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Comment: Minimalist g-Modeling

Roger Koenker and Jiaying Gu

Abstract.

Efron’s elegant approach to g-modeling for empirical Bayes

problems is contrasted with an implementation of the Kiefer—Wolfowitz non-
parametric maximum likelihood estimator for mixture models for several ex-
amples. The latter approach has the advantage that it is free of tuning param-
eters and consequently provides a relatively simple complementary method.
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1. INTRODUCTION

It is a great privilege to have the opportunity to com-
ment on this marvelous paper. Nearly 70 years ago
Herbert Robbins, the oracle of empirical Bayesianism,
published an abstract in the Annals that begins:

Let 6 be a vector random variable with dis-
tribution function G (6) belonging to some
class G, let X be a vector random variable
whose frequency function f(x;0) depends
on 0, and let g*(x) = [ f(x;0)dG(0) be
the resulting frequency function of X. From
a sample X, Xp,... it is required to es-
timate G(0). The generalized method of
maximum likelihood consists in using the
estimates G, (9; x1, ..., x,) in G for which
[Tg*(x;) is a maximum. Under certain
restrictions, this method is consistent as
n — 00. (Robbins, 1950)

Of course, since this was only an abstract; no details
were provided, or forthcoming, until Kiefer and Wol-
fowitz (1956), elaborating on Wald, provided details
for the consistency claim. Some time then passed, un-
til Laird (1978) described how the nascent EM algo-
rithm could be deployed to compute G,. The influ-
ential paper of Jiang and Zhang (2009) has renewed
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Nonparametric maximum likelihood, mixture

interest in the Kiefer—Wolfowitz NPMLE establishing
precise risk bounds and demonstrating attractive sim-
ulation performance. In econometrics Heckman and
Singer (1984) were among the first to take up the chal-
lenge of actually using EM to compute a G, in an effort
to explore frailty models for unemployment durations.

As Efron persuasively argues the time is now ripe
for a major revival of interest in these methods. Data
sources are much more plentiful and computational
wherewithal is vastly improved. Efron’s g-modeling
offers an extremely flexible approach to achieving
Robbins objective of effectively estimating the mix-
ing distribution, G. This seems already astonishing
in the Gaussian location mixture setting where maxi-
mum likelihood out-performs classical Fourier meth-
ods for deconvolution, but is even more astonishing
when one realizes that similar methods may be ap-
plied to a much wider class of general mixture prob-
lems. The decision to model g = G’ as an exponential
family brings many attendant advantages, not the least
of which is the elegant inference apparatus laid out in
Efron’s paper. However, the B-spline basis expansion
and the Euclidean penalization of its coefficients adds a
layer of hierarchical Bayesian artistry that may frighten
away some researchers. In what follows, we will try to
make a case for a complementary, more minimalist ap-
proach based on the nonparametric MLE of Robbins
and Kiefer—Wolfowitz.

2. A MINIMALIST G,

The Kiefer—Wolfowitz NPMLE, like Efron’s g, re-
lies upon a grid of values 1, ..., t,,, that constitute po-
tential support points. The number of these potential
support points can be quite large; we generally take
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FIG. 1. Four estimates of the mixing distributions G: In the left panel the true mixing distribution is a smooth scale mixture of Gaussians,
in the right panel it is discrete with mass points at 0 and 2. The legend reports Wasserstein (L) distances between each of the estimates G,

and the true G.

m = 300 with equally spaced #; over the support of the
observed X'’s, at least for Gaussian location mixtures
with moderate n. The primal version of the NPMLE
problem is then

n
H}}n{—zlogf(xi) ‘ f=Ag.g>0,1,g=1},
i=1

where A denotes an n by m matrix with ij element,
@(x; — t;). This is a relatively simple convex optimiza-
tion problem and as such admits a unique solution. As
for the Breiman nonnegative garrotte, the requirement
that g > 0 acts as a powerful regularization device. No
more that n of the m elements of g can be strictly pos-
itive, and typically this number grows like O(4/n). As
shown in Koenker and Mizera (2014), the correspond-
ing dual problem

n
max { Z log v;

i=l

ATy Sn}

is somewhat more convenient for computations. In ei-
ther case, we obtain as a solution a discrete G, with a
small number of distinct mass points.

To illustrate the basic differences among the vari-
ous methods of estimating G, we consider two vari-
ants of a simulation setting from Efron (2016). In the
first of these, G is a smooth scale mixture of Gaus-
sians: G(0) =G1(0) = %d>(9/6)+ %CI>(20); in the sec-
ond, we have a discrete mixing distribution: G(6) =

G2(0) = §1(0 = 0) + §1(6 = 2), In Figure 1, we de-
pict several estimates of G for each of these mod-
els based on a sample of size 1000. Performance,
measured by Wasserstein (L) distance, W1 (G, én) =
f|én(x) — G(x)|dx, is reported in the legend for
each estimator. In the smooth setting of the left panel,
the Efron estimator is the clear winner, although the
smoothed version of the Kiefer—Wolfowitz estimator
that simply convolves the discrete estimate with a bi-
weight kernel with scale 0.7 does almost as well. In
the right panel, where the true G is discrete with only
two mass points, the KW estimator is almost paranor-
mal. In both settings, the kernel-based deconvolution
estimator of Stefanski and Carroll (1990) does poorly
particularly in the tails.

A small simulation experiment to compare perfor-
mance of these four estimators in the two settings of
Figure 1 is reported in Table 1. Mean Wasserstein er-
rors are based on 1000 replications.

TABLE 1
Mean Wasserstein (L1) error

Efron Kernel NPMLE NPMLEs
Smooth 0.185 0.591 0.342 0.180
Discrete 0.409 0.718 0.156 0.280
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The effect of tuning on the Efron g estimator: The smooth curves depict g’s computed with K € {5,20} and cq € {0.1, 1} contrasted

with the estimated point masses produced by the Kiefer—Wolfowitz NPMLE.

3. TUNING

The flexibility of g-modeling as formulated in Efron
(2016) arises from the opportunity to choose both the
basis expansion for log g and the form and severity of
the penalization of the parameters of that expansion.
To explore the role of these choices in the context of
Efron’s “two towers” example, we compared several
estimates with g(0; o) expressed as a natural spline
expansion with o € RX and penalty term, collc||. We
generate data as in Efron’s Figure 1, with n = 1500.
In the left panel of Figure 2 we plot estimates of the
mixing density, g, based on K =5 and K = 20 with
co = 0.1 together with the NPMLE estimate, which has
only three distinct mass points. In the right panel we
do the same except that now co = 1. It is evident that
with K large and ¢y small one can obtain a g that be-
gins to mimic the NPMLE quite well. This is somewhat
similar to what happens when computing the NPMLE
with the EM algorithm where early stopping of the it-
erations acts as a regularizing device. This is just one
realization, what happens if we repeat the exercise?

To see how systematic the differences really are, we
ran a small simulation experiment to compare empir-
ical Bayes regret as defined by Efron relative to the
Oracle Bayes estimator. Table 2 reports the results of
this experiment based on 500 replications. The most
flexible of the four Efron g estimators performs essen-
tially the same as the NPMLE, but the other choices
do not do as well, suggesting that careful tuning of the
g-modeling procedure is important.

4. FREQUENTLY ALMOST BAYESIAN

It is difficult, perhaps impossible, to unravel the
Bayesian and frequentist strands of the empirical
Bayes tradition, and probably not terribly productive,
Lindley’s dictum notwithstanding. However, it does
seem worthwhile at least briefly to see how the g-
modeling methods already considered compare with
well-established, more formal Bayes methods based
on Dirichlet process methods. To this end, we recon-
sider the analysis of Shakespeare’s vocabulary in Efron
(2010).

The data consists of word counts, {ni,...,n100}
where n; denotes the number of the words in the
Shakespeare canon of plays and poetry used precisely
j times. Adopting the presumption that words appear
as independent Poisson draws with individual intensity
parameter, A;, this gives us a truncated Poisson mixture
model,

nj=En;= S/OOO e A /(P AG(D),

TABLE 2
Empirical Bayes Regret for “two towers” example

co=1.0 co=0.1
df =5 df =20 df =5 df =20 NPMLE
0.03983 0.01131 0.01055 0.00805 0.00825




212 R. KOENKER AND J. GU

1.0

0.8
I

Gn(A)

0 20 40 60 80 100

FIG. 3.

m
€
g -
o
>
o <
o — KW
- - Efron Ao o
~a— - DP 0o ot
- =+ Fisher o Y
T T T T T T
0 20 40 60 80 100

occurence frequency

Left panel: Comparison of the Kiefer—Wolfowitz NPMLE and Efron g-modeling estimates with a Dirichlet process estimate of

the mixing distribution G for the Shakespeare vocabulary data. The Dirichlet estimate is depicted as a 0.95 pointwise band based on the
last 1000 iterations of the Metropolis—Hastings MCMC chain. Right panel: Comparison of the NPMLE, Efron and DP predictions of the
nj =En; values for j =2.3, ..., 100 with the parametric empirical Bayes procedure of Fisher.

where P(X) = A(100,A) — A(0, 2) with A(x, A) de-
noting the Poisson distribution function, and S =
884,647 the total number of words in the Shake-
speare canon. The standard Dirichlet process formu-
lation for Poisson mixtures would specify a prior for
G as DP(«, Gg), where the base measure, Gy would
be gamma with some specified parameters, and o de-
notes the concentration of the prior belief. Truncation
of the Poisson complicates things somewhat, render-
ing the usual closed form Gibbs MCMC infeasible.
Instead we can adopt the Metropolis—Hastings strategy
of Algorithm 8 of Neal (2000) as implemented in the
R package dirichletprocess of Ross and Mark-
wick (2018).

How formal is this more formal DP estimate from
a Bayesian standpoint? We have not, we confess, cho-
sen the parameters of the prior D P («, Go) from some
deep philological understanding of English poetry and
prose, instead we have given the MCMC iterations
free rein to update the concentration parameter, «,
and the rate parameter 8 of Gg. The rate parameter
of Gy is taken to be conjugate Gamma with param-
eters (1, 1/2); the shape parameter of the G¢ is held
fixed at 0.25 to avoid further complicating the esti-
mation process. This yields a relatively weak “prior”
with @ = 9.27 and gamma rate parameter ,3 =0.0232,
as posterior medians based on the last 1000 of 2000
MCMLC iterations. The resulting DP estimate, G, is
illustrated in left panel of Figure 3 as a 0.95 point-
wise band again based on the last 1000 MCMC iter-
ations. For comparison, the NPMLE and Efron’s G,,
with df =5 and cg = 2, are overlayed in the figure.
Although the three estimates appear quite similar, the
computational effort they require differs considerably.

The DP posterior requires about an hour and a half to
compute, while the NPMLE and Efron’s G, each re-
quire less than a second; this has the unfortunate conse-
quence of making further exploration of sensitivity of
the DP procedure to the choice of hyperparameters and
other tuning parameters of the MCMC process quite
costly.

In the right panel of Figure 3, we compare the
observed values, n;, with the predictions from the
NPMLE, Efron and DP procedures for n; : j =2,...,
100 with the parametric MLE procedure proposed by
Fisher for the Corbet butterfly data. Conditioning on
n1, and using the negative binomial representation of
gamma mixtures of Poissons, we can write

T@+ j)bi—!

i =nirj(a, by = -
1j = mrja. by =m—rmm

where (a,b) = argmax{Z;Lzlog pnj,niij(a, b))},
and p(n, A) denotes the Poisson density. This too may
be viewed as a parametric empirical Bayes procedure,
and it delivers an astonishingly good fit to the observed
counts despite the fact that its estimated “prior” with
(a, I;) = (—0.398,0.992) is improper. On the basis of
visual goodness of fit, there is little to distinguish the
four procedures, all perform admirably.

None of the procedures we have discussed meet a
stringent Bayesian standard, as formulated for exam-
ple, in Deely and Lindley (1981), so perhaps it is time
to modify slightly another famous dictum of Lindley:

We will all be [empirical] Bayesians in
2020, and then we can be a united profes-
sion. (Lindley and Smith, 1995)
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