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Gaussianization Machines for
Non-Gaussian Function Estimation Models
T. Tony Cai

Abstract. A wide range of nonparametric function estimation models have
been studied individually in the literature. Among them the homoscedastic
nonparametric Gaussian regression is arguably the best known and under-
stood. Inspired by the asymptotic equivalence theory, Brown, Cai and Zhou
(Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–2046) and
Brown et al. (Probab. Theory Related Fields 146 (2010) 401–433) developed
a unified approach to turn a collection of non-Gaussian function estimation
models into a standard Gaussian regression and any good Gaussian nonpara-
metric regression method can then be used.

These Gaussianization Machines have two key components, binning and
transformation. When combined with BlockJS, a wavelet thresholding pro-
cedure for Gaussian regression, the procedures are computationally efficient
with strong theoretical guarantees. Technical analysis given in Brown, Cai
and Zhou (Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–
2046) and Brown et al. (Probab. Theory Related Fields 146 (2010) 401–433)
shows that the estimators attain the optimal rate of convergence adaptively
over a large set of Besov spaces and across a collection of non-Gaussian
function estimation models, including robust nonparametric regression, den-
sity estimation, and nonparametric regression in exponential families. The
estimators are also spatially adaptive.

The Gaussianization Machines significantly extend the flexibility and
scope of the theories and methodologies originally developed for the con-
ventional nonparametric Gaussian regression. This article aims to provide a
concise account of the Gaussianization Machines developed in Brown, Cai
and Zhou (Ann. Statist. 36 (2008) 2055–2084; Ann. Statist. 38 (2010) 2005–
2046), Brown et al. (Probab. Theory Related Fields 146 (2010) 401–433).
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regression, variance stabilizing transformation, wavelets.

1. INTRODUCTION

Motivated by a wide range of applications, many
nonparametric function estimation models such as
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Gaussian regression, density estimation, Poisson re-
gression, and binomial regression have been consid-
ered separately in the literature. Among these func-
tion estimation models, the standard nonparametric re-
gression with additive homoscedastic Gaussian noise,
where one observes

(1) Yi = f

(
i

n

)
+ ξi, i = 1, . . . , n

with ξi
i.i.d.∼ N(0, σ 2), is perhaps the best studied and

understood. For example, on the theoretical side, much
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work has been done on developing minimax theo-
ries and adaptation theories for global and local es-
timation, confidence sets, and hypothesis testing. On
the methodological side, significant efforts have been
made on the construction of adaptive inference proce-
dures that automatically adjust to the unknown smooth-
ness of the underlying function and achieve optimality
simultaneously over a large set of parameter spaces.
In particular, wavelet thresholding procedures have
been developed and shown to achieve significant suc-
cesses in terms of adaptivity, spatial adaptivity and
computational efficiency in the context of the standard
nonparametric Gaussian regression. See, for example,
Tsybakov (2009) and Johnstone (2011).

Inspired by the asymptotic equivalence theory, in a
series of papers, Brown, Cai and Zhou (2008, 2010)
and Brown et al. (2010) developed a unified approach
to adaptive estimation for a collection of non-Gaussian
function estimation models, including nonparametric
Poisson regression, density estimation, regression in
exponential families with a quadratic variance func-
tion, and robust nonparametric regression with an un-
known and potentially heavy-tailed error distribution.
This approach turns these non-Gaussian function es-
timation models in a unified way into the standard
nonparametric regression with additive homoscedas-
tic Gaussian noise. Then in principle any good non-
parametric Gaussian regression method can be used
to solve these more complicated problems and many
of the theoretical results developed for the standard
Gaussian regression can be carried over as well. Since
the methods “gaussianize” non-Gaussian models, we
call them Gaussianization Machines in the present pa-
per. These Gaussianization Machines were developed
further in Cai and Zhou (2009) for robust regression
with symmetric error distributions and in Cai and Zhou
(2010) for nonparametric regression in general natural
exponential families.

A Gaussianization Machine, which is illustrated in
Figure 1, has two key components, binning and trans-
formation. The Gaussianization Machine first groups
the data into small bins and then applies a local trans-
formation to each bin. The binning step is essen-
tially the same for all these non-Gaussian problems
considered, but the transformation step is model spe-
cific. In the case of density estimation and nonpara-
metric regression in the natural exponential families
with a quadratic variance function, the transformation
is the mean-matching variance stabilizing transforma-
tion (MM-VST), and for robust nonparametric regres-
sion, it is the local median transformation. The binned

FIG. 1. A Gaussianization Machine converts non-Gaussian
function estimation problems into the standard nonparamet-
ric Gaussian regression through binning and transforma-
tion.

and transformed data can then be treated as if they were
generated from the standard nonparametric regression
with additive homoscedastic Gaussian noise and any
good Gaussian regression procedure such as a wavelet
thresholding estimator can be applied.

The Gaussianization Machines significantly extend
the flexibility and scope of the theories and methodolo-
gies originally developed for the conventional nonpara-
metric Gaussian regression. The goal of the present
paper is to give a concise account of the Gaussianiza-
tion Machines for these non-Gaussian function estima-
tion problems. The connections as well as differences
among these problems will be discussed.

1.1 Asymptotic Equivalence

Asymptotic equivalence theory, pioneered by Lucien
Le Cam with the early focus on parametric models,
provides a deep understanding of the fundamental con-
nections among seemingly different statistical models.
The main goal of the asymptotic equivalence theory is
to approximate complicated statistical models by sim-
ple ones so that the study of the complex model can
be essentially simplified. For example, optimal proce-
dures and theoretical results developed for the simple
model can be carried over to the complex ones.

Brown and Low (1996) was the first to establish
the global asymptotic equivalence result for nonpara-
metric function estimation models. In this seminal pa-
per, asymptotic equivalence between the homoscedas-
tic nonparametric Gaussian regression with equispaced
design and the white noise with drift model is estab-
lished. Since then there has been significant efforts
on establishing asymptotic equivalence among differ-
ent nonparametric function estimation models. Many
interesting and important results have been obtained.
Global asymptotic equivalence theory has been de-
veloped in a wide range of settings, including non-
parametric density estimation and Poisson process in
Nussbaum (1996) and Brown et al. (2004), nonpara-
metric regression with random design in Brown et al.
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(2002), nonparametric regression with a known error
distribution in Grama and Nussbaum (2002), general-
ized linear models in Grama and Nussbaum (2002),
nonparametric autoregression in Milstein and Nuss-
baum (1998), diffusion models in Delattre and Hoff-
mann (2002) and Genon-Catalot, Laredo and Nuss-
baum (2002), GARCH model in Brown, Wang and
Zhao (2003), nonparametric autoregression in Grama
and Neumann (2006), scalar ergodic diffusions in
Dalalyan and Reiß (2006) and multidimensional er-
godic diffusions in Dalalyan and Reiß (2007), nonpara-
metric regression with multivariate and random design
in Reiß (2008), spectral density estimation in Golubev,
Nussbaum and Zhou (2010), inference on the volatil-
ity from noisy observations in Reiß (2011), and be-
tween functional linear regression and a white noise
inverse problem in Meister (2011). In addition, results
on asymptotic nonequivalence have also been devel-
oped in Efromovich and Samarov (1996), Brown and
Zhang (1998), and Wang (2002).

Although asymptotic equivalence theory provides
deep theoretical insights into various statistical mod-
els and is intuitively appealing, it does have several
drawbacks that limit its usefulness in practice. One is
that the equivalence mappings typically require ran-
domizations and so are not practical in applications.
Another is that asymptotic equivalence results mostly
focus on bounded loss functions so are not applica-
ble in general in many common settings where losses
such as the squared error loss are unbounded. In addi-
tion, full asymptotic equivalence in Le Cam’s sense is a
very stringent goal and often the failures occur only in
some pathological cases which do not commonly arise
in many applications of interest.

1.2 The Gaussianization Machines

Instead of pursuing full asymptotic equivalence in Le
Cam’s sense, significant efforts have been made to de-
velop deterministic and practical algorithms using the
ideas from the equivalence theory to convert a range
of non-Gaussian function estimation problems into a
standard homoscedastic Gaussian regression problem,
which has been well understood in the literature. In
this paper, we focus on a unified approach originally
developed in Brown, Cai and Zhou (2008) for robust
nonparametric regression, Brown et al. (2010) for non-
parametric density estimation, and Brown, Cai and
Zhou (2010) for nonparametric regression in exponen-
tial families with a quadratic variance function, which
includes, for example, nonparametric Poisson regres-
sion, binomial regression, and Gamma regression as
special cases.

The main ideas behind the Gaussianization Ma-
chines can be most easily explained using the example
of nonparametric Poisson regression. In this case, one
observes

Yi
ind.∼ Poisson

(
λ

(
i

n

))
, i = 1, . . . , n,

and wishes to estimate the intensity function λ(t). It is
well known that the usual variance stabilizing trans-
formation (VST) for Poisson distribution is the root
transform. As will be discussed in Section 2, the MM-
VST in this case (and for density estimation) is the root
transform with a correction of 1/4. This is a key step
in the Gaussianization Machine. The Gaussianization
Machine algorithm for estimating the intensity func-
tion λ(t) can be summarized in the following four sim-
ple steps.

Algorithm 1 A Gaussianization Machine for Poisson
Regression

1: Binning: Divide the indices {1, . . . , n} into T

equal sized groups I1, . . . , IT with m consecutive
indices each. Let Qj = ∑

i∈Ij
Yi , j = 1, . . . , T .

2: MM-VST: Let Y ∗
j =

√
(Qj + 1

4)/m,
j = 1, . . . , T . Then treat Y ∗ = {Y ∗

1 , . . . , Y ∗
T }

as a new sample from a homoscedastic Gaussian
regression with equispaced design.

3: Standard Gaussian Regression: Apply your fa-
vorite Gaussian regression procedure to the binned
and transformed data Y ∗ to obtain an estimate√̂

λ(·) of
√

λ(·).
4: Inverse Transformation: Estimate the intensity

function λ(·) by λ̂(·) = (
√̂

λ(·))2.

This algorithm also applies to nonparametric den-
sity estimation without essential changes. For other
distributions in the natural exponential families with
a quadratic variance function, the only difference is
the MM-VST in Step 2 and the corresponding inverse
transformation in Step 4. For example, for nonparamet-
ric binomial regression, the MM-VST in Step 2 is the
arcsine transformation with a suitable correction and
Step 4 is the sine transformation.

A key component in the Gaussianization Machine
outlined in Algorithm 1 is the MM-VST for the nat-
ural exponential families. The advantage of the MM-
VST over the classical VST is that it reduces the bias
due to the transformation up to a certain level while
still stabilizing the variance. Here the bias reduction
(or equivalently mean-matching) is crucial. However,
as shown in Brown, Cai and Zhou (2010), for the one-
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parameter natural exponential families, MM-VST ex-
ists only for those with a quadratic variance function.
Cai and Zhou (2010) extends the scope of Brown,
Cai and Zhou (2010) to the general natural exponen-
tial families where the conventional VST exists but the
MM-VST may not. A new explicit procedure based on
the usual VST is proposed. This approach significantly
reduces the bias of the inverse transformation and as a
consequence it enables a general Gaussianization Ma-
chine to be applicable to a wider class of exponential
families. The drawback of this approach is that the in-
verse transformation may not have a closed form. See
Section 4 for more discussions.

In robust nonparametric regression, one observes a
signal with i.i.d. additive noise as in (1), but the dis-
tribution of the errors ξi is unknown and potentially
heavy tailed. Here we assume median(ξi) = 0 and the
mean of ξi may not exist. The goal is to recover the me-
dian function f . In such a setting, a direct application
of a standard Gaussian regression method to the data
{Y1, . . . , Yn} could fail badly. A similar Gaussianiza-
tion Machine is built in Brown, Cai and Zhou (2008)
to turn this problem into a standard Gaussian regres-
sion problem. The main difference is that Step 2 in Al-
gorithm 1 is replaced by a local median transformation
where Y ∗

j = median(Yi : i ∈ Ij ) with Ij being the index
set of the observations in the j th bin. For general error
distributions, Step 4 in Algorithm 1 is replaced by a
simple bias correction step. The Gaussianization Ma-
chine algorithm for robust nonparametric regression
also has four simple steps.

Algorithm 2 A Gaussianization Machine Algorithm
for Robust Regression

1: Binning: Divide the indices {1, . . . , n} into T

equal sized groups I1, . . . , IT with m consecutive
indices each.

2: Median Transformation: Let Y ∗
j = median(Yi :

i ∈ Ij ), j = 1, . . . , T . Then Y ∗
j

.∼ N(g(
j
T
), σ 2)

with g(·) = f (·) + bm and σ 2 = 1
4mh2(0)

, where
h is the density function of ξi and bm =
E{median(ξ1, . . . , ξm)}.

3: Standard Gaussian Regression: Apply your fa-
vorite nonparametric regression procedure to the
binned and transformed data {Y ∗

1 , . . . , Y ∗
T } to ob-

tain an estimate ĝ.
4: Bias Correction: The median function f is then

estimated by f̂ (t) = ĝ(t) − b̂m where b̂m is an es-
timator of the bias bm.

See Section 5 for a detailed discussion, including the
construction of an estimate b̂m for the bias bm.

Cai and Zhou (2009) further extends this approach
to robust nonparametric regression with symmetric er-
ror distributions. When the error distribution is known
to be symmetric, the algorithm can be simplified as
bm = 0 so Step 4 can be eliminated. Furthermore, much
refined theoretical results can be established. See Sec-
tion 5 for more discussions.

1.3 Technical Insights

A key question is: Why do the Gaussianization Ma-
chines work? That is, why the binned and transformed
data can be treated as if they were observations from
a homoscedastic Gaussian regression model? The crit-
ical technical engine underpinning the Gaussianization
Machines is the quantile coupling inequalities. This is
again most easily explained in the case of nonparamet-
ric Poisson regression.

The Gaussianization Machine for nonparametric
Poisson regression consists of two steps: Binning and
MM-VST. In the binning steps, each Qj in the first
step of Algorithm 1 is the sum of independent Poisson
observations in the j th bin. So Qj is itself a Poisson
variable with mean λQj

= ∑
i∈Ij

λ( i
n
), which grows

with the bin size m under some mild assumption on the
intensity function λ(·). It then follows from the Central
Limit Theorem (CLT) that Qj is asymptotically nor-
mal. However, the CLT is not sufficient for the tech-
nical analysis here. What is needed is a tight bound
for the quantile coupling between a Poisson variable
and a normal variable. This is provided by a coupling
inequality given in Brown et al. (2010). The mean-
matching property of the MM-VST together with the
coupling inequality for Poisson variables show that un-
der mild conditions, the binned and transformed data
Y ∗

j can be viewed as

Y ∗
j ≈

√
λ̄j + 1

2
Z with Z ∼ N(0,1),

where λ̄j = T
∫ j

T
j−1
T

f (x) dx is the average of λ(t) over

the j th subinterval, which becomes a standard non-
parametric Gaussian regression problem.

The analysis above also applies to nonparametric
density estimation, after a Poissonization argument
is used. The quantile coupling inequality for Poisson
variables can be extended to the natural exponential



GAUSSIANIZATION MACHINES 639

families with a quadratic variance function. See Sec-
tion 6 for further discussions and see Brown et al.
(2010), Brown, Cai and Zhou (2010) for a detailed
technical analysis. The readers are also referred to
Mason and Zhou (2012) for more on quantile coupling.

For robust nonparametric regression, the key step in
the Gaussianization Machine is the local median trans-
formation. The critical technical tool is a quantile cou-
pling for the sample median, which shows precisely
how well the sample median can be approximated by
a normal variable. It is an analog of the coupling in-
equality for the sample mean given in Komlós, Major
and Tusnády (1975). See Section 6 and Brown, Cai and
Zhou (2008) for more discussions.

After binning and transformation in Steps 1 and
2, the data can be treated as if they were observa-
tions from the standard Gaussian regression model. Al-
though in principle any good nonparametric Gaussian
regression method can be used in Step 3, BlockJS, a
wavelet block thresholding procedure proposed in Cai
(1999), was use in Brown, Cai and Zhou (2008, 2010)
and Brown et al. (2010) for illustration. We shall also
use the same wavelet procedure in our discussion in
this paper.

When combined with the BlockJS procedure for
Gaussian regression, the Gaussianization Machine al-
gorithms are computationally efficient with strong
asymptotic properties. Theoretical analysis given in
Brown, Cai and Zhou (2008, 2010) and Brown et al.
(2010) shows that the procedures adaptive attain the
optimal rate of convergence over a wide collection
of the Besov spaces, without prior knowledge of the
smoothness of the underlying functions across the
collection of these non-Gaussian function estimation
models, including robust nonparametric regression,
density estimation, and nonparametric regression in
exponential families. The estimator also automatically
adapts to the local smoothness of the underlying func-
tion, and attains the local adaptive minimax rate for
estimating functions at a point. Essentially, the opti-
mality results for the standard nonparametric Gaussian
regression carry over to this collection of non-Gaussian
problems.

1.4 Organization and Notation

The rest paper is organized as follows. Section 2
presents a detailed description of the Gaussianization
Machine for nonparametric Poisson regression. This
case provides the essential insights into the general
principles behind the approach. We also introduce the

BlockJS procedure for nonparametric Gaussian regres-
sion. Section 3 considers nonparametric density esti-
mation. The procedure for Poisson regression can be
applied to density estimation directly without any es-
sential changes. Section 4 generalizes the Gaussian-
ization Machine for Poisson regression to treat non-
parametric regression in the natural exponential fam-
ilies. Section 5 considers the Gaussianization Machine
for robust nonparametric regression. Key technical in-
sights and theoretical properties are discussed in Sec-
tion 6. The paper is concluded with a discussion in Sec-
tion 7.

2. NONPARAMETRIC POISSON REGRESSION

In this section, we consider nonparametric Poisson
regression where one observes

Xi
ind.∼ Poisson

(
λ

(
i

n

))
, i = 1, . . . , n,

and wishes to estimate the intensity function λ(t),
which is assumed to be a smooth function.

Nonparametric Poisson regression is of significant
interest in its own right. Regression with count data
arises in a range of applications, see, for example, Ver
Hoef and Boveng (2007), Winkelmann (2003), Berk
and MacDonald (2008), Kroll (2019). The Poisson re-
gression model is one of the most natural approaches
to count data regression. Besbeas, De Feis and Sap-
atinas (2004) provided a review of the literature on
the nonparametric Poisson regression and carried out
an extensive numerical comparison of several estima-
tion procedures including Donoho (1993), Kolaczyk
(1999a, 1999b), Fryzlewicz and Nason (2004). As will
be seen later, nonparametric Poisson regression can
also be viewed as a prototypical model for nonpara-
metric density estimation as well as a special case of
nonparametric regression in natural exponential fami-
lies with a quadratic variance function.

For Poisson regression, the noise is non-additive,
non-Gaussian, and heteroscedastic. Applying a stan-
dard Gaussian regression method directly to the data
in general does not yield desirable results. One strat-
egy is to turn this problem into a standard Gaussian re-
gression problem through a Gaussianization Machine,
which as mentioned in the Introduction has two key
components, binning and MM-VST. We begin by dis-
cussing the MM-VST and then introduce in detail the
Gaussianization Machine for nonparametric Poisson
regression.
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2.1 Mean-Matching Variance Stabilizing
Transformation

Variance stabilizing transformation (VST) has been
used in many statistical applications. For Poisson dis-
tributions, Bartlett (1947) was the first to introduce
the root transform

√
X in a homoscedastic linear

model where X ∼ Poisson(λ). For X1, . . . ,Xn
i.i.d.∼

Poisson(λ), the sample mean X̄ satisfies

√
n(

√
X̄ − √

λ)
L−→ N

(
0,

1

4

)
.

In the context of nonparametric Poisson regression,
the vanilla root transform results in too much bias and
it is necessary to consider a more general form of the
root transform.

LEMMA 1 (Brown et al., 2010). Let X ∼ Poisson(λ)

with λ > 0 and let c ≥ 0 be a constant. Then

E(
√

X + c) = λ
1
2 + 4c − 1

8
· λ− 1

2

− 16c2 − 24c + 7

128
· λ− 3

2 + O
(
λ− 5

2
)
,

(2)

Var(
√

X + c) = 1

4
+ 3 − 8c

32
· λ−1

+ 32c2 − 52c + 17

128
· λ−2 + O

(
λ−3)

.

(3)

It is clear from Lemma 1 that the choice of c =
3
8 yields optimal variance stabilization. This is
Anscombe’s VST proposed in Anscombe (1948). In
comparison to variance stabilization, mean matching,
in the sense of making the expectation of

√
X + c as

close to
√

λ as possible, is more important for the
nonparametric Poisson regression problem we con-
sider here. Lemma 1 shows that the choice of c = 1

4 is
optimal for mean-matching while stabilizing the vari-

ance. We shall call the mapping x 	→
√

x + 1
4 mean-

matching variance stabilizing transformation (MM-
VST).

The effect of the constant c in the root transform
on the mean and variance can also be easily seen
empirically. In Figure 2, the left panel plots the bias
Eλ(

√
X + c) − √

λ as a function of λ for c = 0, c = 1
4

and c = 3
8 . It is clear that the choice of c = 1

4 is the best
among the three for mean-matching. With c = 1

4 the
bias is negligible for λ as small as 2. The right panel
shows the variance of

√
X + c for c = 0, c = 1

4 and
c = 3

8 . In this case, c = 3
8 is the best choice. The choice

of c = 1
4 is slightly worse than but comparable to the

case with c = 3
8 . For both mean-matching and variance

stabilization, c = 0 is clearly the worst choice of the
three.

2.2 Estimation Procedure

We now return to the nonparametric Poisson regres-
sion problem where we wish to estimate the inten-

sity function λ(·) based on the observations Xi
ind.∼

Poisson(λ( i
n
)), i = 1, . . . , n. As mentioned earlier, the

first step of the Gaussianization Machine is binning.
Let T 
 n3/4 be some positive integer. We begin by
dividing the indices {1, . . . , n} into T nonoverlapping
and equal sized groups I1, . . . , IT with m = n/T con-
secutive indices each. Let Qj be the sum of observa-
tions in the j th bin Ij ,

(4) Qj = ∑
i∈Ij

Yi, j = 1, . . . , T .

The sums Qj can be treated as observations for a Gaus-
sian regression directly, but this in general leads to a
heteroscedastic problem. Instead, we apply the MM-
VST and let

(5) Y ∗
j =

√(
Qj + 1

4

)/
m, j = 1, . . . , T .

The transformed data Y ∗ = (Y ∗
1 , . . . , Y ∗

T ) is then
treated as a new sample for a Gaussian nonparametric
regression with equispaced design and in principle any
good Gaussian nonparametric regression method can

be applied to construct an estimate
√̂

λ(·). The inten-

sity function λ(·) is estimated by (
√̂

λ(·))2. The four-
step estimation procedure has been summarized in Al-
gorithm 1 in Section 1.

2.3 BlockJS for the Standard Gaussian Regression

In this paper we use a wavelet thresholding proce-
dure, BlockJS, proposed in Cai (1999) for the stan-
dard Gaussian regression in Step 3 of Algorithm 1 as
an illustration. BlockJS makes simultaneous decisions
to keep or kill all the coefficients within a block and
increases estimation accuracy by utilizing information
about neighboring coefficients.

Let {φ,ψ} be a pair of compactly supported father
and mother wavelets with

∫
φ = 1. Denote φj,k(t) =

2j/2φ(2j t − k) and ψj,k(t) = 2j/2ψ(2j t − k). For
simplicity, we work with periodized wavelet bases on
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FIG. 2. Comparison of the bias (left panel) and variance (right panel) of root transforms x 	→ √
x + c with c = 0, 1

4 and 3
8 . It

is clear that c = 1
4 is optimal for mean-matching and c = 3

8 is the best for variance stabilization.

[0,1] and let

φ
p
j,k(t) =

∞∑
l=−∞

φj,k(t − l),

ψ
p
j,k(t) =

∞∑
l=−∞

ψj,k(t − l) for t ∈ [0,1].

The collection {φ
p
j0,k

, k = 1, . . . ,2j0;ψp
j,k, j ≥ j0 ≥

0, k = 1, . . . ,2j } is then an orthonormal basis of
L2[0,1], provided the primary resolution level j0 is
suitably chosen. The superscript “p” will be sup-
pressed from the notation for convenience. An or-

thonormal wavelet basis has an associated orthogonal
Discrete Wavelet Transform (DWT) which transforms
sampled data into the wavelet coefficients. See, for ex-
ample, Daubechies (1992) for details on wavelets and
DWT. A square-integrable function f on [0,1] can be
expanded into a wavelet series:

(6) f (t) =
2j0∑
k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑
k=1

θj,kψj,k(t),

where θ̃j,k = 〈f,φj,k〉, θj,k = 〈f,ψj,k〉 are the wavelet
coefficients of f .
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BlockJS was proposed in Cai (1999) for nonpara-
metric Gaussian regression. Let the sample Y = (Y1,

. . . , Yn)
ᵀ be given as in (1) with ξi

i.i.d.∼ N(0, σ 2) and
n = 2J for some integer J . Apply DWT to the data Y

and let U = n− 1
2 WY be the empirical wavelet coeffi-

cients, where W is the discrete wavelet transformation
matrix. Then U can be written as

U = (ũj0,1, . . . , ũj0,2j0 , uj0,1, . . . ,

uj0,2j0 , . . . , uJ−1,1, . . . , uJ−1,2J−1)
ᵀ.

(7)

Here ũj0,k are the gross structure terms at the lowest
resolution level, and uj,k for k = 1, . . . ,2j and j0 ≤
j ≤ J − 1 are the empirical wavelet coefficients. Note
that uj,k can be viewed as

uj,k = θj,k

+ zj,k, j0 ≤ j ≤ J − 1, k = 1, . . . ,2j ,
(8)

where θj,k are approximately the wavelet coefficients

of the regression function f and zj,k
i.i.d.∼ N(0, σ 2/n)

are the noise. Divide each resolution level j0 ≤ j ≤
J −1 into nonoverlapping blocks of length L = [logn]
(or L = 2�log2(logn)� ≈ logn). Let Bi

j = {(j, k) : (i −
1)L + 1 ≤ k ≤ iL} denote the ith block at level j

and let S2
j,i ≡ ∑

(j,k)∈Bi
j
y2
j,k . For (j, k) ∈ Bi

j , θj,k

is estimated by a James–Stein type shrinkage esti-
mate

(9) θ̂j,k =

⎧⎪⎪⎨⎪⎪⎩
(

1 − λ∗Lσ 2

nS2
j,i

)
+
yj,k for (j, k) ∈ Bi

j ,

j0 ≤ j < J,

0 for j ≥ J ,

where λ∗ = 4.50524 is a constant chosen according to
an oracle inequality and a minimax criterion to satisfy
λ∗ − logλ∗ − 3 = 0. The estimate of the regression
function f is given by

f̂ (t |Y) =
2j0∑
k=1

ũj0,kφj0,k(t)

+
J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t).

(10)

Here we write the estimate of f as f̂ (t |Y) to empha-
size the dependence of the estimator f̂ on the input
sample Y . BlockJS is easily implementable and enjoys
a high degree of adaptivity and spatial adaptivity. See
Cai (1999) for details.

2.4 A Wavelet Procedure for Poisson Regression

We now return to nonparametric Poisson regression.
Set J = Jn = �log2 n3/4� and let T = 2J 
 n3/4. Ap-
plying BlockJS to the binned and root transformed data
Y ∗ = (Y ∗

1 , . . . , Y ∗
T )ᵀ to obtain the estimate of the func-

tion
√

λ(·),
√̂

λ
(
t |Y ∗) =

2j0∑
k=1

ˆ̃
θj0,kφj0,k(t)

+
J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t).

(11)

The final estimator of the intensity function λ is given

by the square of
√̂

λ:

λ̂(t) =
( 2j0∑

k=1

ˆ̃
θj0,kφj0,k(t)

+
J−1∑
j=j0

2j∑
k=1

θ̂j,kψj,k(t)

)2

.

(12)

The estimator λ̂(t) given in (12) performs well nu-
merically. Figure 3 illustrates the estimation procedure
using BlockJS. The estimator also enjoys a high de-
gree of adaptivity and spatial adaptivity with near opti-
mal asymptotic performance over a large collection of
Besov spaces. There are two key technical tools in the
theoretical analysis. One is a coupling inequality to ap-
proximate the binned and root transformed data by in-
dependent normal variables and another is a risk bound
for block thresholding in the case where the noise is
not necessarily Gaussian. See more discussions in Sec-
tion 6.

3. NONPARAMETRIC DENSITY ESTIMATION

Nonparametric density estimation, which aims to
recover the underlying density function based on an
i.i.d. sample {X1, . . . ,Xn}, is one of the most funda-
mental problems in data analysis and has been exten-
sively studied in statistics. See, for example, Silverman
(1986).

Nonparametric density estimation is traditionally
considered separately from regression. Using the same
Gaussianization Machine, density estimation can be
converted into a standard homoscedastic Gaussian re-
gression problem. A key step in understanding the pro-
cedure is Poissonization, which turns nonparametric
density estimation into nonparametric Poisson regres-
sion. Then the Gaussianization Machine described in
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FIG. 3. The Gaussianization Machine for nonparametric Poisson regression as implemented via BlockJS.
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Section 2 applies. In essence, density estimation can
be solved in the exactly same way as nonparametric
Poisson regression is solved via binning and MM-VST
as described in the last section.

In the density experiment, for a given sample size
n one generates an i.i.d. sample {X1, . . . ,Xn} from
some distribution F with the density function f . For a
fixed n, in the Poissonized density experiment one first
draws a Poisson random variable N ∼ Poisson(n) and
then generates an i.i.d. sample {X1, . . . ,XN } from the
same distribution. It is shown in Low and Zhou (2007)
that these two experiments are asymptotically equiva-
lent under regularity conditions. Poissonization shows
that the problem of estimating a density with the fixed
sample size is not essentially different from estimating
the density where the sample size is a Poisson random
variable. Given an i.i.d. sample with a fixed sample size
n, the bin counts jointly have a multinomial distribu-
tion and so the counts for different bins are dependent.
Poissonization allows one to treat the bin counts as if
they were independent Poisson variables. Poissoniza-
tion has been studied, for example, in Le Cam (1974),
Low and Zhou (2007).

We now return to density estimation, where one
observes an i.i.d. sample {X1, . . . ,Xn} from some dis-
tribution F with the density function f . For sim-
plicity, we assume the unknown density f is sup-
ported on a finite interval, say [0,1]. Given a ran-
dom sample {X1, . . . ,Xn}, we first create a histogram
with T equal sized bins from 0 to 1. Let Qj be the
number of observations in the j th subinterval. Then
{Q1, . . . ,QT } jointly have a multinomial distribution.
Note that if the sample size is Poissonized, then the
counts {Q1, . . . ,QT } are independent Poisson random
variables with

Qj ∼ Poisson(npj ) where pj = T

∫ j
T

j−1
T

f (x) dx.

The same mean-matching root transform can be ap-
plied to the Qj ’s. Let

(13) Y ∗
j =

√
Qj + 1

4
, j = 1, . . . , T .

Then the binned and transformed data Y ∗ = (Y ∗
1 ,

. . . , Y ∗
T ) can be treated as a new equispaced sample

for a nonparametric Gaussian regression problem. The
final density estimator can be obtained by normalizing
the square of

√̂
f . In summary, the Gaussianization

Machine leads to the following algorithm for density
estimation.

Algorithm 3 A Gaussianization Machine for Density
Estimation

1: Binning: Create a histogram with T equal sized
bins from 0 to 1. Let Q1, . . . ,QT be the number
of observations in the bins.

2: Mean-matching Root Transform: Let Y ∗
j =√

(Qj + 1
4)/n, j = 1, . . . , T , and treat Y ∗ =

{Y ∗
1 , . . . , Y ∗

T } as the new equispaced sample for a
homoscedastic Gaussian regression problem.

3: Standard Gaussian Regression: Apply your fa-
vorite Gaussian regression procedure to the binned
and transformed data Y ∗ to obtain an estimate

√̂
f

of
√

f .
4: Unroot & Normalization: Let f̃ = (

√̂
f )2 and es-

timate the density function f by

f̂ (t) = f̃ (t)/

∫ 1

0
f̃ (t) dt.

In Step 4, f̂ may not integrate to 1 and so the nor-
malization is needed. For Gaussian regression in Step
3, we again use the BlockJS procedure as illustration.
Figure 4 shows the steps of the algorithm for density
estimation.

The density estimator f̂ enjoys essentially the same
properties as the estimator of the intensity function in
nonparametric Poisson regression discussed in the last
section. Given the results for the Poisson regression,
the key step in the technical argument for density esti-
mation is Poissonization. See Brown et al. (2010) for a
detailed technical analysis.

4. NONPARAMETRIC REGRESSION IN NATURAL
EXPONENTIAL FAMILIES

Poisson distribution is a member of the natural ex-
ponential families. The Gaussianization Machine for
nonparametric Poisson regression discussed in Sec-
tion 2 can be generalized for nonparametric regression
in natural exponential families with a quadratic vari-
ance function (NEF-QVF), which includes, for exam-
ple, nonparametric binomial regression and nonpara-
metric exponential regression. These regression prob-
lems have been studied separately in the literature. See
Brown, Cai and Zhou (2010) for further references and
discussions.

As in the Poisson case, for nonparametric regres-
sion in the NEF-QVF, the noise is non-additive, non-
Gaussian, and heteroscedastic, and applying standard
nonparametric regression methods directly to the data
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FIG. 4. The Gaussianization Machine for nonparametric density estimation as implemented via BlockJS.
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in general do not yield desirable results. The Gaus-
sianization Machine designed for the Poisson regres-
sion and density estimation can be generalized to turn
this problem into a homoscedastic Gaussian regression
problem.

We begin by discussing the MM-VST for the natu-
ral exponential families (NEF). Conventional VST has
been widely used in statistics. See Hoyle (1973) for an
extensive review of the literature. The probability den-
sity/mass function of a distribution in a one-parameter
NEF can be written as q(x|η) = eηx−ψ(η)h(x), where
η is the natural parameter. The mean and variance are
given by

μ(η) = ψ ′(η) and σ 2(η) = ψ ′′(η).

Such a distribution can be parametrized by its mean
and we denote the distribution by NEF(μ). A special
subclass of NEF is the one with a quadratic variance
function (QVF),

(14) σ 2 ≡ V (μ) = a0 + a1μ + a2μ
2.

We write in this case Xi ∼ NQ(μ). The NEF-QVF
consists of three discrete distributions: binomial, neg-
ative binomial, and Poisson, and three continuous dis-
tributions: normal, gamma, and NEF-GHS. See Morris
(1982) and Brown (1986).

Let X1, . . . ,Xm
i.i.d.∼ NEF(μ) be a random sample

and set X = ∑m
i=1 Xi . It follows from the CLT that√

m(X
m

− μ)
L−→ N(0,V (μ)), as m → ∞. A VST is

a function G : R→R such that G′(μ) = V − 1
2 (μ). The

standard delta method yields

√
m

(
G

(
X

m

)
− G(μ)

)
L−→ N(0,1).

As in the Poisson case, the mean-matching and vari-
ance stabilizing properties can often be further im-
proved by using a more general transformation of the
form

(15) Hm(X) = G

(
X + a

m + b

)
with a suitable choice of constants a and b. For our
purpose, same as in Poisson regression, it is more im-
portant to optimally match the means than to optimally
stabilize the variance. That is, we wish to choose the
constants a and b such that E{Hm(X)} − G(μ) is min-
imized. The following expansions for the mean and
variance of the transformed variable Hm(X) is useful
for finding the optimal choice of a and b.

LEMMA 2 (Brown, Cai and Zhou, 2010). Let 	 be
a compact set in the interior of the natural parameter
space. Then for η ∈ 	 and for constants a and b

E
{
Hm(X)

} − G
(
μ(η)

)
= 1

σ(η)

(
a − bμ(η) − μ′′(η)

4μ′(η)

)
· m−1 + O

(
m−2)

(16)

and

(17) Var
{
Hm(X)

} = 1

m
+ O

(
m−2)

.

Moreover, there exist constants a and b such that

(18) E

{
G

(
X + a

m + b

)}
− G(μ) = O

(
m−2)

for all η ∈ 	 with a positive Lebesgue measure if and
only if the NEF has a quadratic variance function.

As shown in Brown, Cai and Zhou (2010), among
the VSTs of the form (15) for the NEF-QVF with σ 2 =
a0 + a1μ + a2μ

2, the best constants a and b for mean-
matching are

(19) a = 1

4
a1 and b = −1

2
a2.

The VST (15) with the constants a and b given in (19)
is called the MM-VST. For the five distributions (other
than normal) in the NEF-QVF families, the specific ex-
pressions for the MM-VST Hm are as follows:

• Poisson: a = 1
4 , b = 0, and Hm(X) = 2

√
(X + 1

4)/m.

• Binomial(r,p): a = 1
4 , b = 1

2r
, and Hm(X) = 2 ·√

r arcsin(
√

X+1/4
rm+1/2).

• Negative Binomial(r,p): a = 1
4 , b = − 1

2r
, and

Hm(X) = 2
√

r ln(
√

X+1/4
mr−1/2 +

√
1 + X+1/4

mr−1/2).

• Gamma(r, λ) (with r known): a = 0, b = − 1
2r

, and
Hm(X) = √

r ln( X
rm−1/2 ).

• NEF-GHS(r, λ) (with r known): a = 0, b = − 1
2r

,

and Hm(X) = √
r ln( X

rm−1/2 +
√

1 + X2

(mr−1/2)2 ).

Note that the MM-VST is different from the one
that optimally stabilizes the variance. Take, for ex-
ample, the binomial distribution with r = 1. In this
case the VST that optimally stabilizes the variance
is arcsin(

√
(X + c)/(m + 2c)) with c = 3/8. Figure 5

compares the bias and variance for c = 0,1/4 and 3/8
in the binomial case with m = 30. The plots show sim-
ilar behavior to that in the Poisson case as seen in Fig-
ure 2.
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FIG. 5. Comparison of the bias (left panel) and variance (right panel) of the VSTs for Binomial(30,p) with c = 0 (solid line),
c = 1

4 (+ line) and c = 3
8 (dashed line). It is clear that c = 1

4 is optimal for mean-matching and c = 3
8 is the best for variance

stabilizing.

It is also interesting to also consider a continuous
case and we use the exponential distribution as an ex-

ample. Let X1, . . . ,Xm
i.i.d.∼ Exponential(λ). Then X =∑m

i=1 Xi ∼ Gamma(m,λ). The VST in this case is the
log transformation. Figure 6, which is from Cai and
Zhou (2010), compares the mean and variance of two
log transformations of the form ln( X

m−c
) with c = 1/2,

which is the MM-VST, and with c = 0, which is the
usual log transformation. It is clear from the left panel
of Figure 6 that the bias with c = 1

2 is much smaller
than corresponding bias with c = 0. For the variance,

it is obvious that it does not depend on the value of c.
In fact, in this case there do not exist constants a and b

that optimally stabilize the variance.
Let us return to nonparametric regression in the

NEF-QVF. Suppose we observe

(20) Yi
ind.∼ NQ

(
f

(
i

n

))
, i = 1, . . . , n,

and wish to estimate the mean function f (t). With
the MM-VST in place, nonparametric regression in the
NEF-QVF can be implemented via the Gaussianization
Machine in exactly the same way as in the algorithm
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FIG. 6. Comparison of the mean (left panel) and variance
(right panel) of the log transformations for Gamma(m,λ)

with c = 0 (solid line) and c = 1
2 (+ line).

for Poisson regression.The procedure can be summa-
rized as follows.

Algorithm 4 A Gaussianization Machine for Nonpara-
metric Regression in the NEF-QVF

1: Binning: Divide the indices {1, . . . , n} into T 

n3/4 equal sized groups I1, . . . , IT with m con-
secutive indices each. Let Qj = ∑

i∈Ij
Yi , j =

1, . . . , T .
2: MM-VST: Let Y ∗

j = Hm(Qj), j = 1, . . . , T . Then
treat Y ∗ = {Y ∗

1 , . . . , Y ∗
T } as the new equispaced

sample for a homoscedastic Gaussian regression
problem.

3: Standard Gaussian Regression: Apply your fa-
vorite nonparametric regression procedure to the
binned and transformed data Y ∗ to obtain an esti-
mate Ĝ(f ) of G(f ).

4: Inverse Transformation: Estimate the mean
function f by f̂ = G−1(Ĝ(f )).

In Step 4, if due to randomness Ĝ(f ) is not in the
domain of G−1, then the usual correction is applied as
follows. The domain of G−1 is an interval, say between
a and b, one sets G−1(Ĝ(f )) = G−1(a) if Ĝ(f ) < a

and sets G−1(Ĝ(f )) = G−1(b) if Ĝ(f ) > b.
Figure 7 illustrates the steps of the Gaussianization

Machine algorithm for nonparametric binomial regres-
sion where BlockJS is used for Gaussian regression in
Step 3.

4.1 Extensions to General One-Parameter NEF

Cai and Zhou (2010) further extends the Gaussian-
ization Machine built in Brown, Cai and Zhou (2010)
to treat nonparametric regression in general natural ex-
ponential families. When the variance is not a quadratic
function of the mean, the VST still exists, although the

MM-VST may not exist. Let X1, . . . ,Xm
i.i.d.∼ NEF(μ)

and set X̄ = 1
m

∑m
i=1 Xi . Let G be the usual VST and

define

(21) Hm(μ) = EG(X̄).

As mentioned earlier, The MM-VST only exists in the
NEF-QVF. Cai and Zhou (2010) uses the usual VST
G(·) instead. To control the transformation bias, a dif-
ferent inverse transformation is used. To be more spe-
cific, suppose one observes

(22) Yi
ind.∼ NEF

(
f

(
i

n

))
, i = 1, . . . , n,

and wishes to estimate the mean function f (t). Again,
group the observations into T bins with m = n/T ob-
servations in each bin. Let Qj be the sum of obser-

vations in the j th bin, that is, Qj = ∑jm
i=(j−1)m+1 Yi .

Apply the VST to obtain Y ∗
j = G(

Qj

m
) and treat Y ∗ =

(Y ∗
1 , . . . , Y ∗

T )ᵀ as a sample for a standard Gaussian re-
gression problem with the regression function being
Hm(f (·)). Once an estimator ̂Hm(f (·)) of Hm(f (·))
is obtained, the mean function f is estimated by f̂ =
H−1

m (Ĥm(f )). Algorithmically, the key difference is
the use of the usual VST as the transformation in the
Gaussianization Machine and the use of H−1

m as the
inverse transformation. See Cai and Zhou (2010) for
more details.

The advantage of using H−1
m as the inverse transfor-

mation is that it significantly reduces the bias of the
inverse transformation. This enables one to use much
smaller bin size than what is required in Brown, Cai
and Zhou (2010). As a consequence, the procedure can
still perform well when the regression function is less
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FIG. 7. The Gaussianization Machine for nonparametric binomial regression as implemented via BlockJS.
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smooth and the method is applicable to a wider class of
exponential families. The drawback of the approach is
that the inverse transformation H−1

m typically does not
have a closed form.

5. ROBUST NONPARAMETRIC REGRESSION

In this section, we consider robust nonparametric
regression where the error distribution is unknown
and possibly heavy tailed. Specifically, one observes
{Y1, . . . , Yn} with

(23) Yi = f

(
i

n

)
+ ξi, i = 1, . . . , n,

where the errors ξi are independent and identically dis-
tributed with median(ξi) = 0 and an unknown density
h. For some heavy-tailed distributions such as Cauchy
distribution the mean does not even exist. So here we
do not assume the existence of the mean and aim to
estimate the median function f (·).

As in the case of many non-Gaussian regression
problems discussed earlier, applying standard Gaus-
sian regression methods directly to the data {Y1,

. . . , Yn} does not lead to good results in general.
This can be seen easily by a comparison of extreme

values. In Gaussian regression with ξi
i.i.d.∼ N(0,1),

ξmax ≡ max{|ξ1|, . . . , |ξn|} = √
2 logn(1 + o(1)) and

P(ξmax ≤ √
2 logn) → 1. This fact is the basis for the

choice of the threshold level
√

2 logn in the standard
wavelet thresholding procedures. In contrast, when the
noise ξi has the standard Cauchy distribution, typical
realizations of ξi contain order n√

logn
observations with

magnitude larger than
√

2 logn since

P
(|ξi | ≥

√
2 logn

) = 1 − 2

π
arctan

(√
2 logn

)
=

√
2

π
√

logn

(
1 + o(1)

)
.

Indeed, with probability close to 47% the extreme
value ξmax ≡ max{|ξ1|, . . . , |ξn|} can be larger than
n since P(ξmax ≥ n) = 1 − ( 2

π
arctan(n))n = 1 −

exp(− 2
π
)(1 + o(1)). Clearly the conventional wavelet

thresholding procedures designed for Gaussian noise
would fail if they are applied directly to the sample
{Y1, . . . , Yn} when the noise is in fact heavy tailed. Fig-
ure 8, which is from Cai and Zhou (2009), illustrates
the failure of such a naive approach (middle panel)
and the success of the proposed robust estimate con-
structed by applying BlockJS to the data processed by
a Gaussianization Machine (right panel). The differ-
ence is quite striking.

Similar to nonparametric regression in the NEF, ro-
bust regression can be turned into a standard Gaus-
sian regression problem through a Gaussianization Ma-
chine and then in principle any procedure for Gaussian
nonparametric regression can be used. For robust re-
gression, the Gaussianization Machine has two compo-
nents, binning and taking local median. More specifi-
cally, we group the observations {Y1, . . . , Yn} into T 

n3/4 bins of size m, and then take the median Y ∗

j of
the observations in the j th bin for j = 1, . . . , T . The-
oretical analysis shows that, for a wide range of error
distributions, the medians {Y ∗

1 , . . . , Y ∗
T } can be viewed

as if they were generated from the standard Gaussian
nonparametric regression model where

Y ∗
j = f

(
j

T

)
+ bm

+ 1

2h(0)
√

m
zj , zj

i.i.d.∼ N(0,1), j = 1, . . . , T ,

(24)

with bm = E{median(ξ1, . . . , ξm)} being an unknown
constant. Any good Gaussian regression methods can
then be applied to the transformed data {Y ∗

1 , . . . , Y ∗
T }

to obtain an estimator ĝ(t) for g(t) = f (t) + bm.
In order to construct the final estimator for f , an

additional step of estimating bm is needed. Although
the median of individual ξi is 0, the expectation of the
sample median of ξ1, . . . , ξm is nonzero in general. The
quantity bm can be viewed as the systematic bias due
to the expectation of the sample median of the noise
ξi in each bin. We estimate bm as follows. Divide each
bin Ij into two sub-bins with the first bin of the size
�m

2 �. Let Ỹ ∗
j be the median of observations in the first

sub-bin. We set

(25) b̂m = 1

T

T∑
j=1

(
Ỹ ∗

j − Y ∗
j

)
.

The estimate b̂m can be viewed as the bias correction.
The final estimator of f is given by

f̂ (t) = ĝ(t) − b̂m.

The four-step Gaussianization Machine for robust non-
parametric regression has been summarized in Algo-
rithm 2 in Section 1.

As in the previous sections, we use BlockJS for
the Gaussian regression to obtain an estimator ĝ for
illustration. In this case, we set T = 2J with J =
�log2 n3/4� and m = n/T . Define

(26) f̂ (t) = ĝ(t) − b̂m,
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FIG. 8. Left panel: Spikes signal with Cauchy noise; Middle panel: An estimate obtained by applying directly a wavelet procedure to the
original noisy signal; Right panel: A robust estimate by applying BlockJS to the gaussianized data.

where ĝ(t) is the BlockJS estimator based on the
binned and transformed data {Y ∗

1 , . . . , Y ∗
T }.

The following Figure 9 is from Cai and Zhou (2009).
It illustrates the main steps of the Gaussianization ma-
chine as implemented by the BlockJS procedure. It also
shows a comparison of the robust estimate given in (26)
by applying BlockJS to the gaussianized data (bottom

left panel) and a direct application of BlockJS to the
original data (bottom right panel). Here the noise has t

distribution with 2 degrees of freedom.

5.1 The Case of Symmetric Error Distributions

Cai and Zhou (2009) considered robust nonparamet-
ric regression where the error distribution is assumed
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FIG. 9. The binning and local median algorithm for robust nonparametric regression as implemented via BlockJS. The noise
distribution is t distribution with 2 degrees of freedom. Bottom right: BlockJS applied directly to the original data.

to be symmetric with median 0. In this case, the pro-
cedure can be simplified. Note that bm ≡ 0 when the
error distribution is symmetric and so the bias correc-
tion step can be eliminated. More importantly, the bin
size can be chosen to be logarithmic in n, much smaller
than what is required in Brown, Cai and Zhou (2008)
and much stronger results can be obtained. In the case

of symmetric error distribution, Cai and Zhou (2009)
establishes the asymptotic equivalent for a large class
of unbounded losses between the experiment of ob-
serving the local medians {Y ∗

1 , . . . , Y ∗
T } and a standard

nonparametric Gaussian regression experiment.
The results on asymptotic equivalence have direct

implications for estimation, confidence sets, and hy-
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pothesis testing. Cai and Zhou (2009) constructed eas-
ily implementable, robust, and adaptive procedures for
estimation of the regression function and estimation of
a quadratic functional. Other problems such as estima-
tion and confidence intervals for linear functionals can
be handled in a similar way.

6. TECHNICAL INSIGHTS AND THEORETICAL
PROPERTIES

The Gaussianization Machines discussed in the pre-
vious sections for various non-Gaussian problems
share the same features: binning and transformation.
As shown earlier, the binned and transformed data
{Y ∗

1 , . . . , Y ∗
T } can be treated as if they were generated

from a homoscedastic nonparametric Gaussian regres-
sion model. As mentioned briefly in Section 1.3, the
fundamental technical tool for understanding why the
Gaussianization Machines work is the quantile cou-
pling inequalities. We now explain the technical in-
sights in more detail and discuss the theoretical prop-
erties of the Gaussianization Machine algorithms.

6.1 Technical Insights

We begin with the nonparametric Poisson regression.
The quantile coupling inequality given in Brown et al.
(2010), which is a direct consequence of the results de-
veloped in Komlós, Major and Tusnády (1975), pro-
vides a tight bound for the quantile coupling between a
Poisson variable and a normal variable.

LEMMA 3 (Brown et al., 2010). Let λ > 0 and let
X ∼ Poisson(λ). There exist a standard normal ran-
dom variable Z ∼ N(0,1) and constants c1, c2 > 0
not depending on λ such that whenever the event A =
{|X − λ| ≤ c1λ} occurs,

(27) |X − λ − √
λZ| < c2

(
Z2 + 1

)
.

This result can be used to show precisely how well
the transformed data is approximated by independent
normal variables. To understand the effect of the Gaus-
sianization Machine, let us consider X ∼ Poisson(λ)

and denote Y =
√

X + 1
4 and ε = EY − √

λ. Let Z be
a standard normal variable satisfying (27). Then Y can
be expressed as

Y = √
λ + ε + 1

2
Z + δ,

where

δ = X − λ√
X + 1

4 +
√

λ + 1
4

− 1

2
Z

−E

(
X − λ√

X + 1
4 +

√
λ + 1

4

)
.

(28)

The approximation result on the MM-VST given in
Lemma 1 in Section 2 shows that ε = EY − √

λ is
“small” when λ is large, which is the case after binning.
(It also shows the importance of the correction factor
1/4.) Lemma 3 implies that the random variable δ is
“stochastically small”. Hence for practical purposes,
the binned and transformed data Y ∗

j can be viewed
as independent homoscedastic normal variables where

Y ∗
j

·∼ N(
√

λ̄j ,
1
4), and the Poisson regression problem

is thus“gaussianized”.
The main ideas for Poisson regression can be ex-

tended easily to the nonparametric regression in the
NEF-QVF. The transformation is the MM-VST Hm de-

fined in (15). Let X1, . . . ,Xm
i.i.d.∼ NQ(μ) with vari-

ance V . Let X = ∑m
i=1 Xi , Y = Hm(X) = G(X+a

m+b
),

and ε = EY − G(μ). The following coupling inequal-
ity shows that X can be treated as a normal random
variable with mean mμ and variance mV when m is
large.

LEMMA 4 (Brown, Cai and Zhou, 2010). There ex-
ist a standard normal random variable Z and constants
c1, c2 > 0 not depending on m such that whenever the
event A = {|X − mμ| ≤ c1m} occurs,

(29) |X − mμ − √
mV Z| < c2

(
Z2 + 1

)
.

Let Y = Hm(X) = G(X+a
m+b

), ε = EY − G(μ) and
Z ∼ N(0,1) satisfying (29). Then Y can be written as

(30) Y = G(μ) + ε + m− 1
2 Z + δ,

where ε is a deterministic approximation error and δ is
a stochastic error. The mean-matching property of Hm

guarantees that the deterministic approximation error
ε is small and the quantile coupling inequality ensures
the stochastic error δ to be small. For nonparametric re-
gression in the NEF-QVF, the observations in the same
bin have different means in general and the bias in-
creases with m. On the other hand, the stochastic er-
ror δ decreases as m increases. The choice of m ≈ n1/4

(or equivalently T 
 n3/4) balances these two different
kinds of errors. See Brown, Cai and Zhou (2010) for a
detailed technical analysis.

We now turn to the robust nonparametric regression.
In this case, the transformation in the Gaussianiza-
tion Machine is the local median transformation. Let
ξ1, . . . , ξm be i.i.d. with density function h such that∫ 0
−∞ h(x) dx = 1

2 , h(0) > 0, and h(x) is Lipschitz at
x = 0. Let ξmed = median(ξ1, . . . , ξm). It follows from
the CLT that ξmed is approximately normal when m is
large. A precise quantification of the approximation er-
ror is need. The following quantile coupling inequality
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for the sample median is a key tool for understanding
the effects of the Gaussianization Machine.

LEMMA 5 (Median Coupling Inequality, Brown, Cai
and Zhou (2008)). For every odd integer m ≥ 3, there
exist a standard normal random variable Z and con-
stants c1, c2 > 0 not depending on m such that∣∣∣∣ξmed − 1

2
√

mh(0)
Z

∣∣∣∣
≤ c2

mh(0)

(|Z|2 + 1
)

when |Z| ≤ c1
√

m.

(31)

A similar result holds when the bin size m is an
even integer. For robust nonparametric regression, one
observes {Y1, . . . , Yn} as in (23). The Gaussianiza-
tion Machine first groups the data into T bins with
m observations each. Take the first bin as an exam-
ple. In this bin, the observations are Yi = f ( i

n
) + ξi ,

i = 1, . . . ,m. Note that the values of f ( i
n
) are not

equal. Let Z ∼ N(0,1) satisfy (31). The sample me-
dian Y ∗

1 = median(Y1, . . . , Ym) can be written as

Y ∗
1 = f̄1 + ε1 + bm + 1

2
√

mh(0)
Z + δ1,

where f̄1 = T
∫ 1

T

0 f (x) dx is the average of f in the
subinterval [0, 1

T
], ε1 is a deterministic approximation

error, bm = E(ξmed) is a constant depending only on
the error density function h and bin size m, and δ1 is
the stochastic error. As in the case of nonparametric
regression in the NEF-QVF, the approximation error ε1
increases with m and the stochastic error δ1 decreases
with m. The choice of m ≈ n1/4 balances these two
different types of errors.

When the error distribution is known to be symmet-
ric, bm = 0 and the stochastic error δ1 is much smaller
for a given m. This allows for choosing a smaller m

and the estimator achieves optimality over a larger col-
lection of function spaces. See Brown, Cai and Zhou
(2008) and Cai and Zhou (2009) for more details.

6.2 Theoretical Properties

Brown, Cai and Zhou (2008, 2010) and Brown et al.
(2010) use the BlockJS procedure in Step 3 of the
Gaussianization Machine algorithms and analyze the
theoretical properties of the procedures for nonpara-
metric density estimation, regression in the NEF-QVF,
and robust nonparametric regression. Let us denote
such as estimator by f̂BJS in the following discussion.
The performance of the estimator f̂BJS is measured
globally by the mean integrated squared error

(32) R(f̂BJS, f ) = E‖f̂BJS − f ‖2
2,

and locally at any given point t0 ∈ (0,1) by the point-
wise mean squared error

(33) R
(
f̂BJS(t0), f (t0)

) = E
(
f̂BJS(t0) − f (t0)

)2
.

The estimator f̂BJS is computationally easy to imple-
ment and performs well numerically. Theoretically, the
global performance of the estimator f̂BJS is evaluated
over a collection of the Besov spaces, which occur nat-
urally in many fields of analysis. They contain a num-
ber of traditional smoothness spaces such as Hölder
and Sobolev spaces as special cases. Roughly speak-
ing, the Besov space Bα

p,q contains functions having α

bounded derivatives in Lp norm, the third parameter
q gives a finer gradation of smoothness. See Triebel
(1983) for detailed discussion on Besov spaces.

Brown, Cai and Zhou (2008, 2010) and Brown et al.
(2010) show that, under mild regularity conditions,
f̂BJS adaptively achieves the optimal rate of conver-
gence, n−2α/(1+2α), for global estimation over a com-
pact ball in a wide collection of the Besov spaces Bα

p,q ,
without prior knowledge of the smoothness of the un-
derlying functions. The estimator f̂BJS is also spatially
adaptive. For local estimation, f̂BJS attains the point-
wise adaptive minimax rate over a set of local Hölder
classes, without prior knowledge of the local smooth-
ness of the underlying functions. These results hold
across the collection of all the non-Gaussian function
estimation models discussed in the previous sections.
In other words, the optimality results for BlockJS in
the case of the standard nonparametric Gaussian re-
gression essentially carry over to these non-Gaussian
problems without change.

The analysis of the theoretical properties of f̂BJS re-
lies heavily on the quantile coupling inequalities and a
general oracle inequality for block thresholding where
the noise is not necessarily Gaussian. This risk bound
is useful in turning the analysis of the estimator f̂BJS in
the non-Gaussian setting into the bias-variance trade-
off calculation which is often used in the more standard
nonparametric Gaussian regression.

7. DISCUSSION AND CONCLUDING REMARKS

The Gaussianization Machines discussed in the
present paper are practical and easily implementable.
They extend the theories and methodologies developed
for the standard nonparametric Gaussian regression to
a much larger class of models. The focus so far has
mainly been on estimation, in particular the global re-
covery of the regression function. It is also of signifi-
cant interest to consider other estimation problems and
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statistical inference, including estimation of the linear
and quadratic functionals as well as confidence inter-
vals and hypothesis testing, under these non-Gaussian
models. It is interesting to investigate the extend to
which the Gaussianization Machines work for these
estimation and inference problems.

In addition to the NEF-QVF, the MM-VST also
exists for some other important families of distribu-
tions, including the gamma-Poisson family and the
beta-binomial family (Brown, Cai and Zhou, 2010).
The Gaussianization Machine developed for nonpara-
metric regression in the NEF-QVF can be extended
to nonparametric regression in these families as well.
In addition, as discussed in the Introduction, global
asymptotic equivalence theory has been established in
a wide range of settings. It is of practical interest to de-
velop similar user-friendly Gaussianization Machines
for other non-Gaussian models such as nonparametric
autoregression and GARCH models.

Much recent attention in statistics has been on high-
dimensional statistical inference. As usual, the Gaus-
sian models occupy a particularly important place in
the high-dimensional settings. Another interest direc-
tion is to investigate when and how the main ideas
behind the Gaussianization Machines discussed in the
present paper can be applied in the high-dimensional
settings to extend the theories and methodologies orig-
inally developed in the Gaussian case to the non-
Gaussian cases.
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