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Discussion of Models as Approximations
I & II
Dag Tjøstheim

“All models are wrong but some are useful.” This
famous quote is attributed to George Box. The authors
prefer to quote David Cox: “It does not seem helpful
just to say all models are wrong. The very word model
implies simplification and idealization.”

The authors stress the model approximation aspect
in their two interesting and inspirational papers. The
first paper is concerned with linear regression models,
or rather with regression functionals which are linear
in the parameters, and where the functional itself is an
OLS functional. In the second paper, more general re-
gression functionals are treated, including likelihood-
like functionals where nonlinearities can be meaning-
fully discussed.

The use of linear models as approximations is per-
fectly legitimate of course and is probably the most
common approximation used in statistics, quite often
with an additional Gaussian distributional assumption.
In the first paper, the authors deviate from perhaps most
contributors in that they try to find an interpretation of
slope parameters as seen from the general viewpoint of
a more correct and possibly nonlinear model. More-
over, they examine estimation errors under this per-
spective. Most users would be satisfied with evaluating
these properties under the assumption that the linear
model is correct.

The errors of parameter estimates in both papers are
decomposed into two components; one component due
to natural stochastic variations which may well be het-
erogeneous, and one component that is due to model
errors. In the first paper, the authors use the ratio, the
RAV, between a model trusting error and a model ro-
bust error to test model fit, and in the second paper they
suggest that a well-specification test can be based on
reweighting the data.

The model trusting error might be quite large of
course, if, as in some cases in the first paper, the true
model is strongly nonlinear, and the OLS regression
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functional by default ends up in a linear structure. The
authors quote Freedman’s somewhat provocative state-
ment in this case where “... it is quite another thing
to ignore bias [nonlinearity]. It remains unclear why
applied workers should care about the variance of the
estimator for the wrong parameter.” I must admit that
I have some sympathy with this statement, at least if
it can be very easily detected that a linear model is
completely wrong with resulting slope parameter be-
ing close to meaningless.

The authors themselves admit that a general interpre-
tation of a linear regression parameter is “vexing,” and
I am not completely convinced by the authors attempt
in Section 10 in the first paper. I find it not so easy to
grasp. Parts of the difficulties are, in my opinion, that
the authors force a linear structure on something that
might be better, or to a better approximation, be mod-
eled by a nonlinear or nonparametric approach, where
a concrete and easy to understand interpretation of lo-
cal slopes can be found.

In this respect I find the second paper, where nonlin-
ear regression models are allowed, to be more satisfy-
ing. Actually, one might think that the linear regression
functional of paper 1 could have been addressed as a
special case of the set-up in paper 2.

I applaud the general set-up with population based
regression functionals to define population parameters
by extremal values of the functionals. In this sense the
authors’ approach is model free. The estimated param-
eters can then be obtained by minimizing the estimated
regression functionals and consistency and asymp-
totic distributions follow quite straightforwardly. If one
agrees that it is (almost) always meaningful to find er-
rors of these estimates, the two-component decompo-
sition of the errors is useful and ties in admirably with
two basic papers by Hal White, where White (1980)
is very much cited and deals with the purely random
noise components, and White (1981) is much less cited
and concerns the errors of model maladjustment.

The authors’ approach makes for interesting and
sometimes quite controversial reading for reasons
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mentioned already, one of them being the rather re-
strictive framework of a parametric linear approxima-
tion in paper 1. Nonparametrics are mentioned, espe-
cially in paper 2, where the authors also discuss ad-
ditive models. In my view—and quite probably in the
authors’ view—in data analysis, it is not so much a
question about a purely parametric model or a purely
nonparametric approach, but more of an interplay be-
tween the two approaches. A parametric model or a
parametric regression functional may benefit from a
nonparametric exploratory analysis in the beginning
and by a nonparametric diagnostic checking at the end
of the data fitting process. Vice versa, a nonparametric
approach may benefit from an underlying parametric
structure made local resulting in local parametric re-
gression functionals, as will be exemplified below.

In the further discussion, I have decided that rather
than concentrating on details of the authors’ approach,
I will try to indicate possible extensions and comple-
ments of their work. I will highlight local parameter re-
gression functionals, whose local parameters may have
an easier interpretation than that attempted by the au-
thors for the global linear OLS functional. I will also
try to illustrate what kind of problems one might meet
in an attempted extension to dependent data, both time
series and spatial data, where difficulties of slope inter-
pretation of the linear OLS functional may be exacer-
bated.

PARAMETRICS AND NONPARAMETRICS

Above I alluded to the interplay between nonpara-
metrics and parametrics. If one is in doubt whether
a given parametric structure, and in particular a lin-
ear one, is really appropriate for the data at hand, one
may simply test for that parametric structure. There
are many ways of doing this; see, for example, Härdle
and Mammen (1993). The asymptotic theory of such
functionals can be derived as in Härdle and Mammen
(1993), but is not always accurate for a moderate sam-
ple size, so that bootstrapping can be recommended. In
fact, Härdle and Mammen in their paper propose an ex-
ploratory test for a general parametric model f (x, θ)

for the conditional mean, with a known f , measured
against a nonparametric estimate of the same. They
use the wild bootstrap for evaluating the correspond-
ing test-of-fit functional.

In most cases, I believe that if there is an apprecia-
ble nonlinearity, this will be revealed by such an ex-
ploratory test. It will certainly immediately detect a
nonlinearity of parabolic form such as Y = a+bX2 +ε

mentioned as an example with a difficult-to-interpret
slope in Section 10 of the authors’ paper 1. One may
argue that one may just go ahead fitting a linear model
suggested by the OLS functional, and then test residu-
als in a goodness-of-fit test, of which there are numer-
ous ones, and where the authors introduce a new one
in terms of RAV. But one may have the impression that
the authors in paper 1 also want to consider the prop-
erties of parameter estimates as if the linear model is
an end product even in the face of strong evidence of
nonlinearity.

LOCAL PARAMETER REGRESSION
FUNCTIONALS

The introduction of regression functionals is not nec-
essarily limited to the parametric case. Also nonpara-
metric estimates such as the Nadaraya–Watson esti-
mator for the conditional mean may be so introduced.
Moreover, local linear regression functionals may be
introduced resulting in local parameters.

First, if one considers the functional E(Y − m(X))2

for an unknown m, it is well known that the optimal
solution, when it comes to minimizing it, is given by
m(x) = E(Y |X = x). This functional can be made lo-
cal by introducing a kernel function such that one con-
siders, (for simplicity of notation I consider the case of
a scalar Y,X only),

G(x) = E
[
(Y − a)2Kh(X − x)

]
,

where Kh(·) = K(·/h)/h with K being a kernel func-
tion and h a corresponding bandwidth. Finding the
minimum leads to the local parameter a = a(x) =
E(YKh(X−x))
E(Kh(X−x))

or by plug in, the Nadaraya–Watson es-
timator,

â(x) =
∑

i YiKh(Xi − x)∑
i Kh(Xi − x)

for given observations X1, . . . ,Xn. This gives the local
constant estimator of the conditional mean.

More appropriate in the context of the linear OLS
regression functional of the authors is a local linear re-
gression functional obtained by minimizing the local
OLS functional

E
[(

Y − a − b(X − x)
)2

Kh(X − x)
]
.

The estimated local regression parameters can then be
found by considering and minimizing the correspond-
ing empirical functional∑

i

(
Yi − a − b(Xi − x)

)2
Kh(Xi − x)
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leading to the estimate of the vector [a, b]T ,

[â, b̂]T = (
XT WX

)−1XT WY,

where

X =
⎛
⎜⎝

1 X1 − x
...

...

1 Xn − x

⎞
⎟⎠ and Y =

⎛
⎜⎝

Y1
...

Yn

⎞
⎟⎠

and where W = diag{Kh(Xi − x)}. This is the well-
known local linear conditional mean estimator; see,
for example, Fan and Gijbels (1996, Chapter 3). If
again m(x) = E(Y |X = x), then as n → ∞ and h →
0 such that nh → ∞, under weak regularity condi-
tions [â, b̂] = [â(x), b̂(x)] converges in probability to
[m(x),m′(x)], and asymptotic normality is obtained.

The slope parameter can be given a much more sat-
isfying interpretation in the local linear case just pre-
sented. For a finite and moderate h, the slope param-
eter b(x) = m′(x) measures approximately the change
m′(x)�x in Y as X increases from x to x + �x. As h

and �x decrease, the approximation is becoming more
precise.

The authors treat vector regression models where X
is a d-dimensional vector. In principle, the local linear
analysis can be extended to this case, but in practice
it is hit by the curse of dimensionality as d increases.
An often used device for circumventing the curse is
to assume that one might approximate the conditional
expectation

m(x) = E[Y |Xi = xi, i = 1, . . . , d]
by an additive form

m0 +
d∑

i=1

mi(xi).

One seeks the optimal approximation in the least-
squares sense, which is formulated as a nonlinear (ad-
ditive) regression functional below. To make the terms
identifiable, it is required that

∫
mj(y)p(y) dy = 0,

j = 1, . . . , d , where p is the marginal density of Y . In
general, one then obtains the optimal additive approxi-
mation by minimizing the functional

(1) E

[
Y − m0 −

d∑
i=1

mi(Xi)

]2

with

m0 +
d∑

i=1

mi(·) ∈ Fadd,

where Fadd is the function space

Fadd =
{
m0 +

d∑
i=1

mi(xi)|m0 ∈ R,

∫
mi(y)f (y) dy = 0 for 1 ≤ i ≤ d

}
.

Mathematical details can be found in Mammen, Linton
and Nielsen (1999). Estimates can subsequently be ob-
tained by smooth backfitting. This is the algorithm for
the analogue of the Nadaraya–Watson estimator (lo-
cally constant) implemented for the conditional expec-
tation. For a general discussion of the smoothing back-
fitting algorithm, including the one based on more effi-
cient local linear estimation I refer to Mammen, Linton
and Nielsen (1999).

Again a local interpretation of slopes of the various
components can be given.

Local parameter arguments are not limited to local
least squares functionals. It is also possible to make
parameters of general distributions local and use a lo-
cal likelihood functional to define local population pa-
rameters θ(x) in an approximating family {p(·, θ(x))}
of densities. Subsequently, local likelihood arguments
are used to estimate these local parameters. Hjort and
Jones (1996) argue for such an approach with appli-
cations to estimating a density f . I have been in-
volved in this work in the special case of a Gaus-
sian approximating family {ψ(·, θ(x))}. In that case,
for a two-dimensional x a local population parame-
ter θ(x) can be determined by minimizing the func-
tional

q =
∫

Kh(v−x)
[
ψ

(
v, θ(x)

)− logψ
(
v, θ(x)

)
f (v)

]
dv.

Here, v is a two-dimensional running variable, and
f is the density sought approximated. Further, ψ(·)
is a bivariate normal distribution with local parame-
ter vector θ(x) defined by the 5 parameters of the bi-
variate normal distribution, namely the two means, the
two variances and the correlation. These local popu-
lation parameters can be estimated by a local likeli-
hood method, with consistency and asymptotic normal-
ity obtained under regularity conditions. A number of
applications, among others to a local correlation func-
tion, have been given. See, for example, Tjøstheim and
Hufthammer (2013) and Lacal and Tjøstheim (2019)
for references.
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THE DEPENDENT CASE

The authors do not treat the dependent variable case.
I am not going to treat this case extensively either, since
that would require separate papers, which possibly the
present authors are going to embark on. Here, I will
just point out a few points which makes this extension
nontrivial.

In the i.i.d. situation, the parabola case Y = a + bX2

mentioned in Section 10 in the first paper may possibly
be considered as contrived and easy to detect by any
kind of nonparametric exploratory analysis. However,
in the time series ARCH-GARCH case an analogous
construction is both realistic and difficult to detect by a
linear regression functional approach.

To take the simple example of a first-order ARCH
model given by

Yt =
√

a + bY 2
t−1εt ,

where {Yt } is the observed time series and {εt } is a se-
ries of hidden i.i.d. zero mean variables independent
of {Yt } with variance σ 2

ε . In this case, which is also the
case for the more general GARCH models, the correla-
tion between Yt and Ys is zero for any t �= s. The linear
regression functional will in this case completely fail to
reveal the (volatility) structure of the process, and this
structure is very important in finance. And in this case
it is not equally easy to detect the nonlinearity structure
doing a local regression exploratory analysis; it will fail
since E(Yt |Yt−1) = 0. A regression functional can be
used on the process {Y 2

t }, or a more general likelihood
type functional can be used as indicated in the second
paper.

Another possible stumbling block in an extension to
the dependent case is the authors’ elegant use of boot-
strap arguments to create a more stable estimator than
the sandwich estimator. It is not immediately clear how
this can be generalized to the time series case. It would
be interesting to see if the block bootstrap or the sta-
tionary bootstrap could be used. It should be noted that
Hal White (see Gonçalves and White (2004)) has done
important work in this area as well. See also more re-
cent work by Nordman and Lahiri (2014). A problem
in the potential application to GARCH type processes
is that in existing algorithms the block length seems
to be determined by the autocorrelation function of the
time series, and this is identically zero for nonzero lags
for GARCH processes. One possible way out could be
to use the existing formulas for block length on the
squares of the process.

I will close this discussion with a few remarks on
spatially dependent variables. It is well known that

OLS estimation does not work well for spatial vari-
ables, at least not for so-called simultaneous autore-
gressive (SAR) models on a regular lattice. This was
demonstrated already in the classic paper by Whittle
(1954). Even for the process on the line

Yl = aYl−1 + bYl+1 + εl,

he points out that minimization of the regression func-
tional E(Yl − aYl−1 + bYl+1)

2 leads to nonsensical re-
sults. This is due to the fact that aYl−1 + bYl+1 and
εl are dependent and that E[YlYl−1] = E[YlYl+1]. This
is avoided in the additive functional (1) when adapted
to space (cf. Lu et al. (2007)) where in the line case,
say, in general E[Yl|Yl−1] �= E[Yl|Yl+1]. This is also
a reason that conditional models are more popular
than simultaneous models in spatial analysis. Another
way of avoiding the OLS-problems for SAR mod-
els is to use the likelihood function, often the like-
lihood constructed via the spectral distribution. This
was demonstrated already in Whittle’s paper, where
he used spectral arguments to derive what has subse-
quently been named the Whittle likelihood in the spa-
tial case. This leads to a far more computational de-
manding problem in finding estimates because of the
evaluation of a complexly structured Jacobi determi-
nant.
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