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Outcome-Wide Longitudinal Designs for
Causal Inference: A New Template for
Empirical Studies1

Tyler J. VanderWeele, Maya B. Mathur and Ying Chen

Abstract. In this paper, we propose a new template for empirical studies
intended to assess causal effects: the outcome-wide longitudinal design. The
approach is an extension of what is often done to assess the causal effects
of a treatment or exposure using confounding control, but now, over numer-
ous outcomes. We discuss the temporal and confounding control principles
for such outcome-wide studies, metrics to evaluate robustness or sensitivity
to potential unmeasured confounding for each outcome and approaches to
handle multiple testing. We argue that the outcome-wide longitudinal design
has numerous advantages over more traditional studies of single exposure-
outcome relationships including results that are less subject to investigator
bias, greater potential to report null effects, greater capacity to compare ef-
fect sizes, a tremendous gain in the efficiency for the research community,
a greater policy relevance and a more rapid advancement of knowledge. We
discuss both the practical and theoretical justification for the outcome-wide
longitudinal design and also the pragmatic details of its implementation, pro-
viding publicly available R code.

Key words and phrases: Causal inference, confounding, multiple testing,
sensitivity analysis, bias, longitudinal data.

1. INTRODUCTION

In much biomedical and social science research in-
tended to assess causal effects with observational data, a
particular template or structure to analysis and reporting
is frequently employed. When the effect of some treat-
ment or exposure is to be assessed on a particular out-
come, it is frequently the case that a regression model is
fit for the outcome conditional on the exposure or treat-
ment and a number of covariates. Ideally, in the design,
the outcome occurs temporally subsequent to the expo-
sure, and the covariate values pertain to a period tempo-
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rally before the exposure or are at least not affected by the
exposure. Confidence intervals, p-values and other mea-
sures of uncertainty are reported for the regression coeffi-
cient for the exposure and this is then often interpreted as
an estimate of the causal effect of the exposure on the out-
come. Sometimes propensity score methods are employed
as an analytic alternative (Rosenbaum and Rubin, 1983).
Formal systems related to potential outcomes or causal di-
agrams have been developed that justify such approaches
and interpretation, and clarify under what assumptions it
holds (Pearl, 2009, Imbens and Rubin, 2015, Morgan and
Winship, 2015, Hernán and Robins, 2020).

There are certainly variations to this basic template. Not
infrequently, analyses are also stratified by one or more
other variables, such as gender or race, to see if the ef-
fect estimates vary across groups. Sometimes more so-
phisticated modeling strategies or machine learning algo-
rithms are used to obtain estimates of the causal effect
on the desired effect scale (e.g., van der Laan and Rose,
2011, 2018, Belloni, Chernozhukov and Hansen, 2014,
Schuler and Rose, 2017). Sometimes, albeit not very fre-
quently, sensitivity analysis or bias analysis techniques
are used to assess how robust or sensitive conclusions
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are to the presence of uncontrolled confounding, or mea-
surement error, or selection bias (Rosenbaum and Rubin,
1983, Rothman, Greenland and Lash, 2008, Lash, Fox and
Fink, 2009, Ding and VanderWeele, 2016).

Certainly not all studies intended to assess causal ef-
fects conform to this template. Some studies address more
complex inquiries concerning the effects of time-varying
exposures (Robins, 1992, Robins, Hernán and Brumback,
2000, Robins and Hernán, 2009, Hernán and Robins,
2020), or attempt to emulate over time randomized tri-
als with observational data (Hernán and Robins, 2016),
or assess whether some effects are mediated by others
(Imai, Keele and Tingley, 2010, VanderWeele, 2015).
Others, even when attempting only to assess the effect
of an exposure at a single point in time, employ instru-
mental variables, rather than covariate control, to attempt
to address issues of confounding (Angrist, Imbens and
Rubin, 1996). Other quasi-experimental designs and ap-
proaches, especially in econometrics, use discontinuities
in treatment assignment, or differences in trends, or sud-
den unpredictable shocks and events to attempt to iden-
tify causal effects and various suites of methods often
referred to respectively as regression discontinuities de-
signs, difference-in-difference methods and interrupted
time-series designs have been developed to address these
settings (Angrist and Pischke, 2009, Morgan and Win-
ship, 2015). Nevertheless, in the biomedical sciences at
least, the covariate-controlled regression approach is still
perhaps used with the greatest frequency. And with well-
designed studies, it has often, though perhaps not always,
served the research community reasonably well.

Reasonable criticisms are often still leveled against this
template. There is of course always the possibility that
unmeasured confounding may still bias effect estimates
even when extensive effort has been made to control for
as many preexposure covariates as possible related to
both the exposure and the outcome. This threat of un-
measured confounding is almost always present with ob-
servational data. This basic template has also been crit-
icized on the grounds that in practice it allows investi-
gators too many degrees of freedom in the decisions as
to how to go about modeling the outcome or what co-
variates to control for (Simmons, Nelson and Simonsohn,
2011, Gelman and Loken, 2014). Investigators may be
tempted to fit many different models and choose the ones
that best conform to their hopes and expectations. Even
those who desire to maintain integrity may end up having
to make such choices across models inadvertently. Recent
machine learning approaches that use cross validation to
make choices across many models may help in part ob-
viate the need for such choices (van der Laan and Rose,
2011, 2018), but are still employed relatively infrequently,
and still require the investigator to make decisions on the
list of covariates to input into these algorithms, once again

introducing investigator choice. The basic template has
also been criticized on the grounds of its effect on science,
taken cumulatively, over numerous studies. Investigators,
reviewers and journal editors not infrequently use a p-
value cut-off of 0.05 to assess whether there is evidence
for an effect. However, across thousands and millions of
studies of investigators across the globe, the cumulative
effect of declaring one has “discovered effects” whenever
the p-value is below 0.05 is having numerous false posi-
tive results published in the literature (Head et al., 2015).
This in combination with the previous potential biases
due to unmeasured confounding and investigator discre-
tion has led some to conclude that perhaps the majority of
research findings in the literature are “false” (Ioannidis,
2005). These phenomena are likely also in part responsi-
ble for the recent so-called “replication crisis” (Open Sci-
ence Collaboration, 2015, Camerer et al., 2016).

In this paper, we would like to propose a development
or expansion of the current template that we believe will
help in part address these various criticisms. We will refer
to this new basic template, an extension and expansion of
the existing one, as “outcome-wide longitudinal design”
for causal inference. The basic idea of this new template is
to make use of the existing template for a single exposure
but simultaneously apply it to multiple outcomes, tem-
porally subsequent to the exposure, while supplementing
these analyses with new metrics to address potential un-
measured confounding and multiple testing. We propose
to address the prior criticisms of the existing template in a
number of ways. First, we propose to address the potential
bias due to unmeasured confounding by always reporting
a new metric, called the E-value (VanderWeele and Ding,
2017), related to how sensitive or robust estimates are to
one or more potential unmeasured confounders. Second,
we propose that in these outcome-wide studies, decisions
about covariate control, and about basic forms of model-
ing, be made for all outcomes simultaneously according to
principles laid out below. The simultaneous decisions for
all outcomes, while not eliminating investigator discretion
entirely, does limit it substantially because if decisions are
made to “optimize” the results for one outcome, there will
likely not be the same bias inherent in the analyses for
other outcomes. We describe this in greater detail below.
Finally, we propose that in such outcome-wide studies,
various metrics that address issues of multiple testing be
employed (Romano and Wolf, 2007, Mathur and Vander-
Weele, 2018). While this suggestion is not new, we be-
lieve that if the outcome-wide template were embraced,
the use of these various metrics in practice would become
much more commonplace, and their effects on science,
taken as a whole, more substantial. In addition to the met-
rics, such as Bonferroni correction, that have been around
for some time, we also introduce new metrics that are per-
haps particularly well suited to outcome-wide studies in
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assessing the evidence, taken as a whole, for these various
associations and potential effects. We also address some
of the arguments against using such metrics and correc-
tions.

In laying out this framework, the remainder of this pa-
per is structured as follows. Section 2 describes the ba-
sic longitudinal analytic approach and confounder selec-
tion principles for outcome-wide analyses. Section 3 dis-
cusses sensitivity analysis and Section 4 describes multi-
ple testing metrics for outcome-wide analyses. Section 5
gives a data analysis illustration. Section 6 offers some
reflections on reporting practices for outcome-wide anal-
yses and Section 7 discusses at greater length the advan-
tages of the outcome-wide approach. Section 8 discusses
further extensions of the approach and Section 9 offers
some concluding remarks. In addition to addressing is-
sues of bias from various sources, for example, confound-
ing or investigator discretion or multiple testing, we be-
lieve that our new template offers other additional and
important advantages. It will allow for the expansion of
knowledge much more rapidly over many more outcomes
than does science carried out with the existing standard
template. It will allow for the assessment of a single ex-
posure on numerous outcomes simultaneously. We have
argued elsewhere (VanderWeele, 2017a) that from a pol-
icy and public health perspective such an outcome-wide
approach is important and that, ideally, we should be as-
sessing the effects of exposures over numerous important
outcomes, attempting as best as possible, to evaluate the
effect of the exposure on human flourishing broadly con-
strued. We should, to the extent possible, examine out-
comes as diverse as happiness and life satisfaction, men-
tal and physical health, meaning and purpose, character
and virtue, close social relationships and financial secu-
rity, among others (VanderWeele, 2017b). We believe this
new template will help both in the advancement of knowl-
edge and, we hope thereby, also the promotion of human
flourishing.

2. LONGITUDINAL DESIGNS FOR CAUSAL
INFERENCE

In this section, we discuss overall principles for causal
inference and confounder selection. Section 2.1 reviews
causal inference notation and assumptions. Section 2.2
discusses control for baseline outcome to rule out reverse
causation. Section 2.3 lays out conceptual principles for
confounder selection and Section 2.4 describes a variety
of common confounders that should often be considered.
Section 2.5 discusses control for contemporaneous ver-
sus prior covariate values and Section 2.6 the advantages
and disadvantages of controlling for past exposure. Sec-
tion 2.7 concludes with discussion of statistical modeling
approaches in outcome-wide analyses.

2.1 Causal Inference Using Confounding Control

We will consider a setting in which we are interested in
assessing the effect of some exposure or treatment A on
a series of subsequent outcomes of interest (Y1, . . . , YK).
With observational data, to draw causal inferences about
the effect of exposure A on a particular outcome Yk cer-
tain assumptions need to be made about the comparability
of the groups with and without exposure. Specifically, if
a comparison of exposure groups is to be made and inter-
preted causally, it must be assumed that within strata of
measured covariates C, the groups with and without ex-
posure are comparable to one another in what would have
occurred had each been in the alternative exposure group.

This assumption can be stated formally using counter-
factual notation. We will begin our discussion of causal
inference and confounder control with a single outcome
Yk and will then discuss the implications of moving to
a set of outcomes (Y1, . . . , YK). These outcomes may be
correlated with one another; they may be measured at the
time or at different times from each other; some may even
be repeated measurements of the same construct over
time; but all of the outcomes should be temporally sub-
sequent to the exposure.

We will let Yk(a) denote the counterfactual outcome or
potential outcome that would have been observed for an
individual if the exposure A had, possibly contrary to fact,
been set to level a. We say that the covariates C suffice to
control for confounding if the counterfactuals Yk(a) are
independent of A conditional on C, which we denote by
notation Yk(a) � A | C. The definition essentially states
that within strata of C, the group that actually had expo-
sure status A = a is representative of what would have
occurred had the entire population with C = c been given
exposure A = a. If this holds, we could use the observed
data to reason about the effect of intervening to set A = a

for the entire population.
This condition of no confounding for the effect of A

on Yk conditional on C is sometimes, in other litera-
tures, referred to using different terminology. It is some-
times in epidemiology also referred to as “exchangeabil-
ity” (Greenland and Robins, 1986) or as “no unmea-
sured confounding” (Robins, 1992); in the statistics lit-
erature, it is sometimes referred to as “weak ignorabil-
ity” or “ignorable treatment assignment” (Rosenbaum and
Rubin, 1983); in the social sciences, it is sometimes re-
ferred to as “selection on observables” (Barnow, Cain
and Goldberger, 1980, Imbens, 2004), or as “exogeneity”
(Imbens, 2004). When this assumption holds and when
we also have the technical consistency assumption that
for those with A = a, we have that Yk(a) = Y , then we
can estimate causal effects (Pearl, 2009, VanderWeele,
2009), defined as a contrast of counterfactual outcomes,
E[Yk(1) − Yk(0)|c], using the observed data and associa-
tions. Specifically we then have that

E
[
Yk(1) − Yk(0)|c] = E[Yk|A = 1, c] − E[Yk|A = 0, c].
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The left-hand side of the equation is the causal effect of
the exposure on the outcome conditional on the covariates
C = c. The right-hand side of the equation consists of the
observed associations between the exposure and the out-
come in the actual observed data. If the effect of A on
Y is unconfounded conditional on the measured covari-
ates C, we can estimate causal effects from the observed
data. The expression above is for causal effects on a differ-
ence scale, but if the effect of the exposure on the outcome
is unconfounded conditional on covariates, then one can
likewise estimate the causal effect on the ratio scale from
the observed data:

P [Yk(1) = 1|c]
P [Yk(0) = 1|c] = P [Yk = 1|A = 1, c]

P [Yk = 1|A = 0, c] .

In general, we will want to control for a sufficiently rich
set of covariates C, related both the exposure and to the
outcome, to make this assumption as plausible as possi-
ble. In the sections that follow, we will discuss principles
to guide the selection of these covariates C for a single
outcome and then for a set of outcomes (Y1, . . . , YK).

2.2 Longitudinal Data and Control for Baseline
Outcome

If the confounding control assumption is to be plausi-
ble, it is first important that the actual data available be
such that the exposure A temporally precedes the out-
come. In most cases, then cross-sectional data, in which
all of the variables, A, Yk and C, are measured at the same
time, will be nearly useless for causal inference. For ex-
ample, there is evidence that marital status is associated
with higher levels of happiness; but with cross-sectional
data it is impossible to know whether this is because mar-
riage leads to happiness, or whether those who are happy
are more likely to marry. In fact, there is evidence for both
(Stutzer and Frey, 2006). The only way to begin to attempt
to distinguish these possibilities is with longitudinal data,
also sometimes called panel data, in which data is avail-
able for a group of the same individuals on multiple occa-
sions. At least two waves of data will thus in general be
a minimal requirement for attempting to draw causal in-
ferences from observational data. Exceptions might occur
when all of the data is collected at once but a particular
exposure, and various covariates, are reported retrospec-
tively. Such might be the case with, say, childhood expe-
riences of parenting practices reported later in life. While
from a data collection perspective, this is cross-sectional,
from the perspective of causal inference there is still a
temporal ordering among the variables. One might still be
worried about differential misreporting of childhood ex-
periences affected by outcomes later in life, and we will
turn to these considerations below, but from the perspec-
tive of temporality, the data would still have a longitudinal
structure.

When such longitudinal data is available, it will often be
important to control, whenever possible, for the outcome
at or prior to the time of the baseline exposure assessment.
For example, to attempt to evaluate the effect of marriage
on subsequent happiness, it would be important to control
for happiness levels earlier in life, prior to marriage, to at-
tempt to rule out reverse causation—that the association
between marriage and subsequent happiness is only due
to happy people being more likely to marry. Such control
for baseline outcome does not eliminate the possibility of
reverse causation but helps to mitigate it (VanderWeele,
Jackson and Li, 2016). Control for baseline outcome may
not always be necessary if reverse causation can be ruled
out on substantive grounds. For example, if one were at-
tempting to assess the effect of parental religious service
attendance when a child was age 8, on the child’s subse-
quent voting behavior as young adult, it is unlikely that the
8-year-old child’s sense of civic responsibility will have
much effect on the parent’s religious service attendance.
However, in many cases control for baseline outcome will
be important to make the confounding control assumption
as plausible as possible; the baseline outcome may often
be the strongest confounder affecting both the exposure
and that same outcome subsequently. Thus, in addition to
including a rich set of covariates related to the exposure
and the outcome in the covariate set C, it will often be
important to include in C also the baseline value of the
outcome.

2.3 Principles of Confounder Selection

The question as to what variables to include the covari-
ate set C can be a difficult one. Different disciplines of-
ten approach this question in different ways. Often in ob-
servational research in the biomedical sciences with large
cohort datasets, an extensive set is included consisting of
dozens of variables, sometimes including all of the data
that are available. Sometimes in sociology and other so-
cial science disciplines it is more common to require justi-
fication for each and every covariate that is to be included.
The goal for causal inference in any case is that, condi-
tional on the final covariate set C, the groups with and
without exposure are comparable.

Formal principles of confounder control have been ar-
ticulated. It is well accepted that any common cause of
the exposure and the outcome ought to be included in the
covariate set C. It is also widely accepted that if we are
interested in assessing the total effect of some exposure A

on some outcome Yk , then variables on the pathway from
the exposure to the outcome ought not to be included as
these might block some of the effect (Weinberg, 1993).
Such a variable M on the pathway from the exposure to
the outcome is a mediator of the effect, rather than a con-
founder (VanderWeele, 2015). Control for such a variable
M might be appropriate if the goal were to assess the di-
rect effect of the exposure on the outcome not through the
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mediator (Imai, Keele and Tingley, 2010, VanderWeele,
2015), but if the goal is to assess the total effect of the
exposure on the outcome then such variables ought not be
controlled for. As an example, many analyses of the ef-
fect of education on happiness make adjustment for mari-
tal status, occupation and employment and income. How-
ever, these variables are likely affected by and on the path-
way from education to happiness; and indeed analyses us-
ing longitudinal data which take into account the temporal
ordering of these variables, do find an effect of education
on happiness, whereas analyses that control for these me-
diators do not (Cunado and de Gracia, 2012, Powdthavee,
Lekfuangfub and Wooden, 2015). We should thus control
for common causes of the exposure and outcome, but not
for mediators between the exposure and outcome.

However, these basic principles are still consistent with
several different practical approaches to thinking about
what covariates to include. Pearl (2009) has derived a
formal calculus for determining which set of covariates
would suffice to control for confounding if knowledge
were available of an entire causal diagram relating all
variables to each other, including knowledge of all of
the causal relationships among the covariates themselves.
Such knowledge will often not be available. Various more
practical proposals have been put forward. In statistics, it
is sometimes recommended to control for all preexposure
covariates (Rubin, 2008, 2009). While this may some-
times work well, it has been shown that there can be pre-
exposure covariates the control for which increases, rather
than decreases, bias, a phenomenon sometimes referred to
as M-bias or collider-stratification bias (Sjølander, 2009,
Ding and Miratrix, 2015). An alternative approach, some-
times articulated in epidemiology, is to control for all
variables that are thought to be common causes of the
exposure and the outcome (Glymour, Weuve and Chen,
2008). While again this is intuitively appealing, there can
be cases in which a particular measured covariate is not a
common cause of the exposure and the outcome, but is in-
stead, for example, on the pathway from an unmeasured
common cause to the outcome, such that the measured
covariate itself suffices to control for the confounding in-
duced by the unmeasured common cause (VanderWeele
and Shpitser, 2011). The principle of only controlling for
common causes would thus not adequately control for
confounding even though such control were possible us-
ing the measured covariates. The “preexposure” approach
is in some sense too liberal with regard to the covariates
that it includes, and the “common cause” approach is too
conservative. An alternative is to attempt to include in the
covariate set C any preexposure variable that is a cause of
the exposure, or of the outcome, or of both. This has previ-
ously been referred to as the “disjunctive cause criterion”
(VanderWeele and Shpitser, 2011). It can be shown that if
this principle is used to determine what to control for in C,

then if there exists any subset of the measured covariates
that suffices to control for confounding then the subset
selected by the disjunctive cause criterion will suffice as
well (VanderWeele and Shpitser, 2011). This is not a prop-
erty that is shared by the “preexposure” approach or the
“common cause” approach. What is effectively discarded
by the disjunctive cause criterion are those covariates that
are neither causes of the exposure nor of the outcome.
This disjunctive cause criterion is perhaps more similar to
the approach sometimes employed in the social sciences
of needing to justify the inclusion of each and every co-
variate as being a cause of either the exposure or the out-
come. The difference here is arguably on which side is
the burden of proof. With the disjunctive cause criterion,
for the discarding of a covariate a case would need to be
made that there is substantive and/or empirical evidence
that the covariate in question is neither a cause of the ex-
posure nor the outcome, whereas in some social science
analyses it is the inclusion, rather than the exclusion, of a
covariate that must be justified.

The disjunctive cause criterion has the attractive theo-
retical property noted above that if there exists any subset
of the measured covariates that suffices to control for con-
founding then the subset selected by the disjunctive cause
criteria will suffice as well. In practice, however, it may
not perform as well if there is no subset of the measured
covariates that would suffice. For example, when there is
residual unmeasured confounding, it has been shown that
control for an “instrumental variable” (e.g., a variable that
is a cause of the exposure but is otherwise completely
unrelated to the outcome except possible through the ex-
posure) will often increase the bias already present due
to unmeasured confounding (Pearl, 2010, Ding, Vander-
Weele and Robins, 2017). It may thus be desirable in prac-
tice to exclude any known instrumental variables from the
covariate set C. However, often whether a variable is an
instrument is not known for sure and in such cases it may
be preferable to err on the side of caution and include it
(Myers et al., 2011) or examine analyses both with and
without (Pimentel, Small and Rosenbaum, 2016). It has
also been shown that control for a variable that is a proxy
for an unmeasured common cause, will in many, though
not all, contexts reduce bias and so it may be desirable
to control for such variables as well (Ogburn and Vander-
Weele, 2013). A modified disjunctive cause criterion that
might thus be more useful in practice could articulated
as follows (VanderWeele, 2019): control for each covari-
ate that is a cause of the exposure, or of the outcome, or
of both; exclude from this set any variable known to be
an instrumental variable; and include as a covariate any
proxy for an unmeasured variable that is a common cause
of both the exposure and the outcome.
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2.4 Common Confounders in Practice in
Outcome-Wide Studies

We have up until now focused on a relatively theoreti-
cal discussion of principles for confounder selection for
assessing the effect of an exposure A on a single out-
come Yk . What are the implications for attempting to as-
sess the effects of the exposure A on a broad range of
outcomes (Y1, . . . , YK)? If the goal were to select a sin-
gle set of covariates C that sufficed to control for con-
founding for the effect of exposure A on each outcome
Yk , then one would want to include in C those covariates
that were causes of either the exposure or of any outcome
in (Y1, . . . , YK). This might well be a very broad set of
covariates. It may in fact, bring one back to a set of co-
variates not very different from the preexposure approach.
One only discards those variables that are thought to be a
cause of neither the treatment nor of any outcome.

In principle, one could apply the modified disjunctive
cause criterion separately for each and every outcome Yk

and select a different set of covariates for the assessing of
each of the effects. We would argue against this approach
on the following grounds: (1) As will also be discussed
further below in Section 7.3, this can create temptation
for investigators to fit, for each specific outcome, numer-
ous different regressions controlling for different covari-
ates and choosing the one they like best; this compromises
the validity of the analysis. (2) There may be more dis-
agreement over which covariates are a cause of a single
outcome than which are a cause of any outcome; the for-
mer task may be considerably more difficult to correctly
discern. (3) Often the outcomes will themselves affect one
another; when this is the case a covariate which is princi-
pally the cause of one outcome may indirectly also be a
cause of another outcome through the outcome for which
it is a principal cause. (4) The analysis and reporting of re-
sults becomes more straightforward, as will be discussed
below in Section 6.

If a broad range of outcomes are examined including,
for example, those related to happiness and life satisfac-
tion, mental and physical health, meaning and purpose,
character and virtue, close social relationships and finan-
cial outcomes (VanderWeele, 2017b), then the set of co-
variates selected for covariate control will also in general,
ideally, be substantial. Any cause of any of these out-
comes, measured prior to exposure, should be included.
This would thus also ideally include, as per the discus-
sion in Section 2.3 above, baseline values of all outcomes
whenever appropriate. Doing so will of course necessi-
tate rather large sample sizes in practice and we would
thus encourage these outcome-wide analyses principally
for large cohort datasets.

Often different disciplines place greater or less empha-
sis on particular sets of specific covariates. It can be in-
structive to consider the whole range of these when carry-
ing out outcome-wide analyses. In most disciplines, con-

trol is made whenever possible for various demographic
characteristics such as race, gender, age and marital sta-
tus. In biomedical research, effort is also made to ad-
ditionally control for various measures of physical and
mental health as well as for health behaviors; at the very
least, effort is made to control for exercise, smoking, al-
cohol consumption, self-rated physical health or either
various health conditions or their number and depres-
sion. We would argue that these variables ought to be
included, whenever possible, in outcome-wide analyses.
Health goes on to affect many other outcomes also. Within
economics, effort is often made to additionally control for
measures of income, education and employment. These
too should be included, when possible, for covariate con-
trol in outcome-wide studies. Within sociology effort is
often made to additionally control for social integration
and support, quality of neighborhood, and religious prac-
tice; within political science, political affiliation is often
associated with numerous outcomes. Much of the more
prominent research in psychology is experimental rather
than observational, but within psychology there is strong
evidence of the following variables affecting numerous
outcomes: life-satisfaction/happiness, loneliness, parental
warmth, purpose or worthwhile activities and the “big five
personality” traits (Gosling, Rentfrow and Swann, 2003).
We believe all these too should be controlled for, when-
ever possible, in outcome-wide analyses. A list of these
covariates is summarized in Table 1. Of these, we believe

TABLE 1
Covariates for confounding control in outcome-wide analyses (ideally

controlled for in the period prior to exposure/treatment)

Domain Covariate

Demographic Race
Age
Gender
Marital Status

Economic, Social and Political Income
Education
Employment
Social integration
Neighborhood
Religious service attendance
Political affiliation

Health Self-rated health
Number of health conditions
Exercise
Smoking
Alcohol consumption
Depression

Psychological Happiness
Loneliness
Parental warmth
Purpose/Meaning
Big five personality
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that those that are perhaps most frequently neglected in
observational research intended to assess causal effects
are (i) parental warmth during childhood which has been
shown to affect numerous outcomes; (ii) the “big five”
personality traits (extraversion, conscientiousness, agree-
ableness, neuroticism, openness) as these likewise affect
numerous outcomes; (iii) political affiliation; and (iv) reli-
gious service attendance which is likewise strongly asso-
ciated with a very broad range of outcomes (Koenig, King
and Carson, 2012, VanderWeele, 2017c). The first three
of these are perhaps less often available in large cohort
datasets, but could be, and we believe should be, more of-
ten in the future included in the form of simple measures
(e.g., Gosling, Rentfrow and Swann, 2003). The fourth
of these, religious service attendance, often is available,
and could, and we believe should, be controlled for as
a covariate more frequently. It is most often a stronger
predictor than other affiliations or private practice reli-
gious/spiritual variables (Koenig, King and Carson, 2012,
VanderWeele, 2017c). Perhaps more controversially, mea-
sures of intelligence have been shown to be associated
with a number of outcomes (Nisbett et al., 2012); how-
ever, such data are currently rarely available in most co-
hort studies.

The list given here is not meant to be exhaustive but
only indicative of what are major causes of many out-
comes across these various disciplines are and, therefore,
helps inform what covariates one might aim to adjust for
in confounding control in an outcome-wide analysis. The
list can be daunting. Very few datasets will have infor-
mation on all of these, and, even when available, rela-
tively large sample sizes, often with thousands of partici-
pants, will generally be necessary to be able to adjust for
so many covariates. Thankfully, as discussed further be-
low in Section 3, residual unmeasured confounding that is
generated by an unmeasured variable will only create bias
to the extent that it is orthogonal to all measured covari-
ates (VanderWeele, Ding and Mathur, 2019). Often when
the set of measured covariates is rich, the residual con-
founding generated by an unmeasured covariate will be
small. It can be instructive to go through the measured co-
variates and omit them one at a time. If there is a rich set of
measured covariates, then even the omission of what are
otherwise important and highly predictive variables, such
as race or income, will not change effect estimates all that
much when omitted, since the residual confounding, con-
ditional on all of the other measured covariates, ends up
being quite small; the other measured covariates control
for most of it. We will return to this point below in our
discussion of unmeasured confounding in Section 3. Nev-
ertheless, because one can never be certain that the mea-
sured covariates suffice to control for confounding or that
the residual unmeasured confounding is small, it is impor-
tant to assess the robustness of one’s conclusion and ef-
fect estimates to potential unmeasured confounding and,

therefore, sensitivity analysis for unmeasured confound-
ing and other biases will be important. This is the topic of
Section 3 below and we strongly encourage the use of the
robustness metrics in all outcome-wide studies.

2.5 Timing of Confounders

Another consideration that should be taken into account
when making decisions about confounder selection based
on substantive knowledge is that of covariate timing. It
was noted above that for estimation of total effects, rather
than direct effects, we do not want to make adjustment
for variables that may be on the pathway from the expo-
sure to the outcome. We do not want to adjust for “post-
treatment” variables affected by the treatment or expo-
sure. To avoid this, we often refrain from adjusting for co-
variates that occur temporally subsequent to the exposure.
In many two-wave longitudinal studies, the exposure and
covariates are all assessed at one time and the outcome is
assessed at a subsequent time. However, in a number of
cohort studies, data is collected on all exposures, covari-
ates and outcomes repeatedly across each wave, perhaps
once per year, or once every two years, for many years or
even decades. Such designs can help make more informed
confounder selection decisions based on the temporal or-
dering of the data. One difficulty with studies in which
the exposure and potential confounding covariates are all
assessed at the same time is that it can be difficult to de-
termine whether a covariate assessed at the same time as
the exposure may in fact be affected by it, and thus be a
mediator rather than a confounder.

Consider, for example, a study intended to assess the ef-
fect of physical activity on cardiovascular disease. Body
mass index (BMI) might be available as a covariate and it
may then be thought to be important to control for BMI
as a confounder. However, it is of course also conceiv-
able that BMI is on the pathway from physical activity to
cardiovascular disease and that control for it may block
some of the effect of physical activity. Conversely, it may
also be the case that BMI itself affects both subsequent
physical activity and subsequent incidence of cardiovas-
cular disease. Someone with a very high BMI may have
more difficulty regularly exercising. Thus it is possible
that BMI is both a confounder (for the effect of subse-
quent physical activity) and also a mediator on the path-
way from prior physical activity to cardiovascular disease.
It is thus difficult to know whether or not to adjust for
BMI if both BMI and physical activity are measured at the
same time. We cannot adequately distinguish in this set-
ting between confounding and mediation (VanderWeele,
2015). If, however, BMI is available repeatedly over time
then it may be possible to control for BMI in the wave
of data that is prior to the wave that uses exercise as the
primary exposure. This would better rule out the possibil-
ity that the BMI variable used in the analysis is a media-
tor; if its measurement precedes that of physical activity
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by a year then it is more reasonable to interpret it as a
confounder. When multiple waves of data are available, it
may thus be desirable to control for the covariates in the
wave prior to the primary exposure of interest.

This will not always a reasonable option for potentially
two reasons: either because there are only two waves of
data are available (one for the exposure and covariates,
and one for the outcome), or alternatively because, al-
though a wave of prior covariate data is available, it may
be temporally too far prior to the exposure measurement
to be of adequate use for confounding control. For exam-
ple, if the prior wave of data is 10 years prior to the expo-
sure measurement, it will be much less effective at ruling
out confounding than if it were one year prior. Depending
on how far back the prior wave of data is, there will be
a trade-off between the potential for residual unmeasured
confounding, if the wave is too far back, versus the danger
of controlling for a variable that is a mediator, if the co-
variates for which control is made are contemporaneous
with the exposure.

It is also of course possible to carry out sensitivity anal-
ysis of the timing of confounder measurement, and to
compare the results when confounders are controlled for
contemporaneously with the exposures versus when they
are controlled for in the prior wave (e.g., Danaei et al.,
2013, Garcia-Aymerich et al., 2014). When contempora-
neous control for the covariates is made, the danger of ad-
justing for mediators, especially when numerous covari-
ates are included in the model as suggested above in Sec-
tion 2.4, can be substantial. It may thus also be desirable
as an additional sensitivity analysis to go through each of
the covariates and consider, substantively, whether each
covariate is more likely to immediately affect the expo-
sure, or whether the covariate is more likely to immedi-
ately be affected by the exposure, and, in a supplementary
analysis only control for the former set of covariates. Ide-
ally, however, designs would allow for covariate control
shortly prior to the exposure measurement.

2.6 Control for Prior Exposure

A final issue concerning covariate control concerns po-
tentially controlling also for prior values of the exposure
variable itself. This only makes sense when the expo-
sure varies over time. For an exposure such as exercise,
or employment, or religious service attendance, the ex-
posure itself may change across the waves of data. In
such settings, one can attempt to assess the effects of
an exposure trajectory on final outcomes. The confound-
ing control assumptions required to assess the effects of
time-varying exposures are more complex in this set-
ting and are described elsewhere (Robins, 1992, Robins,
Hernán and Brumback, 2000, Robins and Hernán, 2009,
Hernán and Robins, 2020); we will also comment on this

setting further below in Section 8.4. Here, we will con-
tinue to focus on the setting of assessing the effect of an
exposure at a single point in time.

In this setting, if the exposure can itself change over
time then it may be desirable to control also for the value
of the exposure in the prior wave of data. This can be de-
sirable for a number of reasons. First, it facilitates the
interpretation of the effect estimate as a change in the
exposure from, for example, absent to present. Without
control for prior exposure, such an interpretation is justi-
fied only if the prior value of the exposure is independent
of the outcome conditional on the baseline exposure and
measured covariates. Control for prior exposure might be
done either by including it as a covariate or by strati-
fying the analysis by prior exposure status. By control-
ling for prior exposure, the study design effectively at-
tempts to emulate a trial on the effect of fixing or alter-
ing, at baseline, the exposure to a particular level. Sec-
ond, control for prior exposure can help further rule out
reverse causation: if the value of the outcome two periods
prior to the exposure affects both the baseline exposure
independently of the outcome one period prior, and fur-
ther affects the final outcome independently of the expo-
sure and the outcome one period prior, then simple con-
trol for the baseline outcome as suggested in Section 2.2
will not suffice to rule out reverse causation, whereas con-
trol also for baseline exposure can, in many settings, fur-
ther rule out reverse causation (VanderWeele, Jackson and
Li, 2016). Third, control for prior exposure can also help
further rule out other forms of unmeasured confounding.
This is so because, if control is made for prior exposure
then, for an unmeasured confounder U to explain away
an observed exposure-outcome association, the unmea-
sured confounder would have to be associated with both
the outcome and the baseline exposure, independent of
the prior level of exposure. Thus, in Figure 1, both of the
dashed arrows to the baseline exposure and to the final
outcome would have to be present and substantial to in-
duce considerable confounding bias. Consider, for exam-
ple, a study examining the effects of religious service at-
tendance on depression; suppose no control was made for
the “big five” personality traits. It is known that conscien-
tiousness is associated with both higher religious service

FIG. 1. Diagram illustrating how control for prior exposure (Aprior)
can further reduce potential for unmeasured confounding (U ).
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attendance and lower depression; if this were not adjusted
for, it might be thought to induce confounding. However,
if control is made for prior level of the exposure then for
conscientiousness to explain away the exposure-outcome
association, conscientiousness would have to be substan-
tially associated with the religious service attendance ex-
posure, independent of prior religious service attendance,
and this may be less plausible. Fourth and finally, control
for prior exposure can help rule out instances in which
initiation of the exposure itself may, in the short-run,
have harmful consequences and thereafter look beneficial
(Danaei, Tavakkoli and Hernán, 2012, Hernán, 2015). In
the epidemiologic literature, controlling for prior expo-
sure is sometimes referred as an analysis assessing the
effects of “incident exposure” rather than “prevalent ex-
posure” (Danaei, Tavakkoli and Hernán, 2012, Hernán,
2015) and, for the reasons above, this can sometimes be
preferable.

However, such control for past exposure may not al-
ways be needed or preferable. Certain exposures may be
relatively stable over time; for example, while parenting
practices for a given parent can change over time, for
most, they may be relatively stable and using a single
exposure assessment may be sufficient. For other expo-
sures, such as an introduction of a job training program
that is new to a community, it is possible that no one
has previously been exposed, and thus that there is no
data on prior exposure, but also no need to adjust for
it, since its values is effectively zero for all study par-
ticipants in all prior waves. For exposures that are rela-
tively stable, there may be very little or almost no change
across waves in which case the baseline exposure and the
past exposure will be almost entirely collinear. If changes
do occur but are rare, then very substantial sample sizes
may be needed to be able to control for past exposure
(e.g., in an analysis to assess the effects of religious ser-
vice attendance on mortality, Li et al. (2016) found only
slight changes in religious service attendance categories
across four years; however, with a sample size of over
74,000, it was still possible to fit models that controlled
for past service attendance). In other cases, it might also
be undesirable to control for past exposure when the prior
wave of data for which the exposure is available was
in the distant past, as this can potentially introduce the
types of biases that arise with time-dependent confound-
ing for time-varying exposures (Robins, 1992, Robins,
Hernán and Brumback, 2000, Robins and Hernán, 2009,
Hernán and Robins, 2020). It may be more reasonable to
control for prior exposure when it is a year or two prior
to baseline exposure than when it is 10 years prior, and
thus likely altered considerably in the intervening 10 years
as well. If exposure effects are delayed, and the follow-
up is not sufficiently long, controlling for prior exposure
might also be problematic. However, when prior exposure

data is available in the relatively recent past, and when
the exposure itself changes with sufficient frequency, and
follow-up is sufficiently long, and sample sizes are such
as to allow for prior exposure as an additional covariate,
it can be desirable, for the reasons mentioned in the pre-
vious paragraph, to add it as a covariate as well.

A hierarchy of how plausible the confounding control
assumption typically is might thus be formulated across
different study designs (VanderWeele, Jackson and Li,
2016). First, at the weakest level of the hierarchy are
cross-sectional designs and analyses; these will in gen-
eral contribute little evidence for causality unless a clear
argument can be made for the temporal ordering of the
exposure preceding the outcome and control can be made
for confounding variables that likewise temporally pre-
cede the exposure and outcome. Second, longitudinal de-
signs in which the exposure clearly precedes the outcome
and in which control can be made for a rich set of baseline
covariates that potentially confound the relationship be-
tween the exposure and the outcome have more potential
to contribute some evidence for causality. Third, if con-
trol can also be made for prior measures of the outcome,
this strengthens the evidence further as control for prior
or baseline outcome can help rule out reverse causation.
Fourth, if control can also be made for prior exposure this
strengthens the evidence yet further for the reasons given
above. Finally, a randomized trial of the exposure gener-
ally provides, at least in the absence of complications such
as noncompliance and drop-out, the strongest evidence
for a causal relationship. In most, though not all cases,
we believe that at least level three of the hierarchy above
(control for baseline outcome) needs to be achieved to
have the potential to contribute substantially to evidence
for causality, unless a compelling case can be made for
ruling out reverse causation on substantive grounds. Evi-
dence for a causal relationship depends of course also on
other details of the design, the size of the study, the mag-
nitude of the effect estimate, the richness of the covariate
data, the quality of measurements and various other fac-
tors, all which all must be carefully evaluated, and which
are discussed further in Section 3 below. Nevertheless,
questions of temporality in study design and controlling
for prior values of outcome and possibly exposure ought
to be given considerable weight in assessing evidence for
causality.

2.7 Outcome-Wide Regression Models and
Estimation

The discussion in Sections 2.2–2.6 above was all ori-
ented around study design considerations and choice of
covariate control. Once these are in place the proposed
statistical analysis for an outcome-wide study is relatively
straightforward. One could, for example, for each contin-
uous outcome, Yk , fit a linear regression model of Yk on
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exposure A and the covariates C that were selected us-
ing the principles discussed above (including in C, when
applicable, prior values of outcome and exposure):

E[Yk|a, c] = αk + βka + γ ′
kc

and, for each dichotomous outcome, fit the analogous lo-
gistic regression:

logit
(
P [Yk = 1|a, c]) = αk + βka + γ ′

kc

and, for each count outcome, fit the analogous Poisson
regression:

log
(
E[Yk|a, c]) = αk + βka + γ ′

kc

and likewise for other regression models that may be of
interest. For each outcome k, provided the confounding
control assumption holds that Yk(a) � A | C, the coef-
ficient βk in each model will provide a consistent es-
timate of the causal effect of exposure A on outcome
Yk on the relevant scale corresponding to the regression
model being used. For example, for a linear regression
model E[Yk|a, c] = αk + βka + γ ′

kc we have that, pro-
vided Yk(a) � A | C, then βk = E[Yk(1) − Yk(0)|c]. For
a rare outcome such that odds ratios approximate risk ra-
tios, the causal risk ratio can be obtained by exponenti-
ating the coefficient in the logistic regression model so
that exp(βk) = P [Yk(1) = 1|c]/P [Yk(0) = 1|c]. It may
be desired to restrict the use of logistic regression mod-
els to dichotomous outcomes that are relatively rare so
that the odds ratio approximates the risk ratio, or to alter-
natively convert the logistic regression output to a more
interpretable effect scale (King, Tomz and Wittenberg,
2000). Otherwise such odds ratios can vastly exagger-
ate the corresponding risk ratio (cf. VanderWeele, 2017d).
With common outcomes, other estimation strategies to
obtain risk ratios directly, such as a modified Poisson re-
gression or a log-binomial model, might be used (Yelland,
Salter and Ryan, 2011, Knol et al., 2012).

While global inference on regression coefficients for
different outcomes could alternatively be conducted us-
ing multivariate regression (Johnson and Wichern, 2002)
or with a “seemingly unrelated regressions” generaliza-
tion (Zellner, 1962), these approaches at best only mod-
estly improve efficiency compared to that achieved in K

separate linear regression models; when the design ma-
trix is shared across models, as we suggested be done
above in Section 2.4, coefficient estimates are identical
to those using ordinary least squares estimation (Oliveira
and Teixeira-Pinto, 2015). Conducting K separate regres-
sion models will thus often suffice for these outcome-wide
analyses.

An alternative analytic approach would be to carry out
propensity score analyses (Rosenbaum and Rubin, 1983)
for each outcome either via matching or subclassification
(Rosenbaum, 2002). Because propensity score subclasses

and matches are formed without reference to the outcome,
the same subclassification or matched sets can in principle
be used for all outcomes, thereby also more easily facil-
itating automation of the analyses when a large number
K of outcomes are being examined. There has been re-
cent discussion about controlling for irrelevant covariates
being particularly problematic in propensity score match-
ing in terms of increasing imbalance (King and Nielsen,
2019), and this problem may be exacerbated in outcome-
wide analyses if there is matching for numerous covari-
ates irrelevant for one outcome (but relevant for others).
However, in certain contexts, such as if the exposure is
common but there are numerous rare outcomes, propen-
sity score methods may be preferable (Cepeda et al.,
2003). Other matching approaches, not based on propen-
sity scores, could also be potentially be used. However
matching approaches in which decisions about covariate
matching are based on the outcome (e.g., Iacus, King and
Porro, 2012), while useful in the contexts of a single out-
come, may be more difficult to apply outcome-wide as
the decisions would have to be made separately for each
outcome. If it is known in advance that only a few co-
variates are relevant for each outcome, then coarsened
exact matching (Iacus, King and Porro, 2012) could be
employed with different covariates selected for each out-
come. However, as we discuss further in Section 7 below,
when sample sizes allow (and often this will require thou-
sands of observations), there are reasons, from the per-
spective of limiting investigator degrees of freedom, for
controlling for the same set of covariates for each out-
come in these outcome-wide analyses.

Alternatively, doubly robust estimators or machine
learning or high dimensional covariate selection algo-
rithms (van der Laan and Rose, 2011, 2018, Belloni,
Chernozhukov and Hansen, 2014, Schuler and Rose,
2017) could be used to obtain effect estimates. We be-
lieve these approaches are potentially promising in the
outcome-wide setting as well, but further work on de-
termining when sample sizes are adequate for the desir-
able asymptotic properties of these estimators to apply is
needed. Other approaches are also available for inference
when translating effects on multiple outcomes to a com-
mon scale, using mean-variance and median-interquartile
range based standardizations (Kennedy, Kangovi and Mi-
tra, 2019). The focus of this paper is on the outcome-wide
longitudinal design itself and the approach is compatible
with a number of different statistical modeling options.

3. E-VALUES FOR UNMEASURED CONFOUNDING
AND OTHER BIASES

In the previous section, we considered causal inference
for outcome-wide studies using confounding control. The
assumption that the measured covariates C suffice to con-
trol for confounding is a strong one and will, even at best,



OUTCOME-WIDE DESIGNS FOR CAUSAL INFERENCE 447

only hold approximately. It is thus important to assess
the robustness of causal effect estimates to violations of
this assumption. Sensitivity analysis techniques for un-
measured confounding are useful in this regard. A variety
of techniques are available (e.g., Rosenbaum and Rubin,
1983, Rothman, Greenland and Lash, 2008, Lash, Fox
and Fink, 2009). Here, we will consider a relatively sim-
ple approach that we believe is particularly well suited
to outcome-wide studies, and consists of reporting a met-
ric of robustness to unmeasured confounding called the
E-value (VanderWeele and Ding, 2017). In Section 3.1,
we will discuss this E-value approach to assessing un-
measured confounding; in Section 3.2, we will discuss
the implications of such sensitivity analysis for assess-
ing evidence for causality; and in Section 3.3 we will dis-
cuss other forms of bias, beyond unmeasured confound-
ing, that may threaten outcome-wide analyses.

3.1 Sensitivity Analysis for Unmeasured
Confounding

The E-value is a metric that can be used to assess ro-
bustness of longitudinal associations to potential for un-
measured confounding. As such, it is a measure relevant
to assessing evidence for causality in observational re-
search. The E-value metric itself arises from sensitivity
analysis for unmeasured confounding. The formal deriva-
tion of the E-value relies on two parameters (Ding and
VanderWeele, 2016). We will begin our development with
a binary outcome Yk and then comment upon other types
of outcomes as well. The observed exposure-outcome as-
sociation on the risk ratio scale, conditional on covariates
C, is given by

RRobs = P(Yk = 1|A = 1, c)

P (Yk = 1|A = 0, c)
.

The association, conditional on C, but adjusted also for
some set of unmeasured confounders U would be

RRtrue =
∑

u P (Yk = 1|A = 1, c, u)P (u|c)∑
u P (Yk = 1|A = 0, c, u)P (u|c) .

If covariates (C,U) suffice to control for confounding
of the effect of A on Yk , then the latter expression RRtrue
can be interpreted as the causal risk ratio of A on Yk con-
ditional on C, that is, P(Yk(1) = 1|c)/P (Yk(0) = 1|c).
Consider now the following two sensitivity analysis pa-
rameters (Ding and VanderWeele, 2016, VanderWeele and
Ding, 2017):

RRUYk
= max

{
maxu P (Yk = 1|A = 1, c, u)

minu P (Yk = 1|A = 1, c, u)
,

maxu P (Yk = 1|A = 0, c, u)

minu P (Yk = 1|A = 0, c, u)

}
,

RRAU = max
u

P (U = u|A = 1, c)

P (U = u|A = 0, c)
.

Essentially, RRUYk
is the maximum effect that U can

have on Yk , conditional on C = c, comparing any two
categories of U , for either the exposed or unexposed; and
RRAU is the maximum risk ratio relating the exposure to
any particular level of U , conditional on C = c. Ding and
VanderWeele (2016) derived the following sharp bound:

RRobs

RRtrue
≤ RRAU × RRUYk

RRAU + RRUYk
− 1

so that
RRAU×RRUYk

RRAU+RRUYk
−1 was the maximum bias (compar-

ing the ratio of the observed association adjusted for C,
to the true association adjusted also for U ) that could be
generated by such an unmeasured confounder. It was then
further derived that for the unmeasured confounder(s) to
shift the observed risk ratio to the null of 1, if one wanted
both RRUYk

and RRAU to be as small as possible, then the
minimum they could both be (which was what was called
the E-value) was

E-value = RRobs + √
RRobs(RRobs − 1).

For risk ratios that are protective rather than causative,
the inverse of the observed relative risk RRobs is taken
before applying the E-value formula above.

The E-value is thus straightforward to calculate from
the observed risk ratio. As an example, the E-value for an
observed risk ratio of RR = 1.3 is 1.92. Thus with an ob-
served risk ratio of 1.3, an unmeasured confounder that
was associated with both the exposure and the outcome
by risk ratios of 1.92-fold each, conditional on the mea-
sured covariates, would suffice but weaker confounding
would not (where the strength of confounding is defined

by the bias factor
RRAU×RRUYk

RRAU+RRUYk
−1 ). As other examples, the

E-value for a risk ratio of RR = 1.1 is 1.43; the E-value
for a risk ratio of RR = 1.5 is 2.36; the E-value for a risk
ratio of RR = 2 is 3.41. As can be seen from the formula
above, the E-value will always be larger than the observed
risk ratio. The relationship is highly nonlinear for modest
values of the risk ratio that are slightly above 1.

An E-value for the confidence interval can also be re-
ported to determine the minimum confounding that would
be needed to shift the confidence interval to include the
null. The E-value for the confidence interval is obtained
by assigning the E-value of 1 if the confidence interval
contains the null and otherwise applying the E-value for-
mula to the limit of the confidence interval that is closest
to the null. The E-value for the confidence interval has the
interpretation that “across repeated samples, at least 95%
of the time it is the case that: if the actual confounding
parameters RRUYk

and RRAU are both less than the E-
value for the confidence interval that was calculated, then
the association adjusted by the unmeasured confounder(s)
will be in the same direction as the observed association.”
(VanderWeele, Ding and Mathur, 2019). In outcome-wide
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analyses, for each outcome, we recommend reporting the
E-value both for the estimate and for the limit of the confi-
dence interval closest to the null. This simple metric gives
the investigator and reader a sense as to how robust, or
sensitive, effect estimates are to unmeasured confound-
ing and this robustness or sensitivity can be seen to vary
across outcomes.

Several points are important in the interpretation of the
E-value. First, the confounding associations RRUYk

and
RRAU are both conditional on the measured covariates C

so that the confounding associations RRUYk
and RRAU

reflect residual confounding not captured by the measured
covariates C. It is the association between U and both Yk

and A, independent of C, that is relevant here. A large
E-value is only strong evidence for a true causal effect
if the set of measured covariates adjusted for plausibly
controls for much of the confounding. The bias analy-
sis and E-value calculations above are in fact applicable
to the setting of multiple unmeasured confounders. The
confounding parameters RRUYk

and RRAU are then sim-
ply interpreted respectively as the maximum effect that U

can have on Yk , conditional on C, comparing any two cat-
egories of the entire vector of unmeasured confounders
U , for either the exposed or unexposed; and RRAU , is
the maximum risk ratio relating the exposure to any par-
ticular level of the entire vector U , conditional on C. In
such settings, large values of RRUYk

and RRAU may not
be particularly implausible. While an E-value of 5 say,
may seem, when considering a single confounder, to re-
quire very substantial confounding associations and it is
perhaps unlikely a single unmeasured confounder could
increase the probability of the outcome by 5-fold, above
and beyond the measured covariates, an increase of that
magnitude may not be as implausible if one is consider-
ing a whole group of potential unmeasured confounders.
However, if there are multiple important unmeasured con-
founders, one should perhaps question whether the data
available are in fact adequate to get a reasonable estimate
of the causal effect at all.

The E-value is in fact a conservative measure of robust-
ness to unmeasured confounding insofar as, if the param-
eters RRUYk

and RRAU are as large as the E-value, then
it is possible to construct scenarios in which an unmea-
sured confounder U with those parameters would suffice
to bring the observed association down to the null. How-
ever, there are also many other scenarios in which the ac-
tual unmeasured confounder has confounding parameters
RRUYk

and RRAU that are equal to the E-value and yet
the unmeasured confounder would not suffice to reduce
the observed association to the null. This is especially the
case when, for example, the unmeasured confounder is
rare (Ding and VanderWeele, 2016).

The development above applies for a binary outcome
using risk ratios. However, using various approximate

conversions often employed in the meta-analysis litera-
ture between odds ratios and standardized effect sizes
for continuous outcomes (Hasselblad and Hedges, 1995,
Borenstein et al., 2009), and between odds ratios and risk
ratios (VanderWeele, 2017d), one can obtain approximate
E-values for other outcome scales.

For a continuous outcome, with a standardized effect
size “d” (obtained by dividing the mean difference on
the outcome variable between exposure groups by the
pooled standard deviation of the outcome) and a stan-
dard error for this effect size sd , an approximate E-value
can be obtained (VanderWeele and Ding, 2017) by ap-
plying the approximation RR ≈ exp(0.91 × d) and then
using the E-value formula above (E-value = RRobs +√

RRobs(RRobs − 1)). An approximate confidence inter-
val can be found using the approximation
(
exp{0.91 × d − 1.78 × sd}, exp{0.91 × d + 1.78 × sd})

and then obtaining the E-value for the confidence inter-
val. Approximate E-values for other effect measures such
as odds ratios, hazard ratios and risk differences can also
be obtained (see VanderWeele and Ding, 2017). An on-
line E-value calculator (www.evalue-calculator.com), R
package (Mathur et al., 2018), and Stata package (Linden,
Mathur and VanderWeele, 2019) are also available to
obtain these E-values automatically. With E-values for
these other effect scales, the approach relies on addi-
tional assumptions and approximations (unlike for risk
ratios). Other sensitivity analysis techniques have been
developed for continuous outcomes (e.g., Lin, Psaty and
Kronrnal, 1998, Imbens, 2003, VanderWeele and Arah,
2011), but these likewise require additional assumptions.
An advantage of the E-value approach is that it pro-
vides a common, at least approximate, scale for assess-
ing robustness to unmeasured confounding across differ-
ent types of outcomes, though the E-value itself must al-
ways be interpreted within the context of the particular
exposure, outcome and set of covariates under considera-
tion (VanderWeele and Ding, 2017).

3.2 Skepticism with Regard to Causal Effects from
Selection on Observables

In certain circles and within economics especially, there
can be considerable skepticism that it is ever possible
to provide substantial evidence for causation using re-
gression models with the type of “confounding control”
or “selection on observables” assumptions that were dis-
cussed in Section 2. While we believe that a critical ap-
proach needs to be taken to the interpretation of such
regression analyses, we also believe that such extreme
skepticism, when applied universally, is misguided. We
believe that the difference in levels of skepticism about
the plausibility of the selection on observables assump-
tion across disciplines arises in part because of the nature

http://www.evalue-calculator.com
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of the data often available and also in part because of the
different contexts of the systems and phenomena under
study. However, we also believe that the approach we are
advocating as laid out in Section 2 and Section 3.1 has
the potential to provide substantial evidence, contrary to
the extreme skepticism sometimes expressed especially in
economics.

With regard to the issue of data availability, many ob-
servational studies of secondary data in economics have
relatively little covariate information; the dataset being
used may have been collected for one purpose but is be-
ing used for another. If the initial set of measured covari-
ates that is available for control is weak or limited, then
skepticism is certainly warranted. In contrast, however, in
many biomedical studies, much richer covariate data is
available. Often large cohort studies to examine the deter-
minants of health are designed specifically with that goal
in mind, with careful thought being given to what vari-
ables might confound the relationships between the expo-
sures and health outcomes under study. Often the covari-
ate data is very rich indeed. Of the covariates discussed
in Section 2.4, in many large biomedical cohort studies,
data is available on almost of all these with the exception
of the “big five” personality traits and political affiliation.
Some of the differences in levels of skepticism may thus
be due to the availability of covariate data, and thus also,
the plausibility of the “selection on observables” assump-
tion. However, some of the difference in levels of skep-
ticism may also have to deal with the different nature of
the phenomena being studied across disciplines. In many
economic contexts, it is assumed that agents have some
degree of information about their own potential outcomes
that is not available in the data for which measurements
are available, and that the agents use this information to
select into the treatment or exposure groups. For exam-
ple, decisions about occupation may be made based on
an agent’s own assessment as to where they are likely
to be successful. In contrast, in a number of biomedical
settings, the patient or participant may not have analo-
gous information; it may be that the patient’s physician
is the principal decision-maker concerning which treat-
ment may be best, and that the information available to the
physician is in fact roughly the same information avail-
able in the data to the researcher. Hence, some of the dis-
crepancy in the degree of skepticism about causal infer-
ence through covariate adjustment may arise from the dif-
ferent objects of study. Different levels of skepticism may
be merited by different disciplines.

However, in addressing the extreme skepticism with re-
gard to causal inference using covariate adjustment, sev-
eral further points merit attention. First, as noted above, in
some contexts at least relatively rich covariate data may
be available. Second, when rich covariate data is avail-
able, then even if there are seemingly important unmea-
sured confounders, the measured covariates may in fact

adjust for a substantial portion of the unmeasured con-
founding leaving relatively little residual confounding re-
maining. It was noted above that an unmeasured variable
will only introduce residual unmeasured confounding to
the extent that it is associated with both the exposure and
the outcome, independent of all of the measured covari-
ates. It was thus also noted that if the set of measured
covariates is rich then even the omission of what are oth-
erwise important and highly predictive variables, such as
race or income, will often not change effect estimates all
that much when omitted, because the residual confound-
ing is conditional on all of the other measured covari-
ates. Third, using the E-value metric or other sensitivity
analyses techniques, it may sometimes be established that
very substantial residual unmeasured confounding would
be needed to explain away a covariate-adjusted exposure-
outcome association. A well-designed longitudinal study
with control for a rich set of covariates, along with con-
trol for prior outcome and exposure, that is accompa-
nied by a large E-value, may constitute very strong ev-
idence indeed for a causal effect of the exposure on an
outcome.

3.3 Sensitivity Analysis for Other Types of Bias

Of course, unmeasured confounding does not repre-
sent the only threat to the validity of analyses assessing
causal effects. Biases can arise from measurement error;
biases can arise from missing data; biases can arise cen-
soring or selection on or restriction to the study sample
based on a variable affected by the exposure or outcome.
These biases too can be very important. We will briefly
discuss these various biases, specifically as they relate to
outcome-wide analyses. We believe, for the reasons given
below, that robustness to unmeasured confounding, using
the E-value, or some other metric, should always be car-
ried out in outcome-wide analyses, but that these other
forms of bias may, or may not, merit further attention de-
pending on the context.

Measurement error can be a threat to analyses intended
to assess causal effects. Nondifferential measurement er-
ror, in which the measurement error of the exposure
(or outcome) does not depend on the outcome (or ex-
posure, resp.) will often, though not always, result in
estimates that are biased toward the null (Bross, 1954,
Weinberg, Umbach and Greenland, 1994, VanderWeele
and Hernán, 2012). If the nondifferential measurement er-
ror is in the exposure, it may be relatively straightforward
to apply measurement correction approaches outcome-
wide (Carroll et al., 2006, Rothman, Greenland and Lash,
2008, Lash, Fox and Fink, 2009). If the measurement
error is in the outcome(s), and some of those outcomes
are binary, then applying correction approaches outcome-
wide will be more challenging as each outcome will re-
quire distinct correction parameters (Carroll et al., 2006,
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Rothman, Greenland and Lash, 2008, Lash, Fox and Fink,
2009), though see Blackwell, Honaker and King (2017)
for an alternative approach more akin to multiple impu-
tation for missing data, an issue we also discuss further
below. However, even if nondifferential measurement er-
ror is ignored, each of the effect estimates will thus of-
ten constitute conservative estimates, at least with respect
to measurement error. Differential measurement error, in
which the measurement error in the exposure depends on
the outcome, or the measurement error in the outcome
depends upon the exposure, may be more of a threat to
outcome-wide analyses. Such measurement error will of-
ten bias effect estimates away from the null. Analogous
metrics to the E-value but for measurement error are avail-
able (VanderWeele and Li, 2019). However, in most cases
these effectively amount to requiring that for differential
measurement error to explain away the association the
effect of the outcome on the exposure measurement in-
dependent of the true exposure (or the effect of the ex-
posure on the outcome measurement independent of the
true outcome) must be at least as large as the effect es-
timate (VanderWeele and Li, 2019). The effect estimates
and confidence intervals themselves in an outcome-wide
study thus constitute the relevant bounds concerning the
minimal differential measurement error needed to explain
away the association and so no further reporting is needed.

In cases in which the restriction of the sample is made
based on a variable affected by the exposure or outcome,
the biases that are induced can be substantial indeed.
Metrics analogous to the E-value are likewise available
for this setting as well (Smith and VanderWeele, 2019).
However, for such selection bias, unlike for the E-value
for unmeasured confounding, in many cases the magni-
tude of the associations of the bias parameters required
to explain away the observed exposure-outcome associ-
ation will in fact be smaller, rather than larger than, the
observed exposure-outcome relationship itself. We would
thus caution against outcome-wide analyses when selec-
tion bias is thought to be substantial. Depending on the na-
ture and type of selection bias, more careful and thought-
ful assessment of each outcome may be needed.

Fortunately, in contrast to unmeasured confounding,
differential measurement error and selection bias due to
restriction will not be major threats in all observational
studies. While measurement error may be pervasive, dif-
ferential measurement error will be more rare. Selection
bias due to restriction may be present in some studies, but
in many, it is not a substantial concern. In contrast, how-
ever, whenever observational data are used to draw causal
inferences, unmeasured confounding will be a concern.
We thus recommend always reporting the E-value for un-
measured confounding (or using some other sensitivity
analysis) in all outcome-wide studies, and then dealing

with measurement error and/or selection bias due to re-
striction, when necessary, along the lines of the principles
suggested above.

We will conclude this section with some discussion of
missing data. In a number of large cohort datasets, data is
missing on certain covariates for some individuals, other
covariates for other individuals, the exposure for some,
and the outcome for others, without any clear patterns
with regard consistent missingness. In such settings, we
believe that multiple imputation (Little and Rubin, 2014)
can be an effective way to address such missing data
issues. However, given that the proposed outcome-wide
analyses are intended to examine numerous outcomes at
once and it is therefore not possible to give the same de-
gree of attention to any single exposure-outcome analy-
sis, we would advise caution with using the outcome-wide
approach when missing data is extensive (e.g., consider-
ably more than 10% for any given covariate or exposure
or outcome). We would also recommend comparing es-
timates obtained by multiple imputation with a complete
case analysis. Similarity in results may provide reassur-
ance (though does not guarantee) that the missing data
itself is not causing substantial bias. Major discrepancies
between the complete cases analyses and the multiple im-
putation results may indicate that the missing data is in-
deed a threat to the effect estimates and that further sensi-
tivity analyses for missing data, including those that con-
sider missing-not-at-random scenarios, may be desirable.
In such cases, it may be better to abandon the outcome-
wide approach and consider each outcome individually
while more carefully addressing issues of missing data.

In summary, we believe that in outcome-wide analy-
ses, robustness or sensitivity to unmeasured confound-
ing can be addressed in a relatively straightforward way,
outcome-wide, using the E-value. Outcome-wide analy-
ses subject to nondifferential measurement error will of-
ten yield conservative results; when correction for nondif-
ferential measurement error is desired, it will be more fea-
sible to carry this out, outcome-wide, for exposure mea-
surement error than for outcome measurement error; with
differential measurement error of the exposure or the out-
come, the effect estimates themselves effectively consti-
tute a bound for the strength of the differential measure-
ment error needed to explain away the effects. For miss-
ing data, we recommend that, in most cases, this be han-
dled outcome-wide, using multiple imputation, but that
comparison be made with complete case analyses and
that, in settings in which missing data is extensive or in
which there are major discrepancies between complete
case analyses and multiple imputation analyses, then the
outcome-wide approach be abandoned and more detailed
careful analyses be pursued taking into account the impli-
cations of the missing data for the analysis, separately for
each outcome. Finally, we recommend also caution with
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the outcome-wide analytic approach when selection bias
due to sample restriction is present as the biases in that
setting can be substantial. Unmeasured confounding is al-
ways potentially present and can always be partially ad-
dressed with the E-value; measurement error is, in some
sense, implicitly addressed by the effect estimates them-
selves; missing data and selection bias from restriction
need to handled carefully in outcome-wide studies.

4. MULTIPLE TESTING METRICS

The outcome-wide analytic approach assesses the effect
of a single exposure on numerous outcomes simultane-
ously. There might thus be concerns, in assessing numer-
ous relationships, that there will be considerable potential
for numerous false positives, where evidence seemingly
arises for certain effects simply by chance, since so many
different relationships are being evaluated. In this section,
we will discuss a variety of approaches to handle multiple
testing. We comment on the use of Bonferroni correction
as this remains a popular approach and in fact has vari-
ous attractive properties not often appreciated. We suggest
the reporting of other metrics as well related to methods
that take into account the correlation among outcomes and
that produce confidence intervals for the expected number
of rejections that surpass a particular significance level
threshold whilst taking into account correlations across
outcomes.

4.1 Bonferroni Correction and Its Properties

The Bonferroni correction is perhaps still the most pop-
ular way of addressing issues of multiple testing (other
than of course simply ignoring them, which is still ar-
guably the most common). The Bonferroni correction is
often motivated by preserving the type I error of the global
null that all tested associations are in fact null. By dividing
the nominal significance level of the test α (e.g., α = 0.05)
by the number of tests, one is guaranteed, within a hy-
pothesis testing framework, to reject the global null of
no association at most α × 100% (e.g., 5%) of the time
when the global null does in fact hold. While this is of-
ten the motivation presented for the Bonferroni correc-
tion, the correction itself does have a much stronger prop-
erty. Suppose in an outcome-wide setting one were ex-
amining K exposure-outcome associations, and that, af-
ter Bonferroni correction, J associations were rejected
at the α/K significance level. The standard property of
the Bonferroni correction that is often pointed out is, as
above, that no more than 5% of the time will one incor-
rectly conclude “There is at least one true association.”
But, with J rejections at the α/K significance level, one
can in fact also consider the much stronger conclusion
that “There are at least J true associations” and one will
draw this conclusion, when it is false, at most 5% of the
time (VanderWeele and Mathur, 2019). This is because

even if there were in fact only J − 1 true associations,
the probability of rejecting J or more would still be less
than [K − (J − 1)] × α/K < K × α/K = α. The fact
that this much stronger statement, like the rejection of the
global null, also has only a 5% error rate gives the Bon-
ferroni correction a much stronger interpretation when re-
sults surpass this more conservative threshold.

Such statements are also valid under any other pro-
cedure that strongly controls the familywise error rate
(FWER), including those that are uniformly more pow-
erful than the Bonferroni correction, such as the Holm
(1979) procedure. It might therefore be tempting to con-
clude that whether one wants to make standard statements
about the probability of at least one false positive, about
the number of true associations as above, or both, the Bon-
ferroni correction is obsolete and should be replaced with
better FWER control procedures. However, this character-
ization is misleading because the Bonferroni correction in
fact offers an even more stringent form of error control
than do most FWER-control alternatives. Specifically, the
Bonferroni correction controls the per-family error rate
(PFER), which is the mean number of false positives di-
vided by the number of tests (Gordon et al., 2007, Frane,
2015). To illustrate the distinction, suppose FWER is con-
trolled via the uniformly more powerful Holm (1979) pro-
cedure. Then there is less than a 5% probability of obtain-
ing at least one false positive, but if there is at least one
false positive, there is no guarantee of how many there
are; there could be one or 100. In contrast, the Bonfer-
roni procedure guarantees that even if there is at least one
false positive, there are still fewer than K × α in expecta-
tion. Other have argued persuasively that in many scien-
tific contexts, every additional false positive is detrimen-
tal, and thus controlling the actual number of false posi-
tives (via PFER) is at least as important as controlling the
presence or absence of any false positives (via FWER)
(Frane, 2015). The Bonferroni correction may therefore
be valuable in these contexts, even when one has also used
more powerful FWER corrections. Thus, in spite of its
conservative nature, we would recommend reporting the
Bonferroni threshold in outcome-wide analyses, in addi-
tion to various other metrics described below.

While the Bonferroni correction is conservative and
does not take into account correlation of the outcomes,
it is often the case that, in settings in which sample sizes,
are very large, such as many major cohort studies, and
when only a moderate number of tests are being carried
out, the Bonferroni correction will in fact often make rel-
atively little difference in the magnitude of effect sizes
that can generally be detected (VanderWeele and Mathur,
2019). Consider, for example, in a data analysis (Chen et
al., 2018) related to what will be presented below with
K = 24 outcomes, sample size N = 3929 and with mean
linear and logistic regression coefficient standard error of
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0.031 across the various outcomes. In this context, for an
outcome with standard error of 0.031, an effect estimate
above 0.061 would suffice to pass the nominal α = 0.05
significance level and an effect size above 0.095 would
suffice to pass the Bonferroni-corrected significance level
of α = 0.05/24 = 0.0021. There is a relatively modest
range of effect sizes, 0.061 to 0.095, for which the nomi-
nal significance level would be passed but the Bonferroni-
corrected threshold would not be. If variability of the out-
comes were similar but with a sample size of N = 10,000,
an effect estimate above 0.038 (e.g., odds ratio of 1.039)
would suffice to pass the nominal α = 0.05 significance
level and an effect size above 0.060 (e.g., odds ratio of
1.062) would suffice to pass the Bonferroni-corrected sig-
nificance level, of α = 0.05/24 = 0.021. Here, the range
of effect estimates for which the nominal significance
threshold is passed but the Bonferroni corrected one is
not, is even narrower, and arguably in many cases, that
effect size range is sufficiently narrow to often not be of
much scientific, policy or public health importance (e.g.,
if the odds ratio is not even 1.062, the effect size may
be too small to be of importance). Thus, with large sam-
ple sizes, in many settings, if the effect size estimate is
sufficient to surpass the nominal threshold of α = 0.05
then it will very often be sufficient to pass the Bonferroni-
corrected threshold as well.

Of course, just because the Bonferroni correction does
not impose a severe penalty on the range of effect sizes
that can be detected in some contexts, such as when the
sample size is large and a moderate number of tests are
being conducted, does not mean that the penalty will al-
ways be negligible. In many settings, and perhaps espe-
cially in small- to medium-sized randomized trials, the
sample sizes are often considerably smaller and the Bon-
ferroni correction may constitute a much greater penalty
for the relevant effect sizes that can be detected than is
indicated here. This will also especially be the case in set-
tings in which the study has been powered specifically
to detect an effect for a primary outcome but in which
many other secondary outcomes are examined as well. In
such settings, or those with many outcomes, the Bonfer-
roni correction might also likewise impose an especially
severe penalty.

However, again, in many outcome-wide studies, with
large longitudinal cohorts especially, the penalty of the
Bonferroni correction in terms of the potential effects
sizes required to pass various thresholds is often very
small and the added advantage of the strength of the con-
clusions that can be put forward might be considerable.
One also need not definitively choose between using or
not using the Bonferroni correction. Investigators can re-
port the actual p-values themselves, and then also indi-
cate the number of tests and what the Bonferroni cor-
rected threshold would be. This allows the reader to assess

evidence both as compared with the conventional nom-
inal thresholds, and Bonferroni-corrected thresholds. In
the section that follows, we will also consider other use-
ful multiple testing metrics as well.

4.2 Additional Metrics Taking into Account
Correlations

We would recommend also reporting and commenting
upon two other metrics that take into account correlation
between outcomes in a single population. There are a vari-
ety of methods that have been proposed that preserve the
familywise error rate (FWER), but are less conservative
than the Bonferroni correction by taking into the account
unknown correlations among the outcomes (e.g., Westfall
and Young, 1993, Romano and Wolf, 2007). While it is
difficult to provide definitive guidance on which of these
various approaches will work best in any given setting,
we believe the evidence from simulations currently points
to very good performance of the approach put forward by
Romano and Wolf (2007; cf. Mathur and VanderWeele,
2018), which can be used with parametric resampling ap-
proaches and generates datasets resembling the original
data with the resampled test statistics then centered by
their estimated values in the observed data in order to re-
cover the null distribution. Thus in addition to the Bonfer-
roni correction approach, when possible, it may be good
to report the results of the Romano and Wolf (2007) re-
sampling approach as well. Finally, it is, in addition, pos-
sible to report an interval with 95% coverage across re-
peated samples for the number of α-level rejections that
would be expected to occur under the global null of no
association of the exposure on any of the outcomes while
also taking into account the actual correlation structure
among the outcomes themselves. We have developed the-
ory to construct such a confidence interval and have de-
veloped a R package, NRejections, to implement this
approach for continuous outcomes (Mathur and Vander-
Weele, 2018); further theory will attempt to extend this to
binary outcomes and logistic regression as well. A com-
parison of the actual number of α-level rejections to the
confidence interval can be informative as to the overall
extent of the evidence for the presence and number of
potential effects. Under certain technical conditions (that
hold, e.g., in linear regression models), the difference be-
tween the observed number of rejections and the upper
limit of the 95% interval will constitute a lower bound on
the number of true associations at least 95% of the time
under repeated sampling. We think that this metric too can
be informative. Depending on the context and the need to
draw conclusions from a single study, positive false dis-
covery rates (Storey, 2002) might be considered as well.
These positive false discovery rates provide a somewhat
related viewpoint to the metrics discussed above, but as-
sessed from the standpoint of ratios rather than excess
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differences. We would not be in favor of using regular
false discovery rates because, in settings in which there
are in fact no true effects, the use of false discovery rates
dramatically exaggerates the proportion of true rejections,
since in settings in which there are no “discoveries,” the
regular false discovery rate classifies this as having 100%
of the “discoveries” as “true” (since there are none; cf.
Storey, 2002).

Of course, none of these metrics is perfect, and the hy-
pothesis testing framework is itself subject to many limi-
tations and abuses (Rothman, Greenland and Lash, 2008,
Greenland et al., 2016). There is, moreover, nothing mag-
ical about the α = 0.05 threshold, or any other thresh-
old (Benjamin et al., 2018), and these various approaches
can be employed also across a range of significance level
thresholds. However, reporting multiple of these measures
that address multiple testing can help in that task of evi-
dence synthesis and evaluation.

4.3 Comment on Current Practices for Multiple
Testing Correction

While we believe that these various metrics, which take
into account the fact that multiple associations are be-
ing examined in an outcome-wide study, are important,
we do not think that the evidence from p-values that
do not meet these multiple-testing-corrected thresholds
should simply be ignored. The p-value is a continuous,
not a dichotomous, metric. An extreme p-value of course
does not guarantee that there is an actual association; nor
does a large p-value guarantee that there is no associa-
tion. The p-value is a continuous measure of evidence
and should be treated as such. We believe it is still rea-
sonable to comment upon the evidence for associations
that do meet the nominal α-level threshold, but do not
meet this threshold after correction for multiple testing;
and even reasonable to comment on effect sizes and pos-
sible evidence, or its absence, even for p-values above
the nominal α-level threshold. There is little difference
in evidence between a p-value of 0.04 and 0.06. More-
over, ultimately, evidence is strongest when it is present
in, and combined over, multiple studies. Meta-analysis
provides one approach to such evidence synthesis and
we believe that much of the strongest evidence in ob-
servational research comes from meta-analyses of numer-
ous studies, and could be improved further by assessing
their robustness to unmeasured confounding using meta-
analytic analogues of the E-value (Mathur and Vander-
Weele, 2019). The outcome wide analyses can provide in-
put for such meta-analyses. The outcome-wide approach
blurs somewhat the distinction between exploratory and
confirmatory analysis (Tukey, 1980), though the first such
outcome-wide analysis for a given exposure might be
viewed as exploratory with the second and subsequent
analyses, including meta-analyses, being viewed as con-
firmatory.

These considerations of not discarding evidence when
it does not meet some multiple-testing-adjusted thresh-
old are perhaps particularly relevant when one contrasts
the outcome-wide approach with what is often current
practice. Typically investigators, using the same data, will
publish multiple papers of different exposure-outcome
relationships, often including multiple papers using the
same exposure. Much of current editorial practice al-
lows comment upon associations that pass the nominal
α = 0.05 threshold. However, it seems incongruous to al-
low comment upon such evidence if the same analyses
are published over multiple papers versus within a sin-
gle paper. The reporting of the actual continuous p-value
and its comparison to different thresholds, both those with
and without correction for multiple testing we do believe
is worthwhile and helps the investigator and reader assess
the overall evidence strength across the various outcomes.
But no magical p = 0.05 (with, or without, multiple-
testing-adjustment) should be definitely imposed in dis-
cussing evidence and these considerations also need to be
weighed within the context, and in light of the specific im-
portance of avoiding false negatives (Rothman, 1990; cf.
Cook and Farewell, 1996). We are in favor of reporting
metrics related to multiple testing adjustment; we are not
in favor of completely discarding evidence that does not
surpass a given threshold; and again we believe that evi-
dence will often only be particularly strong when it comes
from more than one study, investigator and population.

5. DATA ANALYSIS EXAMPLE

We will illustrate the outcome-wide approach with
a data analysis concerning potential effects of parental
warmth experienced in childhood on a variety of flourish-
ing, mental health and health behavior outcomes. Follow-
ing Chen, Kubzansky and VanderWeele (2019), we con-
ducted longitudinal analyses of a subset of N = 2948 sub-
jects from the Midlife in the United States (MIDUS) co-
hort study, recruited to include siblings and twin pairs. For
simplicity in these analyses, we randomly selected only
one sibling from within each sibship (see Chen, Kubzan-
sky and VanderWeele, 2019 for the full analysis and fur-
ther study details). In an initial wave of data collection
(1995–1996), subjects recalled the parental warmth that
they experienced during childhood as an average of sep-
arate scales of maternal and paternal warmth. In a sec-
ond wave (2004–2006), the same subjects reported 13
continuous subscales of flourishing in emotional, psy-
chological and social domains, along with various men-
tal health and health behavior outcomes. We assessed the
association between a one-unit increase in standardized
parental warmth (i.e., an increase of one standard devi-
ation on the raw scale) with the standardized continu-
ous composite flourishing score. We also examined po-
tential effects on the 13 individual subscales treated sep-
arately and also the 3 standardized composite scores for
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each separate flourishing domain (emotional, psycholog-
ical and social). Other analyses assessed the associations
between parental warmth and mental health problems (de-
pression, anxiety) and adverse health behaviors and states
(overweight/obesity, current or former smoking, heavy
drinking, marijuana use, other substance use). All of our
analyses controlled for childhood covariates that were ar-
guably preceding or contemporaneous with the exposure
and known to be predictors of parental warmth or any of
the outcomes. These included age, sex, race, nativity sta-
tus, parents’ nativity status, number of siblings, whether
the subject lived with biological parents, childhood so-
cioeconomic status (SES), subjective SES, childhood wel-
fare status, residential area, residential stability, maternal
and paternal smoking, whether the subject lived with an
alcoholic as a child, and religiosity. Multiple imputation
was used to handle missing data (see supplemental meth-
ods for details: https://osf.io/tv3wu/). For continuous out-
comes, we used ordinary least squares regression. For bi-
nary outcomes, we used Poisson regression if the sam-
ple prevalence was > 10% (overweight/obesity, smoking,
binge drinking, other substance use and depression) and
otherwise logistic regression (marijuana use and anxiety).

We expected correlation among the resulting 24 test
statistics both because of conceptual similarities between
the subscale variables (e.g., social acceptance and social
integration) and because of the composite and domain
measures’ direct arithmetic relationships with the sub-
scales. The 24 outcome measures had a median correla-
tion magnitude of 0.25 (minimum = 0.0007; maximum =
0.88; 25th percentile = 0.08; 75th percentile = 0.43). For
the composite flourishing outcome, controlling for demo-
graphics and childhood family factors, individuals report-
ing an additional standard deviation of parental warmth in
childhood experienced greater mid-life flourishing by, on
average, 0.20 (95% CI: [0.16,0.24]) standard deviations.

Table 2 reports the results of the outcome-wide analy-
sis. Of the 24 outcomes considered individually, 18 were
“significantly” associated with parental warmth at α =
0.05, 17 of which were also “significant” at α = 0.01.
The directions of all 24 effects suggested that increased
parental warmth was associated with improved flourish-
ing outcomes. The E-values for these various associations
and their confidence intervals are reported in Table 3 to as-
sess robustness to unmeasured confounding. For a number
of the flourishing outcomes, and also for depression, the
E-value for the confidence interval is above 1.5, meaning
that an unmeasured confounder that was associated with
both high levels of parental warmth and with high lev-
els of the outcome by risk ratios of 1.5-fold each, above
and beyond the measured covariates could suffice to shift
the confidence interval to the null but weaker confound-
ing could not. The effect estimates on at least some of the
flourishing outcomes thus seem reasonably robust to mod-
erate amounts of unmeasured confounding. Recall bias

might likewise be a concern here (Chen, Kubzansky and
VanderWeele, 2019) and, as noted in Section 3.3, the ef-
fect estimates themselves give some indication to the ro-
bustness, or lack thereof, to potential recall bias. Various
alternative codings of the exposure and the outcomes, mo-
tivated by the reporting considerations in the next sec-
tion of the paper, that use tertiles of parental warmth,
and that consider dichotomizations of the continuous out-
comes are given in the online supplement in Tables S1–S4
(VanderWeele, Mathur and Chen, 2020). Analysis results
were very similar for nearly all outcomes when using tar-
geted maximum likelihood rather than parametric models
and are given in the online supplement Table S5.

We now turn to the other multiple testing metrics. Un-
der Bonferroni correction, 17 tests of all 24 remained
“significant” (α ≈ 0.002). For the resampling-based mea-
sures, we had to restrict to the 17 continuous outcomes.
Under the Romano and Wolf (2007) correction, 15 of the
17 tests of continuous outcomes remained “significant”
at α = 0.05 and 15 also at α = 0.01. Using the methods
described in Mathur and VanderWeele (2018) to charac-
terize the number of rejections, if parental warmth were
in fact unassociated with all 17 continuous outcomes, we
would expect 17×0.05 = 0.85 rejections at α = 0.05 with
a 95% null interval of [0, 5]; and 17 × 0.01 = 0.17 re-
jections at α = 0.01 with a 95% null interval of [0,2].
We thus observe 15 − 5 = 10 excess hits at α = 0.05
and 15 − 2 = 13 excess hits at α = 0.01 above what
would be expected in 95% of samples under the global
null. Overall, our outcome-wide analyses strongly sup-
port moderately sized effects of parental warmth on com-
posite flourishing, as reported by Chen, Kubzansky and
VanderWeele (2019). All data and code required to repro-
duce these analyses is publicly available and documented
(https://osf.io/krjq2/).

6. REPORTING OF OUTCOME-WIDE ANALYSES

In this section, we will briefly discuss convenient ap-
proaches to reporting results of outcome-wide analyses.

6.1 Formatting of Tables

A great deal of information is reported in the outcome-
wide analyses being proposed here. An approach that we
have found useful to report the considerable information
in outcome-wide analyses in limited space is, in Table 1,
to report on the demographics of the sample overall and/or
across exposure groups (as is often done in practice). Be-
cause a single exposure is employed in outcome-wide
analyses this will look analogous to what is already com-
mon practice in many empirical papers. Table 2 can report
on the results from the primary outcome-wide analysis re-
porting on the magnitude of the association, its confidence
interval, the p-value, with some indication of its surpass-
ing or not various nominal and multiple-testing-corrected

https://osf.io/tv3wu/
https://osf.io/krjq2/
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TABLE 2
Longitudinal associations of parental warmth (1994–1995) with health and well-being outcomes (2004–2006)

Health and well-being outcome B OR or RR 95% CI p-valuea Romano correction

Overall composite
Overall flourishing (continuous) 0.20 [0.16,0.24] <0.0001∗∗∗ *

Flourishing domain composites
Emotional well-being 0.19 [0.16,0.23] <0.0001∗∗∗ *
Social well-being 0.13 [0.09,0.16] <0.0001∗∗∗ *
Psychological well-being 0.18 [0.14,0.22] <0.0001∗∗∗ *

Flourishing subscales
Emotional well-being

Positive affect 0.18 [0.14,0.22] <0.0001∗∗∗ *
Life satisfaction 0.16 [0.12,0.20] <0.0001∗∗∗ *

Social well-being
Meaningfulness of society 0.04 [0.00,0.08] 0.053
Social integration 0.15 [0.11,0.19] <0.0001∗∗∗ *
Social acceptance 0.09 [0.05,0.13] <0.0001∗∗∗ *
Social contribution 0.08 [0.04,0.12] <0.0001∗∗∗ *
Social actualization 0.07 [0.03,0.11] 0.0005∗∗∗ *

Psychological well-being
Autonomy 0.07 [0.03,0.11] 0.0004∗∗∗ *
Environmental mastery 0.13 [0.09,0.17] <0.0001∗∗∗ *
Personal growth 0.09 [0.05,0.13] <0.0001∗∗∗ *
Positive relations 0.23 [0.19,0.26] <0.0001∗∗∗ *
Purpose in life 0.04 [−0.00,0.07] 0.083
Self-acceptance 0.19 [0.15,0.23] <0.0001∗∗∗ *

Adverse health behaviors
Overweight or obese 0.99 [0.95,1.05] 0.823 N/A
Smoking 0.95 [0.90,1.00] 0.052 N/A
Binge drinking 0.98 [0.87,1.10] 0.726 N/A
Marijuana use 0.81 [0.65,1.00] 0.053 N/A
Any other drug use 0.85 [0.75,0.95] 0.006∗∗ N/A

Mental health problems
Depression 0.77 [0.69,0.86] <0.0001∗∗∗ N/A
Anxiety 0.76 [0.58,1.00] 0.047∗ N/A

Abbreviations: B = standardized beta; CI = confidence interval; OR = odds ratio; RR = risk ratio. n = 2948 for all analyses. Estimates are from
ordinary least squares, Poisson or logistic regression on multiply-imputed datasets and are adjusted for age, sex, race, nativity status, parents’ nativity
status, number of siblings, whether the subject lived with biological parents, childhood socioeconomic status (SES), subjective SES, childhood
welfare status, residential area, residential stability, maternal and paternal smoking, whether the subject lived with an alcoholic as a child and
religiosity. For binary outcomes, we used Poisson regression if the sample prevalence was >10% (overweight/obesity, smoking, binge drinking,
other substance use and depression) and otherwise logistic regression (marijuana use and anxiety).
a∗ = p < 0.05; ∗∗ = p < 0.01; ∗∗∗ = significant under Bonferroni correction, counting all outcome measures (p < 0.002).
bThis correction could be applied only to the continuous outcomes, so we corrected only for multiplicity among those 17 hypothesis tests. N/A
indicates a noncontinuous outcome.

thresholds. For studies that report on both continuous
and dichotomous outcomes, we have found it helpful, for
reader presentation, to horizontally stagger the effect es-
timates so that risk ratios for binary outcomes are in one
column, and regression coefficients for continuous out-
comes are in another, as in Table 2 here. For continu-
ous outcomes, both for the purposes of effect size com-
parison (which we will discuss further in Section 7.4 be-
low) and to facilitate calculation of E-values, we recom-
mend continuous outcomes in general be standardized to
per-standard deviation changes, and perhaps especially so
when the outcome scale is not well recognized (e.g., hap-

piness or meaning scales). Table 3 can report on E-values
for each outcome both for the estimate itself, and for
the confidence interval. When standardized outcomes are
used, it is important that the standard deviation of the out-
come for the population be reported either in the paper or
a supplement since such standard deviations can vary dra-
matically across populations depending on whether they
are more homogeneous or diverse.

6.2 Details of Measures in Online Supplements

In our existing outcome-wide analyses (Chen et al.,
2018, 2019, Chen and VanderWeele, 2018), we have often
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TABLE 3
Robustness to unmeasured confounding (E-valuesa) for causal effects of parental warmth (1994–1995) on health and well-being outcomes

(2004–2006)

Health and well-being outcome E-value for point estimate E-value for CI

Overall composite
Overall flourishing (continuous) 1.69 1.59

Flourishing domain composites
Emotional well-being 1.67 1.57
Social well-being 1.49 1.38
Psychological well-being 1.64 1.53

Flourishing subscales
Emotional well-being

Positive affect 1.64 1.53
Life satisfaction 1.59 1.48

Social well-being
Meaningfulness of society 1.23 1.00
Social integration 1.56 1.46
Social acceptance 1.39 1.26
Social contribution 1.37 1.25
Social actualization 1.34 1.20

Psychological well-being
Autonomy 1.34 1.20
Environmental mastery 1.50 1.39
Personal growth 1.39 1.27
Positive relations 1.76 1.66
Purpose in life 1.22 1.00
Self-acceptance 1.66 1.56

Adverse health behaviors
Overweight or obese 1.08 1.00
Smoking 1.30 1.00
Binge drinking 1.17 1.00
Marijuana use 1.46 1.00
Any other drug use 1.64 1.27

Mental health problems
Depression 1.92 1.59
Anxiety 1.56 1.04

Abbreviations: CI = confidence interval.
aSee VanderWeele and Ding (2017) for the formula for calculating E-values.

found it necessary to relegate some of the details on the
measures used to an online supplement. Because the ex-
posure is fixed in outcome-wide analysis and is the same
for all outcomes, our recommendation is to discuss de-
tails of the exposure measurement in the text itself, and
also to discuss issues related to the timing of the expo-
sure, outcome and covariates (the considerations in Sec-
tions 2.2–2.6 of this paper) in the body of the text also.
However, when word counts are limited, as they often are
with biomedical journals especially, we recommend plac-
ing more detailed descriptions of the measurement details
and descriptive and psychometric properties of what are
often an extensive number of outcomes and covariates in
an online supplement. For some social science journals,
with more generous word limits, this may not be neces-
sary, but when word counts are limited, comment on vari-
able timing and exposure measurement can be made in

the text and covariate and outcome details can be placed
in an online supplement.

6.3 Effect Sizes for Continuous Exposures

For continuous exposures, we recommend, for purposes
of comparison, reporting primary analyses in one of three
ways: (i) using the nominal exposure scale if this is well
understood and selecting two values of the exposure that
are substantively meaningful and comparing effects for
them, or (ii) using a per-standard deviation standardized
scale for the exposure if the scale used is not well under-
stood; or (iii) dividing the exposure scale into tertiles or by
median split and reporting effects sizes across the corre-
sponding exposure categories. Reporting also need not be
restricted to just one of these approaches and in general it
may be desirable both to report on one of the approaches
(i) or (ii) and also approach (iii). It can often be easier
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to explain to nontechnical readers changes in outcomes
across categories by referring to high and low levels of
the exposure. Approaches (ii) and (iii) also make it eas-
ier to describe and present the results of E-value calcula-
tions since the exposure change is less arbitrary. Approach
(ii) of using per-standard deviation changes is not always
satisfactory, as a standard deviation change in the expo-
sure will be relative to the population and might in fact
constitute a small change for a relatively homogeneous
population, but a very large change for a diverse popu-
lation. While standardized measures are problematic for
effect size comparisons across populations (Greenland,
Schlesselman and Criqui, 1986), they are less problem-
atic within populations, provided the standard deviations
themselves are also reported, since they then constitute
only a rescaling of the original exposure scale. Examples
of these additional analyses for the data example above
are given in the online supplement to this paper.

6.4 Effect Size Reporting and Conversions and
Comparisons

To facilitate comparison across effect sizes for differ-
ent outcomes, continuous outcomes can also be converted
to approximate risk ratios. We would not recommend this
for the primary analyses but perhaps as an additional anal-
ysis for an online supplement. This can be done either
by dichotomizing the continuous outcome at a substan-
tively meaningful value or using a median split; or al-
ternatively by the approximate conversion between stan-
dardized effect sizes and risk ratios referred to in Sec-
tion 3.1 whereby a standardized effect size “d” with stan-
dard error sd is converted to an approximate risk ratio by
RR ≈ exp(0.91×d) with approximate confidence interval
(exp{0.91 × d − 1.78 × sd}, exp{0.91 × d + 1.78 × sd}).
Again, this is derived using conversions often employed
in the meta-analysis literature between common-outcome
odds ratios and standardized effect sizes for continuous
outcomes (Hasselblad and Hedges, 1995, Borenstein et
al., 2009), and then between odds ratios and risk ratio
(VanderWeele, 2017d). Examples of this for the analysis
above are given in the online supplement.

7. ADVANTAGES OF OUTCOME-WIDE
LONGITUDINAL DESIGNS

As noted in the Introduction and as alluded to through-
out the above text, carrying out outcome-wide longitudi-
nal analyses has a number of advantages.

7.1 Conveys More Information

The most obvious advantage of the outcome-wide
approach over individual studies of single exposure-
outcome relationships is that far more information is con-
veyed in a single publication. The reader has a sense as to
the effects of an exposure on a broad range of outcomes.

There is an efficiency gain for the reader who need not
search through countless studies; evidence for effects of
the exposure on numerous outcomes is presented at once.
There is also an efficiency gain for the researcher, and
for the research community. The effort to go through the
peer-review process for a large number of distinct papers,
each reporting a single exposure-outcome association is
considerable; it is considerable for the researcher, and it
is considerable for the editors and peer reviewers. If a
study design is strong for one exposure-outcome relation-
ship, it will also often, though not always, be strong for
numerous other outcomes as well. We believe knowledge
will advance more rapidly if the outcome-wide approach
were broadly adopted. The number of total publications
would go down, but in an era wherein this number has
grown exponentially, this reduction would arguably be
no bad thing. It might be argued that this lower num-
ber could be problematic for the researcher for promo-
tion purposes. Our view is that such decisions should be
made principally on the underlying substantive contribu-
tion of research, rather than simply the number of publi-
cations. Moreover, while an outcome-wide analysis is cer-
tainly more work than the analysis of a single exposure-
outcome relationship, once the principles and reporting
practices are mastered, it is not dramatically more work;
and given the much greater contribution to the literature
we believe that the slightly lower number of publications
will often be offset by the greater prominence and con-
tribution of the studies themselves. We believe that ulti-
mately the outcome-wide approach will be of benefit both
to the broad research community and our knowledge base,
and also to the individual researchers themselves.

The conveying of dramatically more information in an
outcome-wide analysis is also arguably of benefit for pol-
icy and for public health (VanderWeele, 2017a). For ex-
posures such as hormone replacement therapy, or moder-
ate alcohol consumption, which may have beneficial ef-
fects on some outcomes and harmful effects on others,
it will be desirable to see all of these at once in mak-
ing informed public health and policy recommendation.
Ideally, one would arguably want the effects of the ex-
posures on numerous flourishing outcomes, broadly con-
ceived (VanderWeele, 2017b). The neglect of this can lead
to papers and results that are arguably of little relevance.
A recent paper reported positively on the beneficial effects
of divorce for weight loss (Kutob et al., 2017). We think
that the association is plausible due to the desire to reen-
ter the dating market. However, given the well-established
negative effects of divorce on so many other outcomes
(Marks and Lambert, 1998, Waite and Gallagher, 2000,
Wilcox, 2011, Shor et al., 2012), the effect on weight loss
is almost beside the point. An outcome-wide approach
that examined numerous outcomes would put the weight
loss result into proper context. Again, from a policy and
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public health perspective, we believe that it will be often
be best to examine effects on numerous outcomes simul-
taneously.

There are of course also limitations inherent in the at-
tempt to assess the effect of an exposure on numerous
effects simultaneously. The type and extent of theoreti-
cal discussion that often accompanies empirical analyses
in the social sciences of a single exposure-outcome rela-
tionship will not be possible for each and every outcome
in an outcome-wide analysis. General theoretical reflec-
tion might, however, be put forward with regard to why
the exposure should affect numerous, rather than one, out-
come. Outcome-wide longitudinal analyses might also be
viewed principally as input for subsequent theorizing. The
relationship between theory and empirical work is bidi-
rectional (King, Keohane and Verba, 1994), and certain
effects, if detected empirically, may give rise to new the-
ory, even if their initial discovery was not theoretically
motivated.

7.2 Reporting of Null Results

It has been frequently noted that one problematic aspect
of current practices in scientific publishing is that it is dif-
ficult to publish null results (Rosenthal, 1979, Ziliak and
McCloskey, 2008). Many journals do not want to publish
research that simply says there is no effect. However, it
has been argued that in some cases null results can be as
or more important or informative than results suggesting
evidence for an effect (Abadie, 2018). An outcome-wide
analysis allows for the reporting of null results, along with
those for which there seems evidence for an effect, in a
single paper. We believe that this too would be an impor-
tant contribution of the outcome-wide approach for more
easily allowing for the publication of null results.

7.3 Less Temptation to Choose Models

Another advantage of the outcome-wide approach is
that it may lead to fewer instances in which the analysis
results are substantially biased by investigator choice after
looking at the data. We believe there will be less tempta-
tion, when employing the approach described above for
outcome-wide analyses, to choose among different mod-
els and different sets of covariates to obtain the results the
investigator desires. While this should not be done even
for a single model, there is inevitable temptation to make
decisions on analysis retrospectively, after seeing the re-
sults, and selecting those most similar to what one hopes
to find. This phenomenon is sometimes referred to as
one of “researcher degrees of freedom” (Simmons et al.,
2016) or a “garden of forking paths in the analysis of data”
Gelman and Loken (2014). The outcome-wide approach
does not eliminate this danger entirely. It is still possible
to run numerous outcome-wide analyses, each outcome-
wide analysis with a different set of covariates, or with

a different type of modeling approach and select among
them. However, if, within any given outcome-wide analy-
sis, each outcome in that specific outcome-wide uses the
same covariates, and the same modeling approach, then
the “researcher degrees of freedom” will be dramatically
reduced as compared with if all of these same choices
were able to be made separately, and differently, for each
and every outcome. Said another way, it will be more
difficult to “optimally choose” results across numerous
outcomes in accord with investigator expectations when
the investigator is constrained to make similar modeling
choices across the outcomes under consideration. We be-
lieve that this too is an advantage of the outcome-wide
approach.

It could, however, be argued that with outcome-wide
analyses there will still be temptation to examine numer-
ous outcomes and then only selectively report the results
of some of these. This certainly is a danger. We hope
that the previous comment on the opportunity to more
easily report null results will in part mitigate this dan-
ger. Indeed the reporting of null results may even, in fact,
provide some evidence that the positive results obtained
are not due solely to unmeasured confounding, if some
of the outcomes might plausibly serve as negative con-
trols (Lipsitch, Tchetgen Tchetgen and Cohen, 2010). The
question of the selection of outcomes is indeed an im-
portant one. When data are available and effects on hu-
man well-being are of interest, we would recommend se-
lecting several outcomes, as broad as possible, from each
of the aforementioned flourishing domains (VanderWeele,
2017b): happiness and life satisfaction, mental and phys-
ical health, meaning and purpose, character and virtue,
close social relationship and financial security. Of course,
in most datasets there will be richer data on certain of
these outcomes than on others. Preregistration of ana-
lytic plans can also mitigate some of the dangers of re-
searcher degrees of freedom; however, with existing sec-
ondary data, it can sometimes be difficult to be certain
whether the registration preceded or followed preliminary
analyses.

7.4 The Comparison of Effect Sizes

Another advantage of the outcome-wide approach is the
capacity to compare effect sizes of the exposure across
outcomes. Is the effect of parental warmth on autonomy
or on life satisfaction greater? If these associations are re-
ported in different studies using different populations it
can be very difficult to make these determinations. A dif-
ference in the magnitude of association may be due to
larger effects on some outcomes than on others, but could
also be due to the fact that different populations are used
in different studies; age or race or income differences
across the populations may be responsible for the dif-
fering effects sizes on two different outcomes assessed
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in two different studies. An outcome-wide analysis al-
lows, at least for the sample under consideration, a more
clear and direct comparison of effect sizes. Effects may of
course still differ across populations and results from one
study should not necessarily be generalized to other popu-
lations, but as outcome-wide studies are undertaken in dif-
ferent populations for the same sets of exposure-outcome
relationships, it may become clearer on which outcomes
effects of an exposures are particularly large across popu-
lations.

8. DESIGN VARIATIONS

In this section, we will consider variations on, and al-
ternatives to, the outcome-wide longitudinal design and
how analogues of it might, or might not, be applied in
other contexts or with other approaches intended to assess
causal effects.

8.1 Challenges of Exposure-Wide Designs

There has been a recent suggestion that the research
community begin to move toward “exposure-wide” stud-
ies, in which associations between an outcome and many
exposures—possibly very many exposures—are assessed
simultaneously (Ioannidis, 2016). This has perhaps arisen
in part because of the success of genome-wide associa-
tion studies. However, as argued elsewhere (VanderWeele,
2017a), due to the nature of confounding, attempts at
“exposure-wide epidemiologic” studies are likely to be
plagued by biases, in contrast to the “outcome-wide” ap-
proach laid out above. The notion of an exposure-wide
epidemiologic study is that a researcher could select a
specific outcome, regress it upon a wide range of differ-
ent exposures, either one-at-a-time or all simultaneously,
assess which relationships are most substantial, and for
which there is the strongest statistical evidence of an as-
sociation, and, provided appropriate control is made for
multiple testing, thereby potentially gain insight into the
underlying causes of the disease or outcome under study.
This approach has effectively been what has been used
in genome-wide association studies, and these have now
yielded thousands of replicated associations between ge-
netic variants and various diseases (Hunter, 2012, Welter
et al., 2014).

The difference between genetic exposures and many
others, and the difference that creates problems for an
exposure-wide analyses, lies in the nature of confounding.
In a genome wide association study, although hundreds of
thousands of variants are examined, it is often thought to
be the case that, subject to control for population stratifi-
cation (often done say by principal components analysis
adjustment strategies), the association between the variant
and the outcome is roughly unconfounded (Hunter, 2012).
While a particular variant may serve as a proxy for the
true effect of another, it is the case that once the genome

is fixed, each variant is acting on the outcome, possibly
in conjunction with, but not by altering the value of, any
other variant. This is manifestly not the case with envi-
ronmental, behavioral and social exposures, wherein one
exposure is likely to affect many others downstream. Each
exposure will thus likely require a distinct set of other
variables to control for confounding, with the confound-
ing variables for a particular exposure consisting only of
other exposures that are temporally prior to it. Exceptions
to this might occur if all exposures occur contemporane-
ously, such as an entire set of nutrients or foods, or an en-
tire set of chemicals, all assessed at once. But if the set of
exposures includes social, behavioral and environmental
exposures, some assessed in childhood, some in adoles-
cence, some in adulthood, then this will be problematic. If
we include all of our exposures in the model and some of
these are downstream from others, then the downstream
exposures will likely mediate, and potentially block, the
effects of prior exposure.

This is problematic for two reasons. First, for each ex-
posure, the association estimate will, at best, represent
the direct effect of the exposure not through any of the
other exposures in the model downstream of it. We are
not getting the overall total effect of each exposures. If
there are numerous subsequent exposures that mediate
the effect of the prior exposure then the importance of
the prior exposure (in terms of its overall influence on
the outcome) might be severely misrepresented as noted
above in Section 2.3. Second, it is now well documented
in the methodological literature that if control is made for
mediating variables on pathways from exposure to out-
come, then any unmeasured common cause of the medi-
ating variable and the outcome can induce bias; spurious
associations between exposure and outcome can be gen-
erated even if the exposure has no effect on the outcome
whatsoever. This problem is sometimes referred to in the
literature as one of “collider stratification bias” (Cole et
al., 2010, Hernán and Robins, 2020). When considering
multiple exposures simultaneously the likelihood of such
biases is substantial. In an exposure-wide study, the num-
ber of potential instances of such biases that must be con-
sidered when dozens, or hundreds, of exposures are con-
sidered simultaneously, is mind-boggling, when each ex-
posure must have a separate set of confounders. Empirical
studies currently struggle with these issues in studies of a
single exposure. It is arguably not reasonable then to think
that we could do this adequately when numerous expo-
sures are considered at once. Moreover, even if we could,
we would still only be obtaining direct effects as above.

As discussed in Section 2, if the total effect of the ex-
posure on the outcome is desired, then adjustment should
not be made for variables that might be affected by the
exposure. The implications of this, as indicated above, is
that for each individual exposure, we will likely need a
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distinct set of confounding variables. We cannot make the
decision about confounding for all variables at once when
we are supposedly examining the effects of multiple ex-
posures. A single regression model will not suffice; nor
will simply looking at each bivariate association one at
a time, as in genome-wide studies. This arguably creates
difficulties for a simple approach to exposure-wide stud-
ies. In contrast, with an outcome-wide study, while some
variables may confound the relationship between the ex-
posure and one outcome, but not another, we do still have
the option, unlike in the exposure-wide epidemiologic set-
ting, of simply controlling for all, or almost all, of the
variables prior to the exposure as described in Section 2
above. We have the option of attempting to make con-
founding control decisions for all outcomes at once. Said
another way, with the exposure fixed, the set of all vari-
ables temporally prior to the exposure stays the same even
when we change the outcome. With the outcome fixed, the
set of variables temporally prior to the exposure changes
as we change the exposure.

8.2 Lagged Exposure-Wide Designs

However, an alternative exposure-wide approach with
a restricted set of exposures, that are roughly contempo-
raneous with one another, may turn out to be more fea-
sible (VanderWeele, 2017a). With cohort data for which
repeated measures of exposures are available, one might
examine a single outcome at the end of follow up (call
this wave W3) and fit a series of regressions, each of
which controls for all exposures simultaneously in one
wave (W1) but then also includes a single subsequent
exposure—one per regression—from the next wave (W2).
We might refer to this as a “lagged exposure-wide de-
sign.” An approach such as this would still make all con-
founding control decisions simultaneously (all covariates
and exposures available at W1) in all regressions, and thus
could be automated. As per discussions above about co-
variate timing, one would want W1 and W2 to not tempo-
rally be too far apart so as to risk the possibility of sub-
stantial time-dependent confounding.

With a single outcome Y at wave 3, and exposures
(A1, . . . ,AJ ) at wave 2, and a set of covariates C that ide-
ally includes all of the same exposures at wave 1, and also
demographic and other covariates we could fit a series of
regression models:

E[Y |aj , c] = αj + βjaj + γ ′
j c

and likewise for other regression models that may be of
interest. For each exposure Aj at wave 2, provided the
confounding control assumption holds that Y(aj )�Aj |C,
the coefficient βj in each model will provide a consis-
tent estimate of the causal effect of exposure Aj on out-
come Y on the relevant scale corresponding to the re-
gression model being used. For a linear regression model

E[Y |aj , c] = αj + βjaj + γ ′
j c, we have that, provided

Y(aj ) � Aj |C, then βj = E[Y(Aj = 1) − Y(Aj = 0)|c].
Such analyses would not give a complete picture of all

of the exposures relevant for the outcome since they are
effectively restricted to those measured at a given point in
time, thus precluding, for example, relevant childhood ex-
posures if the primary waves of the analysis (W1 and W2)
were in adulthood. Such analyses are also effectively re-
stricted to exposures that can change over time within the
relevant time interval (i.e., between W1 and W2). How-
ever, this lagged exposure-wide approach might still be
useful for gaining insight into the determinants of an out-
come at a particular point in time. In this regard, they are
arguably also useful from a policy perspective in deter-
mining what can, or cannot, effectively change the out-
come of interest at that time. Of course, the outcome-wide
approach could itself be employed across numerous expo-
sures giving something of a hybrid between the outcome-
wide and exposure-wide approaches. See Betancourt et al.
(2015) for such an example in examining the effects, for
former child soldiers in Sierra Leone, of schooling, com-
munity acceptance, stigma and other exposures on numer-
ous subsequent outcomes.

8.3 Interaction Outcome-Wide Studies

The outcome-wide approach we have discussed has
concerned a single exposure, but if we employed such an
approach with two exposures, we could also assess poten-
tial interaction between the two exposures across the dif-
ferent outcomes of interest. If the two exposures, which
we will denote here by A and X, are relatively contempo-
raneous then this could be done in a relatively straightfor-
ward way within a regression context by fitting a series of
models of the form:

E[Yk|a, x, c] = αk + βka + δkx + φkax + γ ′
kc

or likewise for other regression models that may be of
interest. One could report the main effects and the in-
teractions of both of the exposures A and X outcome-
wide. One could also potentially report the proportion
of the effect due to just the first exposure alone, due to
just the second exposure alone, and due to their interac-
tion (VanderWeele and Tchetgen Tchetgen, 2014). Such
measures to assess the proportion attributable to interac-
tion can also, across models and outcome types, all be
converted to a difference scale for comparative purposes
(VanderWeele and Tchetgen Tchetgen, 2014).

If the exposures are not contemporaneous but rather one
affects the other and there are potential intermediate con-
founders that are affected by the first exposure and then
go on to confound the relationship between the second
exposure and the outcome, then the confounding control
assumptions become more complex (VanderWeele, 2009,
Robins, Hernán and Brumback, 2000). The approach
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could still be employed in principle but causal models,
such as marginal structural models (Robins, Hernán and
Brumback, 2000), that extend beyond the simple regres-
sion approach described above, would need to be em-
ployed. The same is also true for causal effects of time-
varying exposures to which we now turn.

8.4 Outcome-Wide Studies for Causal Effects of
Time-Varying Exposures

As noted in Section 2, with exposures like exercise, or
employment, or religious service attendance, that change
over time, one can attempt to assess the causal effects
of an entire trajectory of the exposures. The confound-
ing control assumptions required for this, and the causal
modeling approaches needed to do this are then more
complex and beyond the scope of the paper. Good intro-
ductions to causal inference with time-varying exposures
are given elsewhere (Robins, 1992, Robins, Hernán and
Brumback, 2000, Robins and Hernán, 2009, Hernán and
Robins, 2020) and the reader is referred there for further
discussion.

However, as regards an outcome-wide approach, this
could in principle be done also with causal effects of
a time-varying exposure, and similar principles to what
was described above in Section 2 would arguably be ap-
plicable but extended to the time-varying exposure. In
general, we believe that this will typically be more fea-
sible for marginal structural models (Robins, Hernán and
Brumback, 2000) and parametric g-formula approaches
(Garcia-Aymerich et al., 2014, Hernán and Robins, 2020)
than for structural nested models (Robins, 1992, Robins
and Hernán, 2009). With marginal structural models and
parametric g-formula approaches, the same models could
potentially be employed across outcomes and only the
final outcome under consideration would need to be
changed. With structural nested model approaches be-
cause many of the statistical estimation options require
numeric grid searches derived from the outcomes them-
selves, this could be more challenging, and involved, in
an outcome-wide setting. But once again, there is nothing
in principle that would prohibit carrying out an outcome-
wide analysis for the causal effects of a time-varying ex-
posure.

8.5 Quasi-Experimental Outcome-Wide Designs

The outcome-wide approach could also in principle be
applied in various quasi-experimental designs. The rea-
sonableness of this may vary by context. When an instru-
mental variable analysis is being used to assess causal
effects, the outcome-wide approach may be reasonably
plausible when the instrument for the treatment or expo-
sure is itself randomized, as may be the case when as-
signment to treatment is taken as an instrument for treat-
ment compliance or when the draft lottery number is used

as an instrument for participation in the army. One could
assess, say, the local average treatment effects (Angrist,
Imbens and Rubin, 1996) across numerous different out-
comes. However, in contexts in which the instrument is
not subject to some degree of randomization and careful
substantive arguments need to be made to justify the ex-
clusion restriction, then an outcome-wide approach will
likely be less plausible as these exclusion restriction argu-
ments would have to be made for each and every outcome.

For regression discontinuity designs (Lee and Lemieux,
2010, Bor et al., 2014), if the running variable is such
that the rule for treatment assignment is deterministic,
or at least follows a definitive randomized protocol, an
outcome-wide approach could potentially be employed.
One could assess the local conditional treatment effect
across numerous different outcomes. If, however, substan-
tive arguments are needed to justify that no other change
relevant to the outcome occurs when the running variable
reaches the discontinuity threshold and these arguments
need to be made for each and every outcome, then the
outcome-wide approach may be less reasonable in such
contexts.

With interrupted time-series designs (Morgan and Win-
ship, 2015, Bernal, Cummins and Gasparrini, 2017), it
may be more difficult to carry out outcome-wide as care-
ful assessment of the outcome trajectories, before and af-
ter the intervention, would be required for each and every
outcome.

8.6 Mediator-Wide and Moderator-Wide Studies

Another variation on the outcome-wide or exposure-
wide design would be within the context of either mod-
eration or mediation, wherein both the exposure and the
outcome are fixed but numerous potential moderators or
mediators are examined one at a time. With moderation,
such a moderator-wide study could consider a variety of
moderators all occurring prior to the exposure of interest.
With mediation, a mediator-wide design could consider
numerous mediators all occurring subsequent to the ex-
posure. These mediators could potentially be examined
one at a time, but this approach is potentially problematic
because if the mediators affect one another but are eval-
uated as mediators singly, one at a time, this can gener-
ate considerable biases (VanderWeele and Vansteelandt,
2013, VanderWeele, 2015). The approach may only be
plausible if the mediators themselves are measured rela-
tively contemporaneously, shortly after the exposure, and
then have relatively little effect on one another over the
relevant time horizon (VanderWeele, 2015). See Kim and
VanderWeele (2019) for an example of a mediator-wide
study assessing potential mediators for the effect of reli-
gious service attendance on all-cause mortality. In settings
in which the mediators do affect one another, it may be
more reasonable to assess the effect mediated through the
entire set of mediators considered jointly (VanderWeele
and Vansteelandt, 2013), rather than one at a time.
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9. CONCLUSION

In this paper, we have put forward a new template
for empirical studies intended to assess causal effects
across outcomes: the outcome-wide longitudinal design.
We have discussed principles of confounding control in
these designs, metrics to assess unmeasured confounding,
and additional metrics to deal with questions of multiple
testing. We provide readily generalizable and documented
R code for analyzing these designs (https://osf.io/tdcyw/).
Much of the paper has provided or referenced theoreti-
cal justification for the proposed approach, but some of
the material that has been discussed has been more in the
spirit of tentative guidelines for the approach. We have
been employing this approach in many of our own re-
cent analyses and have referenced some of these examples
(Chen et al., 2018, 2019, Chen and VanderWeele, 2018,
Betancourt et al., 2015), but guidelines will perhaps be
refined as more analyses are carried out. The paper has
laid out a vision for the types of analyses that might be
possible—a new template. The material discussed is not
so much a theory of causal inference—though we have
discussed a number of theoretical contributions that have
motivated the approach—but rather it is a theory of causal
inference for addressing a particular set of questions. It is
theory for an approach to causal inference that attempts
to assess the effects of a single exposure at a single period
of time on numerous subsequent outcomes. Numerous
other questions within causal inference such as regards
time-varying exposures (Robins, 1992, Robins, Hernán
and Brumback, 2000, Robins and Hernán, 2009, Hernán
and Robins, 2020), mediation analysis (Imai, Keele and
Tingley, 2010, VanderWeele, 2015), censoring by death
(Hayden, Pauler and Schoenfeld, 2005, Rubin, 2006),
contagion and interference (Sobel, 2006, Hudgens and
Halloran, 2008, Tchetgen Tchetgen and VanderWeele,
2012) and local treatment effects (Angrist, Imbens and
Rubin, 1996) will require other approaches and other the-
ory. The causal inference theory laid out here is thus, in
some ways, somewhat narrow in scope.

On the other hand, we believe that the outcome-wide
longitudinal design has the potential to become the norm
for a particular set of causal questions intended to assess
causal effects on numerous outcomes using longitudinal
or panel data and confounding control. We believe it has
the potential to largely replace studies that currently as-
sess only a single exposure-outcome relation using regres-
sion models or propensity scores. There will, of course,
always be need for careful evaluation of single exposure-
outcome relationships. But in many contexts, when many
outcomes are of interest and relevance, as we believe they
often are, then the outcome-wide approach will, we think,
often be preferable. Of course the value, and even pos-
sibility, of such outcome-wide studies depends critically
on having a broad range of outcomes available and, to

that end, we strongly encourage data collection on nu-
merous aspects of human flourishing broadly construed
(VanderWeele, 2017b). In numerous contexts, we believe
that use of outcome-wide designs will help the field with
more objective inference, with the reporting of null re-
sults, with more consistent evaluation of potential unmea-
sured confounding, with the comparison of effect sizes,
and with better assessment of policy and public health rel-
evance. These advantages will thereby also contribute to a
more rapid and accurate advancement of knowledge and,
if a broad range of outcomes are examined, with the pro-
motion of human flourishing. We encourage therefore the
use of this design in practice and look forward to future
refinements and developments.
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