1

αkeλk/M

)r

V (x)r/q
)

≤ B4V (x),

with B4 = 2r−1(B1 + (2 + ∑
k≥1 αkeλk/M)r), because r/q < 1, and V (x) ≥ 1 for all x ≥ 0.

Therefore, taking B = B2 ∨ B3 ∨ B4, we conclude that Assumption (A′2-iv) holds.
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The continuous-time pure jump Markov process X with sub-Markovian jump matrix Q−I

is irreducible and clearly satisfies the assumptions of Theorem 5.1 and Remark 11 in [16].
Therefore, there exist a quasi-stationary distribution νQSD for X and two positive constants
Cst, δ > 0 such that, for all probability measure α ∈ E satisfying α · V 1/q < +∞, for all
t ≥ 0, ∥∥Pα(Xt ∈ · | t < τ∂) − νQSD

∥∥
TV ≤ Cstα · V 1/qe−δt ,

which entails Assumption (A3). Since Assumption (A4) is clearly satisfied, Theorem 1 ap-
plies and hence

(10)
Out(RRFn)

Out(RRFn)(E)
→ νQSDR

νQSDR(E)
weakly, almost surely when n → ∞.

Since νQSDR is proportional to νQSD, and since we also have, again by Theorem 1,

sup
n

Out(RRFn)

Out(RRFn)(E)
· V 1/q < +∞,

this concludes the proof of Proposition 2. �

2.2.2. Protected nodes. A node ν of a tree τ is 2-protected if the closest leaf is at distance
at least 2 from ν; in a social network, 2-protected nodes can be users who used to invite
new users to the network but have not done so recently. The proportion of such nodes in
different models of random trees have been studied in the literature: Motzkin trees in Cheon
and Shapiro [20], random binary search tree in Bóna [14], and more recently in the m-ary
search tree in Holmgren, Janson and Šileikis [36]. Devroye and Janson [25] show how results
of Aldous [1] about fringe trees can be used to study this question with a unified approach for
different models of random trees, including simply generating trees and the random recursive
tree. We show here how our main result allows to get information about protected nodes in
random trees.

Protected nodes in the random recursive tree. For all n ≥ 1 and x ≥ 0, let us denote by Xn,x

the number of internal nodes in RRTn having exactly x leaf-children. The random measure

mn = ∑
x∈N

Xn,xδx

is a MVPP of initial composition m0 = δ1. The replacement kernel of (mn)n≥0 is (for all
i ≥ 1 and x ≥ 1)

R
(i)

0 = −δ0 + δ1 and R(i)

x = B
(i)

1/x+1δx+1 + (
1 − B

(i)

1/x+1

)
(δx−1 + δ1) − δx,

where (B
(i)

1/x+1) is a sequence of i.i.d. random Bernoulli-distributed variables of parameters
1/x + 1 for all x ≥ 1. The weight kernel of (mn)n≥0 is Px = (x + 1)δx (for all x ∈ N). We
therefore have

R0 = −δ0 + δ1 and Rx = 1

x + 1
δx+1 + x

x + 1
(δx−1 + δ1) − δx,

and

Qx = x + 2

x + 1
δx+1 + x

x + 1
(xδx−1 + 2δ1) − (x + 1)δx,

for all x ≥ 0. Note that Qx(N) = 1 for all x ≥ 0. Let us check the assumptions of Theorem 1;
(T) is satisfied by construction of the model, (A1) is satisfied with μ = δ1 and thus c1 = 1. Fix
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ε > 0, V (0) = V (1) = 1, and V (x) = ∏x
i=2(i − ε) for all x ≥ 2; (A′2-i) is clearly satisfied,

and for all x ∈ N,

Qx · V = x + 2

x + 1
V (x + 1) + x

x + 1

(
xV (x − 1) + 2V (1)

) − (x + 1)V (x)

= V (x)

(
x + 2

x + 1
(x + 1 − ε) + x2

(x + 1)(x − ε)
+ 2x

x + 1

1

V (x)
− x − 1

)
.

Note that, when x → ∞,

x + 2

x + 1
(x + 1 − ε) + x2

(x + 1)(x − ε)
+ 2x

x + 1

1

V (x)
− x − 1 = 1 − ε + o(1),

implying that there exists x0 such that, for all x ≥ x0, Qx · V ≤ 1 − ε/2, and thus, for all
x ≥ 0,

Qx · V ≤ (1 − ε/2)V (x) + sup
z≤x0

Qz · V.

The same reasoning gives that, for all p > 2, q = p/(p − 1) ∈ (1,2),

Qx · V 1/q

= V (x)1/q

(
x + 2

x + 1
(x + 1 − ε)1/q + x2

(x + 1)(x − ε)1/q
+ 2x

x + 1

1

V (x)1/q
− x − 1

)

= V (x)1/q(
x1/q + x1−1/q − x +O(1)

) = −V (x)1/q(
x + o(x)

)
,

and there exists x1 such that for all z ≥ x1, Qx · V 1/q ≤ 0. Thus, (A′2-ii) is satisfied with
θ = 1− ε/2 and K = supz≤x0

Qz ·V + supz≤x1
Qz ·V 1/q . Let f be a function from {0,1, . . .}

to R continuous and bounded by 1, and r ∈ (1,2); we have

|Qx · f |r =
∣∣∣∣x + 2

x + 1
f (x + 1) + x2

x + 1
f (x − 1) + 2x

x + 1
f (1) − (x + 1)f (x)

∣∣∣∣r

≤ 4r−1
((

x + 2

x + 1

)r

+
(

x2

x + 1

)r

+
(

2x

x + 1

)r

+ (x + 1)r
)
.

When x → ∞, we have(
x + 2

x + 1

)r

+
(

x2

x + 1

)r

+
(

2x

x + 1

)r

+ (x + 1)r = (
2 + o(1)

)
xr .

Note that, when x → ∞, xr = o(x2) = o(V (x)), which implies that there exists a constant A

such that, for all x ≥ 0, |Qx · f |r ≤ AV (x). One can check that, R
(i)

0 = R0, and, for all i ≥ 1,∣∣R(i)

x · f − Rx · f ∣∣r ≤ 3,

because a Bernoulli random variable is at most at distance 1 from its mean, almost surely. We
also have

E
∣∣Q(i)

x · f − Qx · f ∣∣p =
∣∣∣∣(x + 2)f (x + 1)

(
B

(i)

1/x+1 − 1

x + 1

)

+ x
(
xf (x − 1) + 2f (1)

)( 1

x + 1
− B

(i)

1/x+1

)∣∣∣∣p
= (

(x + 2)r + xr(x + 2)r
) ≤ AV (x),
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for A large enough, since x2r = o(V (x)) when x → ∞. We have thus checked that (A′2-
iii) holds. Assumption (A′2-iv) can be checked in the same way; we leave the details to the
reader. Note that p > 2, and thus q ∈ (1,2) are arbitrary.

Set

ν0 = e − 2

1 + 2e
, ν1 = 4(e − 2)

1 + 2e
and νi = 2(i + 1)

1 + 2e

∑
j≥i+1

1

j ! (∀i ≥ 2).

One can check that the Markov process with jump measure Q− I is ergodic, that ν = (νi)i≥0
is the unique stationary distribution of Q − I . Using (A2) and [49], we get that (A3) is
satisfied. Therefore, our main result applies ((A4) is immediate since E = N is discrete) and
we get that m̃n converges almost surely to π := νR/νR(N). Let us denote by π̂ = νR; it is
straightforward to check that

π̂0 = e − 2

1 + 2e
, π̂1 = 2e − 4

1 + 2e
and π̂x = 2

1 + 2e

∑
i≥x+1

1

i! ,

and thus that νR(N) = e/(1 + 2e), implying that

π0 = 1 − 2

e
, π1 = 2 − 4

e
and πx = 2

e

∑
i≥x+1

1

i! .

We have thus proved the following:

PROPOSITION 3. For all x ≥ 1, the proportion pn,x of internal nodes having exactly x

leaf-children in the n-node random recursive tree converges almost surely to

2

e

∑
i≥x+1

1

i! .

The proportion pn,0 of protected internal nodes converges almost surely to 1−2/e. Moreover,
for all q ∈ (1,2) and all function f : {0,1, . . .} →R such that f (x) = o(

∏x
i=2(i − ε)1/q) for

some ε > 0 when x → ∞, we have
∑
i≥0

pn,if (i) → (1 − 2/e)f (0) + 2

e

∑
i≥1

f (i)
∑

j≥i+1

1

j !
almost surely when n → ∞.

Note that, in the proposition above, the proportions are calculated among internal nodes
only. To translate this result in terms of proportion among all nodes, we need one last calcula-
tion to take into account the leaf-nodes. Note that the limit proportion of leaves in the random
recursive tree is given by ∑

i≥0 iπi

1 + ∑
i≥0 iπi

= 1/2,

because
∑

i≥0 iπi = 1 (this result is folklore and was already discussed in Section 2.2.1).
Therefore, the proportion of nodes having exactly i leaf-children in the n-node random re-
cursive tree converges almost surely to πi/2: We get that, for all i ≥ 1, the proportion of
nodes having exactly i leaf-children in the n-node random recursive tree converges almost
surely to

1

e

∑
j≥i+1

1

j ! .
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The proportion of protected internal nodes converges almost surely to 1/2 − 1/e. Note that
the convergence in probability of the proportion of protected nodes in the random recursive
tree was already proved by Ward and Mahmoud [43]; we have shown how our main result
implies almost-sure convergence.

2.3. “Sample paths” Pólya urns. In this section we consider the case where the replace-
ment measures are the empirical occupation measures of sample paths of Markov processes.
The section is divided into three subsections: the first one is devoted to the discrete-time set-
ting, the second to the continuous-time setting, the third one to an application to stochastic-
approximation algorithms for the computation of quasi-stationary distributions.

2.3.1. Discrete-time sample paths Pólya urns. Let (Xn)n∈{0,1,2,...} be a Markov chain
evolving in a Polish locally-compact state space E ∪ {∂}, where ∂ /∈ E is an absorbing point:
Xn = ∂ for all n ≥ τ∂ := min{k ≥ 0,Xk ∈ ∂} almost surely. We denote by Px and Ex the law
of the process X starting from x ∈ E ∪ ∂ and its associated expectation. Also fix T a proba-
bility distribution on N ∪ {+∞} such that T ({0}) < 1 and such that, if (T ,X) is distributed
according to T ⊗ Px , then τ∂ ∧ T admits an exponential moment uniformly bounded with
respect to x ∈ E; in other words, there exists λ > 0 such that

sup
x∈E

Ex

[
exp

(
λ(T ∧ τ∂)

)]
< ∞

(with a slight abuse of notation, since we also denote by Ex the expectation under T ⊗ Px).
We consider the MVPP on E with random replacement measures (R(i)

x )x∈E,i≥1 being i.i.d.
copies of

R(1)

x =
T ∧(τ∂−1)∑

n=0

δXn,

for all x ∈ E and all i ≥ 0, where (T ,X) is a random variable of distribution T ⊗ Px . This
means that, at each time, we add to the urn the empirical measure of a sample path of length
T ∧ (τ∂ − 1) of X. For simplicity, we consider the case without weights, that is, Px = δx

for all x ∈ E, so that Q(i) = R(i). Note that the mass of R(i)
x is random, equal in law to (T +

1) ∧ τ∂ under T ⊗ Px , and is not uniformly bounded in general (although its expectation is,
by assumption, uniformly bounded with respect to x). In particular, the considered MVPP is
unbalanced.

To ensure the convergence of this MVPP, we assume that the following particular instance
of the assumptions of Theorem 2.1 in [16] is satisfied. This abstract criterion ensures the
existence of a quasi-stationary distribution for X; we will show later many examples that fall
into this framework.

ASSUMPTION (E). There exist a positive integer n1, positive real constants α0, α1, α2,
α3, a locally bounded function with compact level sets V : E → [1,+∞) and a probability
measure π on a compact subset K ⊂ E such that:

(E1) (Local Dobrushin coefficient). For all x ∈ K ,

Px(Xn1 ∈ · ) ≥ α0π( · ∩ K).

(E2) (Global Lyapunov criterion). We have α1 < α2 and, for all x ∈ E,

ExV (X1) ≤ α1V (x) + α31K(x) and Px(1 < τ∂) ≥ α2.
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(E3) (Local Harnack inequality). We have

sup
n∈Z+

supy∈K Py(n < τ∂)

infy∈K Py(n < τ∂)
≤ α3.

(E4) (Aperiodicity/irreducibility). For all x ∈ E, there exists n4(x) such that, for all n ≥
n4(x),

Px(Xn ∈ K) > 0.

Under Assumption (E), it is proved in [16] that X admits one and only one quasi-stationary
distribution νQSD such that νQSD · V < +∞ and which corresponds to the so-called minimal
quasi-stationary distribution (or Yaglom limit). It is also proved in [16] that there exist two
positive constants C > 0, δ > 0 such that, for all t ≥ 0,∥∥Pα(Xt ∈ · | Xt /∈ ∂) − νQSD

∥∥
TV ≤ Cα · V e−δt .

PROPOSITION 4. Under Assumption (E), if x �→ Exf (X1) is continuous on E for all
continuous bounded function f : E → R and if m0 · V < ∞, then the normalized sequence
of probability measures (m̃n)n∈N associated to the MVPP with random replacement kernel
(R(i))i≥1 converges almost surely to the quasi-stationary distribution νQSD of X in P(E).

Before turning to the proof of Proposition 4, we provide typical examples that satisfy
Assumption (E) and consequently fall into the framework of Proposition 4.

EXAMPLE 1. If E is finite and X is irreducible in E (i.e., ∃n ≥ 1 s.t. Px(Xn = y) > 0 for
all x, y ∈ E) and Px(τ∂ < +∞) = 1 for all x ∈ E, then Assumption (E) is satisfied for any
probability distribution T (one simply chooses K = E and V = 1).

EXAMPLE 2. Consider the case E = N and X is a discrete-time birth-and-death process
with transition probabilities given by

Px(X1 = y) =

⎧⎪⎪⎨
⎪⎪⎩

bx if y = x + 1,

dx if y = x − 1,

κx if y = ∂,

where (bx)x∈N, (dx)x∈N, (κx)x∈N are families of nonnegative numbers such that bx + dx +
κx = 1 for all x ∈ N, d0 = 0 and infx≥1 dx > 0 for all x ≥ 1. If

bx → 0 when x → +∞,

then Assumption (E) is satisfied for any probability distribution T such that there exists λ > 0
satisfying EeλT < +∞ (where the random variable T has distribution T ). To see this, one
simply chooses K large enough and V (x) = eax with a > 0 large enough.

EXAMPLE 3. Assume that (Xn)n≥0 is a d-type Galton–Watson process. We recall that
such a process X evolves in N

d = E ∪ {∂} and is absorbed at ∂ = (0, . . . ,0). Also, for all
n ≥ 0 and i ∈ {1, . . . , d}, we have

Xi
n+1 =

d∑
k=1

Xk
n∑

�=1

ζ
(n,�)

k,i ,
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where (ζ
(n,�)

k,1 , . . . , ζ
(n,�)

k,d )n,�,k is a family of independent random variables in N
d such that, for

all k ∈ {1, . . . , d}, (ζ
(n,�)

k,1 , . . . , ζ
(n,�)

k,d )n,� is an independent and identically distributed family.
We assume that the matrix of mean offspring denoted by M = (Mk,i)1≤k,i≤d and defined by

Mk,i = Eζ
(n,�)

k,i ∀k, i ∈ {1, . . . , d},
is finite and that there exists n ≥ 1 such that Mn

k,i > 0 for all k, i ∈ {1, . . . , d}. Let v be a
positive right eigenvector of the matrix M and denote by ρ(M) its spectral radius.

We assume that X is subcritical (i.e., ρ(M) < 1), aperiodic, and irreducible. Then, if
there exists α > 0 such that E[exp(α|X1|) | X0 = (1, . . . ,1)] < ∞, then X satisfies Assump-
tion (E). To check this, one simply observes that infx∈E Px(1 < τ∂) > 0 and carefully checks
that there exists ε > 0 small enough and K large enough so that Assumption (E) is satisfied
with V : x ∈ E �→ eε〈v,x〉.

EXAMPLE 4. Assume that X evolves in E = R
d according to the following perturbed

dynamical systems

Xn+1 = f (Xn) + ξn,

where f :Rd →R
d is a measurable function such that |x|−|f (x)| → +∞ when |x| → +∞,

(ξn)n∈N is an i.i.d. sequence of Gaussian random variables with positive density in R
d . We

assume that the process evolves in a measurable set E of Rd : it is immediately sent to ∂ /∈ R
d

as soon as Xn /∈ E. If E is such that

inf
x∈E

P
(
f (x) + ξ1 ∈ E

)
> 0,

then Assumption (E) is satisfied. This result is obtained by observing that infx∈E Px(1 <

τ∂) > 0, by choosing K a large enough ball and V (x) = e|x| (see [16], Example 9, for more
details).

PROOF OF PROPOSITION 4. For all n ≥ 0, let m̂n = mn/ supx∈E Rx(E). First note that
m̂n is well defined since supx∈E Rx(E) ≤ supx∈E Ex[T ∧ τ∂ ] < +∞, by assumption on the
existence of a uniform exponential moment for T ∧ τ∂ . Moreover, (m̂n)n≥0 is an MVPP of
replacement kernel R̂(i) = R(i)/ supx∈E Rx(E) and weight kernel P̂x = δx (for all x ∈ E). Let
us check that Assumption (A) is satisfied by (m̂n)n≥0. Note that, for all x ∈ E and all bounded
measurable function f : E →R,

Rx · f := E
[
R(i)

x

] · f = E

[
T∑

n=0

Gn · f (x)

]
,

where Gn · f (x) = Ex[f (Xn)1n<τ∂
] is the sub-Markovian semigroup of the absorbed pro-

cess X.
Moreover, we have that

R̂x(E) ≥ E[∑T
n=0 αn

2 ]
supy∈E Ry(E)

= 1 −E[αT +1
2 ]

(1 − α2) supy∈E Ry(E)
=: c1 > 0,

so that Assumption (A1) is satisfied (take μ the law of (T +1)∧�
supy∈E Ry(E)

, where T and � are

independent and � is distributed with respect to a geometric law with parameter 1 − α2 on
{1,2, . . .}). Moreover, we deduce from (E) that, for some constant C > 0,

Gn · V (x)

≤ αn
1V (x) + C

(
Gn−1 · 1E(x) + α1Gn−2 · 1E(x) + · · · + αn−1

1 1E(x)
)

≤ αn
1V (x) + CGn · 1E(x)

α2

(
1 + α1

α2
+ · · · + αn−1

1

αn−1
2

)
,
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where we used (E2) and Markov’s property for the second inequality. Since α1 < α2 by
assumption, then there exists some constant C′ such that

Rx · V = E

[
T∑

n=0

Gn · V (x)

]
≤ E

[
T∑

n=0

αn
1

]
V (x) + C′

E

[
T∑

n=0

Gn · 1E(x)

]

= E

[
T∑

n=0

αn
1

]
V (x) + C′ sup

y∈E

Ey[T ∧ τ∂ ].

We thus get

R̂x · V ≤ θV (x) + C′ supy∈E Ey[T ∧ τ∂ ]
supy∈E Ry(E)

,

where

θ := 1 −E[αT +1
1 ]

(1 − α1) supy∈E Ry(E)
< c1.

Assumption (A2-ii) is thus satisfied by R̂. Assumption (A2-iii) is satisfied for any p > 2 ∨
ln θ

ln θ−ln c1
since R(1)

x (E) ≤ T ∧ τ∂ , which admits a uniformly bounded exponential moment by
assumption. Since (A2-i) is assumed to be true under (E), we deduce that Assumption (A2)
is implied by Assumption (E).

To prove that (A3) holds true, it is sufficient, by Theorem 2.1 in [16], to prove that R̂

satisfies Assumption (E) with Lyapunov function V 1/q . Since T ≥ 1 with positive probability,
and since X satisfies Assumption (E1), we get that R̂ also satisfies Assumption (E1). We have
already proved that R̂ satisfies Assumptions (A1-2) with Lyapunov function V and hence
with Lyapunov function V 1/q (see the proof of Lemma 1), which implies that R̂ satisfies
Assumption (E2) with Lyapunov function V 1/q . Moreover, for all n ≥ 0 and all x, y ∈ K , we
have

Rn
x(E) = E

[
n∑

�=1

T�∑
i�=0

Gi1+···+in · 1E(x)

]

≤ a3E

[
n∑

�=1

T�∑
i�=0

Gi1+···+in · 1E(y)

]
= a3R

n
y(E),

where T1, . . . , Tn are i.i.d. random variables with distribution T and where we used Assump-
tion (E3) for X; this implies that Assumption (E3) is satisfied by R̂. The fact that R̂ satisfies
Assumption (E4) is an immediate consequence of (E4) for X, since T ≥ 1 with positive
probability. By Theorem 2.1 in [16], this implies that the discrete-time Markov process with
transition probabilities given by R̂ admits a unique quasi-stationary distribution ν such that
ν · V 1/q < +∞. More precisely, it implies that there exist α ∈ (0,1) and C > 0 such that, for
any probability measure μ on E such that μ · V 1/q < +∞,∥∥∥∥ μR̂n

μR̂n(E)
− ν

∥∥∥∥
TV

≤ Cαnμ · V 1/q .

In particular, for all measurable set A ⊂ E,∣∣μR̂n(A) − μR̂n(E)ν(A)
∣∣ ≤ CμR̂n(E)αnμ · V 1/q,

and hence that for all t ≥ 0,∣∣μetR̂(A) − μetR̂(E)ν(A)
∣∣ ≤ CμetαR̂(E)μ · V 1/q .
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Since α ∈ (0,1),
∑+∞

n=0
tnαn

n! μR̂n(E) is negligible in front of
∑+∞

n=0
tn

n!μR̂n(E) when t →
+∞, so that ∣∣∣∣μetR̂(A)

μetR̂(E)
− ν(A)

∣∣∣∣ ≤ C
μetαR̂(E)

μetR̂(E)
μ · V 1/q → 0 when t → +∞.

Note that μetR̂(A)/μetR̂(E) is the law of the continuous-time process with sub-Markovian
jump kernel R̂ − Id at time t conditioned not to be absorbed at time t . Therefore, we can
conclude that (A3) is satisfied by R̂.

Finally, the continuity of R̂x with respect to x directly derives from the continuity of δxG1
with respect to x and from the uniform boundedness of Ex[eλT ∧τ∂ ] with respect to x. There-
fore, Theorem 1 applies and gives that m̂n/m̂n(E) = m̃n converge almost surely (for the
topology of weak convergence) to a probability measure ν. This distribution ν is the unique
quasi-stationary distribution of the process of sub-Markovian jump kernel R̂ − I such that
ν · V 1/q < +∞.

It only remain to show that ν is indeed equal to νQSD, the unique quasi-stationary distribu-
tion of X such that νQSD · V < +∞. Since νQSD is a quasi-stationary distribution for X, we
have

νQSDR · f = E

T∑
n=0

νQSDGn · f = E

T∑
n=0

θn
0 νQSD · f = E

[
T∑

n=0

θn
0

]
νQSD · f,

where θ0 := νQSDG1(E). This implies that νQSD is a quasi-stationary distribution of the
discrete-time sub-Markov process of transitions R̂. Moreover, since νQSD · V < +∞, V ≥ 1
and 1/q < 1, we have νQSD · V 1/q < +∞, implying that ν = νQSD, by uniqueness of ν. �

2.3.2. Continuous-time sample paths Pólya urns. Let (Xt)t∈[0,+∞) be the solution in
E =R

d to the stochastic differential equation

dXt = dBt + b(Xt)dt,

where B is a standard d-dimensional Brownian motion and b : Rd �→ R
d is locally Hölder-

continuous in R
d . We assume that X is subject to an additional soft killing κ :Rd �→ [0,+∞),

which is continuous and uniformly bounded: the process is sent to a cemetery point ∂ /∈ R
d

at rate κ(Xt) and we denote by τ∂ the hitting time of ∂ by X. As in the discrete-time case,
we denote by Px and Ex the law of the process X starting from x ∈ E ∪ ∂ and its associated
expectation, and we consider T a probability distribution on [0,+∞] such that τ∂ ∧T admits
under T ⊗ Px an exponential moment uniformly bounded with respect to x ∈ E.

We consider the unbalanced MVPP on E without weights and with random replacement
kernels (R(i))i≥1 being i.i.d. copies of

R(1)

x =
∫ T ∧τ∂

0
δXt dt (∀x ∈ E),

where (T ,X) is distributed according to T ⊗ Px .

PROPOSITION 5. If

lim sup
|x|→+∞

〈b(x), x〉
|x| < −3

2
‖κ‖1/2∞ ,

then Theorem 1 applies with V : x ∈ R
d �→ exp(‖κ‖1/2∞ |x|). In particular, if m0 · V < ∞,

the normalized sequence of probability measures (m̃n)n∈N associated to the MVPP with ran-
dom replacement kernels (R(i))i≥1 converges almost surely to the unique quasi-stationary
distribution νQSD of X such that νQSD · V < +∞.
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REMARK 10. The fact that X admits a unique quasi-stationary distribution νQSD such
that νQSD · V < +∞ is proved in [16]. Proposition 5 could be generalized to diffusion pro-
cesses with a nonconstant diffusion coefficient; the proof would be very similar. More gener-
ally, Condition (F) of [16] can be used to show that Theorem 1 applies to other continuous-
time processes. We do not develop these generalizations further, but provide two simple ex-
amples that fall into the framework of the proof of Proposition 5:

EXAMPLE 1. If E is finite and X is regular and irreducible in E (i.e., Px(∃t ≥ 0, s.t. Xt =
y) > 0 for all x, y ∈ E), and if Px(τ∂ < +∞) = 1 for all x ∈ E, then Theorem 1 applies for
any probability distribution T . (One can take V = 1.)

EXAMPLE 2. Let X be a continuous-time multitype birth and death process, taking val-
ues in E ∪ {∂} =N

d for some d ≥ 1, with transition rates

qx,y =

⎧⎪⎪⎨
⎪⎪⎩

bi(x) if y = x + ei,

di(x) if y = x − ei,

0 otherwise,

where (e1, . . . , ed) is the canonical basis of Nd , and ∂ = (0, . . . ,0). We assume that bi(x) > 0
and di(x) > 0 for all 1 ≤ i ≤ d and x ∈ E.

If

1

|x|
d∑

i=1

(
di(x) − bi(x)

) → +∞ when |x| → +∞,(11)

or if there exists δ > 1 such that

d∑
i=1

(
di(x) − δbi(x)

) → +∞ when |x| → +∞,(12)

then Theorem 1 applies for any probability distribution T admitting an exponential moment.
One can choose V (x) = |x| = x1 + · · · + xd if (11) is satisfied, and V (x) = exp(εx1 + · · · +
εxd) with ε > 0 small enough if (12) is satisfied. To prove this, one would simply use the
same approach as in the proof of Proposition 5 together with the results of [16], Example 7,
and the fact that the killing rate is bounded by d1(e1) + · · · + dd(ed).

If moreover the birth and death process comes back from infinity (see for instance [47]
for the one-dimensional case), then τ∂ admits a uniformly bounded exponential moment and
hence the conclusion of Proposition 5 applies for any probability distribution T .

PROOF OF PROPOSITION 5. For all n ≥ 0, we let m̂n = mn/ supx∈E Rx(E); note that
(m̂n)n≥0 is well defined since supx∈E Rx(E) ≤ supx∈E Ex[T ∧ τ∂ ] < +∞, by assumption on
the existence of a uniform exponential moment for T ∧ τ∂ . One can check that (m̂n)n≥0 is
an MVPP of replacement kernel R̂(i) = R(i)/ supx∈E Rx(E) and weight kernel P̂x = δx (for
all x ∈ E); note that we have Q̂ = R̂P̂ = R̂. Let us check that Assumption (A) is satisfied by
(m̂n)n≥0. Note that, for all x ∈ E and all bounded measurable function f : E →R,

Rx · f := E
[
R(i)

] · f = E

[∫ T

0
Gt · f (x)dt

]
,

where Gt · f (x) = Ex[f (Xt)1t<τ∂
] is the sub-Markovian semigroup of the absorbed pro-

cess X.
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We have

R̂x(E) ≥ c1 := E[∫ T
0 exp(−‖κ‖∞t)dt]
supy∈E Ry(E)

,

implying that Assumption (A1) is satisfied (take μ = δc1 ).
Let us now check Assumption (A2). The function V clearly satisfies (A2-i). Moreover, one

easily checks that

1

2

d∑
i=1

∂2

∂x2
i

V (x) +
d∑

i=1

bi(x)
∂

∂xi

V (x) ≤ −(‖κ‖∞ + ε
)
V (x) + C,

for some positive constants ε and C. Setting V (∂) = 0, using Dynkin’s formula for the killed
process and a localization argument, we get that

Ex

[
e(‖κ‖∞+ε)t∧τ∂ V (Xt∧τ∂

)
] ≤ V (x) + CEx

[∫ t∧τ∂

0
e(‖κ‖∞+ε)s ds

]
,

and hence that

GtV (x) = Ex

[
V (Xt)1t<τ∂

]
≤ e−(‖κ‖∞+ε)tV (x) + C

∫ t

0
e−(‖κ‖∞+ε)(t−s)

Px(s < τ∂)ds.

As a consequence, we have

RxV = E

[∫ T

0
GtV (x)dt

]

≤ E

[∫ T

0
e−(‖κ‖∞+ε)t dt

]
V (x) + C

‖κ‖∞ + ε
Ex[T ∧ τ∂ ]

≤ θ sup
y∈E

Ry(E)V (x) + C

(‖κ‖∞ + ε)λ
sup
y∈E

Ey

[
eλ(T ∧τ∂ )],

(13)

where θ := E[∫ T
0 exp(−λ1t)dt]/ supy∈E Ry(E) < c1, and where supy∈E Ey[eλ(T ∧τ∂ )] < +∞

by assumption. Dividing the above inequality by supx∈E Rx(E) entails that Assumption (A2-
ii) is satisfied. Finally, Assumption (A2-iii) is implied by the fact that R(i)

x (E) is stochastically
dominated by T ∧ τ∂ under Px , which admits a uniformly bounded exponential moment by
assumption. As a consequence, we deduce that Assumption (A2) is satisfied by R̂.

To prove that (A3) holds true, we first prove that R̂ satisfies Assumption (E) above.
Using the same approach as in [16], Proposition 12.1, we deduce that there exist a proba-

bility measure π on K and two positive constants b and tπ such that

Px(Xtπ ∈ ·) ≥ bπ(·) ∀x ∈ K.

Since X is an elliptic diffusion process in R
d , it satisfies, for any t > 0, infx∈K Px(Xt ∈ K) >

0. Using Markov’s property, we deduce that, for any t > tπ , there exists a constant bt > 0
such that Px(Xt ∈ ·) ≥ btπ(·), for all x ∈ K . In particular, we obtain, for any integer n ≥ 1
and any measurable set A ⊂ K , that, for all x ∈ K ,

Rn
x · 1A = E

[∫ T1

0
· · ·

∫ Tn

0
Gt1+···+tn · 1A(x)dt1 · · · dtn

]

≥ E

[∫ T1

0
· · ·

∫ Tn

0
bt1+···+tn1t1+···+tn≥tπ dt1 · · · dtn

]
π(A),
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where T1, . . . , Tn are i.i.d. random variables distributed with respect to T . Since P(T1 > 0) >

0, we deduce that there exists n1 large enough such that P(t1 + · · · + tn1 ≥ tπ ) > 0 and hence
such that

E

[∫ T1

0
· · ·

∫ Tn1

0
bt1+···+tn1

1t1+···+tn1≥tπ dt1 · · · dtn1

]
> 0.

In particular, there exists a constant α0 > 0 such that

R̂n1
x · 1A ≥ α0π(A ∩ K).(14)

This entails that Condition (E1) is satisfied.
We already proved that R̂x(E) ≥ c1 for all x ∈ E. Now, for any fixed α1 ∈ (θ1/q, c1) and

ρ > 0 large enough, we deduce from (13) and as in the proof of Lemma 1 that

R̂x · V 1/q ≤ α1V
1/q(x) + α31|x|≤ρ ∀x ∈R

d .

Setting K = {x ∈ R
d, |x| ≤ ρ}, we deduce that Condition (E2) holds true with α1, α2 = c1

and α3 large enough, with Lyapunov function V 1/q .
We also deduce from [16], Proposition 12.1, that

α3 := inf
t≥0

infx∈K Gt · 1E(x)

supx∈K Gt · 1E(x)
= inf

t≥0

infx∈K Px(t < τ∂)

supx∈K Px(t < τ∂)
> 0.

Since Rx(E) = E[∫ T
0 Gt · 1E(x)dt], we get that

inf
t≥0

infx∈K R̂x(E)

supx∈K R̂x(E)
) = inf

t≥0

infx∈K Rx(E)

supx∈K Rx(E)
= α3 > 0.

This implies that Condition (E3) holds true.
Finally, using similar calculations as in the derivation of (14), we deduce that Condition

(E4) also holds true. This concludes the proof of Condition (E) with Lyapunov function V 1/q .
By Theorem 2.1 in [16], this implies that the discrete-time Markov process with transition

probabilities given by R̂ admits a unique quasi-stationary distribution νQSD such that νQSD ·
V 1/q < +∞. Using the same argument as in the proof of (A3) in the proof of Proposition 4,
we can show that this implies that (A3) is satisfied by R̂.

The continuity of x �→ Rx (and thus of x �→ R̂x) is a consequence of the continuity of
x �→ Ex[f (Xt)1t<τ∂

] for all continuous bounded function f : E →R and all t ≥ 0 (see, e.g.,
[55], Theorem 7.2.4); therefore, Assumption (A4) is also satisfied.

We have proved that Assumption (A) holds true for the MVPP of replacement kernels
(R̂(i)); therefore, Theorem 1 applies. To conclude the proof, note that the continuous-time
process X also admits a unique quasi-stationary distribution μQSD such that μQSD · V 1/q <

+∞ (see [16], Example 2), that is, a probability measure such that μQSD · Gt = μQSD ·
Gt(E)μQSD for all t > 0. The definition of R̂ implies that μQSD is also a quasi-stationary
distribution for R̂; because μQSD ·V 1/q < +∞ and by uniqueness, we get that νQSD = μQSD,
which concludes the proof. �

2.3.3. Application to stochastic-approximation algorithms for the computation of quasi-
stationary distributions. It is a difficult question to give an explicit formula for the quasi-
stationary distribution of a sub-Markovian process, even when one can prove that this dis-
tribution exists and is unique. Stochastic approximation provides algorithms that allow to
numerically approximate the quasi-stationary distribution of a given sub-Markovian process.

The recent papers [9, 10, 13] introduce such stochastic approximation algorithms for
discrete-time sub-Markovian processes evolving in compact spaces and [61] studies these
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algorithms for diffusion processes in compact manifolds. Our results allow to extend these
convergence results to discrete- and continuous-time processes in compact and noncompact
spaces. We illustrate this approach with the case of the approximation of the quasi-stationary
distribution of a diffusion process satisfying the conditions of Proposition 5 by a stochastic-
approximation algorithm. This particular example was not covered by the previous literature
since it is a continuous-time process and its state space is not compact.

As in the previous section, let (Xt)t∈[0,+∞) be the solution in E = R
d to the stochastic

differential equation

dXt = dBt + b(Xt)dt,

where B is a standard d-dimensional Brownian motion and b : Rd �→ R
d is locally Hölder

continuous in R
d . We assume that X is subject to an additional soft killing κ : x �→ [0,+∞),

which is continuous, uniformly bounded and such that κ ≥ 1. Note that the quasi-stationary
distribution of X with killing rate κ is the same as the quasi-stationary distribution of X with
a killing rate κ − 1.

We also assume that

lim sup
|x|→+∞

〈b(x), x〉
|x| < −3

2
‖κ‖1/2∞ ,

so that the process X admits a unique quasi-stationary distribution νQSD such that νQSD ·V <

+∞, where V : x ∈ R
d �→ exp(‖κ‖1/2∞ |x|) (see the previous subsection for details).

We consider the self-interacting process (Yt )t≥0 evolving with the same dynamic of X

but, at rate κ , instead of being killed, it jumps to a new position chosen accordingly to its
empirical occupation measure 1

t

∫ t
0 δYs ds. More formally, it evolves following the dynamic

dYt = dBt + b(Yt )dt + dNt, Y0 = y ∈ R
d,

where (Nt)t≥0 is a time inhomogeneous pure jump process with jump measure given by

κ(Yt−)

t

∫ t

0
δYs−Yt− ds.

PROPOSITION 6. The empirical occupation measure 1
t

∫ t
0 δYs ds converges almost-surely

when t → +∞, with respect to the topology of weak convergence, to the quasi-stationary
distribution νQSD of X.

PROOF. Denote by 0 < τ1 < τ2 < · · · the jump times of Y and set τ0 = 0. Then, for all
n ≥ 0 and conditionally on Yτn , ∫ τn+1

τn

δYs ds = R
(n+1)

Yτn
,

where R(n+1) is defined as in the proof of Proposition 5. Moreover, Yτn is distributed accord-
ing to the probability measure 1

τn

∫ τn

0 δYs ds. As a consequence, setting m0 = ∫ τ1
0 δYs ds (which

satisfies m0 · V < +∞ almost surely) and mn := 1
τn+1

∫ τn+1
0 δYs ds, the sequence (mn)n∈N has

the law of the MVPP of Proposition 5. Applying this proposition with T = +∞ almost surely
(note that κ ≥ 1 implies that τ∂ ∧∞ = τ∂ admits a uniformly bounded exponential moment),
we obtain that

1

τn

∫ τn

0
δYs ds

a.s.−−−−→
n→+∞ νQSD(15)

with respect to the topology of weak convergence.
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Since κ ≥ 1, one can couple the sequence (τn+1 − τn)n≥0 with a sequence of i.i.d. random
variables (Dn)n≥0 with exponential law of parameter 1 such that 0 ≤ τn+1 − τn ≤ Dn almost
surely for all n ≥ 0. Moreover τn → +∞ almost surely when n → +∞ (this is due to the
fact that κ is uniformly bounded). Hence, using (15), we get

1

τn

∫ τn+1

0
δYs ds

a.s.−−−−→
n→+∞ νQSD

and

1

τn+1

∫ τn

0
δYs ds

a.s.−−−−→
n→+∞ νQSD.

For all t ≥ 0, we define α(t) := sup{n ≥ 0, τn ≤ t}. In particular, for all t ≥ 0, α(t) < +∞,
τα(t) ≤ t < τα(t)+1 and α(t) → +∞ almost surely when t → +∞. As a consequence, for all
bounded continuous function f :Rd → [0,+∞),

1

τα(t)+1

∫ τα(t)

0
f (Ys)ds ≤ 1

t

∫ t

0
f (Ys)ds ≤ 1

τα(t)

∫ τα(t)+1

0
f (Ys)ds.

This and the above convergence results allow us to conclude the proof. �

REMARK 11. Since the submission of this paper, Benaïm, Champagnat and Villemonais
[8] proved almost sure convergence of a similar stochastic approximation algorithm, where
the diffusion process is resampled according to its empirical occupation measure when it hits
the boundary of a bounded domain. On the one hand, their result do not apply to the model
studied in this section where the state space is not bounded; on the other hand, our result do
not apply to their situation, since Assumption (A1) would fail in that case.

3. Proof of Theorem 1. Let us define an auxiliary sequence of random distributions: let
η0 = 0, and, for all n ≥ 1,

ηn = ηn−1 + δYn =
n∑

i=1

δYi
.

Recall that, by definition,

mn = m0 +
n∑

i=1

R
(i)

Yi
= m0 +

n∑
i=1

δYi
R(i)

and that, conditionally on the sigma-algebra Fn generated by {mi}0≤i≤n ∪ {Yi}1≤i≤n, the
random variable Yn+1 is distributed according to mnP/mnP (E) and R(n+1) is chosen inde-
pendently of Fn and Yn+1.

We set η̃0 = 0, and, for all n ≥ 1,

η̃n = ηn

ηn(E)
= ηn

n
.

We first prove that η̃n converges almost surely weakly to ν when n goes to infinity and then
deduce almost-sure convergence of m̃n to νR/νR(E):

PROPOSITION 7. Under the Assumptions (T), (A1), (A′2), (A3), (A4), the sequence
(η̃n)n≥0 converges weakly almost surely to ν when n goes to infinity. Said differently,

1

n

n∑
i=1

δYi
→ ν almost surely when n → ∞.



2422 C. MAILLER AND D. VILLEMONAIS

3.1. Proof of Proposition 7. We consider the dynamical system defined by

dμt · f
dt

= μtQ · f − μtQ(E)μt · f,(16)

for all bounded continuous functions f : E → R, where (μt )t≥0 shall not depend on f .
Existence, uniqueness and continuity properties of the flow induced by this dynamical system
are stated and proved in Lemma 7.

To prove almost-sure convergence of η̃n to ν (i.e., Proposition 7), we prove that a lineariza-
tion of it is a pseudo-asymptotic trajectory (see Section 3 of [7]) of the semiflow induced
by the dynamical system (16). To do so, we need to prove several intermediate results: In
Lemma 2, we write down the studied stochastic algorithm. In Lemma 4, we prove that the
expectation of V with respect to the measure-valued process remains bounded. In Lemma 5,
we prove almost-sure convergence of the quantity introduced in Proposition 4.1 of [7] to
control the error term between the dynamical system (16) and its linearized counterpart (the
almost-sure convergence of this error to zero is sometimes called the Kushner and Clark’s
condition). In Lemma 6, we prove that the sequence (η̃n)n is relatively compact for the topol-
ogy of weak convergence on P(E). All these elements allow us to conclude the proof of
Proposition 7 using standard stochastic-approximation methods, as developed in [11].

From now on, we assume that all the hypotheses of Proposition 7 hold.

LEMMA 2. For all n ≥ 1, we have

η̃n+1 − η̃n = γn+1
(
F(η̃n) + Un+1

)
,

where

γn+1 = 1

ηn+1(E)η̃nQ(E)
,

and

F(η̃n) = η̃nQ − η̃nQ(E)η̃n,

Un+1 = η̃nQ(E)δYn+1 − η̃nQ.

The term γn+1 may be interpreted as the step size of a stochastic Euler scheme approxima-
tion of equation (16) and it decreases to 0 when n → +∞. For instance, in the simple case
where Q(E) = 1, γn+1 equals 1/(n + 1).

PROOF. The result directly follows from

η̃n+1 =
(

1 − 1

n + 1

)
η̃n + 1

n + 1
δYn+1 = η̃n + 1

n + 1
(δYn+1 − η̃n). �

LEMMA 3. Fix c′ ∈ (θ, c1), for all k ≥ 1, we let

(17) σk = inf
{
n ≥ k : mnP (E) < c′n

}
.

We have P(
⋃

k≥1{σk = ∞}) = 1.

PROOF. Recall that mnP (E) = m0P(E) + ∑n
i=1 R

(i)

Yi
P (E), and, therefore,

mnP (E) = m0P(E) +
n∑

i=1

Q
(i)

Yi
(E).
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Assumption (A1) and, conditionally on Y1, . . . , Yn, . . ., the independence of the random vari-
ables Q

(i)

Yi
(E) entails (by coupling) that there exists a sequence of independent random

variables Z1, . . . ,Zn, . . . with law μ such that, conditionally on Y1, . . . , Yn, . . ., we have
Q

(i)

Yi
(E) ≥ Zi for all i ≥ 1. The law of large numbers hence implies that

lim inf
n→+∞

mnP (E)

n
≥ c1 almost surely,

which concludes the proof. �

We claimed that Assumption (A1) can be replaced by equation (3) in Theorem 1, to prove
this claim, we need to prove Lemma 3 in this alternative setting:

PROOF OF LEMMA 3 WITH ASSUMPTION (A1) REPLACED BY (3). Recall that

mnP (E) = m0P(E) +
n∑

i=1

R
(i)

Yi
P (E),

and, therefore,

mnP (E) = m0P(E) +
n∑

i=1

Ei−1Q
(i)

Yi
(E) +

n∑
i=1

(
Q

(i)

Yi
(E) −Ei−1Q

(i)

Yi
(E)

)
,

where Ei−1 denotes the expectation conditionally on (m1, . . . ,mi−1). Note that, since Q(i) is
independent from Fi−1 and Yi , we have

(18)
n∑

i=1

Ei−1Q
(i)

Yi
(E) =

n∑
i=1

Ei−1QYi
(E) ≥ c1n,

by Assumption (A1). Also note that

Mn :=
n∑

i=1

(
Q

(i)

Yi
(E) −Ei−1Q

(i)

Yi
(E)

)
is a martingale. Using Lemma 1 in [18] (without loss of generality, we assume that β ∈ (1,2]),
one deduces from Assumption (3) that

E|Mn|β ≤ 2
n∑

i=1

Ei−1
∣∣Q(i)

Yi
(E) −Ei−1Q

(i)

Yi
(E)

∣∣β

≤ 2n sup
x∈E

E
∣∣Q(i)

x (E) − Qx(E)
∣∣β.

Hence, using (3), we get that the sequence (n−1
E|Mn|β)n≥1 is bounded. This implies, by an

immediate adaptation of Theorem 1.3.17 in [28] (the main point is to use Doob’s inequality
instead of Kolmogorov’s inequality), that n−1Mn goes almost surely to zero when n goes to
infinity.

Therefore, we have that, almost surely when n → +∞,

mnP (E) =
n∑

i=1

Ei−1Q
(i)

Yi
(E) + o(n),

and, using equation (18), we get

mnP (E) ≥ c1n + o(n) almost surely,

which concludes the proof because c′ < c1. �
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LEMMA 4. For all k ≥ 1, there exists a constant Ck > 0 such that

sup
n≥1

E

[
ηn∧σk

· V
n

]
∨ sup

n≥1
E

[
mn∧σk

P · V
n

]
∨ sup

n≥1
E

[
V (Yn+1)1n<σk

] ≤ Ck.

PROOF. Fix n ≥ k + 1, we have

(19) E

[
η(n+1)∧σk

· V
n + 1

]
=

(
1 − 1

n + 1

)
E

[
ηn∧σk

· V
n

]
+ E[V (Yn+1)1n<σk

]
n + 1

.

Note that, by definition of σk (see equation (17)), we have, almost surely and for all n ∈
{k + 1, . . . , σk − 1},

mnP (E) ≥ c′n.

Hence, by definition of Yn+1, we have (recall that mn, and thus mnP , is assumed to be a
positive measure almost surely), for all n ≥ k + 1,

E
[
V (Yn+1)1n<σk

] = E

[
mnP · V
mnP (E)

1n<σk

]
≤ 1

c′n
E[mn∧σk

P · V ]

= 1

c′n
E

[
m0P · V +

n∧σk∑
i=1

Q
(i)

Yi
· V

]

≤ 1

c′n
E

[
m0P · V +

n∑
i=1

Q
(i)

Yi
· V 1i≤σk

]

= 1

c′n
E

[
m0P · V +

n∑
i=1

QYi
· V 1i≤σk

]
,

where the last equality is obtained by conditioning on Fi−1 and Yi , and using the fact that
1i≤σk

is measurable with respect to Fi ∪ σ(Yi) and that Q(i) is independent of Fi ∪ σ(Yi).
We thus get, using the Lyapunov assumption (A′2-i) in the second inequality,

E
[
V (Yn+1)1n<σk

] ≤ 1

c′n
E[mn∧σk

P · V ](20)

≤ m0P · V +E[ηn∧σk
Q · V ]

c′n

≤ m0P · V + nK + θE[ηn∧σk
· V ]

c′n

≤ m0P · V + nK

c′n
+ θ

c′E
[
ηn∧σk

· V
n

]
.(21)

Thus, using equation (19), we get, for all n ≥ k + 1,

E

[
η(n+1)∧σk

· V
n + 1

]
≤

(
1 − 1 − θ/c′

n + 1

)
E

[
ηn∧σk

· V
n

]
+ m0P · V + nK

c′n(n + 1)
.

One easily checks that E[η̃n∧σk
· V ] < +∞ for all n ≤ k and, since we assumed that

m0P ·V < +∞ and since θ < c′ < 1, we can infer that E[ηn∧σk
·V/n] is uniformly bounded

in n. Finally, the inequality between (20) and (21) implies that both E[mn∧σk
P · V /n] and

E[V (Yn+1)1n<σk
] are also uniformly bounded in n. �

LEMMA 5 (Kushner and Clark’s condition). Set W = V 1/q . Almost surely

lim
n→+∞

n∑
�=1

γ�U� · W

exists and is finite.
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PROOF. Fix k ≥ 1. Following [54], Lemma 1, we let Z� = γ�U� · W and Mn =∑n∧σk

�=1 (Z� − E�−1Z�), where E�−1 denotes the conditional expectation conditionally on
F�−1. The rest of the proof is done into two steps: first, we prove that the martingale (Mn)n≥0
is uniformly bounded in Lr , implying that it converges almost surely, second, we prove that∑n∧σk

�=1 E�−1Z� converges almost surely when n tends to infinity.
Step 1: Using Jensen’s inequality, we get that the constant r can be assumed to be arbi-

trarily small as long as it is larger than 1; in particular, we can assume that r < 2. Using this
together with Lemma 1 in [18], we get

(22) E|Mn|r ≤ 2
n∑

�=1

E
[|Z� −E�−1Z�|r1�≤σk

] ≤ 8
n∑

�=1

E
[|Z�|r1�≤σk

]
.

Recall that, by definition, U� = η̃�−1Q(E)δY�
− η̃�−1Q and γ� = (η�(E)η̃�−1Q(E))−1 (see

Lemma 2); therefore, we have

E
[|Z�|r1�≤σk

] = E

[ |η̃�−1Q(E)W(Y�) − η̃�−1Q · W |r
|η�(E)η̃�−1Q(E)|r 1�≤σk

]

≤ 2E
[

V (Y�)

η�(E)r
1�≤σk

+ 1

η�(E)r

∣∣∣∣ η̃�−1Q

η̃�−1Q(E)
· W

∣∣∣∣r1�≤σk

]
,

where we recall that W = V 1/q . Using Assumption (A′2-iv) and the fact that η�(E) = �,
η̃�−1Q(E) ≥ c1 (see Assumption (A1)) and E[V (Y�)1�≤σk

] ≤ Ck (see Lemma 4), we get

E
[|Z�|r1�≤σk

] ≤ 2Ck

�r
+ 2E[η̃�−1|Q · W |r1�≤σk

]
cr

1�
r

≤ 2

�r

(
Ck + BCk

cr
1

)
,

where we used Lemma 4 and Assumption (A′2-iv) for the last inequality (recall that, by
Jensen’s inequality, r can be assumed to be arbitrarily close to one, and thus smaller than
q , in particular). Using equation (22), this implies that the martingale (Mn)n≥0 is uniformly
bounded in Lr and hence that it converges almost surely.

Step 2: Using the fact that η�(E) = �, we also have

E
∣∣E�−1[Z�]1�≤σk

∣∣ = E

∣∣∣∣E�−1

[
η̃�−1Q(E)W(Y�) − η̃�−1Q · W

η�(E)η̃�−1Q(E)

]
1�≤σk

∣∣∣∣
= 1

�
E

∣∣∣∣E�−1

[
W(Y�) − η̃�−1Q · W

η̃�−1Q(E)

]
1�≤σk

∣∣∣∣
= 1

�
E

∣∣∣∣m�−1P · W
m�−1P(E)

1�≤σk
− η�−1Q · W

η�−1Q(E)
1�≤σk

∣∣∣∣,
where we used for the last equality that the conditional distribution of Y� given F�−1 is
m�−1P/m�−1P(E). By the triangular inequality, and using the fact that η�−1Q(E) ≥ c1(� −
1) almost surely (see Assumption (A1)), we get

E
∣∣E�−1[Z�]1�≤σk

∣∣ ≤ 1

c1�(� − 1)
E

[|m�−1P · W − η�−1Q · W |1�≤σk

]

+ 1

�
E

[∣∣∣∣ 1

m�−1P(E)
− 1

η�−1Q(E)

∣∣∣∣m�−1P · W1�≤σk

]
.

(23)

Let us first bound the first term of the above sum. Using Jensen’s inequality and Lemma 1 in
[18] (note that (m�∧σk

P − η�∧σk
Q)�≥0 is a martingale), we get

E
[|m�−1P · W − η�−1Q · W |1�≤σk

]r
≤ E

[|m�−1P · W − η�−1Q · W |1�−1≤σk

]r
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≤ E|m(�−1)∧σk
P · W − η(�−1)∧σk

Q · W |r

≤ 2(m0P · W)r + 2
�−1∑
i=1

E
[∣∣Q(i) · W(Yi) − Q · W(Yi)

∣∣r1i≤σk

]

≤ 2(m0P · W)r + 2
�−1∑
i=1

BE
[
V (Yi)1i≤σk

]
,

where we used the fact that 1�≤σk
≤ 1�−1≤σk

almost surely, that 1i≤σk
is measurable with

respect to Fi−1 ∪σ(Yi), and Assumption (A′2-iv). Finally, Lemma 4 implies that there exists
a constant C′

k > 0 such that

E
[|m�−1P · W − η�−1Q · W |1�≤σk

] ≤ C′
k

(
(m0P · W)r + � − 1

)1/r
.(24)

Let us now look at the second term in the right-hand side of equation (23); using Assumption
(A1), we have that

E

[∣∣∣∣ 1

m�−1P(E)
− 1

η�−1Q(E)

∣∣∣∣m�−1P · W1�≤σk

]

= E

[ |η�−1Q(E) − m�−1P(E)|
η�−1Q(E)

m�−1P · W
m�−1P(E)

1�≤σk

]

≤ 1

c1(� − 1)
E

[∣∣η�−1Q(E) − m�−1P(E)
∣∣m�−1P · W
m�−1P(E)

1�≤σk

]

≤ 1

c1(� − 1)
E

[∣∣η�−1Q(E) − m�−1P(E)
∣∣p1�≤σk

]1/p
E

[(
m�−1P · W
m�−1P(E)

)q

1�≤σk

]1/q

≤ C
1/q
k

c1(� − 1)
E

[∣∣η�−1Q(E) − m�−1P(E)
∣∣p1�≤σk

]1/p
,

where we used Hölder’s inequality (in the second inequality), Jensen’s inequality and
Lemma 4 (in the last inequality). Now, using the main result of [26], we obtain that, for
some constant dp > 0,

E
[∣∣η�−1Q(E) − m�−1P(E)

∣∣p1�≤σk

]
≤ E

[∣∣η�∧σk−1Q(E) − m�∧σk−1P(E)
∣∣p]

≤ 2p−1

[
m0P(E)p + dp(� − 1)p/2−1

�−1∑
i=1

E
[∣∣QYi

(E) − Q
(i)
Yi

(E)
∣∣p1i<σk

]]

≤ 2p−1

[
m0P(E)p + dp(� − 1)p/2−1

�−1∑
i=1

AE
[
V (Yi)1i≤σk

]]
,

where we used Assumption (A′2-iii). Hence, using Lemma 4, we deduce that

E

[∣∣∣∣ 1

m�−1P(E)
− 1

η�−1Q(E)

∣∣∣∣m�−1P · W
]p

≤ C
p/q
k 2p−1

c
p
1 (� − 1)p

(
m0P(E)p + dp(� − 1)p/2ACk

)
.

(25)

Finally, from inequalities (23), (24) and (25), we deduce that
∑∞

�=1 E|E�−1Z�1�≤σk
| < ∞. As

a consequence,
∑σk

�=1 |E�−1Z�| < ∞ almost surely, implying that
∑n∧σk

�=1 E�−1Z� converges
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almost surely when n → ∞. Recall that we have proved that Mn = ∑n∧σk

�=1 (Z� − E�−1Z�)

converges almost surely when n goes to infinity (we showed earlier that it was uniformly
bounded in Lr ). Therefore, we can imply that

∑n∧σk

�=1 Zk converges almost surely. Since
P(

⋃
k≥1{σk = +∞}) = 1 (see Lemma 3), we get that

∑n
�=1 Zk converges almost surely,

which concludes the proof. �

From now on, for all C > 0, we set

PC(E) := {μ : μ is a probability on E such that μ · W ≤ C},
where we recall that W = V 1/q . Note that PC(E) is a compact subset of P(E) (the set of
Borel probability measures on E) with respect to the topology of weak convergence.

LEMMA 6. The sequence (η̃n)n≥0 is almost surely relatively compact in P(E) with re-
spect to the topology of weak convergence. More precisely, there exists a random value C > 0
such that, almost surely, η̃n ∈ PC(E) for all n ∈ N.

PROOF. Using Lemma 2, we have that, for all n ≥ 0 (recall that W = V 1/q ),

η̃n+1 · W = η̃n · W + γn+1
(
Un+1 · W + F(η̃n) · W )

,

where

F(η̃n) · W = η̃nQ · W − η̃nQ(E)η̃n · W ≤ θη̃n · W + K − c1η̃n · W,

where we have used Assumptions (A1) and (A′2-ii). Therefore, we get

η̃n+1 · W ≤ η̃n · W + γn+1
(
Un+1 · W + K + (θ − c1)η̃n · W )

.(26)

We define the random variable

M = sup
m≥n≥1

∣∣∣∣∣
m∑

k=n

γn+1Uk+1 · W
∣∣∣∣∣

which is finite almost surely (by Lemma 5). Let us prove by induction that

η̃n · W ≤ 2M + 1 + c1 − θ

c1 − θ
K̂,(27)

where K̂ = K/c1 ∨ (η̃1 · W) (note that K̂ is random and that K̂ ≥ K/c1 ≥ K). The result is

immediate for n = 1. Assume now that the result holds true for n ≥ 1. If η̃n · W ≤ K̂
c1−θ

, then
(26) entails that

η̃n+1 · W ≤ K̂

c1 − θ
+ M + K̂ ≤ M + 1 + c1 − θ

c1 − θ
K̂,

because γn+1 ≤ 1/c1 almost surely by Assumption (A1). If η̃n · W > K̂
c1−θ

, then we define
the (random) integer n0 by

n0 = sup
{
k ∈ {1, . . . , n} such that η̃k · W >

K̂

c1 − θ
and η̃k−1 · W ≤ K̂

c1 − θ

}
,

which is well defined since η̃1 · W ≤ K̂ by definition of K̂ . We can thus deduce as above that
η̃n0 · W ≤ M + 1+c1−θ

c1−θ
K̂ and hence

η̃n+1 · W ≤ η̃n0 · W +
n∑

k=n0

γk+1Uk+1 · W ≤ M + 1 + c1 − θ

c1 − θ
K̂ + M.

Finally, we deduce by induction that (27) holds true for all n ≥ 1.
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Since the right-hand side of (27) does not depend on n and since W = V 1/q has relatively
compact level sets by Assumption (A′2), we deduce that (η̃n)n∈N is almost surely relatively
compact for the topology of weak convergence on P(E) (see for instance [51], Theorem 6.7,
Chapter II). �

LEMMA 7. For any C ≥ K
c1−θ

and any μ0 ∈ PC(E), t �→ νt := Pμ0(Xt ∈ · | Xt �= ∂) is
the unique solution to the dynamical system (16) with values in PC(E) and it is continuous
with respect to (μ0, t) ∈ PC(E) × [0,+∞).

PROOF. Step 1. Existence. Fix C > 0 and μ0 ∈ PC(E). We consider the weak forward-
Kolmogorov equation defined as

(28)
dμt · f

dt
= μt(Q − I ) · f,

for all bounded continuous functions f : E → R. If μ0 is a Dirac measure δx , then, by [19],
Theorem 2.21, t �→ Px(Xt ∈ ·) is a solution of this equation. Recall that W = V 1/q ; equation
(2.29) in [19] states that if there exists a constant c > 0 such that (Q − I )W ≤ cW , then,
for all x ∈ E, for all s ≥ 0, Ex[W(Xs)] ≤ W(x)ecs (here and below, we always assume
that the considered functions vanish on ∂ , so that Ex[W(Xs)] = Ex[W(Xs)1Xs �=∂ ]). Using
Assumption (A′2-iv), we get that |QxW | ≤ B1/qW , which thus implies that

(29) ExW(Xs) ≤ e(B1/q+1)sW(x) for all s ≥ 0.

If μ0 is not a Dirac mass, we get, from equation (29) and from Assumption (A′2-iii), that
(s, x) �→ Ex[(Q − I )f (Xs)] is integrable with respect to dsμ(dx) on [0, t] × E. Therefore,
we can use Fubini’s theorem and get that, for all t ≥ 0,

Eμ0f (Xt) = μ0 · f +
∫ t

0
Eμ0

[
(Q − I )f (Xs)

]
ds,(30)

which means that t �→ Pμ0(Xt ∈ ·) is a solution of (28).
In both cases (μ0 being a Dirac mass or not), t �→ Pμ0(Xt ∈ ·) is a solution of (28), and,

thus, νt is a solution of (16). Since, by Assumption (A1), Pμ0(Xt ∈ E) ≥ e−(1−c1)t for all
t ≥ 0, we get that

(31) νt · W ≤ e(B1/q+2−c1)t ν0 · W for all t ≥ 0.

Step 2. Compactness. Let us now prove that νt ∈ PC(E) for all t ≥ 0. We denote by TN

the first hitting time of {W ≥ N}, that is,

TN = inf
{
t ≥ 0,W(Xt) ≥ N

}
.

Note that TN is a stopping time for the natural filtration of the process (see for instance
Theorem 2.4 in [6]). Using the fact that (Q− I ) ·W ≤ (θ − 1)W +K and Dynkin’s formula,
we obtain that, for all x ∈ E and all 0≤s < t ,

(32)

Ex

[
e(1−c1)[(t−s)∧TN ]W(X(t−s)∧TN

)1(t−s)∧TN<τ∂

]
= W(x) +Ex

[∫ t∧(s+TN)

s
e(1−c1)(u−s)((θ − c1)W(Xu−s)1u−s<τ∂

+ K
)

du

]
.

The same computation with c1 replaced by θ and s = 0 shows that, for any fixed t ≥ 0,
Ex[W(Xt∧TN

)1t∧TN<τ∂
] is uniformly bounded over N ≥ 1, so that,

Px(TN ≤ t) ≤ Ex

[
W(Xt∧TN

)

N
1t∧TN<τ∂

]
−−−−−→
N→+∞ 0,
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where we have used Markov’s inequality. This implies in particular that the almost surely
nondecreasing sequence (TN)N≥0 converges to +∞ almost surely. Using in addition Fatou’s
Lemma in the left-hand side of (32) and the monotone convergence theorem in the right-hand
side (separating the W term and the K term and using the fact that θ < c1 and that TN is
almost surely nondecreasing), we obtain

Ex

[
e(1−c1)(t−s)W(Xt−s)1t−s<τ∂

]
≤ W(x) +

∫ t

s
e(1−c1)(u−s)((θ − c1)Ex

[
W(Xu−s)1u−s<τ∂

] + K
)

du.

Integrating with respect to the law of Xs under Pμ0 and using Fubini’s theorem, we thus get
that

Eμ0

[
e(1−c1)tW(Xt)1t<τ∂

] ≤ Eμ0

[
e(1−c1)sW(Xs)1s<τ∂

]
+

∫ t

s
e(1−c1)u

(
(θ − c1)Eμ0

[
W(Xu)1u<τ∂

] + K
)

du.

This implies that Eμ0[e(1−c1)tW(Xt)1t<τ∂
] ≤ μ0 · W ∨ K

c1−θ
(we detail the proof of this im-

plication in Lemma 8 below) and, since Pμ0(t < τ∂) ≥ e−(1−c1)t , that νt ·W ≤ ν0 ·W ∨ K
c1−θ

,
for all t ≥ 0, that is, that νt ∈ P

C∨ K
c1−θ

for all t ≥ 0.

Step 3. Weak continuity of the semigroup. Our aim is to prove the continuity of (μ0, t) �→
Eμ0f (Xt) for any bounded continuous functions f : E →R. We prove first the continuity of
the application

(x, t) ∈ E × [0,+∞) �→ Exf (Xt).

Recall that TN is the first hitting time of {W ≥ N} and is a stopping time for the natural
filtration of the process. We have, for all x ∈ E and t ≥ 0,

∣∣Exf (Xt) −Ex

[
f (Xt∧TN

)
]∣∣ ≤ 2‖f ‖∞Px(TN < t) ≤ 2‖f ‖∞Ex

[
W(Xt∧TN

)

N

]

≤ 2‖f ‖∞e(B1/q+1)tW(x)/N,

where the last inequality is a consequence of Assumption (A′2-iv) and (29). In particular,
since V is locally bounded, (x, t) �→ Exf (Xt) is the locally-uniform limit (when N → +∞)
of (x, t) �→ Ex[f (Xt∧TN

)], which is continuous with respect to (x, t) since it is the expecta-
tion of a pure jump Markov process with uniformly-bounded continuous jump measure. As
a consequence, the application (x, t) �→ Exf (Xt) is continuous (and bounded).

Let us now prove that, for any bounded continuous function f : E →R, the function

(μ0, t) �→ Eμ0f (Xt)

is continuous on PC(E) × [0,+∞), for all C ≥ 0. Let μn ∈ PC(E) → μ and tn → t when
n → +∞ (note that μ ∈ PC(E) since this set is closed for the topology of weak convergence).
Then, we have∣∣Eμnf (Xtn) −Eμf (Xt)

∣∣ ≤ ∣∣Eμn

[
f (Xtn) − f (Xt)

]∣∣ + ∣∣Eμnf (Xt) −Eμf (Xt)
∣∣

→ 0 when n → +∞,

where we used (for the first term in the right-hand side) the almost-sure continuity of s �→ Xs

at time t and the dominated convergence theorem, and (for the second term in the right-hand
side) the continuity of x �→ Exf (Xt) and the weak convergence of μn toward μ.



2430 C. MAILLER AND D. VILLEMONAIS

Step 4. Uniqueness. Let t �→ μt be a solution to (16) in PC(E) for some C ≥ 0 and let us
consider

θt := exp
(∫ t

0
μs(Q − I )(E)ds

)
μt .

By Assumption (A′2-iii), |μs(Q − I )(E)| ≤ A1/qμs · W + 1 ≤ A1/qC + 1, so that θt is well
defined for all t ≥ 0. Moreover, for all bounded continuous functions f : E → R, θt · f is
differentiable and we have

∂θt · f
∂t

= μt(Q − I )(E)θt · f + θtQ · f − μtQ(E)θt · f = θt (Q − I ) · f.

Said differently, θt is solution to (28). Hence, for any continuous function f , we have

dEθs f (Xt−s)

ds
= θs(Q − I ) ·E·f (Xt−s) − θs(Q − I ) ·E·f (Xt−s) = 0,

where we used (28) for (θt )t to handle the first right-hand-side term (recall that x �→
Exf (Xt−s) is bounded continuous) and the backward Kolmogorov equation for the sec-
ond right-hand-side term (see for instance Theorem 2.21 in [19]). This implies that θt · f =
Eθ0f (Xt) and hence that

μ0 · f = θt · f
θt (E)

= Eμ0f (Xt)

Pμ0(Xt �= ∂)
= νt · f

for all t ≥ 0 and all bounded continuous functions f : E →R. This implies that μ = ν, which
is thus the unique solution of (16). �

In Step 2 of the proof above, we used the following technical lemma:

LEMMA 8. Let g : [0,+∞) →R and f : R×R →R be two measurable functions such
that t ∈ [0,+∞) �→ f (t, g(t)) ∈ R is locally integrable. If

g(t) − g(s) ≤
∫ t

s
f

(
u,g(u)

)
du ∀0 ≤ s ≤ t

and if there exists M ∈ R such that f (u,g(u)) ≤ 0 for all u ∈ [0,+∞) such that g(u) ≥ M .
Then

g(t) ≤ g(0) ∨ M ∀t ≥ 0.

PROOF. We assume without loss of generality that M ≥ g(0) and proceed by contradic-
tion: assume that there exist ε > 0 and t ≥ 0 such that g(t) ≥ M + ε and let t0 = inf{t ≥
0 s.t. g(t) ≥ M + ε}. Note that, for all t ≥ t0,

g(t) ≤ g(t0) +
∫ t

t0

f
(
u,g(u)

)
du −−→

t↓t0
g(t0),

and hence g(t0) ≥ M + ε. Now, let s0 = sup{s ≤ t0 s.t. g(s) ≤ M}, and note that

g(s0) ≤ lim inf
s↑s0

{
g(s) +

∫ s0

s
f

(
u,g(u)

)
du

}
= lim inf

s↑s0
g(s),

implying that g(s0) ≤ M . Finally, since g(s) ∈ [M,M + ε] for all s ∈ [s0, t0], we have

M + ε ≤ g(t0) ≤ g(s0) +
∫ t0

s0

f
(
u,g(u)

)
du ≤ g(s0) ≤ M. �

We are now ready to prove Proposition 7:
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PROOF OF PROPOSITION 7. Our approach is based on [7] (see also [11] for an appli-
cation of this theorem on a set of probability measures on a compact space). In view of
[57], since E is separable by assumption, there exists a metrization of the topology of E

such that E is totally bounded (this distance is imposed on E from now on). Also, still by
[57], there exists a family of bounded uniformly continuous functions (gk)k≥1 that is dense
in U(E,R), the set of all bounded uniformly-continuous functions from E to R. Finally,
[57], also states that a sequence (μn)n∈N of nonnegative measures converges weakly to μ if
and only if μn · gk → μ · gk when n → +∞, for all k ∈ N. We also consider the function
g0 : x ∈ E �→ Qx(E), which is continuous by Assumption (A4) and bounded by Assumption
(A1), and the family of functions indexed by k,M ∈ N defined by

gM
k (x) = −M ∨ (

Q · gk(x) ∧ M
)

and which are continuous (by Assumption (A4)) and bounded. In particular, the distance

d(μ1,μ2) = ∣∣μ1Q(E) − μ2Q(E)
∣∣ + ∞∑

k=1

|μ1 · gk − μ2 · gk| ∧ 1

2k(1 + ‖gk‖∞)

+
∞∑

k=1,M=1

|μ1 · gM
k − μ2 · gM

k | ∧ 1

2k+M(1 + ‖gM
k ‖∞)

is a metric for the weak convergence in the set of nonnegative measures on E.
We introduce the increasing sequence (τn)n≥1 defined as

τn = γ1 + γ2 + · · · + γn

(see Lemma 2 for the definition of γn) and we consider the time-changed and linearized
versions (μ̄t )t∈[1,+∞) and (μt )t∈[1,+∞) of (η̃n)n∈N defined, for all n ≥ 1 and all t ∈ [τn, τn+1],
by

μ̄t = η̃n and μt = η̃n + t − τn

τn+1 − τn

(η̃n+1 − η̃n).

Similarly, we define Ūt = Un+1 for all t ∈ [τn, τn+1] (see Lemma 2 for the definition of Un).
To prove that (μt )t≥0 is an asymptotic pseudo-trajectory of the semiflow induced by (16),

we apply [7], Theorem 3.2, (and refer the reader to [7] for the definition of an asymptotic
pseudo-trajectory).

Note that μt ∈ PC(E) for all t ≥ 0, and hence (μt )t≥0 has compact closure in PC(E)

(since this set is itself compact). Also, by construction, t �→ μt is uniformly continuous (and
even Lipschitz) with respect to the distance d on PC(E). Indeed, for all s, t ∈ [τn, τn+1],

d(μs,μt ) = t − s

τn+1 − τn

d(η̃n+1, η̃n) = t − s

γn+1
d(η̃n+1, η̃n)

≤ (t − s)
(
2
∥∥Q(E)

∥∥∞ + 4
)
,

where we have used the fact (see Lemma 2) that, for all bounded measurable function g :
E →R+, ∣∣∣∣ η̃n+1 · g − η̃n · g

γn+1

∣∣∣∣ = ∣∣η̃nQ(E)
(
g(Yn+1) − η̃n · g)∣∣ ≤ 2‖g‖∞.

Therefore, to apply [7], Theorem 3.2, it only remains to prove that all limit points of
(�t(μ))t≥0 in C(R+,PC(E)) endowed with the topology of uniform convergence on com-
pact sets are solutions of (16), where �t(μ) := (μt+s)s≥0. Let μ∞ ∈ C(R+,PC(E)) be
such a limit point: in other words, we assume that there exists an increasing sequence of
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positive numbers (tn)n≥0 converging to +∞ such that (�tn(μ))n≥0 converges to μ∞ in
C(R+,PC(E)).

For all t ∈ [τn, τn+1) and all s ≥ 0 such that t + s ∈ [τm, τm+1), we deduce from Lemma 2
that ∫ t+s

t
F (μ̄u) + Ūu du

= (τn+1 − t)
(
F(η̃n) + Un+1

)

+
m−1∑

k=n+1

γk+1
(
F(η̃k) + Uk+1

) + (t + s − τm)
(
F(η̃m) + Um+1

)

= τn+1 − t

τn+1 − τn

(η̃n+1 − η̃n) + η̃m − η̃n+1 + t + s − τm

τm+1 − τm

(η̃m+1 − η̃m)

= −μt + μt+s .

(33)

For all k ∈ N, we define Lk
F : C(R+,PC(E)) →R

[0,+∞) by

Lk
F (ν)(t) = ν0 +

∫ t

0
F(νs) · gk ds,

for any ν ∈ C(R+,PC(E)) (see Lemma 2 for the definition of the function F ), so that, by
equation (33),

(34) �t(μ) · gk = Lk
F

(
�t(μ)

) + Ak
t + Bk

t ,

where, for all s ≥ 0,

Ak
t (s) =

∫ t+s

t
F (μ̄u) · gk − F(μu) · gk du and Bk

t (s) =
∫ t+s

t
Ūu · gk du.

The rest of the proof is divided into four steps: The first two steps are devoted to prove
that Ak

t and, respectively, Bk
t converge uniformly to 0 on compact sets when t → +∞. In the

third step, we prove that Lk
F (�tn(μ)) converges to Lk

F (μ∞) for all subsequence tn → +∞
such that (�tn(μ))n≥0 converges to μ∞ in C(R+,PC(E)). Finally, in the fourth step, we
conclude the proof of Proposition 7.

Step 1: Ak
t converges to 0. For all u ∈ [τn, τn+1), we have∣∣F(μ̄u) · gk − F(μu) · gk

∣∣
≤ |μ̄uQ · gk − μuQ · gk| +

∣∣μ̄uQ(E)μ̄u · gk − μuQ(E)μu · gk

∣∣
≤ |η̃n+1Q · gk − η̃nQ · gk| + ‖gk‖∞

∣∣μ̄uQ(E) − μuQ(E)
∣∣ + |μ̄u · gk − μu · gk|

≤ |η̃n+1Q · gk − η̃nQ · gk| + ‖gk‖∞
∣∣η̃n+1Q(E) − η̃nQ(E)

∣∣
+ |η̃n+1 · gk − η̃n · gk|

≤ 1

n + 1
|QYn+1 · gk − η̃nQ · gk| + ‖gk‖∞

n + 1

∣∣QYn+1(E) − η̃nQ(E)
∣∣

+ 1

n + 1

∣∣gk(Yn+1) − η̃n · gk

∣∣
≤ ‖gk‖∞

n + 1

(
B1/qV (Yn+1)

1/q + B1/qC + 1 + 2
)
,
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where we used Assumptions (A′2-iii) and (A1) and the fact that, almost surely, ηm ∈ PC(E)

for all n ≥ 0. Hence, if we denote by nt the unique integer such that t ∈ [τnt , τnt+1), for any
t ≥ 0 (such an integer exists since τn → +∞ when n → +∞), we have, for all s ≥ 0,

Ak
t (s) ≤ ‖g‖k

nt + 1

nt+s∑
k=nt

γk+1B
1/qV (Yk+1)

1/q + ‖g‖k(B
1/qC + 3)s

nt + 1

≤ ‖g‖k

nt + 1

B1/q

c1
η̃nt+s+1 · V 1/q + ‖g‖k(B

1/qC + 3)s

nt + 1
,

where we used that γn ≤ 1/(c1n), for all n ≥ 1, by Assumption (A1). Finally, for all T ≥ 0,
we have

sup
s∈[0,T ]

∣∣Ak
t (s)

∣∣ ≤ T ‖gk‖∞(B1/qC + B1/qC/c1 + 3)

nt + 1
→ 0 when t → +∞.

Step 2: Bk
t converges to 0. We have, for all t ∈ [τn, τn+1) and t + s ∈ [τn+m, τn+m+1),

∣∣Bk
t (s)

∣∣ ≤ (τn+1 − t)|Un+1 · gk| +
∣∣∣∣∣
n+m−1∑
�=n+1

γ�+1U�+1 · gk

∣∣∣∣∣ + (s − τn+m)|Un+m+1 · gk|

≤ γn+1|Un+1 · gk| +
∣∣∣∣∣
n+m−1∑
�=n+1

γ�+1U�+1 · gk

∣∣∣∣∣ + γn+m+1|Un+m+1 · gk|.

Using a similar approach as in the proof of Lemma 5, one easily obtains that, for any bounded
continuous function f : E →R,

∑n
�=0 γ�+1U�+1 ·f converges almost surely when n → +∞.

Hence, we have that, almost surely,

lim
n→+∞ sup

m≥1

{
γn+1|Un+1 · gk| +

∣∣∣∣∣
n+m−1∑
�=n+1

γ�+1U�+1 · gk

∣∣∣∣∣ + γn+m+1|Un+m+1 · gk|
}

= 0.

In particular, we have that, for all T ≥ 0,

sup
s∈[0,T ]

∣∣Bk
t (s)

∣∣ → 0 when t → +∞.

Step 3: Lk
F (�tn(μ)) converges to Lk

F (μ∞) for all subsequence tn → +∞ such that
(�tn(μ))n≥0 converges to μ∞ in C(R+,PC(E)). To prove this, it is enough to show that
Lk

F is sequentially continuous in C(R+,PC(E)). Let (νn)n≥0 be a sequence of elements of
C(R+,PC(E)) which converges to ν ∈ C(R+,PC(E)). For all n ≥ 0 and all t ≥ 0, we have

∣∣Lk
F

(
νn)

(t) − Lk
F (ν)(t)

∣∣ ≤ ∣∣νn
0 · gk − ν0 · gk

∣∣ + ∫ t

0

∣∣F (
νn
s

) · gk − F(νs) · gk

∣∣ ds.(35)

The first term of the right-hand side converges to 0 because of the weak convergence of
(νn

0 )n≥0 to ν. Let us now focus on the second term of the right-hand side; we have∣∣F (
νn
s

) · gk − F(νs) · gk

∣∣
≤ ∣∣νn

s Q · gk − νsQ · gk

∣∣ + ∣∣νn
s Q(E)νn

s · gk − νsQ(E)νsgk

∣∣.
Since νn converges uniformly on compact sets toward ν, we deduce that the term s �→
|νn

s Q(E)νn
s · gk − νsQ(E)νsgk| converges uniformly to 0 on compact sets when n → +∞

(we use here the fact that g0 = Q·(E) appears in the distance d). Moreover, since νn
s ∈ PC(E)
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and since |Q · gk| ≤ B1/q ′‖gk‖∞Wq/q ′
by Assumption (A2-iii) (recall that W := V 1/q ), we

deduce that, for all M ≥ 1,∣∣νn
s Q · gk − νsQ · gk

∣∣ ≤ ∣∣(νn
s − νs

)
gM

k

∣∣ + (
νn
s + νs

)∣∣Q · gk − gM
k

∣∣
≤ ∣∣(νn

s − νs

)
gM

k

∣∣ + (
νn
s + νs

)|Q · gk1|Q·gk |>M |
≤ ∣∣(νn

s − νs

)
gM

k

∣∣ + B1/q ′‖gk‖∞
(
νn
s + νs

)∣∣Wq/q ′
1
B1/q‖gk‖q′/q∞ W>Mq′/q

∣∣

≤ ∣∣(νn
s − νs

)
gM

k

∣∣ + B1/q‖gk‖q ′/q∞
Mq ′/q−1

(
νn
s + νs

)
(W)

≤ ∣∣(νn
s − νs

)
gM

k

∣∣ + B1/q‖gk‖q ′/q∞ 2C

Mq ′/q−1
,

where we have used the fact that νn
s ∈ PC(E) for all n ∈ N and all s ≥ 0. The term

B1/q‖gk‖q′/q∞ 2C

Mq′/q−1 goes to 0 when M → +∞ uniformly in s ≥ 0 and the term |(νn
s − νs)g

M
k |

converges to 0 uniformly in s in compact sets. As a consequence, we deduce that |νn
s Q · gk −

νsQ · gk| converges to 0 uniformly in s in compact sets. This allows us to conclude that the
second term of the right hand side of (35) converges to 0 when n → +∞, which was the aim
of Step 3.

Step 4: conclusion. Steps 1 to 3 above entail that any limit point μ∞ of (�t(μ))t≥0 satisfies

μ∞
t · gk = μ∞

0 · gk +
∫ t

0
F

(
μ∞

s

) · gk ds (∀k ≥ 1).

Since (gk)k≥1 is dense in the set U(E,R), we conclude (see for instance [57], Lemma 2.3)
that

μ∞
t = μ∞

0 +
∫ t

0
F

(
μ∞

s

)
ds.

As a consequence, μ∞ is solution to the dynamical system (16). Using [7], Theorem 3.2, we
deduce that (μt )t≥0 is a pseudo asymptotic trajectory in PC(E) for the semiflow induced by
the well-posed dynamical system (16) in PC(E). Therefore, Assumption (A3) entails that the
set of limit points of (μt )t≥0 is included in the uniformly attracting set {ν} of the semiflow
generated by (16). In particular, the only limit point of the compact sequence (η̃n)n≥1 is ν.
This concludes the proof of Proposition 7. �

REMARK 12. Without Assumption (A3), we still get that (μt )t≥0 is a pseudo asymptotic
trajectory in PC(E) for the semiflow induced by the well-posed dynamical system (16) in
PC(E). In particular, the set of limit points of (μt )t≥0 is included in the limit sets of the flow
(see [7], Section 5.2).

3.2. Proof of Theorem 1 from Proposition 7. Fix c′ ∈ (θ, c1). For all k ≥ 1, we define

σk := inf
{
n ≥ k,mnP (E) < c′n

}
.

For all n ≥ 1 and any bounded continuous function f : E → R, we set �n = mn∧σk
· f −

ηn∧σk
R · f , so that (�n)n≥1 is a martingale and

�n = m0 · f +
n∧σk∑
i=1

(
R

(i)

Yi
· f − RYi

· f )
.
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An immediate adaptation of Theorem 1.3.17 in [28] tells us that if the sequence
(n−1

E[|�n|r ])n≥1 is bounded, then n−1�n goes almost surely to zero when n goes to in-
finity. We have, using Lemma 1 in [18],

E[|�n|r ]
n

≤ 2(m0 · f )r

n
+ 2

n

n∑
i=1

E
[∣∣R(i)

Yi
· f − RYi

· f ∣∣r1i≤σk

]

≤ 2(m0 · f )r

n
+ 2‖f ‖r∞

n

n∑
i=1

AE
[
V (Yi)1i≤σk

]
,

where we used the fact that 1i≤σk
is Fi−1-measurable and independent of Yi and Assumption

(A′2-iii).
Using Lemma 4, we deduce that the sequence (n−1

E[|�n|r ])n is uniformly bounded and
hence that n−1�n goes almost surely to zero when n goes to infinity (since we have assumed,
in particular, that m0 · V < +∞, which entails m0(E) < ∞).

Since this is true for any k ≥ 1 and since P(
⋃∞

k=1{σk = +∞}) = 1 (see Lemma 3), we de-
duce that, almost surely, mn(f ) = ηnR(f ) + o(n) when n goes to infinity. In view of Propo-
sition 7, and by Assumption (A4) (namely continuity of R), we get that (ηnR · f/n)n≥1 and
(ηnR(E)/n)n≥1 converge almost surely to νR · f and νR(E) respectively, which concludes
the proof of the first part and the last part of Theorem 1.

To get the almost-sure boundedness of mnP · V 1/q/n, recall that, by definition, mn =
m0 + ∑n

i=1 R
(i)

Yi
, implying that, for all n ≥ 0,

mnP · V 1/q = m0P · V 1/q +
n∑

i=1

Q
(i)

Yi
· V 1/q .

As above, we let


n = m0P · V 1/q +
n∧σk∑
i=1

(
Q

(i)

Yi
· V 1/q − QYi

· V 1/q)
.

The sequence (
n)n≥0 is a martingale, and, similarly as above, we get that

E|
n|r
n

≤ 2|m0P · V 1/q |r
n

+ 2

n

n∑
i=1

E
[∣∣Q(i)

Yi
· V 1/q − QYi

· V 1/q
∣∣r1i≤σk

]

≤ 2|m0P · V 1/q |r
n

+ 2B

n

n∑
i=1

E
[
V (Yi)1i≤σk

]
.

Using Lemma 4, we imply that (E|
n|r/n)n≥0 is uniformly bounded, and thus that 
n/n

converges almost surely to 0 when n → ∞. Therefore, we have that, almost surely when
n → ∞,

mnP · V 1/q

n
= 1

n

n∑
i=1

QYi
· V 1/q + o(1) = η̃nQ · V 1/q + o(1).

Note that, by Assumption (A′2-iv), we have∣∣η̃nQ · V 1/q
∣∣ ≤ B1/q η̃n · V 1/q,

and recall that, by equation (27), η̃n · V 1/q is almost surely uniformly bounded. We can thus
conclude that mnP · V 1/q/n is almost surely uniformly bounded, as claimed.
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