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for Local Average Treatment Effects
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Abstract. This study introduces a new approach to power analysis in the
context of estimating a local average treatment effect (LATE), where the
study subjects exhibit noncompliance with treatment assignment. As a re-
sult of distributional complications in the LATE context, compared to the
simple ATE context, there is currently no standard method of power analysis
for the LATE. Moreover, existing methods and commonly used substitutes—
which include instrumental variable (IV), intent-to-treat (ITT) and scaled
ATE power analyses—require specifying generally unknown variance terms
and/or rely upon strong and unrealistic assumptions, thus providing unreli-
able guidance on the power of tests of the LATE. This study develops a new
approach that uses standardized effect sizes to place bounds on the power
for the most commonly used estimator of the LATE, the Wald IV estimator,
whereby variance terms and distributional parameters need not be specified
nor assumed. Instead, in addition to the effect size, sample size and error
tolerance parameters, the only other parameter that must be specified by the
researcher is the compliance rate. Additional conditions can also be intro-
duced to further narrow the bounds on the power calculation. The result is a
generalized approach to power analysis in the LATE context that is simple to
implement.

Key words and phrases: Experimental design, local average treatment ef-
fects, noncompliance, principal stratification, statistical power.

1. INTRODUCTION

Power analysis has long been recognized as a vital
study design tool (Cohen, 1962). Running simple power
analyses provides researchers with concrete and reliable
information to help determine their budgetary require-
ments, choose a sample size and form reasonable expec-
tations on the magnitude of treatment effects they will be
able to detect. This helps researchers avoid an eventuality
in which a study has failed to produce meaningful find-
ings not because there is nothing interesting to find but
rather due to insufficient power to overcome fundamen-
tally noisy data. The results of a power analysis can also
help researchers avoid running certain studies altogether
if the costs are simply too prohibitive in light of the prob-
ability of successful detection of a meaningful effect. Yet
various fields of research are replete with studies that have
failed to report power analyses and implemented dras-
tically under-powered designs (Tversky and Kahneman,
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1971, Tsang, Colley and Lynd, 2009). Indeed, many re-
searchers’ (and funders’) time, energy and money have
been put at risk by neglect of power analysis in the early
stages of research design. In practice, however, power
analyses can often be challenging to properly implement.

Consider the standard experimental setting in which
units are assigned to one of two conditions, a treatment
condition and a control condition, and the goal is to deter-
mine whether the treatment has an effect on some out-
come variable of interest. Further, it may also be pos-
sible that uptake of the treatment is not perfectly deter-
mined by assignment of the treatment, as some units may
not comply with their assignment status. To define the
causal effects of interest, this study employs the poten-
tial outcomes framework presented by Neyman (1923)
and Rubin (1974) and postulates a data-generating distri-
bution on quadruples (Yi(0), Yi(1),Di(0),Di(1)) ∈ R ×
R × {0,1} × {0,1}. For any unit i, the Yi(d), d ∈ {0,1},
denote the outcome that unit i would exhibit if it under-
took treatment status and took the treatment (d = 1) or
if it undertook control status and did not take the treat-
ment (d = 0). Additionally, the Di(z), z ∈ {0,1}, de-
note the treatment uptake status that unit i would exhibit
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if assigned to the treatment condition (z = 1) or if as-
signed to the control condition (z = 0). Throughout this
study, we suppose we will observe a sample of N in-
dependent and identically distributed units of the form
(Yi,Di,Zi) ∈ R × {0,1} × {0,1}, where for each unit i

the (Yi(0), Yi(1),Di(0),Di(1)) is drawn from the distri-
bution noted above, Zi is a treatment assignment, Di =
Di(Zi) is the realized treatment uptake, and Yi = Yi(Di)

is the realized outcome.
In the simple context of full compliance with the treat-

ment assignment (i.e., where all units always take the
treatment if assigned to it and do not take the treatment if
not assigned to it), then Di(0) = 0, Di(1) = 1, and hence
Di = Zi , for all i. In this setting, researchers are generally
interested in the average treatment effect (ATE), which is
the difference between the expected outcome units would
attain if they took up the treatment and the expected out-
come units would attain if they did not take up the treat-
ment. The ATE, denoted here by δ, is defined formally
as

δ = E
[
Yi(1) − Yi(0)

]
.

Given full compliance and random assignment of the
treatment, consistent and unbiased estimation of δ is
straightforward. Even in this simple case, however, a com-
plication for performing a prestudy power analysis for the
test of the null hypothesis that δ = 0 is the need, a pri-
ori, for estimates of or assumptions about the variances
of Yi(0) and Yi(1) (Bloom, 2006, Duflo, Glennerster and
Kremer, 2007). This complication is well known among
applied researchers, and fortunately, there also exist fixes
for this problem in the full-compliance setting, as will be
described later.

Less well known, however, is the extent to which such
complications become exacerbated in the context of es-
timating treatment effects when the study units exhibit
noncompliance with treatment assignment. In this case,
even if assigned to the treatment, a unit may not nec-
essarily take the treatment, and vice versa. The distri-
bution of (Yi(0), Yi(1),Di(0),Di(1)) now features four
sub-types of units or “principal strata” that are defined as
a function of the Di(z): “compliers,” defined as the stra-
tum for which Di(1) = 1 and Di(0) = 0; “always-takers,”
for which Di(1) = 1 and Di(0) = 1; “never-takers,” for
which Di(1) = 0 and Di(0) = 0; and defiers, for which
Di(1) = 0 and Di(0) = 1. In the presence of noncompli-
ance, the ATE generally cannot be identified.1 However,
under a set of assumptions presented by Angrist, Imbens

1Noncompliance would not pose a problem for identification of the
ATE if units’ noncompliance behavior were independent of their po-
tential outcomes. However, in practice this may often be unlikely, as
study subjects can be motivated to select into the treatment or control
condition based on their expectations of their own potential outcomes
under each condition.

and Rubin (1996), it is possible to identify a “local aver-
age treatment effect” (LATE), which is the ATE for the
compliers, or those who take the treatment when assigned
to the treatment and do not otherwise.2 The LATE, which
will be denoted by τ , is defined formally as

τ = E
[
Yi(1) − Yi(0)

∣∣Di(1) − Di(0) = 1
]
.

This study considers the problem of performing a
power analysis in the presence of noncompliance for the
test of the null hypothesis that τ = 0. Due to the exis-
tence of multiple principal strata, the possibility of dis-
tinct marginal distributional behavior across those strata,
the focus on local identification of the average treatment
effect for the compliers, and the inability to completely
differentiate compliers from other principal strata in ob-
served data, the number of distributional parameters that
impact the power vastly proliferates in the LATE con-
text. In fact, the power of the test that τ = 0 not only
depends upon the rate of compliance, with lower compli-
ance resulting in lower power, but is also impacted by the
different conditional means and variances of the outcome
across the principal strata as well as the relative sizes of
the principal strata across the distribution (i.e., probabili-
ties of belonging to each stratum).

As a result, there is currently no standard method of
power analysis in the LATE context. In addition, ex-
isting methods require specifying distributional assump-
tions that are difficult to make and/or come with hidden,
implicit assumptions about the various principal strata
that are unlikely to reflect the reality of one’s applied
data. Recognizing the complexity of LATE power anal-
ysis, some researchers settle for performing scaled ATE
or “intent-to-treat” (ITT) power analyses, discussed later,
even when their ultimate estimand of interest is the LATE.
This is a precarious practice given that, as will be shown,
the results of scaled ATE and ITT power analyses can di-
verge substantially from the results of a LATE power anal-
ysis. This state of affairs is problematic given how com-
mon noncompliance is in many research environments,
including field experiments, clinical trials and randomized
controlled trials (RCTs) using encouragement designs.
These types of studies also tend to be among the most ex-
pensive, generating strong incentives for well-calibrated
power analyses.

This study introduces a new approach to LATE power
analysis employing the Wald IV estimator. Specifically,
by using a standardized LATE effect size, this study
shows how bounds can be placed on the power of the test
of the null hypothesis that τ = 0 whereby neither variance
components nor patterns of noncompliance and hetero-
geneity need to be specified. Instead, in addition to the

2The assumptions and identification of the LATE will be discussed
more fully in Section 3.
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effect size, sample size and error tolerance parameters,
the only other parameter that must be specified by the re-
searcher is the compliance rate. In contrast, nine other un-
derlying parameters that affect power need not be speci-
fied. This study focuses on the Wald IV estimator because
it is the most accessible and commonly used estimator of
the LATE among applied researchers. In addition, in con-
trast to other estimators of the LATE, such as those based
on maximum likelihood estimation and Bayesian methods
(e.g., Imbens and Rubin, 1997), the Wald IV estimator is
nonparametric.

As usual, the effect size and sample size parameters
can be isolated in the power analysis introduced in this
study, providing “worst-case-scenario” formulas for min-
imum detectable effect sizes and required sample sizes.
Additional assumptions can also be made to further nar-
row the bounds on the power calculation to avoid over-
conservatism. The result is a generalized approach to
power analysis in the LATE context that is simultane-
ously conservative, disciplined and simple to implement.
As a central reference and summary of the main recom-
mendations, Table 1 provides the conservative formulas
for power, minimum detectable effect size and required
sample size under a variety of scenarios considered in the
study, offering researchers a principled strategy for pro-
ceeding with conservative power analyses for the LATE.
The approach can also be extended to tests in fuzzy re-
gression discontinuity designs (Hahn, Todd and Van der
Klaauw, 2001) that use the instrumental variable (IV) es-
timator in the discontinuity window around the threshold,
as well as quasi-experiments that apply the IV framework
to observational data.

To introduce a frame of reference, Section 2 will briefly
discuss power analysis in the standard ATE context with
full compliance. Section 3 will then introduce the LATE,
and proceed to highlight problems with existing power
analysis methods and general challenges to analyzing
power in the LATE context. Sections 4 and 5 will present
the new method of LATE power analysis introduced by
this study. Section 6 will summarize the main results and
recommendations, as well as provide an illustration of
how the method could be used in practice by applying it
in the context of the National JTPA Study. Sections 7 and
8 discuss how to extend the framework to allow for co-
variate adjustment and multivalued treatments. Section 9
concludes.

2. POWER ANALYSIS FOR AVERAGE TREATMENT
EFFECTS

Consider the goal of understanding how some inter-
vention (a treatment) impacts an outcome of interest in
an experimental setting where we can assume full com-
pliance with treatment assignment. As before, suppose
we observe a sample of N independent and identically

distributed units of the form (Yi,Di,Zi) ∈ R × {0,1} ×
{0,1}, where for the ith unit Zi is the treatment assign-
ment, and the outcome Yi and treatment uptake Di are
generated according to the data-generating distribution of
potential outcomes noted in the previous section. Given
full compliance, Zi = Di for all i. Further, let Ŷ (0) and
Ŷ (1) denote the averages of the observed outcomes for
the sampled units actually assigned to the control and
treatment conditions, respectively, which constitute unbi-
ased and consistent estimates of E[Yi(0)] and E[Yi(1)]
given random assignment of the treatment and the “sta-
ble unit treatment value assumption” (SUTVA) (Rubin,
1978, 1980, 1990). As a result, the difference-in-means
estimator, δ̂ = Ŷ (1) − Ŷ (0), is unbiased and consistent
for the average treatment effect (ATE), the true value of
which is δ = E[Yi(1) − Yi(0)].

As shown elsewhere (Cohen, 1988, Bloom, 2006,
Duflo, Glennerster and Kremer, 2007), given asymptotic
normality of the difference-in-means estimator, power
analysis for the test of the null hypothesis that δ = 0 with
a two-sided alternative then proceeds with the following
equation:

�

(
−c∗ + δ√

VN

)
+ �

(
−c∗ − δ√

VN

)
= 1 − β,

where �(•) denotes the standard normal cumulative dis-
tribution function, δ denotes a hypothesized true ATE
value, VN denotes the sampling variance of the estimator
δ̂, 1 − β denotes the power to correctly reject the null hy-
pothesis (β denotes the type-II error rate), and c∗ denotes
the critical value corresponding to the tolerable type-I er-
ror rate (α) and hypothesis test type. For the standard two-
tailed test of the null hypothesis that δ = 0, c∗ = �−1(1−
α
2 ). Conventionally, VN ≡ Var(Yi(1))

N1
+ Var(Yi(0))

N0
, given N

units with N1 assigned to treatment and N0 = N − N1
assigned to control.3

In order to use the power formula above, the analyst
must specify VN , which requires explicitly or implicitly
specifying the variances of Yi(0) and Yi(1). This require-
ment presents a possibly serious practical complication.
While previous studies and/or existing data can often help
to inform these variance specifications, there often do not
exist any data that is recent or closely related enough
to serve as a useful benchmark, particularly in the case
where a researcher is interested in a novel outcome vari-
able or new population of interest. One might devise an
idea, based on theoretical expectations, about what a con-
servative variance might look like. However, in the very
plausible case that these expectations are inaccurate, too

3Imbens and Rubin (2015) show that this formula for VN is conser-
vative given complete randomization of N units with a predetermined
number N1 assigned to treatment and N0 = N − N1 assigned to con-
trol.
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high a guess will lead to an overpowered study while
too low a guess will lead to an unsuccessful study. In
both cases, the researcher’s resources are at risk of being
wasted.

“Effect sizes” have long been established as the stan-
dard solution to this problem in the ATE context with full
compliance (Cohen, 1988, Bloom, 2006, Duflo, Glenner-
ster and Kremer, 2007). In cases where the variances are
unknown and/or absolute effect magnitudes are difficult
to interpret, a common recommendation is to employ the
effect size δ

σ
—rather than the absolute effect δ—where σ

is the standard deviation of a reference outcome distribu-
tion. In other words, effect sizes are measures of treatment
effects that are standardized with reference to the dis-
tribution of the outcome variable. Most commonly used
is σ = √

E[Var(Yi |Di)], the expected within-group stan-
dard deviation of the outcome. By employing effect sizes,
the result is that the variance terms in the power formula
drop out, thus obviating the inconvenient need to estimate
or guess variance values. In addition, there exist general
benchmarks for what constitutes a small, medium and
large effect size (e.g., Cohen, 1988) and meta-analyses
within individual fields of study have enabled researchers
to develop discipline-specific guidance on effect size sig-
nificance (Lipsey, 1990, Chapter 3).

3. POWER IN THE LATE CONTEXT

3.1 Local Average Treatment Effect (LATE)

In many studies, the subjects exhibit noncompliance:
some units assigned to the treatment condition do not take
the treatment, and/or some units assigned to the control
condition do take the treatment. This problem is perva-
sive across many research settings—including field ex-
periments, clinical trials and RCTs using encouragement
designs—as subjects often cannot be forced to take the
treatment, and some subjects are able to access the treat-
ment even when not assigned to it (Gerber and Green,
2012). As explained earlier, in the presence of noncompli-
ance, the ATE generally cannot be identified, but it is pos-
sible to identify the local average treatment effect (LATE),
which is the ATE for the compliers (Angrist, Imbens and
Rubin, 1996). In the case of one-sided noncompliance, the
LATE is the ATE for the treated (given no always-takers)
or the ATE for the untreated (given no never-takers).

In their seminal study applying the potential outcomes
framework to the identification and estimation of the
LATE, Angrist, Imbens and Rubin (1996) begin by con-
sidering N units indexed by i and defining the poten-
tial outcomes Di(Z) and Yi(Z,D), where Z and D cor-
respond to the N -dimensional treatment assignment and
uptake vectors across the units. Di(Z) ∈ {0,1} denotes
the treatment uptake that unit i would exhibit given the
full treatment assignment vector, and Yi(Z,D) ∈ R de-
notes the outcome that unit i would exhibit given the full

treatment assignment and treatment uptake vectors. Note
that while this potential outcomes notation differs from
that employed earlier in the present study, Angrist, Im-
bens and Rubin (1996) make a set of assumptions that
simplify the potential outcomes to the form employed ear-
lier here. Specifically, Angrist, Imbens and Rubin (1996)
introduce the following assumptions:

ASSUMPTION 1 (Stable unit treatment value assump-
tion (SUTVA)). Let (Z,D) and (Z′,D′) be pairs of
treatment assignment and uptake vectors. If Zi = Z′

i ,
then Di(Z) = Di(Z′). If Zi = Z′

i and Di = D′
i , then

Yi(Z,D) = Yi(Z′,D′).

ASSUMPTION 2 (Random assignment of the treat-
ment). P(Z = a) = P(Z = a′) for all a and a′ such that
ιT a = ιT a′ where ι is the N-dimensional column vector
with all elements equal to one.

ASSUMPTION 3 (Exclusion restriction). Y(Z,D) =
Y(Z′,D) for all Z,Z′ and for all D.

ASSUMPTION 4 (Nonzero average causal effect of Z

on D). E[Di(1) − Di(0)] �= 0.

ASSUMPTION 5 (Monotonicity). Di(1) ≥ Di(0) for
all i.

As shown by Angrist, Imbens and Rubin (1996), given
these assumptions, the potential outcomes for Y are re-
duced to Yi(d), d ∈ {0,1}, as introduced earlier in this
study. The Yi(d) denote the outcome that unit i would ex-
hibit if unit i assumed treatment status and took the treat-
ment (d = 1) or if it assumed control status and did not
take the treatment (d = 0), irrespective of all other units.
Further, the potential outcomes for D are also reduced to
the earlier notation, Di(z), z ∈ {0,1}, which denote the
treatment uptake status that unit i would exhibit if unit
i was assigned to the treatment condition (z = 1) or as-
signed to the control condition (z = 0), irrespective of all
other units.

We can thus postulate, as introduced and defined ear-
lier, a data-generating distribution on the quadruples
(Yi(0), Yi(1),Di(0),Di(1)) ∈ R × R × {0,1} × {0,1}.
Recall that compliers are defined as units for whom
Di(1) − Di(0) = 1. In contrast, always-takers are units
for whom Di(1) = Di(0) = 1, and never-takers are units
for whom Di(1) = Di(0) = 0. Note the existence of de-
fiers, or units for whom Di(1) − Di(0) = −1 (i.e., units
that take the treatment if not assigned to it and do not take
the treatment if assigned to it), is ruled out by Assump-
tion 5.

Following Angrist, Imbens and Rubin (1996), the
LATE (denoted here by τ ) is defined formally as the ATE,
or average causal effect of D on Y , for compliers:

τ = E
[
Yi(1) − Yi(0)

∣∣Di(1) − Di(0) = 1
]
.



258 K. BANSAK

Under Assumptions 1–5, Angrist, Imbens and Rubin
(1996) show that this estimand is equivalent to the ratio
between the average causal effect of Z on Y (intent-to-
treat effect, or ITT), which will be denoted by γ , and the
average causal effect of Z on D (first-stage effect), which
will be denoted by π . The first-stage effect is also equiv-
alent to the compliance rate given the assumptions. That
is

τ = γ

π
,

γ = E
[
Yi

(
Di(1)

) − Yi

(
Di(0)

)]
,

π = E
[
Di(1) − Di(0)

] = P
(
Di(1) − Di(0) = 1

)
.

Now suppose we observe a sample of N independent
and identically distributed units of the form (Yi,Di,Zi) ∈
R×{0,1}×{0,1}, where for each unit i the (Yi(0), Yi(1),

Di(0),Di(1)) is drawn from the distribution noted above,
Di = Di(Zi) given the treatment assignment Zi , and
Yi = Yi(Di). Given the assumptions, the LATE can be es-
timated consistently by the Wald IV estimator, which will
be denoted by τ̂ :

τ̂ = Ĉov(Yi,Zi)

Ĉov(Di,Zi)
,

where Ĉov denotes the sample covariance.
In contrast to other estimators of the LATE, such

as those based on maximum likelihood estimation and
Bayesian methods (e.g., Imbens and Rubin, 1997), the
Wald IV estimator is nonparametric and does not require
assumptions about the probability distributions underly-
ing the data. The Wald IV estimator is also the most acces-
sible and commonly used estimator of the LATE among
applied researchers. The asymptotic variance of the esti-
mator given independent and identically distributed ob-
servations, as shown by Imbens and Angrist (1994), is

V τ̂
N = E[ε2

i {Zi − E[Zi]}2]
NCov2(Di,Zi)

,

where εi = Yi − E[Yi] − τ(Di − E[Di]).
In the face of noncompliance, researchers often weigh

the merits of focusing on the ITT vs. LATE as the ulti-
mate estimand of interest from the perspective of their
own research goals and questions (e.g., Imbens, 2014a,
Kitagawa, 2014, Swanson and Hernán, 2014, Imbens,
2014b). The ITT measures the average effect of treatment
assignment in the presence of noncompliance. This is an
ideal estimand for researchers wishing to understand the
overall system-wide effect of introducing an intervention
into the study context. However, the ITT does not cap-
ture a causal effect of the treatment itself. In contrast, the
LATE measures the average causal effect of the treatment
uptake for the compliers. While the compliers are a subset
of the underlying population, note that they are often the
sub-population of interest, as they are precisely the subset

of individuals who can actually be induced to take (or not
take) the treatment. In contrast, it is often not relevant or
useful to understand the effect of a treatment for a sub-
population who will never end up taking the treatment (or
who will always take it no matter what).

By measuring a causal effect of the treatment, the LATE
thereby allows researchers to understand the efficacy of
the treatment itself. This can be a critical task for a num-
ber of research goals. First, it allows for more direct scien-
tific investigation of the underlying causal phenomenon.
Second, it facilitates efforts to improve the design of the
intervention such that it becomes more efficacious at the
individual level. Third, it is also key for determining the
cost-efficiency of the treatment in many contexts. Given
that costly interventions often scale proportionately to the
number of applications/dosages actually delivered, rather
than simply the number assigned, it is crucial to mea-
sure the cost-efficiency of delivered treatment applica-
tions/dosages, which the LATE allows for but the ITT
does not. In short, for studies focused on understanding
the efficacy of treatments and measuring their causal ef-
fects, the LATE is often a more interesting, informative,
and/or policy-relevant estimand.4

3.2 Proliferation of Parameters Affecting Power for
the LATE

In general, we may separate power analysis parame-
ters into three groups: error tolerance parameters, inves-
tigation parameters and distribution parameters. The error
tolerance parameters are α (type-I error tolerance) and β

(type-II error tolerance), where β is a parameter only in
the case where we are solving for a different parameter
rather than calculating the power (1 − β). The investiga-
tion parameters are sample size and effect magnitude/size.
These are the parameters of fundamental interest that mo-
tivate the use of a prestudy power analysis. Finally, the
distribution parameters are the parameters that character-
ize the distribution(s) of the population(s) of interest. In
contrast to the tolerance parameters, which are selected
by convention or on a discretionary basis, and the inves-
tigation parameters, which the researcher seeks to learn
about in order to make research design decisions, the dis-
tribution parameters are matters of inconvenience. While
they are (usually) not of strict interest to the researcher,
the distribution parameters have a dramatic impact on sta-
tistical power, and they must be specified at values that are
known or believed to reflect reality in order for a power
analysis to be properly calibrated and hence informative.

As described earlier, in the standard ATE context with
full compliance using absolute effect magnitudes, the

4Recall, also, that in study designs that ensure the absence of always-
takers (never-takers) the LATE becomes the ATE for the treated (un-
treated).
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power formula requires specification of the variance of
the ATE estimator. This variance depends upon two dis-
tribution parameters: the potential outcome variances of
both the treatment and control conditions. In addition, by
employing standardized effect sizes, these distribution pa-
rameters can be dispensed with. In the LATE context, a
power formula would also entail specifying the variance
of the estimator. In contrast to the ATE context, however,
this variance depends upon many more distribution pa-
rameters in the LATE context. If we consider the compli-
ance rate π to be an additional investigation parameter in
the LATE context, then there are in fact nine distribution
parameters that affect the variance of the Wald IV estima-
tor and hence also affect the power.

The reason for this proliferation of parameters has
to do with marginal distributional heterogeneity across
the principal strata. Specifically, in addition to the in-
vestigation parameters, the estimator variance is also
affected by: (1) the complier control condition poten-
tial outcome mean, E[Yi(0)|Di(1) − Di(0) = 1]; (2) the
complier control condition potential outcome variance,
Var[Yi(0)|Di(1)−Di(0) = 1]; (3) the complier treatment
condition potential outcome variance, Var[Yi(1)|Di(1) −
Di(0) = 1]; (4) the never-taker control condition poten-
tial outcome mean, E[Yi(0)|Di(1) = Di(0) = 0]; (5) the
never-taker control condition potential outcome variance,
Var[Yi(0)|Di(1) = Di(0) = 0]; (6) the always-taker treat-
ment condition potential outcome mean, E[Yi(1)|Di(1) =
Di(0) = 1]; (7) the always-taker treatment condition po-
tential outcome variance, Var[Yi(1)|Di(1) = Di(0) = 1];
(8) the proportion of never-takers, P(Di(1) = Di(0) =
0); and (9) the proportion of always-takers, P(Di(1) =
Di(0) = 1).5 These properties are illustrated for the Wald
IV estimator in the Supplementary Materials (Bansak,
2020, SM) Appendix B (Tables B1–B2), which presents
the results of a series of simulations illustrating the power
of the estimator as the marginal distributional characteris-
tics of the principal strata are varied.

3.3 Limitations of Existing Methods for Power
Analysis

Given the expectation of noncompliance with treatment
assignment, a researcher wishing to perform a power anal-
ysis in order to inform the study design (e.g., number of
subjects) has a few existing options. However, the unique

5It should be noted that the sum of (8), (9) and π must be one, re-
moving a degree of freedom in the specification of distribution param-
eters. In addition, it should be noted that the treatment condition poten-
tial outcome mean for the compliers is not included since it is simply
the sum of the compliers’ control condition mean and the LATE. Fur-
ther, treatment (control) condition parameters are not included for the
never-takers (always-takers) because the treatment (control) condition
never manifests in the data for the never-takers (always-takers) by def-
inition.

characteristics of the LATE context, namely the existence
of multiple principal strata characterized by marginal dis-
tributional heterogeneity, significantly limit the reliability
of these existing methods.

The first existing option is to apply a standard power
analysis to the ITT. This may seem problematic at face
value, of course, since the ITT is a different target esti-
mand than the LATE. Indeed, for researchers who intend
to focus on and estimate the LATE, the problem with ITT
power analyses is that, for a given data-generating distri-
bution, the power to detect nonzero effects for the ITT
difference-in-means estimator will deviate from that of
estimators of the LATE, as highlighted in previous work
by Jo (2002). This phenomenon is illustrated in the SM
Appendix B (Table B3), which presents the results of sim-
ulations in which the power for the LATE (Wald IV es-
timator) and ITT (difference-in-means estimator) change
at different rates as the simulation specifications are al-
tered. In fact, as the simulations show, the power for tests
of the LATE may be higher or lower than the power for
tests of the ITT depending upon the heterogeneity across
the principal strata. This may be somewhat surprising be-
cause the Wald IV estimator is simply a scaled version
of the ITT, where the ITT is divided by the compliance
rate. However, the compliance rate is a quantity that must
also be estimated, and that estimate is generally correlated
with the estimate of the ITT, resulting in the Wald IV es-
timator having distinct statistical properties from the ITT
difference-in-means estimator.

To illustrate the problem more vividly, consider a hypo-
thetical superpopulation whose potential outcomes are de-
picted in Figure 1 based on a specific data-generating dis-
tribution of the quadruples (Yi(0), Yi(1),Di(0),Di(1)) ∈
R × R × {0,1} × {0,1}. Compliers comprise 30% of the
superpopulation: P(Di(1) − Di(0) = 1) = 0.3. Always-
takers and never-takers each comprise 35%: P(Di(1) =
Di(0) = 1) = 0.35 and P(Di(1) = Di(0) = 0) = 0.35.
Finally, defiers do not exist: P(Di(1)−Di(0) = −1) = 0.
Note that compliance rates of 0.3 and lower are prevalent
in field experiments, encouragement-based RCTs and nat-
ural experiments.6 The LATE has a value of 5 in the super-
population displayed in Figure 1.7 In addition, the never-
takers have a slightly higher mean potential outcome
value under control and always-takers have a slightly

6For instance, the estimated compliance rate in a vote canvassing
field experiment run by Gerber and Green (2000) was around 0.3, the
estimated compliance rate in an influenza vaccination encouragement
design evaluated by Hirano et al. (2000) was approximately 0.12, and
in a natural experiment evaluated by Angrist (1990) on the effect of
Vietnam War veteran status on civilian earnings, the estimated compli-
ance rate (effect of draft eligibility on veteran status) ranged from 0.10
to 0.16 for white American citizens born from 1950–1952.

7Specifically, the potential outcomes are normally distributed with a
variance of 9 and means of 0 and 5 for the compliers under control and
under treatment, respectively.
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FIG. 1. Distribution of potential outcomes Yi(d) in superpopulation.

lower mean potential outcome value under treatment, con-
sistent with a common scenario in which subjects with
initially high outcome levels have no incentive to take
the treatment and subjects with low outcome values are
particularly motivated to access the treatment regardless
of their assignment.8 Note that only the treatment poten-
tial outcomes are relevant for the always-takers, and only
the control potential outcomes are relevant for the never-
takers. 10,000 samples of size 650 were randomly drawn
from this superpopulation, and each unit had a probabil-
ity of 0.5 of being assigned to the treatment. Whether each
unit actually took the treatment and its realized outcome
were determined jointly by its treatment assignment and
the principal stratum to which it belonged, yielding for
each sample 650 independent and identically distributed
units of the form (Yi,Di,Zi) ∈R× {0,1} × {0,1}. Using
the observed values for each sample, tests of the hypothe-
ses that the ITT and LATE are zero were performed with
the difference-in-means and Wald IV estimators, respec-
tively, thereby allowing for a simulated comparison of the
power of each test.9 The power for the ITT was approxi-
mately 0.77, while the power for the LATE was substan-
tially lower at 0.61. While this is only a single hypothet-
ical data-generating distribution, it conveys an important
general message: the results of an ITT power analysis can
provide extremely inaccurate guidance (e.g., a miscali-
brated sample size recommendation) for researchers plan-
ning ultimately to focus on and estimate the LATE. As a
general rule, the mismatch between the power for the ITT
and power for the LATE will be more pronounced given
a lower compliance rate and greater distributional hetero-
geneity across the principal strata.

8Specifically, the potential outcomes for the always-takers (under
treatment) and never-takers (under control) are normally distributed
with a variance of 9 and means of −5 and 10, respectively.

9The simulated power is the proportion of samples for which the test
rejects the null hypothesis of no effect. Two-sided hypothesis tests with
α = 0.05 were used.

A second existing option is a scaled ATE power anal-
ysis, which is a commonly used approach in which the
results of a standard ATE power analysis are scaled by
an appropriate function of the compliance rate. Using this
approach, Duflo, Glennerster and Kremer (2007) present
a formula for computing minimum detectable effects in
the presence of noncompliance based on a simple scaling
of the standard ATE formula, the result of which follows
from the ATE estimator variance being divided by the
compliance rate squared. The rationale behind this pro-
cess is based on the fact that the Wald IV estimator is
simply the ratio of the ITT to the compliance rate. How-
ever, the scaled ATE power analysis treats the compliance
rate as a known value when, as already explained above,
the compliance rate must be estimated and that estimate
is generally correlated with the ITT estimate. The result-
ing problem with this approach, which Duflo, Glennerster
and Kremer do not make explicit but has been shown else-
where (Baiocchi, Cheng and Small, 2014), is that a num-
ber of strong and unrealistic assumptions are required for
this scaling of the standard ATE power analysis to yield
the (approximately) correct power for tests using the Wald
IV estimator. Specifically, it must be the case that (a) the
never-takers have the same mean outcome value as the
untreated compliers, (b) the always-takers have the same
mean outcome value as the treated compliers, and (c) all
groups have the same within-condition outcome variance.
If any of those assumptions are violated, the true power
of the test of the hypothesis that the LATE equals zero
can diverge dramatically from the power implied by this
scaled ATE power analysis. SM Appendix B (Table B4)
demonstrates this result, illustrating how the scaled ATE
power analysis, similar to an ITT power analysis, can
provide extremely unreliable guidance on power for the
LATE.

Finally, as a third option, power analyses specifi-
cally for instrumental-variable (IV) effects have been
introduced in the epidemiology literature (Pierce, Ah-
san and VanderWeele, 2011, Freeman, Cowling and
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Schooling, 2013, Brion, Shakhbazov and Visscher, 2013,
Wang et al., 2018). In particular, Freeman, Cowling
and Schooling (2013), Brion, Shakhbazov and Visscher
(2013) and Wang et al. (2018) all introduce power for-
mulas for IV effects. However, there are two major lim-
itations to the approaches taken by these studies. First,
they require specifying a number of variance components,
about which a researcher may not have good preexisting
knowledge or priors. Second, they proceed from a clas-
sic IV perspective and hence neglect the extent to which
these variance components depend upon the distinct dis-
tributional behavior of the principal strata.

For instance, the formulas presented by Freeman,
Cowling and Schooling and Brion, Shakhbazov and Viss-
cher both require specifying Var(Di).10 This presents a
challenge given noncompliance with the treatment assign-
ment, as Var(Di) is a function of both the first stage ef-
fect π (which is also the compliance rate) and the pro-
portion of always-takers versus never-takers. In other
words, to choose an informative value of Var(Di), one
must specify not only a hypothetical compliance rate but
also the precise pattern of noncompliance. In addition,
Freeman, Cowling and Schooling also require specifying
Var(Yi |Di), while Brion, Shakhbazov and Visscher re-
quire specifying the biased asymptotic value of the least
squares estimator of the effect of D on Y . Finally, the ap-
proach taken by Wang et al. requires specifying the ITT,
standard deviation of the potential outcome under con-
trol, standard deviation of the error from regressing the
treatment on the instrument, and the correlation between
the potential outcome under control and the error from
regressing the treatment on the instrument. In many study
contexts in the social sciences, medicine, public health,
program evaluation and other fields, the researcher will
lack solid estimates or priors on one or more of these
parameters. In such contexts, the formulas offered by
Freeman, Cowling and Schooling, Brion, Shakhbazov and
Visscher and Wang et al. cannot be used reliably.

3.4 General Complications for Designing LATE Power
Analyses

As highlighted above, there are significant limitations
and liabilities associated with existing methods of power
analysis in the presence of noncompliance. As a result,
this is an area in the applied methodological literature that
requires new approaches and solutions. Yet there are no-
table impediments to developing flexible and reliable ap-
proaches to power analysis in the LATE context.

A first complication that has been recognized for
some time relates to the local identification of the LATE

10Var(Di) enters both formulas directly as well as through the need
to specify ρDZ (the correlation between Di and Zi ), which can only
be mapped from a hypothetical first-stage effect π by specifying both
Var(Di) and Var(Zi).

(Jo, 2002). As already described, the possibility of het-
erogeneous potential outcome distributions across the
three principal strata (compliers, never-takers and always-
takers) combined with the possibility of different patterns
of noncompliance leads to the proliferation of parame-
ters that affect power in the LATE context. Because these
parameters jointly factor into the variance of LATE esti-
mators, specifying a hypothetical value for the estimator
variance to enable a power analysis involves making ex-
plicit or implicit assumptions about all of these parame-
ters.

This first problem leads to a second complication in
terms of being able to specify standardized effect sizes
in such a way that the variance components of the power
analysis drop out. Whereas in the ATE context given per-
fect compliance the fix is fairly simple and hence enables
the analyst to minimize the number of assumptions that
must be made, such a fix has been elusive in the LATE
context given imperfect compliance. The result is that ex-
isting power analyses in the LATE context, whether an-
alytic or simulation-based, have inconveniently required
(explicit or implicit) distributional assumptions that may
not match the reality of the data that will eventually be
collected.

4. INTRODUCING A GENERALIZED APPROACH TO
POWER ANALYSIS FOR THE LATE

The remainder of this study introduces a new method
of LATE power analysis that addresses the problems de-
scribed above and provides a more reliable tool than ex-
isting methods. The innovation and contribution of this
new method is in showing how, by employing effect sizes,
bounds can be placed on the power formula whereby nei-
ther variance components nor patterns of heterogeneity
and noncompliance need to be specified. Instead, in addi-
tion to the effect size, sample size and error tolerance pa-
rameters, the only other parameter that must be specified
by the researcher is the compliance rate. In other words,
only tolerance and investigation parameters must be spec-
ified; the analyst need not specify nor even make assump-
tions about the estimator variance or any of the underlying
distribution parameters.

4.1 Deriving a Modified Power Formula

As all of the results that follow pertain to estimating
the LATE, the standard LATE assumptions (1–5) apply.
As before, consider a sample of N independent and iden-
tically distributed units of the form (Yi,Di,Zi) ∈ R ×
{0,1} × {0,1}, where the LATE will be estimated using

the Wald IV estimator, τ̂ = Ĉov(Yi ,Zi)

Ĉov(Di,Zi)
. Similar to the ATE

context, the results also invoke the asymptotic normality
of the estimator. Hence, the power formula for the test of
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the null hypothesis that τ = 0 begins as

�

(
−c∗ + τ√

V τ̂
N

)
+ �

(
−c∗ − τ√

V τ̂
N

)
= 1 − β.

Further assume that assignment to the treatment is ran-
domized with equal probability of being assigned to the
treatment and control conditions. (Note that this equal as-
signment probability assumption will be relaxed later.)

ASSUMPTION 6 (Equal assignment probability).
P(Zi = 1) = 0.5 for all units i = 1,2, . . . ,N ,

The LATE power analysis introduced in this study pro-
ceeds by defining an effect size of interest. Following con-
ventional practice using effect sizes in ATE power analy-
ses, the effect size is defined in standardized terms with
reference to the expected within-assignment-group stan-
dard deviation of the outcome:

DEFINITION 1. Define the effect size of interest as

κ = τ√
E[Var(Yi |Zi)] .

As will be discussed later, defining the effect size in this
manner with reference to treatment assignment groups is
appealing for a number of reasons. In particular, it pro-
vides a structure for determining reasonable effect sizes
in advance of a study. In addition, it leads the resulting
LATE power analysis derived below to nest the standard
ATE power analysis as a special case with full compli-
ance. More discussion is provided in a later section.

By focusing on the effect size, κ takes the place of τ

as one of the three investigation parameters, along with
π and N . In order to derive a LATE power formula
that does not require specifying distribution parameters,
or terms that depend on them, τ√

V τ̂
N

must be expressed

exclusively in terms of investigation parameters. Recall,
however, the complexity of the estimator variance: V τ̂

N =
E[ε2

i {Zi−E[Zi ]}2]
NCov2(Di,Zi)

where εi = Yi − E[Yi] − τ(Di − E[Di]).
Further consider that given imperfect compliance in the
LATE context, and hence selection into (or out of) the
treatment for some subjects, ε is not an intrinsically mean-
ingful disturbance. In particular, ε is not orthogonal to D

and hence does not have a conditional expectation of 0; by
extension, E[ε2

i ] is not a substantively meaningful term.
As a result of the distributional complexities in the

LATE context, it is not possible to derive a point calcula-
tion for the power of the Wald IV estimator without spec-
ifying its variance or the underlying distribution param-
eters. However, given Assumption 6 (equal assignment
probability) and Definition 1, a set of tight bounds can be
derived for the power of the Wald IV estimator. For nota-
tional convenience and without loss of generality, assume
that κ > 0 (and hence also τ > 0) is being investigated.
Specifically, the following bounds can be put on τ√

V τ̂
N

:

PROPOSITION 1. Given Assumptions 1–6,

0.5κπ
√

N√
1 + κ2E[ν2

i ] + 2κ
√

E[ν2
i ]

≤ τ√
V τ̂

N

≤ 0.5κπ
√

N√
1 + κ2E[ν2

i ] − 2κ
√

E[ν2
i ]

,

where νi = Di − E[Di] − π(Zi − E[Zi]).11

Of particular interest for study design purposes is the
lower bound, which can provide the basis for a lower (and
hence conservative) bound for the power. Notably, this re-
expression leaves only one remaining term that is not an
investigation parameter, E[ν2

i ]. However, since D is bi-
nary, a practical and conservative reexpression of E[ν2

i ]
can be undertaken by setting E[ν2

i ] to its largest possible
value as a function of π . The result is a final lower (con-
servative) bound on τ√

V τ̂
N

:

PROPOSITION 2. Given Assumptions 1–6:

0.5κπ
√

N

1 + κ
√

(0.5 − π
2 )(0.5 + π

2 )
≤ τ√

V τ̂
N

.

As can be seen, this final lower bound contains only the
three investigation parameters: κ , π and N . Furthermore,
this lower bound is tight—it cannot be raised without
making additional assumptions—thus providing a tight
lower bound for the power. In addition, setting E[ν2

i ] to
its largest possible value also results in an approximate

(slightly low) upper bound, 0.5κπ
√

N

|1−κ
√

(0.5− π
2 )(0.5+ π

2 )| , though

this quantity is of less practical value for study design than
the conservative lower bound.

The bound in Proposition 2 can be plugged into the

power formula �(−c∗ + τ/

√
V τ̂

N) + �(−c∗ − τ/

√
V τ̂

N)

to produce a tight lower bound on the power

�

(
−c∗ + 0.5κπ

√
N

1 + κ
√

(0.5 − π
2 )(0.5 + π

2 )

)

+ �

(
−c∗ − 0.5κπ

√
N

1 + κ
√

(0.5 − π
2 )(0.5 + π

2 )

)

≤ 1 − β.

Values of the investigation parameters κ , π and N—as
well as a type-I error tolerance α to calculate c∗—can
then be selected in order to calculate the lower bound on
the power, 1 − β , of the test of the null hypothesis that

11Note that, without loss of generality, it is assumed here that κ > 0
(and hence also τ > 0) is being investigated. If κ and τ were negative,
the inequalities would be reversed.
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the LATE is zero. Importantly, there do not exist any vari-
ance terms in the modified power formula. As a result, it
provides a bound that captures any distributional patterns
among all three principal strata. In other words, the result
is a generalized power analysis for the Wald IV estima-
tor of the LATE that is free of additional distributional
assumptions and does not require specification of the es-
timator variance or its underlying distribution parameters.

In addition, as with standard power analyses, the mod-
ified power formula can be rearranged to solve for the
investigation parameters. Instead of calculating power
based on a specific effect size (κ), compliance rate (π )
and sample size (N ), it can be more useful to select a de-
sired power level and solve for one of the other parameters
by fixing the rest. Of particular interest in this case should
be κ , solving for which will yield the minimum detectable
effect size (MDES),12 and N , solving for which will yield
the required sample size.

4.2 Solving for the Minimum Detectable Effect Size

Again without loss of generality, assume that κ > 0 is
being investigated. Then, for reasonably high levels of
power—which includes conventional power levels, such
as 0.8—the second term in the power formula is negligi-
ble, simplifying the formula to

�

(
−c∗ + τ√

V τ̂
N

)
= 1 − β.

Recalling that c∗ = �−1(1 − α
2 ) for a two-sided test, this

can then be reexpressed as
τ√
V τ̂

N

= �−1
(

1 − α

2

)
+ �−1(1 − β).

Let M = �−1(1 − α
2 ) + �−1(1 − β), which is called the

“multiplier.” M can then be plugged in for τ√
V τ̂

N

in the

bounds presented above. This allows κ to then be isolated
such that the MDES can be computed as a function of the
other parameters. This results in a tight upper bound on
the MDES, corresponding to the tight lower bound on the
power, that can then be used as a conservative value for
study design purposes:

κ ≤ 2M

π
√

N − 2M
√

(0.5 − π
2 )(0.5 + π

2 )
.

As before, an approximate lower bound on the MDES can
also be expressed in the same manner, though the MDES
lower bound is of less practical value than the MDES up-
per bound for study design.13

12This term is borrowed from Bloom (2006), who used it in the ATE
context as an extension of minimum detectable effects measured in
absolute terms (Bloom, 1995).

13The MDES approximate lower bound is 2M/
(
π

√
N +

2M
√

(0.5 − π
2 )(0.5 + π

2 )
)

≤ κ .

4.3 Solving for the Sample Size

Instead of isolating κ as above, N can be isolated in
order to solve for the required sample size. Continuing
to assume without loss of generality that κ > 0 is being
investigated, the following is the tight upper bound on
the required sample size corresponding to the tight lower
bound on the power

N ≤
4M2

(
1 + κ

√
(0.5 − π

2 )(0.5 + π
2 )

)2

κ2π2 .

This upper bound can then be used as a conservative value
for study design purposes. Once again, an approximate
lower bound on the required sample size can be similarly
expressed, with the same caveat that such a quantity holds
less practical value than the upper bound.14

4.4 Narrowing the Bounds

By providing a strict lower bound on the power, the
method presented above offers a disciplined and reliable
means of performing a conservative power analysis for
the LATE. However, there is a tradeoff between conser-
vatism and efficiency. If the lower bound is too conserva-
tive, it will lead to underestimation of the power and hence
overestimation of the MDES and sample size required.
This could then result in sub-optimal outcomes, such as a
study being over-funded to achieve the conservative sam-
ple size or perhaps not funded at all if the sample size
requirements exceed the financial resources available. As
a result, it would be useful to narrow the bounds on the
power formula where possible.

Continuing to assume without loss of generality that
κ > 0, it can be shown that the lower bound on the
power formula can be substantially raised when ȲNT ≤
ȲC ≤ ȲAT , where ȲC , ȲNT and ȲAT denote the ex-
pected realized outcome value for compliers, never-
takers and always-takers (e.g., ȲC = E[Yi |Complier] =
E[Yi |Di(1) − Di(0) = 1]).

ASSUMPTION 7 (Ordered means). ȲNT ≤ ȲC ≤ ȲAT

where ȲC , ȲNT and ȲAT denote the expected realized out-
come value for compliers, never-takers and always-takers.

In the case of one-sided noncompliance, Assumption 7
(ordered means) can be simplified to ȲNT ≤ ȲC or ȲC ≤
ȲAT , depending upon the direction of noncompliance. It
should also be noted that, in the case where noncom-
pliance is almost one-sided (i.e. very few always-takers
or very few never-takers), the sparse principal stratum
will have only a negligible impact on estimation. Thus,

14The required sample size approximate lower bound is

4M2
(

1−κ
√

(0.5− π
2 )(0.5+ π

2 )

)2

κ2π2 ≤ N .
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as a practical matter, Assumption 7 can be simplified to
ȲNT ≤ ȲC or ȲC ≤ ȲAT as long as the sparse principal
stratum is deemed sufficiently small.

As a result, if the researcher is comfortable making As-
sumption 7, then the lower bound of the power formula
can be raised by using the following:

PROPOSITION 3. Given Assumptions 1–7,

0.5κπ
√

N√
1 + κ2(0.5 − π

2 )(0.5 + π
2 )

≤ τ√
V τ̂

N

.

Plugging this into the power formula yields:

�

(
−c∗ + 0.5κπ

√
N√

1 + κ2(0.5 − π
2 )(0.5 + π

2 )

)

+ �

(
−c∗ − 0.5κπ

√
N√

1 + κ2(0.5 − π
2 )(0.5 + π

2 )

)

≤ 1 − β.

By the same process described earlier, it is possible to
solve for κ and N to derive new (lowered) upper bounds
on the MDES and required sample size:

κ∗ ≤ 2M√
Nπ2 − 4M2(0.5 − π

2 )(0.5 + π
2 )

,

N∗ ≤ 4M2(1 + κ2(0.5 − π
2 )(0.5 + π

2 ))

κ2π2 ,

where again M = �−1(1 − α
2 ) + �−1(1 − β).

When would Assumption 7 (ordered means) be reason-
able? Roughly speaking, there are two factors to consider
when assessing the plausibility of this assumption. The
first relates to effect heterogeneity. Specifically, it should
be the case that always-takers (never-takers) select into
(out of) the treatment because treatment uptake for them
is associated with effects that are larger (smaller) than the
average treatment effect for the compliers, or at least sim-
ilarly sized. For instance, in the case of a positive and ben-
eficial treatment, we must expect the noncomplying study
subjects to be sufficiently rational that they are selecting
into (out of) the treatment in anticipation of a particularly
good (bad) effect on their outcome. Alternatively, selec-
tion into and out of the treatment could also be made for
arbitrary reasons that are uncorrelated with individual ef-
fects. The second factor relates to baseline outcome levels
in the absence of the treatment. Specifically, we must ex-
pect that always-takers (never-takers) do not have baseline
outcome levels that are particularly low (high) compared
to that of the compliers.

Precisely when the assumption should be expected to
hold, in light of the two factors described above, will cer-
tainly be context dependent. However, specific research
design steps can be taken to increase its plausibility. First,

studies can often be designed so as to exclude one type of
noncompliance. Indeed, many experiments are designed
to prevent those not assigned to the treatment from ac-
cessing it and thus ensuring the absence of always-takers.
By achieving one-sided noncompliance, the analyst need
only consider two principal strata, rather than three. The
well-known National JTPA Study is one such example
(Bloom et al., 1997). In this experimental study, subjects
were randomly assigned such that they were either given
an offer to enroll in a job training program (assigned to
treatment) or excluded from participating in the training
for an 18-month period (assigned to control). However,
many subjects given access to the job training program de-
cided not to receive the training, resulting in a large chunk
of never-takers. While there were some enterprising indi-
viduals who gained access to the job training in spite of
not being assigned to it, their numbers were so small that
there was virtually one-sided noncompliance.

Another research design step that can be taken is to im-
pose reasonable restrictions on the study population of
interest to ensure more similar baseline outcome levels
across the principal strata. Again, the JTPA experiment
is illustrative, as eligibility to participate in the experi-
ment was restricted to those with economic disadvantages
and barriers to employment. Had such restrictions not
been made, the study may have included employed and/or
higher income professionals who likely would have opted
out of the job training program regardless of treatment as-
signment, boosting the baseline economic outcome levels
of the never-takers.

In fact, as shown in the SM Appendix C, the final re-
sults from the JTPA experiment were consistent with the
ordered means assumption in terms of an outcome vari-
able that measured the participants’ earnings in the 30-
month period following their random assignment. Ap-
pendix C also presents the results of two other studies that
were consistent with the ordered means assumption. One
is a vote-canvassing field experiment (Gerber and Green,
2000). The other is a fuzzy regression discontinuity de-
sign on the effect of naturalization on political integration
(Hainmueller, Hangartner and Pietrantuono, 2016). That
the ordered means assumption was met in all three of
these studies, which involved distinct study designs and
research topics, demonstrates the plausibility of this as-
sumption in various research domains.

In contrast, however, another common scenario in field
experiments and encouragement-based RCTs is where
subjects with initially high outcome levels have no incen-
tive to take the treatment and subjects with low outcome
values are particularly motivated to access the treatment
regardless of their assignment. This pattern can lead to an
ordering of the principal strata means that is the opposite
of the ordered means assumption, as illustrated earlier in
Figure 1. If the researcher believes such a scenario to be
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possible, the ordered means assumption should not be ap-
plied, and the conservative lower bound on the power as
reflected by Proposition 2 should be used.

4.5 Discussion on Effect Sizes

As explained earlier, the effect size of interest in this
study (κ) is defined similarly to the way effect sizes are
conventionally defined in ATE power analyses, with ref-
erence to the expected standard deviation of the outcome
within treatment assignment groups. The difference, of
course, is that full compliance is assumed in the ATE case,
and hence treatment assignment is equivalent to treatment
uptake. Nonetheless, the treatment assignment groups re-
main conceptually and practically useful reference groups
in the LATE case for several reasons.

First, the treatment assignment groups are a mathe-
matically natural reference group, allowing standard ATE
power analysis results to nest as a special case within the
LATE power formula presented in this study. Consider
that in the special case of full compliance (π = 1), the
LATE becomes the ATE. Further, given π = 1, the LATE
power bounds presented in this study, as laid out in Propo-
sition 2, are simplified to a single value:

1 − β = �

(
−c∗ + κ

√
N

2

)
+ �

(
−c∗ − κ

√
N

2

)
.

Solving for the minimum detectable effect size and re-
quired sample size yields κ = 2M√

N
and N = 4M2

κ2 , where

again M = �−1(1 − α
2 ) + �−1(1 − β). These results

are identical to the conventional ATE power analysis re-
sults given asymptotic normality of the estimator and
equal probability of assignment to treatment and control
(Cohen, 1988, Bloom, 2006).

Second, the treatment assignment groups contain a nat-
ural reference point for defining a standardized effect size.
In particular, the distribution of the outcome under assign-
ment to control represents a natural state of the world
in the absence of intervention, and hence Var(Yi |Zi =
0) is one of the few baseline values that can often be
reliably measured or estimated in advance of a study
by analyzing data on the baseline population.15 Further,
while Var(Yi |Zi = 1) cannot be measured in advance,
it may be reasonable to assume it is relatively close in
value to Var(Yi |Zi = 0). In such cases, E[Var(Yi |Zi)] ≈
Var(Yi |Zi = 0), and hence the effect size of interest is de-
fined (approximately) with reference to a naturally occur-
ring distribution that is measurable prior to study imple-
mentation.

15In contrast, noncompliance leads to nonrandomization of D, which
means Var(Yi |Di = 0) will not be accurately reflected by prestudy es-
timates.

Third, because Var(Yi |Zi = 0) may be measurable or
estimable in advance, this allows for approximate map-
ping of effect sizes to absolute effects in the power for-
mula. As long as the researcher is comfortable assum-
ing that Var(Yi |Zi = 1) will not diverge substantially
from Var(Yi |Zi = 0), then the researcher may estimate

ω̂0 = ̂√
Var(Yi |Zi = 0), use that estimate as an approxi-

mate value for
√

E[Var(Yi |Zi)], and hence replace κ with
τ
ω̂0

. The results presented above could then be modified to
solve for a minimum detectable absolute effect (i.e., solve
for τ itself) or solve for the required sample size in terms
of τ .

Irrespective of the availability of reliable estimates for
ω̂0, researchers may also determine a target MDES by
surveying previous studies and meta-analyses within their
own fields of study (e.g., Lipsey, 1990, Chapter 3). In his
seminal presentation of the topic, Cohen (1988) offered
the conventional benchmarks in the social and behavioral
sciences of 0.2, 0.5 and 0.8 as small, medium and large
effect sizes, respectively. These general conventions may
be useful as rough guidance. However, what is considered
a small or large effect size inevitably varies across dis-
ciplines and research topics. Accordingly, it is advisable
for the researcher to more carefully characterize the effect
size scale within the research context at hand, in consul-
tation with relevant data from previous studies and meta-
analyses, as is the case for any power analysis irrespective
of study design and compliance levels.

4.6 Comparing the Bounds to Simulations

To further validate the LATE power bounds derived in
this study, Figure 2 compares the bounds to simulated
power curves, where power is plotted as a function of κ .
As in the simulation presented earlier, the simulations pre-
sented here also each specify a data-generating distribu-
tion of the quadruples (Yi(0), Yi(1),Di(0),Di(1)) ∈ R×
R× {0,1} × {0,1}, randomly draw from that distribution
and randomize the treatment assignment variable, gener-
ating samples of independent and identically distributed
units of the form (Yi,Di,Zi) ∈ R× {0,1} × {0,1}.

The solid black lines denote the analytic upper and
lower bounds of the power, while the dashed black
line denotes the alternative lower bound under Assump-
tion 7 (ordered means). The colored lines denote the
power curves that were simulated by specifying the full
set of investigation and distribution parameters. For all
of the curves (analytic and simulated), the following
parameters are fixed: π = 0.5, N = 1500, α = 0.05.
In addition, for the simulated power curves, the fol-
lowing seven of the nine distribution parameters are
fixed: E[Yi(0)|Complier] = 0, Var(Yi(0)|Complier) =
64, Var(Yi(1)|Complier) = 64, Var(Yi(0)|NeverTaker) =
144, Var(Yi(1)|AlwaysTaker) = 16, P(NeverTaker) =
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FIG. 2. Simulated power vs. analytic bounds.

0.25, and P(AlwaysTaker) = 0.25. In contrast, the fi-
nal two distribution parameters, E[Yi(0)|NeverTaker]
and E[Yi(1)|AlwaysTaker], vary across the five differ-
ent simulation specifications shown in different col-
ors. The five sets of values of E[Yi(0)|NeverTaker]
and E[Yi(1)|AlwaysTaker], starting with the first spec-
ification, are as follows: (−20,20), (−10,10), (−3,3),
(10,−10) and (20,−20).16 This ensures that the simula-
tion includes specifications that both do and do not meet
Assumption 7 (ordered means), and hence allows for de-
tailed evaluation of the bounds.

Figure 2 provides a simple demonstration of the per-
formance of the power bounds presented in this study.
As can be seen, the simulated curves fall within the an-
alytic bounds denoted by the solid black lines. Further-
more, the alternative lower bound (the dashed black line)
also bounds the appropriate simulated curves. For specifi-
cations 1 and 2, Assumption 7 (ordered means) is met by
design at all values of κ , and hence the alternative lower
bound applies. Accordingly, the curves for these specifi-
cations lie above the alternative lower bound. In contrast,
the ordered means assumption is violated by specifica-
tions 4 and 5. Thus, it is no surprise that the curves for
these specifications lie below the alternative lower bound.
Additional graphical illustrations of the relationships be-
tween power and the investigation parameters are pro-
vided in the SM Appendix D.

5. RELAXING THE EQUAL ASSIGNMENT
PROBABILITY ASSUMPTION

In some situations, the researcher may have reason put
an unequal probability on assignment to the treatment

16In these simulations, the underlying super populations were gen-
erated with normally distributed potential outcomes with means and
variances according to the specifications described here.

and control conditions. For instance, treatment assign-
ment/encouragement may be costly. For such cases, it will
be useful to relax Assumption 6.

5.1 Results with P(Zi = 1) = pz

In the IV-LATE literature, the simplifying assumption
of homoskedasticity that E[ε2

i |Zi] = E[ε2
i ] is often made.

While there may be few cases in which this assumption is
likely to hold exactly, it is often sufficiently reasonable
such that it does not substantially affect statistical infer-
ence. The assumption that E[ε2

i |Zi] = E[ε2
i ] can be use-

ful here.

ASSUMPTION 8 (Homoskedasticity). E[ε2
i |Zi] =

E[ε2
i ].

However, because the simplifying assumption that
E[ε2

i |Zi] = E[ε2
i ] is not a conservative one, it is useful

to induce conservatism elsewhere. In order to do this, we
can consider the limiting value of E[ν2

i ] at 0.25.
Continuing to assume without loss of generality that

κ > 0 (and hence also τ > 0) is under investigation, the
following lower bound on τ√

V τ̂
N

then follows without mak-

ing Assumption 6 (equal assignment probability):

PROPOSITION 4. Given Assumptions 1–5 and 8, and
any value pz = P(Zi = 1):

κπ
√

pz(1 − pz)N

1 + 0.5κ
≤ τ√

V τ̂
N

.

As before, to derive the lower bound on the power, the
bound above can simply be plugged into the power for-

mula �(−c∗ + τ/

√
V τ̂

N) + �(−c∗ − τ/

√
V τ̂

N). Again, κ

and N can be isolated such that the MDES and required
sample size can be computed as a function of the other
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parameters. The resulting conservative upper bounds on
the MDES and required sample size are as follows:

κ ≤ 2M

2π
√

Npz(1 − pz) − M
,

N ≤ M2(1 + 0.5κ)2

pz(1 − pz)κ2π2 ,

where again M = �−1(1 − α
2 ) + �−1(1 − β).

5.2 Narrowing the Bounds While Relaxing the Equal
Assignment Probability Assumption

As before, the lower bound of the power can be in-
creased under Assumption 7 (ordered means). The result
is the following alternative lower bound.

PROPOSITION 5. Given Assumptions 1–5 and 7–8,
and any value pz = P(Zi = 1):

κπ
√

pz(1 − pz)N√
1 + 0.25κ2

≤ τ√
V τ̂

N

.

Solving for κ and N to derive alternative (lowered)
MDES and required sample size upper bounds leads to
the following:

κ∗ ≤ 2M√
4π2Npz(1 − pz) − M2

,

N∗ ≤ M2(1 + 0.25κ2)

pz(1 − pz)κ2π2 ,

where again M = �−1(1 − α
2 ) + �−1(1 − β).

Appendix E in the SM presents results comparing sim-
ulated power curves to the analytic bounds given P(Zi =
1) = 0.25, similar to the results shown earlier in Fig-
ure 2. Appendix E demonstrates that the analytic bounds
derived for the general case where P(Zi = 1) = pz per-
form as well as the bounds derived for the special case of
P(Zi = 1) = 0.5.

6. OVERVIEW AND THE METHOD IN CONTEXT

Table 1 presents a summary of the main results for
the LATE power analysis introduced in this study, pro-
viding the recommended formulas under the various sce-
narios considered. The formulas presume the use of the
Wald IV estimator to test the null hypothesis that the
LATE equals 0 with a two-sided alternative. Recall that
the formulas were derived, without loss of generality, un-
der the assumption that κ > 0.17 The formulas in Table 1

17If the effect is expected to have a negative value, researchers can
simply treat κ as the absolute value of the effect size and continue
using the same formulas.

provide the conservative values for each quantity of in-
terest depending upon whether the probability of treat-
ment assignment is equal or unequal and whether the or-
dered means assumption is met or not. This includes con-
servative values for the minimum detectable effect size
(κ̃), required sample size (Ñ ), and the power (1̃ − β),
all computed as a function of the other parameters, with
M = �−1(1 − α

2 ) + �−1(1 − β) and c∗ = �−1(1 − α
2 ).

In sum, to perform a conservative power analysis for the
LATE, researchers should first identify which of the four
cells in Table 1 best characterizes their particular study
context. They can then compute their quantity of interest
(e.g., required sample size) based on hypothetical values
of the other parameters using the formulas provided in the
table.

If uncertain whether or not the ordered means assump-
tion is likely to be met, it is recommended that researchers
operate as if the assumption is not met so as to err on the
side of conservatism. Refer to the earlier discussion on the
factors to consider when assessing the plausibility of the
ordered means assumption. Also recall that in the case
where noncompliance is one-sided or almost one-sided
(i.e., no/few always-takers or no/few never-takers), the or-
dered means assumption can be simplified to ȲNT ≤ ȲC

or ȲC ≤ ȲAT as long as the sparse principal stratum is
deemed sufficiently small. In addition, researchers should
refer to the earlier discussion on how effect sizes may
be mapped to absolute effects. Finally, researchers should
also note that corner cases exist whereby negative or non-
real numbers may be computed for κ̃ , which as a practi-
cal matter correspond to prohibitively large effect sizes.
Hence, if a negative or nonreal number is computed for κ̃ ,
researchers should conclude that it will be impossible to
detect the effect in the scenario under consideration.

To illustrate how the method of LATE power analysis
presented in this study could be used, the method is ap-
plied to the context of the National JTPA Study (Bloom
et al., 1997). As described earlier, subjects were randomly
assigned such that they were either allowed to enroll in a
job training program (assigned to treatment) or excluded
from the training for an 18-month period (assigned to con-
trol). However, many subjects exhibited noncompliance:
many assigned to the treatment decided not to enroll in
the training program, while a few assigned to the control
gained access to the job training program. The outcome
of interest here is the subjects’ earnings in the 30-month
period following their random assignment.

For the purposes of this illustration, two different val-
ues of π will be employed. The first is its estimated value
as observed in the JTPA data,18 which is 0.63. This is, of

18The dataset used here is the tabulation of the JTPA study data by
Abadie, Angrist and Imbens (2002). The data correspond to adult par-
ticipants in the JTPA experiment for whom 30-month earnings were
measured.
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TABLE 1
Summary of results: conservative formulas for LATE power analysis

P(Z = 1) = 0.5 P(Z = 1) �= 0.5
Equal assignment probability Unequal assignment probability

¬(ȲNT ≤ ȲC ≤ ȲAT ) κ̃ := 2M

π
√

N−2M
√

(0.5− π
2 )(0.5+ π

2 )
κ̃ := 2M

2π
√

Npz(1−pz)−M

Ordered means not met

Ñ := 4M2
(

1+κ
√

(0.5− π
2 )(0.5+ π

2 )

)2

κ2π2 Ñ := M2(1+0.5κ)2

pz(1−pz)κ2π2

1̃ − β := 1̃ − β :=
�

(
−c∗ + 0.5κπ

√
N

1+κ
√

(0.5− π
2 )(0.5+ π

2 )

)
+ �

(
−c∗ + κπ

√
pz(1−pz)N
1+0.5κ

)
+

�
(
−c∗ − 0.5κπ

√
N

1+κ
√

(0.5− π
2 )(0.5+ π

2 )

)
�

(
−c∗ − κπ

√
pz(1−pz)N
1+0.5κ

)

ȲNT ≤ ȲC ≤ ȲAT κ̃ := 2M√
Nπ2−4M2(0.5− π

2 )(0.5+ π
2 )

κ̃ := 2M√
4π2Npz(1−pz)−M2

Ordered means met

Ñ := 4M2
(
1+κ2(0.5− π

2 )(0.5+ π
2 )

)
κ2π2 Ñ := M2(1+0.25κ2)

pz(1−pz)κ2π2

1̃ − β := 1̃ − β :=
�

(
−c∗ + 0.5κπ

√
N√

1+κ2(0.5− π
2 )(0.5+ π

2 )

)
+ �

(
−c∗ + κπ

√
pz(1−pz)N√
1+0.25κ2

)
+

�
(
−c∗ − 0.5κπ

√
N√

1+κ2(0.5− π
2 )(0.5+ π

2 )

)
�

(
−c∗ − κπ

√
pz(1−pz)N√
1+0.25κ2

)

course, not necessarily something the researcher would
know precisely in advance, but it provides a useful point
of reference. The second value for π will be 0.4, which we
may view as a researcher’s conservative guess prior to the
actual study. We will fix pZ at its observed value of 0.67,
since this is a value over which the researcher has control,
and hence the formulas in the far right column of Table 1
are applicable. We set α and β at their conventional lev-
els of 0.05 and 0.2, respectively. We can then specify a
range of effect sizes (κ’s) to determine the conservative
sample size required (Ñ in Table 1) under these specifi-
cations. Furthermore, because we know in retrospect the
pooled within-assignment-group variance of the outcome
(earnings), we can map the κ values to absolute effect val-
ues (τ ’s). Note also that in the JTPA experiment this value
is virtually identical to V̂ar(Yi |Zi = 0), which could have
been estimated in advance of the study via a baseline sur-
vey given that assignment to control represents a natural
state of the world in the absence of intervention.19 As a
result, the κ values could have been mapped to τ values
even in the absence of retrospective data, to the benefit of
implementing the power analysis.

The results given π = 0.63 are shown in Table 2, with
the conservative recommendation for the required sam-

19 ̂√
E[Var(Yi |Zi)] = 16,759, while ̂√

Var(Yi |Zi = 0) = 16,180, a
difference of about 3%.

TABLE 2
LATE Power Analysis, Given π = 0.63 and pZ = 0.67

Recommended Ñ Recommended Ñ

without ordered with ordered
κ τ means assumption means assumption

0.05 837.94 37,588 35,799
0.10 1675.89 9861 8966
0.15 2513.83 4594 3998
0.20 3351.78 2706 2258
0.25 4189.72 1811 1453
0.30 5027.66 1314 1016
0.35 5865.61 1008 752
0.40 6703.55 805 581
0.45 7541.50 663 464
0.50 8379.44 559 380

ple size, Ñ , provided with and without making Assump-
tion 7 (ordered means). For instance, given a desired ef-
fect size of 0.1, the conservative sample size recommen-
dation would be approximately 10,000 observations to
achieve a level of power of 0.8 to reject the null hypothesis
that τ = 0 without making Assumption 7, while it would
be approximately 9000 observations given Assumption 7.
The actual LATE effect size estimate in the pooled adult
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TABLE 3
LATE Power Analysis, Given π = 0.4 and pZ = 0.67

Recommended Ñ Recommended Ñ

without ordered with ordered
κ τ means assumption means assumption

0.05 837.94 93,241 88,804
0.10 1675.89 24,461 22,242
0.15 2513.83 11,395 9916
0.20 3351.78 6712 5602
0.25 4189.72 4493 3605
0.30 5027.66 3260 2521
0.35 5865.61 2501 1867
0.40 6703.55 1997 1442
0.45 7541.50 1644 1151
0.50 8379.44 1387 943

sample was 0.11.20 Thus, it is no surprise that given the
actual sample size of 11,204 adult participants and the fact
that the ordered means assumption was ultimately met
in this study, the LATE estimate in the study is statisti-
cally significant (p < 0.001). While 0.11 would generally
be considered a relatively small effect size—according to
the rough guidance presented by Cohen (1988), 0.2, 0.5
and 0.8 are benchmarks for small, medium and large ef-
fect sizes in the social and behavioral sciences—the JTPA
study was of sufficiently large scale to detect this effect in
the pooled adult sample.

Table 3 displays the results given π = 0.4. As shown,
an increase in the amount of noncompliance leads to a dis-
proportionately large increase in the sample size require-
ments. While noncompliance is assumed to increase by
a factor of about 1.6, the required sample size given any
particular κ increases by a factor of about 2.5. As these
results show, had the compliance rate π actually been 0.4,
it is likely that the JTPA study would have failed to find
a statistically significant effect of the training program on
earnings, even in the pooled adult sample. The method of
LATE power analysis presented in this study is designed
to alert researchers to such possibilities of under-powered
designs before studies are launched without requiring re-
searchers to make the collection of strong assumptions in-
volved in other approaches to LATE power analysis.

7. POWER WITH COVARIATES

The standard LATE assumptions establish the consis-
tency of the Wald IV estimator without covariate adjust-
ment, but covariates can still be used to improve the pre-
cision of the estimates. As a result, researchers sometimes

20The estimate of the LATE of the training program on earnings is
$1849. This divided by the expected within-assignment-group stan-
dard deviation of earnings in the sample, 16,759, yields an effect size
of 0.11.

employ covariate adjustment in order to attain a more
powerful LATE estimator. A common approach is to use
linear two-stage least squares (2SLS), which is equivalent
to modeling and estimating linear first-stage and intent-
to-treat relationships (Angrist and Pischke, 2009, pp. 120-
122):

Di = Wiη + πZi + ν∗
i ,(1)

Yi = Wiξ + γZi + ζ ∗
i ,(2)

where Wi corresponds to a set of covariates, as well as
an intercept. Provided that the covariates contained in Wi

are pretreatment-assignment covariates—that is, they are
independent of Zi and hence do not result in biased esti-
mates of π and γ —then the LATE can be estimated con-
sistently by γ̂

π̂
, where γ̂ and π̂ are the linear least squares

estimators. In addition, if W helps to explain variation in
D and/or Y that is left unexplained by Z, then the covari-
ate adjustment can also decrease the variance of γ̂

π̂
. As a

result, linear 2SLS with covariate adjustment has the po-
tential to offer a more powerful estimator of the LATE,
and the method presented in this study can be extended to
incorporate these gains.

DEFINITION 2. Define the following:

R2
DW = σ 2 − σ ∗2

σ 2 and R2
YW = ω2 − ω∗2

ω2 ,

where σ 2 = E[ν2
i ] as defined in the proof of Proposi-

tion 1, ω2 = E[ζ 2
i ] as defined in the proof of Proposi-

tion 1, σ ∗2 = E[ν∗2
i ] from equation (1), and ω∗2 = E[ζ ∗2

i ]
from equation (2).

R2
DW measures the proportion of variation in D left un-

explained by Z that is explained by the covariates con-
tained in W, while R2

YW measures the proportion of vari-
ation in Y left unexplained by Z that is explained by the
covariates contained in W. Given Definition 2, covariate
adjustment in the 2SLS framework can be employed to
yield the following bounds for use in the power formula
(continuing to assume that κ > 0 and τ > 0 are under in-
vestigation):

(0.5κπ
√

N)

/
(((

1 − R2
YW

) + κ2(
1 − R2

DW

)
E

[
ν2
i

]
+ 2κ

√(
1 − R2

YW

)(
1 − R2

DW

)
E

[
ν2
i

])1/2)
≤ τ√

V 2̂SLS
N

≤ (0.5κπ
√

N)

/
(((

1 − R2
YW

) + κ2(
1 − R2

DW

)
E

[
ν2
i

]
− 2κ

√(
1 − R2

YW

)(
1 − R2

DW

)
E

[
ν2
i

])1/2)
.
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As previously, this formula can be modified to both re-
lax Assumption 6 (equal assignment probability) and em-
ploy Assumption 7 (ordered means), and E[ν2

i ] replaced
with either (0.5 − π

2 )(0.5 + π
2 ) or 0.25 depending on

whether Assumption 6 is made. More detail is provided
in the SM Appendix F. It must be emphasized that the
results described in this section only apply given the stan-
dard LATE assumptions (1–5) as well as independence
between Z and W. In other words, the assumptions nec-
essary for the consistency of the estimator must be met
without covariate adjustment, the purpose of covariate ad-
justment must simply be to decrease the variance of the
estimator, and the covariates must not be affected by Z.

8. POWER WITH VARIABLE TREATMENTS

In cases where the endogenous treatment is no longer
binary but rather has variable intensity (e.g. drug dosage,
years of schooling), Angrist and Imbens (1995) have
shown that the Wald IV estimator can still be used under
Assumptions 1–5. In this case, however, the Wald IV esti-
mator is consistent for a new estimand they call the aver-
age causal response (ACR), which is “a weighted average
of causal responses to a unit change in treatment, for those
whose treatment status is affected by the instrument” (p.
435). In other words, like with the LATE, the estimand
only pertains to those subjects for whom the instrument
has a nonzero effect on treatment uptake/dosage, but the
ACR is a weighted average rather than a simple average
of the individual-level causal effects of the treatment on
the outcome.21

In spite of the modified estimand, the general properties
of the Wald IV estimator, including its variance, remain
the same. Furthermore, the assumption of a binary treat-
ment is not critical in the derivation of the power formu-
las introduced in this study. The binary treatment assump-
tion was employed in determining values for E[ν2

i ], but a
linear rescaling of a multivalued treatment to the interval
[0,1] would mean the conservative value of E[ν2

i ] = 0.25
would remain valid. As arbitrary linear transformations
of variables do not affect statistical power, the method of
power analysis presented in this study can also be applied
to variable treatments.22 Yet the researcher must keep in
mind that given a variable treatment, the estimand that is
identified is the ACR rather than the LATE, and π can no
longer be interpreted simply as the compliance rate.

21See Angrist and Imbens (1995) for more details on the weighting
formula.

22Intuitively, this rescaling would not affect the power, even though

it would mean a rescaling of E[ν2
i ], because it would result in a com-

mensurate rescaling of π .

9. CONCLUSION

This study proposed a new approach to power analysis
in the LATE context that makes three important contribu-
tions. First, in contrast to previous approaches, it does not
involve distributional assumptions about the various prin-
cipal strata. Second, and most importantly, it provides a
tight lower bound on the power while removing the need
to specify or make assumptions about variance compo-
nents or distributional heterogeneity across the principal
strata. Third, it shows how additional assumptions can be
made to raise the lower bound to better balance conser-
vatism with efficiency.

By providing bounds on the power that are free of dis-
tributional assumptions, this study introduces a reliable
and disciplined way of computing power conservatively
without the inefficiencies of other approaches (e.g., set-
ting arbitrarily high variances) that can lead to excessively
conservative calculations. The result is a generalized ap-
proach to power analysis in the LATE context that is si-
multaneously conservative, disciplined and simple to im-
plement.
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