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Abstract. We respond to the discussants of our articles emphasizing the
importance of inference under misspecification in the context of the repro-
ducibility/replicability crisis. Along the way, we discuss the roles of diag-
nostics and model building in regression as well as connections between our
well-specification framework and semiparametric theory.
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“Truth is much too complicated to allow anything
but approximations.” (John von Neumann, as cited by
Aronov and Miller, 2019)

We are grateful to the Editors of Statistical Science
for publishing our two articles together, referred to
herein as “Part I” and “Part II.” In combination, they
represent themes in recent work by a group of Whar-
ton faculty and students centered around the late Larry
Brown. Based on this work, Larry initiated follow-up
efforts that extended what we had learned to the two-
stage bootstrap (McCarthy et al., 2018), to semisuper-
vised learning (Azriel et al., 2016), and to the estima-
tion of population Average Treatment Effects (ATEs)
(Pitkin et al., 2013).

We also thank the discussants for investing time and
effort to comment on our work. We are fortunate to
have the opportunity to reargue and qualify aspects of
misspecified models and quantities of interest in light
of their comments. The idea of models as approxi-
mations is now finding explicit treatment in excellent
books by Davies (2014) and Aronov and Miller (2019).
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It may be worthwhile to begin by highlighting the
most important ideas of our articles. They are found
in Part II, Sections 3–5. These ideas include the no-
tion of well-specification of quantities of interest (as
opposed to correct specification of models) and di-
agnostics for well-specification based on reweighting.
Instructive ideas are often simple, as is this: the pur-
pose of data analysis is to extract meaningful quanti-
ties, not models. By emphasizing quantities of inter-
est rather than models, we step beyond “Models as
Approximations” in our titles. Quantities of interest
are most frequently model-based, but they can be con-
structed in other ways as well, including ad hoc con-
structions (as in Part II, Section 3.2, item 3) or based
on subject matter expertise. The next idea also is sim-
ple and fundamental: regression is the attempt to char-
acterize the conditional response distribution. This im-
plies an attempt to find properties of the data distribu-
tion that do not depend on the regressor distribution. It
is then a small step to define well-specification as the
irrelevance of the regressor distribution for the quan-
tities of interest. Consequently, well-specified quanti-
ties characterize the conditional response distribution
alone. The final fundamental idea is to diagnose well-
specification of quantities of interest by applying them
to reweighted data, where the weights depend on the
regressors only. The justification follows from the fact
that regressor-dependent reweighting changes the re-
gressor distribution but not the conditional response
distribution. To move from motivating principles to
concrete illustrations, we suggest that readers turn to
the data-driven example shown in Figure 1 of Part II for
a demonstration of the well-specification diagnostic:
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Not only does reweighting detect misspecification of a
quantity of interest, it also pinpoints its nature without
further modeling.

Turning to the discussants’ comments, it is a pleasure
to learn from their thoughtful comments, both technical
and methodological. Some reveal strong differences in
views:

• On the one hand, statisticians such as Jerald Lawless
assume that model-robust sandwich standard errors
and the consequences of misspecification are widely
known and accepted. They tend to be informed by
theories of estimating equations and econometrics.

• On the other hand, statisticians such as Antony Davi-
son and coauthors deeply object to undoing long
established model-trusting practice. They tend to
be informed by diagnostic methodologies that may
proffer evidence of model (in)adequacy.—A second
school of statisticians who are inclined to remain
model-trusting includes Bayesians such as Rod Lit-
tle.

In the substance, we strongly agree with the first posi-
tion. Degrees of misspecification are the old and the
new normal; models have never been more than ap-
proximations. Misspecification, especially in rich mod-
els, may not be detectable, but even if it is, we may
have reasons not to act on it: (1) The type of mis-
specification may not matter for the purpose at hand;
(2) our subject matter clients may require a misspec-
ified model for simplicity, or for comparability to ex-
tant literature, or because of subject matter theories;
(3) large data problems with many regressors and many
responses may require fitting large numbers of models
for which detailed diagnostics may be unrealistic and
simplicity may be a higher priority; (4) a data analysis
plan may have been preregistered or otherwise speci-
fied a priori, but in retrospect was based on a misspec-
ified model. For these reasons and others, misspeci-
fication may need to be tolerated, even if detectable
with diagnostics, and assumption-lean inference may
be needed.

We draw special attention to the last of these rea-
sons, (4) preregistration of data analysis plans (e.g.,
Adam, 2019) because it may play an increasingly
important role in the critical context of the repro-
ducibility/replicability crisis (e.g., Ioannidis, 2005).1

1The use of the terms reproducibility and replicability is not con-
sistent in the literature. We frame our intended meaning in an ideal-
ized frequentist way as follows: When multiple isomorphic datasets
(e.g., same variables, same number of cases) are obtained from

Pre-registration has been proposed as a way to reduce
the rate of false empirical findings caused by informal
and/or unreported analysis steps. It has been recog-
nized that certain data analytic practices that used to
be acceptable can invalidate statistical inference (e.g.,
Simmons, Nelson and Simonsohn, 2011). Jerald Law-
less hits the nail on the head when he writes that “Ex-
ploratory data analysis and alternating bouts of model
fitting and assessment are used in many settings, and
create difficulties for formal inferences concerning co-
variate effects and ‘final’ models.” For example, a pow-
erful component of EDA and diagnostics is data visual-
ization, but data analytic decisions based on them tend
to be informal.2 Another form of data exploration is
trial and error experimentation where regressors and
responses are selected by manually trying out multi-
ple models. At a higher level, trial and error experi-
mentation also takes place when multiple selection al-
gorithms3 are applied and their results compared and
“meta-selected” based on informal preferences. Fur-
ther experimentations may occur with basis expan-
sions, addition of interaction terms, variable transfor-
mations, outlier removal and subsetting.

To appreciate the problems created by informal prac-
tices, one must exercise the frequentist imagination
by conjuring a multitude of alternative datasets drawn
from the same population and the ensuing variability
of data analytic results. Even when all is done in the
name of careful and competent data analysis, with the
hope of finding correctly specified models justifying
model-trusting inference, the results may be too good
to be true. The tea leaves might have been arranged
too carefully. Competent data analysis may inadver-
tently turn into data dredging, contributing to the re-
producibility/replicability crisis.

As a partial countermeasure at the methodological
level, efforts have been launched by some journals
and funding agencies to require or reward preregis-
tration of data analysis procedures before examining

the same or related data sources (experiments, surveys, clinical tri-
als, . . . ), identical statistical analyses applied to them produce re-
sults that agree with each other to a degree that is consistent with
their nominal error probabilities. The terms isomorphic, identical,
same and related pose semantic issues in need of clarification and
consensus. Practical issues arising from multiple datasets with re-
lated data sources are the domain of meta-analysis.

2Examples: Does a scatterplot suggest a variable transformation?
Is a plot of residuals versus fitted values so flawed that the model
should be modified?

3Examples include lasso, stepwise, all subsets, combined with
various criteria for model size.
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the data.4 Consequently, we will be confronted by var-
ious degrees of misspecification and the need to in-
troduce assumption-lean inferences, even if misspec-
ification is detectable after the fact. Nothing prevents
researchers from going beyond planned or preregis-
tered procedures, but such steps must be clearly iden-
tified as exploratory rather than confirmatory. Like-
wise, our newly proposed diagnostics belong more in
the exploratory than confirmatory realm (unless pre-
registered as part of a larger data analysis plan), and
this is despite inferential features such as null distri-
butions for the RAV test (Part I, Sections 12.2–3) and
bootstrap bands for the reweighting diagnostic (Part II,
Sections 4–5). Against Davison and coauthors’ com-
fort with diagnostics-driven model building and sub-
sequent model-trusting inferences, learning from data
demands a trade-off: if confirmation is required, it lim-
its exploration, and if exploration is required, it limits
confirmation.

Having framed our theory of mis/well-specified
regression in the larger context of reproducibility/
replicability, we proceed to specific comments made
by the discussants.

Jerald Lawless provides a sympathetic interpretation
of our articles, and he also makes valuable observa-
tions from a more holistic point of view. We agree with
him that some communities accept model-robustness
and sandwich estimators, but we can’t quite agree that
the consequences of misspecification are widely under-
stood. Part I is about explaining these consequences in
detail and correcting misconceptions. The most preva-
lent among them derives from using the term “model
bias” as a synonym for misspecification, which sug-
gests erroneously that model bias creates estimation
bias. As explained at the end of Section 5 of Part I
and again in Section 7.3 of Part II, what really happens
is that model bias (misspecification) funnels the ran-
domness of the regressors into sampling variability in
estimates, thereby contributing to their standard errors
rather than their bias (Figure 4, Part I). This is why re-
gressor randomness matters, why treating regressors as
fixed is often wrong, and why their randomness should
be accounted for by statistical inference. Assumption-
lean standard errors get this right.

4An example of impressive discipline is reported from the physi-
cists at CERN in the context of the Higgs Boson discovery: “Once
we look at the real data, . . . we’re not allowed to change the analy-
sis anymore” (Hartman, 2014). An important post hoc requirement
is disclosure of all analysis steps taken, not just those that led to
“significant” results.

Except when they don’t. We note in Part I, Sec-
tion 13, that sandwich standard errors for linear OLS
are nonrobust to outliers and heavy tails, as is apparent
from equation (24) in Section 12.1 of Part I. In addi-
tion, classical heavy-tail robustness and model robust-
ness are in conflict at the level of standard error esti-
mates. Among possible approaches are classically ro-
bust methods (see, e.g., Cantoni and Ronchetti, 2001)
and, if meaningful, transformations to bounded ranges
or at least well-behaved tails (Part I, Section 13),
preferably chosen a priori to avoid the data dredging
problem.

Jerald Lawless mentions the distinction, which
should be common, between scientific discovery, ex-
planation and understanding on the one hand, and au-
tomatic decision making and prediction on the other
hand. Our articles address the former, and it is here
where statistical inference for parameters/regression
functionals plays a critical role. Prediction, in contrast,
typically relies on some form of cross-validation. Then
again, one may also consider prediction-related func-
tionals, such as β(P )′ �x0 obtained from linear OLS
regression, that is, the model-predicted approxima-
tion to the conditional response mean μ(�x0) at �x0.
Model-robust standard error estimates can be obtained
from the sandwich formula or the x-y bootstrap. Well-
specification of the prediction functional can be ex-
amined with the reweighting diagnostic. Significant
nonconstancy under reweighting may indicate that the
true conditional mean function μ(·) is highly nonlin-
ear or that the location �x0 is an extrapolation. If the
weight functions are centered at ξ = �x0 with shrinking
bandwidth, one obtains locally linear fits that amount
to nonparametric function estimation (Part II, Ap-
pendix A.7). A reweighting approach applies if inter-
est is solely in point predictions. More often, however,
interest is in prediction intervals for a quantitative re-
sponse, and to this end one can use empirically cali-
brated prediction bands (Berk et al., 2019, Section 9).
These are entirely model-robust, though not optimized
for any particular location �x0. Modern theories of pre-
diction have been proposed by Lei et al. (2018) and
Steinberger and Leeb (2018).

We agree and have pointed out (Part I, Section 6.2)
that model assessment is difficult when the number of
covariates is greater than one. To fully appreciate the
effects shown in the figures of Part I for p = 1, we have
to tax our imagination and conceive of the analogs for
p > 1 and even the “modern” case, p > n.

Finally, Jerald Lawless wonders whether our insights
could also be found with standard results based on
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working models under model misspecification. This is
indeed done in Part II, Section 7.2, where we show
the usual CLT for functionals defined by estimating
equations (EE), a special case being the score equa-
tions of a working model. In addition, we point out
a Pythagorean decomposition of the CLT into a well-
known part due to the conditional response distribu-
tion P

Y | �X and a lesser known part due to the regressor
distribution P �X , mediated by misspecification of the
EE functional. This second part vanishes under well-
specification of the EE functional. An EE functional
is well-specified if there exists a parameter setting for
which the estimating equations are satisfied condition-
ally at (a.s.) all locations in regressor space (Proposi-
tion 3.3 of Part II). A misspecified EE functional satis-
fies the equations only on average wrt P �X , not point-
wise.

Sara van de Geer begins with a nice formulation of
the functional view of parametric statistics: “. . . view a
parameter as some function of the distribution instead
of thinking of the distribution as some function of a pa-
rameter.” She then proceeds to a reconstruction of Hu-
ber’s (1967) sandwich result for general M-estimators,
all in 1.5 pages. At the end of her Section 1, she shows
for M-estimators how the meat of the sandwich covari-
ance matrix consists of the inverted bread plus a Hes-
sian ingredient caused by misspecification. Collapse of
the sandwich to merely one slice of bread occurs when
the Hessian ingredient vanishes. Such collapse is as-
sumed by the practitioners of model-trusting inference
(statistical vegetarians of sorts, although food analo-
gies suffer at this point).

While Sara van de Geer’s Section 1 is about M-
estimation in general, her Section 2 turns to M-
estimation for regression. Of particular interest is a
generalization from our linear OLS context in Part I
to generalized linear regressions obtained from M-
estimators that minimize loss functions of the form
ρ(�x′β, y). In this broad context, she shows how it is
possible to generalize the notions of conditional re-
sponse surfaces μ(�x), conditional variances σ 2(�x) and
nonlinearities η(�x). The conditional MSE decompo-
sition m2(�x) = σ 2(�x) + η2(�x) of our equation (8) in
Part I generalizes immediately, as does the ensuing de-
composition of the CLT and its asymptotic sandwich
variance of our Proposition 7.1 in Part I.

Sara van de Geer also elaborates on the classical
view of ancillarity, reverting to an interpretation of
distributions as functions of parameters. This is help-
ful because in our experience, many statisticians do

not know that regressor ancillarity is the classical ar-
gument to justify the treatment of regressors as fixed
when they are truly random (assumed here through-
out). We recommend following her explanation of
nonancillarity in the classical sense. The regression pa-
rameters β would also be parameters (in the classi-
cal sense) of a model for the regressor distribution:
− logpβ(�x, y) = − logpβ(y|�x) − logpβ(�x). Hence
the regressor model pβ(�x) would compete with the
regression model pβ(y|�x) to determine the (classical)
parameter β .

Finally, we agree that the move from classical pa-
rameters to regression functionals requires rethinking
of meanings. We prefer, however, to modify Sara van
de Geer’s last sentence as follows: If a regression
functional derives from an approximating regression
model, state the meaning of the estimates as usual in
a model-trusting manner, but add the clause “. . . in the
best approximating model.”

Dag Tjøstheim also provides a sympathetic assess-
ment of our perspective. We appreciate his remark on
our proposal for interpreting the meaning of linear OLS
slopes in the presence of misspecification (Part I, Sec-
tion 10). Although the interpretation seems straightfor-
ward, we readily acknowledge that its generalizabil-
ity beyond linear OLS is limited. We maintain, how-
ever, that misspecification is often undetectable, more
so with increasing model complexity, and even if de-
tectable, misspecification may be imposed for reasons
discussed earlier. We agree with Dag Tjøstheim that
Part II is more satisfying than Part I, although necessar-
ily more opaque in the treatment of asymptotics. Most
satisfying to us are, as mentioned earlier, Part II, Sec-
tions 3–5.

Dag Tjøstheim is correct in thinking that we are not
parametric extremists, and that we consider nonpara-
metric methods fair game. We are simply respond-
ing to the reality that parametric methods still dom-
inate current practice. Moreover, the reweighting di-
agnostic of Part II has an advantage over nonpara-
metric fitting in that it allows analysts to discover
the nature of misspecification and yet remain within
their misspecified model. Dag Tjøstheim notes, as
we do in Appendix A.7 of Part II, that Parzen ker-
nel methods generate localized functionals such as
a(�x0) = E[YK( �X − �x0)]/E[K( �X − �x0)], which is a
reweighted response mean. Conventional Parzen kernel
methods will generally be useful in very low regressor
dimensions such as p = 1 or 2. A difference with our
reweighting diagnostic is that we consider reweight-
ing kernels that depend on a single regressor or other
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one-dimensional quantity derived from, or related to,
regressors. This kind of localization is less vulnerable
to the curse of dimensionality. It also is highly inter-
pretable because it is based on the original model for
arbitrary quantities of interest and lends itself to plot-
ting, as illustrated by Figures 1–3 of Part II. We men-
tion peripherally that there exists a limited connection
to one-term additive modeling (Part II, Section 5.2 and
Appendix A.6), but the reweighting diagnostic is capa-
ble of detecting interactions as well, as illustrated by
Figure 1 of Part II.

Dag Tjøstheim makes some interesting forays into
the realm of dependent data such as time series. Here,
the assumption of i.i.d. data made in our articles is
of the “assumption-rich” variety. Our methods do not
generalize, for example, to time series autoregressive
models. For one thing, the regressors are lagged re-
sponses and cannot be used for regressor-dependent
reweighting. Reweighting according to the time dimen-
sion is a possibility, amounting to time-localization of
the model. Well-specification then amounts to station-
arity of the quantity of interest. On different grounds,
some of us (Kuchibhotla et al., 2018a, 2018b) have pro-
duced work that justifies model-robust inference under
certain types of dependence.

Rod Little provides an interesting foil through his
Bayesian perspective. As expected, we fail to convince
each other, but we have an important point of agree-
ment: Bayesian approaches are fundamentally model-
trusting as stated in the Conclusions of Part I. At the
root is the Bayesian idea that the parameters are un-
certain/random, whereas the data are certain/fixed. As
a consequence, “conditioning on the data” (not just the
regressors) conceals that the data could have been dif-
ferent and that the likelihood as a probabilistic model
of datasets could have been misspecified. Bayesians
who wish to calibrate their inferences in a frequen-
tist sense, as does Rod Little, must find ways to match
the frequentist variability of estimates across datasets
with the variability of the parameters drawn from the
posterior, at least approximately in terms of first- and
second-order moments, to equalize asymptotic normal
distributions.

A further point of agreement with Rod Little is that
models as approximations to the truth can be useful. He
recommends the Bayesian reconstruction of sandwich-
based inference by Szpiro, Rice and Lumley (2010), an
article we cited but did not discuss in detail, offering
us an opportunity to do so now. This is indeed a heroic

exercise in calibrated Bayesian inference to asymptot-
ically match frequentist model-robust inference in lin-
ear regression. Here is their logic.

The article starts out by defining a target of infer-
ence in their equation (3) using notation that differs
from ours in Section 3.2, Part I. This cosmetic dif-
ference should not obscure that we define the same
target: the best linear approximation to the response
Y or, equivalently, to the conditional response mean
μ(�x) = E[Y | �X = �x]. The coefficients of this linear ap-
proximation are in our notation

(1) β(P ) = argmin
β

E �X
[(

μ( �X) − �X′
β

)2]
.

Szpiro et al. continue with a Bayesian construction that
puts priors on the conditional mean function μ(�x), the
conditional variance function σ 2(�x) = V [Y | �X = �x],
and the regressor distribution P �X . Assuming a nor-
mal conditional likelihood Y | �X ∼ N (μ( �X), σ 2( �X)),
they obtain posteriors for μ(·), σ 2(·) and P �X . From
these, they derive a posterior distribution for the coef-
ficients β of the best linear approximation by apply-
ing formula (1) above to the draws of μ(·) and P �X
from the posterior. For discrete regressor distributions,
P �X = ∑

k=1,...,K λkδξk
, they show (ibid., Theorem 1)

that the posterior expectations of the coefficients ap-
proximate the OLS estimates, and the posterior stan-
dard deviations approximate the sandwich standard er-
rors for increasing sample sizes. This is not problem-
atic for discrete regressor distributions because at each
discrete regressor location ξ k , one will ultimately see
multiple observations. It comes down to estimating
means of Y at each �x = ξ k , but even this simple case
requires a multipage proof rich in “mathematicity” (on-
line suppl., Szpiro et al., 2010). Generalization to con-
tinuous regressor distributions requires nonparametric
Bayesian function estimation in p dimensions for μ(·)
and σ 2(·). This is carried out by Szpiro et al. in prac-
tical terms for a single regressor, p = 1, based on re-
gression splines.

In a cultural disconnect, Rod Little sees the Szpiro et
al. construction as fundamentally simple and even en-
joyable, whereas our frequentist analysis is in his mind
overly mathematized and difficult to explain to prac-
titioners. From a frequentist perspective, things may
look different; it is an additional burden to explain
the complexities in constructing priors, which drop out
asymptotically to approximate in the limit the OLS es-
timates and their sandwich-based standard errors. In
the case of nondiscrete regressor distributions, another
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burden is estimating the infinite dimensional parame-
ters μ(·) and σ 2(·) for inference about the finite di-
mensional parameters of a linear approximation.

The frequentist analysis of Part I and II is free of
such complexities and to the point, which is that the
true assumption-lean sampling variability of estimates
is composed of two sources, one due to Y | �X and one
due to �X in the presence of misspecification. As Pe-
ter Aronov (personal communication) put it, simply
and concisely: “Under misspecification, design mat-
ters.” We see few signs that this point is appreciated,
even though we emphasize it in the finite sample anal-
ysis (Part I, Sections 5–6), in the CLTs (Part I, Sec-
tion 7), and again in Part II (Sections 6–7).5

We agree with Rod Little that our writing is rich
in mathy notation and formulas. The intent was pre-
cision of thinking in small steps, requiring few proofs.
To serve the needs of different readerships, a more ac-
cessible treatment of models as approximations is in
Berk et al. (2019).

After working through further terminological diffi-
culties in Rod Little’s Section 3, we face in his Sec-
tion 4 some language that is recognizable and agree-
able to us: “. . . the slope of Y on X fitted to the en-
tire population by least squares. This quantity exists
regardless of whether the regression of Y on X is really
linear, although its utility for summarization is weak-
ened if the regression is highly nonlinear.” We could
have written this, so on this point there is no differ-
ence between his views and ours. It seems, therefore,
that greater clarity and mutual understanding could be
achieved, but, given human nature, this seems more
likely in personal encounters scribbling on napkins
than in isolated writing exercises.

Dalia Ghanem and Todd Kuffner make two interest-
ing points, one about invariance to objective functions
and another about causality.

The first point concerns objective functions called
proper scoring rules, mentioned in Section 2.1 and de-
scribed in Appendix A.2 of Part II, a common exam-
ple being expected negative log-likelihoods.6 Proper
scoring rules are minimized when a model distri-
bution agrees with the actual distribution. This im-
plies for correctly specified models that the risks de-
rived from proper scoring rules are all minimized by

5Szpiro et al. (2010) come close in their Section 4.2 where
they discuss the fixed-X case. Their βfixed denotes the same as
our β(X).

6For more background, see Gneiting and Raftery (2007) and
Buja, Stuetzle and Shen (2005).

the correct model distribution. Things get interesting
when Ghanem and Kuffner, citing Elliott, Ghanem
and Krüger (2016) note that if the model q(�x; θ) of
a 0-1 response Y | �X = �x is misspecified, then dif-
ferent proper scoring rules lead to different best ap-
proximations to the true conditional probability func-
tion μ(�x) = P [Y = 1| �X = �x]. At first glance, this
would appear to be a qualitatively different condition
for correct specification that just happens to paral-
lel our notion of well-specification. A closer look re-
veals, however, that there exists a connection: For 0–
1 responses, different choices of proper scoring rules
amount to different choices of reweighting schemes,
but with a twist, as will be shown next.

To start, we need to describe some basics of proper
scoring rules for a 0–1 variable Y : A scoring rule is
an objective function of the form L(Y, q) = YL1(1 −
q)+ (1 −Y)L0(q) for q ∈ [0,1], where L1(1 − q) and
L0(q) are monotonic losses incurred by a probability
forecaster who observes, respectively, Y = 1 or Y =
0 and guesses the value q for the unknown true μ =
P [Y = 1]. A scoring rule is “proper” if it is Fisher-
consistent:

argmin
q

E
[
L(Y, q)

]

= argmin
q

[
μL1(1 − q) + (1 − μ)L0(q)

]

= μ.

(2)

For smooth functions L1/0(·), this condition implies
that the derivative wrt q vanishes at q = μ:

−μL′
1(1 − μ) + (1 − μ)L′

0(μ) = 0.

Hence w(μ)
�= L′

1(1 −μ)/(1 −μ) = L′
0(μ)/μ defines

a weight function that characterizes the proper scoring
rule (replacing μ with q in notation):

(3) L′
1(1 − q) = (1 − q)w(q), L′

0(q) = qw(q).

Special cases are the Bernoulli negative log-likelihood
arising from w(q) ∝ 1/(q(1 − q)), and squared error
or OLS, (Y − q)2, arising from w(q) ∝ 1.7

Turning to regression, let q( �X; θ) be a model (not
assumed correct) for the true μ( �X) = P [Y = 1| �X].
Standard example: the linear logistic model, q( �X; θ) =
ϕ(θ ′ �X), ϕ(t) = 1/(1 + e−t ). A proper scoring (PS)

7Squared loss turns into a proper scoring rules due to Y 2 = Y :

(Y − q)2 = Y (1 − q) + (1 − Y )q .
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functional (Part II, Section 2.1) for q( �X; θ) is obtained
by

θ(P ) = argmin
θ

EP
[
L

(
Y,q( �X; θ)

)]

= argmin
θ

EP
[
YL1

(
1 − q( �X; θ)

)

+ (1 − Y)L0
(
q( �X; θ)

)]
.

Such PS functionals are well-specified iff the model
is correctly specified: μ( �X) = q(X; θ0) (P -a.s.) for
some θ0, hence θ(P ) = θ0. Next, we rewrite the (neg-
ative) gradient ψ(θ;Y, �X) = −∂θL(Y, q( �X; θ)) using
the weight function w(·) from (3):

ψ(θ;Y, �X)

= (
YL′

1
(
1 − q( �X; θ)

)

− (1 − Y)L′
0
(
q( �X; θ)

))
∂θq( �X; θ)

= (
Y

(
1 − q( �X; θ)

)

− (1 − Y)q( �X; θ)
)
w

(
q( �X; θ)

)
∂θq( �X; θ)

= (
Y − q( �X; θ)

)
w

(
q( �X; θ)

)
∂θq( �X; θ).

(4)

Interpretation: Given a model q( �X; θ) as approxi-
mant to μ( �X), the best approximation in terms of
a proper scoring rule L(Y, q) is found by solving
the stationarity condition or estimating equation (EE)
EP [ψ(θ;Y, �X)] = 0. In this EE, the proper scoring
rule is represented by its weight function w(q) defined
in (3), which reweights according to the model value
q = q( �X; θ). In combination, one obtains a regressor-
dependent as well as parameter-dependent weight
function w(q( �X; θ)). Thus different proper scoring
rules differ in their reweighting inside the estimating
equations, but reweighting is both �X- and θ -dependent.

It is now apparent that invariance to proper scoring
rules is a form of invariance to reweighting, thereby
sharing similarities with the reweighting diagnostic
and the notion of well-specification proposed in Part II.
We may next consider generalizing invariance to �X-
and θ -dependent reweighting to characterize well-
specification of EE functionals in general (Part II, Sec-
tion 2.2). In doing so, we may permit the “weight”
functions to have arbitrary signs and not be normal-
ized:

• Let θ(P ) be defined by an estimating equation
EP [ψ(θ;Y, �X)] = 0.

• Let w( �X; θ) �= 0 be a possibly parameter-dependent
“weight” function.

• Define a reweighted score by

ψ̃(θ;Y, �X)
�= w( �X; θ)ψ(θ;Y, �X).

• Define a reweighted EE functional θ̃(P ) by

EP
[
ψ̃(θ;Y, �X)

] = 0.

The following is stated as usual without regularity con-
ditions.

PROPOSITION. The EE functionals θ(P ) and θ̃(P )

are well-specified for the same distributions P . On
these, the functionals have identical values: θ(P ) =
θ̃(P ).

PROOF. The EE functional θ(P ) is well-specified
iff EP [ψ(θ0;Y, �X)| �X] = 0 (P -a.s.) for θ0 = θ(P )

(Proposition 3.3.3 of Part II). Because

EP
[
w( �X; θ0)ψ(θ0;Y, �X)| �X]

= w( �X; θ0)EP
[
ψ(θ0;Y, �X)| �X]

and w( �X; θ0) �= 0, θ(P ) and θ̃(P ) are well-specified
for the same distributions P . The solutions of the
two estimating equations are identical; hence θ(P ) =
θ̃(P ) = θ0. �

A practical consequence of the proposition is that
when θ(P ) is misspecified for P , then one may have
θ(P ) �= θ̃(P ), suggesting that nonconstancy under �X-
and θ -dependent reweighting can be used as a diagnos-
tic for misspecification. Consequently, nonconstancy
across proper scoring rules can also be used for this
purpose.8 We are grateful to Ghanem and Kuffner for
pointing us to proper scoring rules and giving us an op-
portunity to have a closer look at reweighted EE func-
tionals as well.

Ghanem and Kuffner’s second point concerns the
connection of well-specification and causality (Part II,
Section 3.4), and the notion of external validity of
causal inference. According to Athey and Imbens
(2017, Section 2.3), “. . . most concerns with exter-
nal validity are related to treatment effect heterogene-
ity.” It should generally be assumed that treatment ef-
fects vary (are heterogeneous) across different envi-
ronments, even if treatment is randomized. To describe
the situation, Ghanem and Kuffner use the multiple-
environment notation of Peters et al. (2016) and con-
sider a structural equation model (SEM) that includes

8Another use of proper scoring rules is proposed by Buja et
al. (2005) for tailoring models to classification with asymmetric
misclassification costs.
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pretreatment covariates to capture the heterogeneity
among environments. The differences between envi-
ronments are then reduced to differences between co-
variate distributions to which the SEM is immune be-
cause it is assumed to capture the causal mechanisms
correctly across environments. Quantities derived from
the SEM, including the average treatment effect condi-
tional on the covariates, will be well-specified, hence
invariant across environments. In this sense, well-
specification relates indeed to external validity.

Ghanem and Kuffner’s discussion leads us to a
follow-up thought: Questions of treatment effect het-
erogeneity arise also within a single study and are
the subject of a growing literature, both for testing
the presence of heterogeneity and for estimating its
form as a function of pre-treatment covariates. See
Athey and Imbens (2017, Section 10) for a selection
of approaches, including nonparametric and tree-based
function estimation, and Berk et al. (2020) for in-
ference thereafter. To these approaches, we add the
reweighting diagnostic of Part II as follows: Average
treatment effects, whether marginal or conditional on
a covariate location, form regression functionals, and
as such they can be probed for well-specification using
covariate-based reweighting. Misspecification amounts
to heterogeneity of treatment effects. A fine point about
the marginal average treatment effect is that it involves
only a single regressor, the treatment variable. Yet it
is meaningful to apply the diagnostic with weights
from covariates other than the treatment variable. The
reweighting diagnostic does not need to be limited to
covariates used by the regression functional.

Alessandro Rinaldo, Ryan Tibshirani and Larry
Wasserman (RTW for short) start by addressing com-
mon misinterpretations of regression results, even
granting the correctness of the model. Indeed, many
popular catch phrases used for interpretation imply
causal dependence, which is misleading for most ob-
servational data. The teaching of regression should
therefore emphasize that regression coefficients pertain
to comparisons between hypothetical cases, such as
pairs of humans whose heights (Xj ) differ by 1 inch but
whose weights (Xk) are the same. Such formulations
are rhetorical losers compared to action metaphors
such as “increase height by 1 inch” and “hold weight
fixed,” though these reveal themselves occasionally by
their absurdity.

Yet, not all regressions are limited to correlation;
some do call for careful causal thinking. Also, impor-
tant questions will be ever more about causes, in sci-
ence, public policy and business. The teaching of re-
gression should, therefore, integrate critical thinking

about the nature of causation and not just wave off the
issue with the usual disclaimer that correlation is not
causation. An example where reasoning about causal-
ity is difficult to avoid is provided by the LA Home-
less data of Part I and II, where the regressor Per-
cVacant is a potential candidate for intervention by
public policies. The data alone do not allow us to in-
fer that the slopes of PercVacant describe causal
effects, but these data might nevertheless contain the
most suggestive data-driven information available to
guide intervention with public policies.

Moving on to misspecification and agreeing that this
is the “more realistic” assumption, RTW give a gen-
tle version of David Freedman’s objection, wondering
whether the parameters of a best approximation are
meaningful for practitioners. This question is answered
affirmatively in Part I, Section 10, with a universally
valid interpretation of slopes for simple linear regres-
sion based on casewise and pairwise slopes. This inter-
pretation can be leveraged for an intuitive way of teach-
ing simple linear regression: consider line segments be-
tween all pairs of data points, obtain their slopes and
form a weighted average. All that needs explaining is
that pairs of points are more informative if they are dis-
tant in X, hence the weights. Then extend this inter-
pretation to multiple regression by drawing on the lan-
guage of adjustment: a multiple regression coefficient
is the weighted average of pairwise slopes in a simple
regression of the response on the regressor linearly ad-
justed for all other regressors. This avoids the phrase
“at fixed levels of all other regressors” which assumes
the true response surface to be linear.

RTW in their Section 3 examine assumption-lean
regression in the sense of nonparametric regression,
whereas our interest was in parametric regression with-
out parametric assumptions. We can, however, point
out that our reweighting diagnostic in Part II also repre-
sents a form of partial nonparametrics: We apply para-
metric models (actually: quantities of interest) to data
localized by reweighting kernels, akin to local linear
smoothers, but we do not use the localized models
for estimating fitted values of surfaces. Rather, we use
them to visualize a quantity of interest (often a slope)
as a function of univariate kernels that localize over re-
gressor dimensions of interest.

RTW proceed to discuss the question of regressor
importance, generalizing what is often addressed by
t-tests in linear models. An issue with regressor im-
portance is that this notion has no absolute meaning.
It only speaks to the predictive power of the regres-
sor Xj above and beyond the other regressors �X−j in
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the model.9 Therefore, the null situation of a regressor
Xj that is wholly unimportant for Y in the presence
of �X−j is conditional independence: Y ⊥⊥ Xj | �X−j .
As RTW point out with reference to Shah and Peters
(2018), this condition is difficult to test, unless �X−j

takes on finitely many values only. To get a heuris-
tic sense for the difficulties, note that conditional in-
dependence implies Cov(g(Y ), f (Xj )| �X−j ) = 0 (a.s.)
for all measurable functions f (Xj ) and g(Y ) with sec-
ond moments.10 Equivalent is the following condition:

E
[(

g(Y ) − E
[
g(Y )| �X−j

])

× (
f (Xj ) − E

[
f (Xj )| �X−j

])
h( �X−j )

] = 0,
(5)

which additionally needs to hold for h( �X−j ) in a set
of functions whose linear span is dense in L2( �X−j ).
Shah and Peters (2018) essentially propose a lim-
ited test for univariate variables based on the choices
f (Xj ) = Xj , g(Y ) = Y and h( �X−j ) = 1, which illus-
trates how such tests may pick and choose aspects of
the full null hypothesis of conditional independence.
Of further interest is that (5) shows adjustment at work:
f (Xj ) − E[f (Xj )| �X−j ] is f (Xj ) nonparametrically
adjusted for �X−j . Conditions equivalent to (5) are ob-
tained by adjusting f (Xj ) only, or g(Y ) only, or both
(as shown). For practical adjustment on data, one may
estimate/approximate conditional expectations E[·|·]
with regression algorithms, A[·|·] in RTW’s notation.
For linear adjustment according to Part I, Sections 9ff,
specialize the algorithm A to linear OLS and apply it
to f (Xj ) = Xj .

As for measures of regressor importance, (5) sug-
gests a role for response transformations, as in ACE
regression (Breiman and Friedman, 1985). There is no
reason to expect that Xj is most strongly associated
with the raw scale Y as opposed to some transformed
scale g(Y ).

RTW mention several more ideas we are unable to
address in this space but may inspire future work, most
intriguingly those relating to conformal inference.

Nikki Freeman, Xiaotong Jiang, Owen Leete, Daniel
Luckett, Teeranan Pokaprakarn and Michael Kosorok
appreciate our analysis of the interplay of regressor
randomness and misspecification but find themselves
unable to fully resolve the questions raised by our

9 �X−j = (1,X1, . . . ,Xj−1,Xj+1, . . . ,Xp)′
10This condition is equivalent to conditional independence in

most cases of interest, as when the sigma algebras of the Xj and Y

spaces have countable bases, which is the case for all Polish spaces.

framework. They bring to our attention that we may
have focused too much on the inflammatory part of
G.E.P. Box’ famous quote (wrong models) and too lit-
tle on the constructive part (useful models). Indeed, it is
useful to think about what makes a model useful, and
while some answers may be implicit in Part I and II,
others should be added. A few indicators that in com-
bination may render a model “useful” in the case of
observational data are as follows:

• The model contains quantities of interest that remain
interpretable under degrees of misspecification.

• For these quantities there exists assumption-lean in-
ference.

• Some of the inferential conclusions are of inter-
est, often some meaningful parameter estimates with
strong p-values.

These answers flow from Part I and II. We do think that,
for example, the analysis of the LA Homeless data in
Part II, extended by the reweighting diagnostic, is in-
teresting and possibly useful, though causal inference
based on the data is doubtful. For contexts that require
strict causal inference, the model must be chosen to al-
low proper estimation of causal effects. This last point
can be violated in at least two ways:

• The model may be so viciously misspecified that its
best approximation to the data may err in the di-
rection of the estimated causal effect, an illustration
of which is given in the discussion by Whitney et
al. (see below).

• The model may include impermissible regressors
such as other outcomes or exclude necessary regres-
sors such as important confounders. Rules for select-
ing proper regressors are the subject of the DAG the-
ory of causality (Pearl, 2009).

Obviously, the question of “useful models” is a much
larger one, and we have given here only some tentative
thoughts.

We agree with Freeman et al. when, toward the end
of their Section 2, they allude to causal contexts with
different requirements, some needing to establish an
effect’s direction only, others also its magnitude. Note,
however, that causal studies often simplify the prob-
lem by using binary interventions, thereby ignoring po-
tential nonlinear effects by design rather than flawed
data analysis. The possibility of misspecification then
resides largely in the adjustment for confounders (see
Whitney et al.) and the modeling of effect heterogene-
ity (see Ghanem and Kuffner).
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Freeman et al. quote McCullagh and Nelder (1983)
who express a somewhat benign view of misspecifi-
cation and model building. This quote, however, dates
back to a time of innocence, before the emergence of
vastly increased powers in methodology and compu-
tation that is available today. The present capabilities
of algorithmic model searches and informal model ex-
plorations challenge the frequentist imagination, de-
scribed earlier. A first step toward gaining some clarity
would be to write down the anticipated “data analy-
sis pipeline” (Freeman et al.’s useful term) in a doc-
ument before seeing the data. Such a protocol would
have several benefits: (1) It would reveal where data
analysts take unanticipated steps; (2) it would offer an
opportunity to automate some of the informal steps;
and (3) if a high degree of automation were achieved,
whole pipelines could be examined in simulation ex-
periments wrt their effects on statistical inference, as
illustrated by Simmons et al. (2011).

At the end of their Section 2, Freeman et al. ad-
dress the interpretation of slopes under misspecifica-
tion and note that “the functional could be interpreted
as the average effect over the observed regressor dis-
tribution, which may still be a useful measure in this
context.” This informal shorthand can serve well in
a causal context where “average effect” is the appro-
priate term, else “average difference in Y per differ-
ence in X for pairs of observations” could be used,
which would become technically precise when pre-
ceded with the term “weighted . . . ”; see the rejoinder
to Rinaldo et al. above and Part I, Section 10. A re-
lated meaning of “average effect” or “average slope”
is used by econometricians who consider “average
derivatives,” and hence functionals E[μ′(X)] where
μ(x) = E[Y |X = x] (Stoker, 1986; Newey et al., 2004,
and references therein).

Freeman et al., in their third section, rightfully draw
connections between semiparametric theory and our
assumption-lean theory of regression functionals. The
former is also a theory of low-dimensional function-
als but focuses on their efficient estimation in the
presence of nonparametric (infinite dimensional) nui-
sance “parameters.” We did intentionally not touch
semiparametrics in Part I and II because of the space
needed to describe the effects of misspecification in
the accessible case of linear OLS (Part I) and to con-
struct an assumption-lean theory of regression func-
tionals that encompasses the parameters of approx-
imating parametric models and estimating equations
with low-dimensional parameters (Part II). Semipara-
metric theory and our theory of regression functionals

are concerned with different issues and neither solves
the issues of the other, although they can help in-
form each other. Assumption-lean semiparametric the-
ory has existed at least since Newey (1994). Also, the
ingredients of the framework of Part I for linear OLS
can be interpreted semiparametrically: the vector of
slopes β(P ) is a parametric functional, while the non-
linearity η( �X) and the conditional variance σ 2( �X) are
nonparametric nuisances. The Pythagorean decompo-
sitions of Part I and II can be interpreted as deriving
from orthogonal tangent spaces of semiparametric the-
ory.

Importantly, even a semiparametric model such as
the Cox model can be misspecified in the sense of
Part II in that, for example, the true hazard function
might differ by more than a proportionality between
the low and high levels of a treatment. Such misspecifi-
cation funnels the randomness of the regressors into the
statistical variability of both the estimated treatment ef-
fect (= the parametric component) and the estimated
baseline hazard function (= the nonparametric compo-
nent). Finally, such misspecification could be detected
with the reweighting diagnostic of Part II.

We will go into some more detail in the discussion
of Whitney et al. below who also touch on issues of
semiparametric inference.

David Whitney, Ali Shojaie and Marco Carone
(WSC for short) focus vigorously on semiparametric
theory, an area we intentionally avoided for reasons
mentioned in the rejoinder to Freeman et al. above. Just
the same, some of WSC’s comments are accessible in
the context of Parts I and II.

The first of their examples in their Section 2.1 con-
cerns a too simple approximation leading to faulty con-
clusions: linear adjustment for a nonlinear confounder
produces the wrong direction of an exposure effect.
This can be seen as “faulty analysis” because of the
stipulated causal context. Thus, if all models are mis-
specified to a degree, while some are useful, others may
indeed be misleading. Here is a summary of WSC’s ex-
ample at a high level: There is an exposure variable X

of interest in the presence of a complex confounder W .
The nonlinear effects of the confounder and the joint
regressor distribution (X,W) are constructed in such
a way that introducing W linearly in the model results
in—ironically—valid inference about the wrong direc-
tion and magnitude of the effect of the exposure vari-
able. Essential to make the example work is the nature
of the joint regressor distribution (X,W) (a horse-shoe
shape), which reminds us of Jerald Lawless’ remark:
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“. . . I find it difficult to envision truly comprehensive
analysis without considering both response models and
covariate distributions.”

The problem with the linear fit can be detected with
various diagnostic tools, including our reweighting di-
agnostic (Part II). If, however, the confounder W were
multivariate, the curse of dimensionality would make
detection and estimation of nonlinear confounding ef-
fects progressively more difficult for increasing dimen-
sion of W . In addition, data dredging is in play again:
if a complex confounding effect were anticipated be-
fore touching the data, valid inference for the correct
slope of the exposure effect might be possible, but if
detection is unanticipated, subsequent inference is post
hoc and requires frequentist disclaimers, as discussed
earlier.

In their Section 3, the authors go further and an-
alyze nonparametric adjustment by fitting the func-
tional form Y ∼ θX + g(W), g(W) ∈ L2(W) being an
infinite-dimensional nuisance parameter.11 The “expo-
sure effect” θ = θ(P ) is a functional that can be written
equivalently as follows:

θ = E[Y(X − π(W))]
E[X(X − π(W))]

= E[(Y − g1(W))(X − π(W))]
E[X(X − π(W))]

= E[(Y − g2(W))(X − π(W))]
E[X(X − π(W))] ,

(6)

• where π(W) = E[X|W ] is the propensity of expo-
sure if X ∈ {0,1} is binary,

• g1(W) = E[Y |X = 0,W ] is a “hack” assuming the
functional form is correctly specified and exploiting
E[Y |X = 0,W ] = (θX + g(W))|X=0 = g(W),

• and, finally, g2(W) is part of the correct solution of
the mixed parametric/nonparametric OLS problem:
minθ∈R,g(W)∈L2(W) E[(Y − θX − g(W))2].

The identities follow from the fact that conditional ex-
pectations are orthogonal projections (idempotent and
self-adjoint in L2(P )) and render adjustment of Y op-
tional and arbitrary as long as X is properly adjusted
by π(W). The reason for writing θ in the three dif-
ferent ways of (6) is that each inspires one of the es-
timators considered by WSC: θ̂1, θ̂2, θ̂3. The authors
indicate that the first two estimators can have asymp-
totic bias problems, whereas the third permits a general

11The authors notation is θ0 and g0(W). We drop the subscripts

and write θ̂ and ĝ(W) for estimates.

semiparametric justification of model-robust inference.
Although this observation is correct at this level of gen-
erality, the differences between the estimates can be re-
moved by choosing particular nonparametric methods
for estimating π(W) and g(W). The simplest way of
removing the differences is by using an OLS projec-
tion onto a function space (“series estimator,” Newey,
1994, p. 1372) spanned by a finite set of basis functions
(e.g., B-splines where the analysis allows the number
of knots to grow with the sample size). The identities
(6) then carry over to estimates π̂(W) and ĝ(W).

A second approach for removing differences in bias
between the three estimates is based on “twicing”
(Newey, Hsieh and Robins, 2004). It applies the fit-
ting mechanism twice and adds the difference back
to the first fit. As such it can be applied quite uni-
versally to nonparametric function estimation, includ-
ing Parzen kernel smoothing and reproducing ker-
nel smoothing. (It has no effect on projection-based
function estimates due to their idempotence.) Both
projection-based and twicing-based estimators can be
shown to have a “Small Bias Property” (Newey et
al., 2004, Section 3)12 that enables semiparametric es-
timates of quantities of interest such as θ(P ) to be√

n-consistent even when the nonparametric function
estimator converges at the optimal nonparametric rate.
In summary, some of the dangers posed by intuitive
but semiparametrically biased and inefficient estima-
tors can be overcome by estimating the nuisance with
suitable nonparametric methods.

The authors’ Sections 2.2 and 4 address what they
call “data coarsening,” in particular right censored sur-
vival data, approached with the usual proportional haz-
ards model. Misspecification difficulties are widely ac-
knowledged despite the nonparametric nature of the
conditional hazard function in the model: The assump-
tions of shared ratios h�x(t2)/h�x(t1) across regressor
space (�x) and shared ratios h�x1(t)/h�x2(t) across time
(t) both point to potential misspecifications. The au-
thors cite complications under misspecification such as
dependence of the regression functional θ(·) not only
on the regressor distribution—familiar in our context—
but also on the conditional time-to-event distribution as
well as the censoring distribution. This is driven home
by the simulation results shown in their Figure 2.

In their Section 4, the authors make a point which is
entirely in the spirit of Part II: If a functional derived

12A better term would be “product bias property” because it is due
to a product of two biases in the third numerator of (6), which in
combination can speed up convergence to a rate faster than 1/

√
n.



MODELS AS APPROXIMATIONS 617

from a model has opaque behavior under misspecifica-
tion, revise the functional. In the context of a misspec-
ified Cox model, they propose targeting a time average
of the true log-hazard ratio, which has intuitive mean-
ing as well as good estimation properties. This exam-
ple is a nice illustration of one of the main messages
of Part II: Focus on quantities of interest rather than
models. Contrary to the authors’ statements at the be-
ginnings of their Sections 3 and 4, the framework of
Part II does not require the quantities of interest to be
model-based. To the opposite, Part II frees itself explic-
itly from this limitation and presents a theory of quan-
tities of interest without reference to models, which is
what the authors intended with their term “model ag-
nostic.” For ease of exposition only, we illustrate how
this theory specializes to familiar quantities that are pa-
rameters of approximating models (ML and PS func-
tionals).

We note additional complexity not discussed by
WSC in the context of the Cox model for censored
outcomes: The authors’ proposed semiparametric es-
timator of “treatment effect” relies on an assumption
of independent censoring within treatment arm, which
allows them to avoid having to explicitly estimate the
censoring mechanism. It would, however, be desirable
to treat the censoring mechanism as a genuine nui-
sance because it is study-specific and not of scien-
tific interest. This could be done by reweighting each
person-time contribution by the corresponding inverse
conditional probability of remaining uncensored given
treatment arm. As a result, the limiting MPLE func-
tional for the exposure effect would be freed of its
dependence on the censoring mechanism under the
authors’ assumptions. These issues, however, become
more complicated in scenarios that may be closer to
what is often seen in practice:

• When the Cox working model involves several co-
variates rather than a single binary regressor, defin-
ing an alternative parameter target in a spirit sim-
ilar to the authors’ θ∗∗ may be more challenging.
Under misspecification, the hazard function h�x(t)

may vary with the location �x in a multivariate re-
gressor space. The authors’ time-average of β(t) =
log(hx=1(t)/hx=0(t)) for a single binary regressor
x ∈ {0,1} is then no longer available. The weighted
MPLE, on the other hand, may still provide a viable
solution.

• When the censoring mechanism depends on numer-
ous fully observed time-varying covariates, correct-
ing for the censoring mechanism may require es-

timating a model for censoring given the covari-
ate process. This applies to either approach, the au-
thors’ or the weighted analysis mentioned above.
Thus issues of misspecification, now of the censor-
ing model, equally affect both approaches for defin-
ing a meaningful target parameter under a misspeci-
fied model, either as the limit of the weighted MPLE
or the alternative functional defined by the authors.
Neither can truly escape the issue of misspecifica-
tion.

Finally, misspecification of a censoring model is rele-
vant mostly in so far as it affects the quantity of primary
interest, often the regression slope of an exposure vari-
able. Because of the intended interpretation as a causal
effect, it is desirable that the quantity does not depend
on the covariate distribution (Part II, Section 3.4). This,
of course, is the definition of well-specification of a
quantity of interest. It would therefore be useful to
examine whether the reweighting diagnostic for well-
specification of Part II could be applied in the context
of a Cox model with censored outcomes.

Davison, Koch and Koh are first of all to be thanked
for finding an error in our Table 4 of Part I, which al-
lowed us to correct it before publication. We appreci-
ate their skills as data detectives. In the substance, their
discussion is the most searing criticism of our articles
from the perspective of traditional model building: per-
form EDA before modeling and apply diagnostics af-
terward. If the latter indicate discrepancies, then the
“likely impact on the conclusions needs to be assessed,
and the benefit of dealing with it weighed against the
cost of doing so.” While leaving unspecified what such
assessing and weighing might be, the quote indicates
an awareness that model modification based on diag-
nostics has inferential costs. The same, however, is true
for the initial EDA. If the model choice is influenced
by an exploratory peek at the data, the inferential sin
has already been committed. Once again we need to
appeal to the frequentist imagination: What modeling
decisions might we have made with a similar peek at
alternative datasets drawn from the same population?
To answer this question, EDA procedures and result-
ing data analytic decisions need to be formalized in
protocols that can be simulated, if not analyzed theo-
retically.13 Even in clinical trials, where statistical in-
ference is at its most rigorous, agencies are pushing to
tighten protocols (EMA, FDA, 2017).

13Simmons et al. (2011) give an example how this could play out.
They formalized and simulated some of the lax practices prevalent
in social sciences to illustrate their detrimental effects on statistical
inference.
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Davison and coauthors express astonishment at the
implications of our articles because they seem to “run
counter to at least a century of statistical practice.” This
practice — EDA before and diagnostics after model
fitting—is what most of us have been taught and what
we have been teaching in turn. The assumption of cor-
rect model specification, however, has not been uni-
formly adopted by statisticians, and concern with mis-
specification has been present in at least two traditions,
those of econometrics (White, 1980a, 1980b) and of
estimating equations (e.g., Godambe and Thompson,
1984; Boos, 1992). Indeed, Godambe and Thompson
(1984) begin by explaining the two meanings of the
term “parameter.” One “characterizes some ‘interest-
ing’ aspect of the distribution such as its mean,” while
the other “derives its meaning from a probabilistic
model.” Just as the mean is meaningful for distributions
other than Gaussians, the linear trend produced by lin-
ear OLS is meaningful for joint distributions other than
those of linear models. This is another way of describ-
ing the meaning of “misspecification,” which in this
sense certainly has been part of statistical practice.

Davison and coauthors seem to argue next that
regression can only provide approximations for the
observed points in regressor space.14 This argument
would clearly be unreasonable because it precludes the
use of regression for prediction at not previously ob-
served regressor locations. If the authors are concerned
with the important and difficult problem of extrapo-
lation, then there is good news. As indicated in the
rejoinder to Jerald Lawless, the reweighting methodol-
ogy of Part II can be applied to prediction functionals
to detect serious extrapolation problems.

It is only natural that Davison and coauthors also ar-
gue in favor of fixed-X theory and the conditional tar-
get β(X) as opposed to the population target β(P ),
calling the latter “inestimable.” But β(P ) is consis-
tently estimated by the linear OLS estimator β(P̂ N).
Insisting on the fixed-X treatment conceals from the
frequentist imagination the fact that in observational
studies, hypothetical datasets (y,X) drawn from the
same population not only differ in y but in X as well.
The full variability in β(P̂ N) − β(P ) across datasets
includes a contribution from β(X)−β(P ) arising from

14They use the expression “the region X in which values of �x are
known,” but this terminology is mathematically undefined: Is X
the set of observed regressor locations {�x1, . . . , �xN }, or its convex
hull, or a surrounding Mahalanobis ellipsoid appropriate for linear
regression?

the regressor randomness in the presence of misspeci-
fication. This has nothing to do with extrapolation and
everything with a full accounting of the sources of sam-
pling variability.

In their Section 2, the authors argue that “diver-
gences between the assumed and true models that can
easily be detected are not of interest,” because then
“the fit [should be] improved so that the only remain-
ing divergences . . . are on the borderline of detectabil-
ity.” This principle is a recipe for reproducibility dis-
asters. Even if a “divergence” is detected, there is of-
ten a multitude of remedies, such as constructing more
regressors from the existing ones and/or transforming
the response and the regressors in some manner. Differ-
ent data analysts might apply different remedies. Even
worse, in the frequentist imagination the same data an-
alyst might have used different remedies on different
datasets drawn from the same population. As a conse-
quence, gifted data analysts might well be significant
contributors to unreproducible empirical results.

We also need to reiterate our earlier argument that
there exist situations where we decide to use a model
even if we are able to detect misspecification, one pos-
sible reason being the need to commit to a protocol
in the interest of reproducibility. We therefore strongly
argue against the authors’ supposition that misspecifi-
cation is of interest only when it is on the borderline of
detectability.

Against the authors’ Section 3, it needs to be restated
that the RAV test is not a powerful general-purpose
misspecification test. It does not test for nonlineari-
ties or heteroskedasticities in general. Instead, it tests
whether these misspecifications cause detectable dis-
crepancies between the true standard error and the one
derived from linear models theory. As illustrated in
Part I, Section 11.6, there exist misspecifications for
which the model-trusting standard error of linear mod-
els theory is just fine. A fortuitous illustration of this
message is provided by the authors’ simulation exam-
ples. The analytical specifications of their scenarios
allow us to calculate the true values of RAV to high
precision, and the results are as follows: In the sce-
nario of nonlinearity alone with homoskedastic noise
(γ = 0.7, δ = 0.0, N = 50) we have RAV = 1.04,
and in the scenario of heteroskedasticity alone with
absent nonlinearity (γ = 0.0, δ = 0.6, N = 50) we
have RAV = 1.09.15 Taking roots of these values, we
see that asymptotically the true standard error deviates

15For N = 100 and 200, the misspecifications are of lesser mag-
nitude and the RAV values even closer to 1.
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from the linear models standard error by just 2% in
the nonlinear scenario, and by just 4.5% in the het-
eroskedastic scenario. These discrepancies are so mi-
nor as to be practically negligible, hence the authors
produced illustrations of situations where the standard
errors of linear models theory are fine. Because these
scenarios form approximate null hypotheses of the
RAV test, we should expect rejection probabilities near
the nominal level α. Deeply gratifying to us is there-
fore what the authors report: Performing RAV tests at
α = 0.05, their simulations produce estimates of rejec-
tion probabilities in the vicinity of 0.07. The authors
should rejoice also as there is no reason in their scenar-
ios to mistrust the traditional standard error estimates
of the linear slope.

A note of caution is in order regarding the limited
insights to be gained from single-regressor examples.
Our figures in Part I are of course also drawn for sin-
gle regressors, but their messages are easily extended
to p > 1; furthermore, we give a warning in Sec-
tion 4.2 about difficulties arising from misspecification
when p > 1. The issue is less with detection of mis-
specification and more with the multitude of choices
for detecting and fixing it (graphical displays, mis-
specification tests, inclusion of nonlinear and interac-
tion terms, Box-Cox transformations, additive models,
ACE regression, tree-based methods, random forests,
boosting, kernelizing, . . . ). The wealth of modeling
choices available today and its unfettered use should
surely count as “researcher degrees of freedom” (Sim-
mons et al., 2011). Those who are rightfully weary
of free-wheeling model building and desire valid in-
ference under misspecification should obtain model-
trusting as well as assumption-lean standard errors and
compare them. There is a difference between using
model-trusting standard errors with justification and
using them blindly.

In their Section 4, the authors give a useful tutorial
on the connection between bootstrap and sandwich es-
timators, with differences in notation: Where we write
θ(P ), they write t (F ). Their tutorial, however, is about
N → ∞, whereas our connection between pairs boot-
strap and sandwich estimators addresses the resample
size M → ∞ for fixed sample size N . See Part I, Sec-
tion 8.2 and Part II, Section 8.1: The plug-in/sandwich
estimator is the limit of the M-of-N bootstrap estimator
as M → ∞ for fixed N . Compared to the authors’ tu-
torial, this fact is so simple that its precise formulation
is its own proof. It might also be new as the authors’
tutorial does not address this case.

In their Section 5, the authors discuss designed ex-
periments, not the type of data addressed by our arti-
cles, but interesting nevertheless. We agree that here
the pairs bootstrap does not offer a natural approach
to inference, yet the issue of misspecification and the
need for assumption-lean inference persists. Even if the
design points �xi chosen by experimenters do not repre-
sent a population, the theory of designed experiments
operates formally with a representation of the design
as an empirical measure P̂ �X = 1

N

∑
i δ�xi

. Reweight-
ing could still be used to detect misspecification of
regression functionals in the sense of Part II. As for
assumption-lean inference, the pairs bootstrap can in-
deed have problems due to a nonzero probability of
generating singular design matrices. A partial solu-
tion could be to either use sandwich estimators or M-
of-N bootstrap estimators with very large resample
size M , which reduces the probability of singular de-
signs. A clean computational solution has been pro-
posed by Koller and Stahel (2017) who devise highly
efficient ways of nonsingular sampling. An alterna-
tive solution is the multiplier bootstrap, which is also
assumption-lean and does not suffer the problem of
generating singular designs.

We conclude by thanking the discussants once again
for their thoughtful and sometimes critical arguments.
It has been a great pleasure for us to engage in a spirited
debate. We are especially grateful to the Editor, Cun-
Hui Zhang, for organizing this discussion.
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