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Sparse Regression: Scalable Algorithms and
Empirical Performance1

Dimitris Bertsimas, Jean Pauphilet and Bart Van Parys

Abstract. In this paper, we review state-of-the-art methods for feature se-
lection in statistics with an application-oriented eye. Indeed, sparsity is a
valuable property and the profusion of research on the topic might have
provided little guidance to practitioners. We demonstrate empirically how
noise and correlation impact both the accuracy—the number of correct
features selected—and the false detection—the number of incorrect fea-
tures selected—for five methods: the cardinality-constrained formulation,
its Boolean relaxation, �1 regularization and two methods with non-convex
penalties. A cogent feature selection method is expected to exhibit a two-fold
convergence, namely the accuracy and false detection rate should converge to
1 and 0 respectively, as the sample size increases. As a result, proper method
should recover all and nothing but true features. Empirically, the integer op-
timization formulation and its Boolean relaxation are the closest to exhibit
this two properties consistently in various regimes of noise and correlation.
In addition, apart from the discrete optimization approach which requires a
substantial, yet often affordable, computational time, all methods terminate in
times comparable with the glmnet package for Lasso. We released code for
methods that were not publicly implemented. Jointly considered, accuracy,
false detection and computational time provide a comprehensive assessment
of each feature selection method and shed light on alternatives to the Lasso-
regularization which are not as popular in practice yet.
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1. INTRODUCTION

The identification of important variables in regression
is valuable to practitioners and decision makers in settings
with large data sets of high dimensionality. Correspond-
ingly, the notion of sparsity, that is, the ability to make
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predictions based on a limited number of covariates, has
become cardinal in statistics. The so-called cardinality-
penalized estimators for instance minimize the trade-off
between prediction accuracy and number of input vari-
ables. Though computationally expensive, they have been
considered as a relevant benchmark in high-dimensional
statistics. Indeed, these estimators are characterized as the
solution of the NP-hard problem

(1) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

) + λ‖w‖0,

where � is an appropriate convex loss function, such as
the ones reported in Table 1 (p. 556). The covariates are
denoted by the matrix X ∈ R

n×p , whose rows are the
x�
i ’s, and the response data by Y = (y1, . . . , yn) ∈ R

n.
Here, ‖w‖0 := |{j : wj �= 0}| denotes the 0-pseudo norm,
that is, the number of non-zero coefficients of w. Alterna-
tively, one can explicitly constrain the number of features
used for prediction and solve

(2) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

)
s.t. ‖w‖0 ≤ k,
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TABLE 1
Relevant loss functions � and their corresponding Fenchel conjugates
�̂ as defined in Theorem 1. The observed data is continuous, y ∈R,
for regression and categorical, y ∈ {−1,1}, for classification. By

convention, �̂ equals +∞ outside of its domain. The binary entropy
function is denoted H(x) := −x logx − (1 − x) log(1 − x)

Method Loss �(y,u) Fenchel conjugate �̂(y,α)

Ordinary Least 1
2 (y − u)2 1

2α2 + yα

Square
Logistic loss log(1 + e−yu) −H(−yα) for yα ∈ [−1,0]
1-norm SVM— max(0,1 − yu) yα for yα ∈ [−1,0]

Hinge loss

which is likewise an NP-hard optimization problem [38].
For decades, such problems have thus been solved using
greedy heuristics, such as step-wise regression, matching
pursuits [36], or recursive feature elimination (RFE) [27].

Consequently, much attention has been directed to con-
vex surrogate estimators which tend to be sparse, while
requiring less computational effort. The Lasso estimator,
commonly defined as the solution of

min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

) + λ‖w‖1,

and initially proposed by Tibshirani [43] is widely known
and used. Its practical success can be explained by three
concurrent ingredients: Efficient numerical algorithms ex-
ist [1, 16, 21], off-the-shelf implementations are publicly
available [22] and recovery of the true sparsity is theo-
retically guaranteed under admittedly strong assumptions
on the data [44]. However, recent works [18, 42] have
pointed out several key deficiencies of the Lasso regressor
in its ability to select the true features without including
many irrelevant ones as well. In a parallel direction, theo-
retical work in statistics [24, 45, 46] has identified regimes
where Lasso fails to recover the true support even though
support recovery is possible from an information theoretic
point of view.

Therefore, new research in numerical algorithms for
solving the exact formulation (2) directly has flourished.
Leveraging recent advances in mixed-integer solvers [4,
5], Lagrangian relaxation [40] or cutting-plane methods
Bertsimas and Van Parys [8], Bertsimas, Pauphilet and
Van Parys [7], these works have demonstrated significant
improvement over existing Lasso-based heuristics. To the
best of our knowledge, the exact algorithm proposed by
Bertsimas and Van Parys [8], Bertsimas, Pauphilet and
Van Parys [7] is the most scalable method providing prov-
ably optimal solutions to the optimization problem (2), at
the expense of potentially significant computational time
and the use of a commercial integer optimization solver.

Another line of research has focused on replacing the �1
norm in the Lasso formulation by other sparsity-inducing

penalties which are less sensitive to noise or correlation
between features. In particular, non-convex penalties such
as smoothly clipped absolute deviation (SCAD) [17] and
minimax concave penalty (MCP) [50] have been pro-
posed. Both SCAD and MCP have the so-called oracle
property, meaning that they do not require a priori knowl-
edge of the sparsity pattern to achieve an optimal asymp-
totic convergence rate, which is theoretically appealing.
From a computational point of view, coordinate descent
algorithms [9] have shown very effective, even though
lack of convexity in the objective function hindered their
wide adoption in practice.

Convinced that sparsity is an extremely valuable prop-
erty in high-impact applications where interpretability
matters, and conscious that the profusion of research on
the matter might have caused confusion and provided lit-
tle guidance to practitioners, we propose with the present
paper a comprehensive treatment of state-of-the-art meth-
ods for feature selection in ordinary least square and lo-
gistic regression. Our goal is not to provide a theoretical
analysis. On the contrary, we selected and evaluated the
methods with an eye towards practicality, taking into ac-
count both scalability to large data sets and availability
of the implementations. In some cases where open-source
implementation was not available, we released code on
our website, in an attempt to bridge the gap between the-
oretical advances and practical adoption. Statistical per-
formance of the methods is assessed in terms of Accuracy
(A),

A(w) := |{j : wj �= 0,wtrue,j �= 0}|
|{j : wtrue,j �= 0}| ,

that is, the proportion of true features which are selected,
and False Discovery Rate (FDR),

FDR(w) := |{j : wj �= 0,wtrue,j = 0}|
|{j : wj �= 0}| ,

that is, the proportion of selected features which are not
in the true support.

1.1 Outline and Contribution

Our key contributions can be summarized as follows:

• We provide a unified treatment of state-of-the-art meth-
ods for feature selection in statistics. More precisely,
we cover the cardinality-constrained formulation (2),
its Boolean relaxation, the Lasso formulation and its
derivatives, and the MCP and SCAD penalty. We did
not include step-wise regression methods, for they may
require a high number of iterations in high dimension
and exist in many variants.

• Encouraged by theoretical results obtained for the
Boolean relaxation of (2) by Pilanci, Wainwright and
El Ghaoui [40], we propose an efficient sub-gradient
algorithm to solve it and provide theoretical rate of con-
vergence of our method.
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• We make our code freely available as a Julia package
named SubsetSelection. Our algorithm scales to
problems with n,p = 100,000 or n = 10,000 and p =
1,000,000 within minutes, while providing high-quality
estimators.

• We compare the performance of all methods on three
metrics of crucial interest in practice: accuracy, false
detection rate and computational tractability, and in
various regimes of noise and correlation.

• More precisely, under the mutual incoherence condi-
tion, all methods exhibit a convergence in accuracy, that
is the proportion of correct features selected converges
to 1 as the sample size n increases, in all regimes of
noise and correlation. Yet, on this matter, cardinality-
constrained and MCP formulations are the most ac-
curate. As soon as mutual incoherence condition fails
to hold, �1-based estimators are inconsistent with A <

1, while non-convex penalties eventually perfectly re-
cover the support.

• In addition, we also observe a convergence in false de-
tection rate, namely the proportion of irrelevant fea-
tures selected converging to 0 as the sample size n in-
creases, for some but not all methods: The convex inte-
ger formulation and its Boolean relaxation are the only
methods which demonstrate this behavior, in low noise
settings and make the fewest false discoveries in other
regimes. In our experiments, Lasso-based estimators
return at least 80% of non-significant features. MCP
and SCAD have a low but strictly positive false detec-
tion rate (around 15–30% in our experiments) as n in-
creases and in all regimes.

• In terms of computational time, the integer optimiza-
tion approach is unsurprisingly the most expensive op-
tion. Nonetheless, the computational cost is only one
or two orders of magnitude higher than other alterna-
tives and remains affordable in many real-world prob-
lems, even high-dimensional ones. Otherwise, the four
remaining codes terminate in time comparable with the
glmnet implementation of the Lasso, that is within
seconds for n = 1000 and p = 20,000.

In Section 2, we present each method, its formula-
tion, its theoretical underpinnings and the numerical algo-
rithms proposed to compute it. In each case, we point the
reader to appropriate references and open-source imple-
mentations. We propose and describe our sub-gradient al-
gorithm for the Boolean relaxation of (2) also in Section 2.
Appendix A in the Supplementary Material [6] provides
further details on our implementation of the algorithm,
its scalability and its applicability to cardinality-penalized
estimators (1) as well. In Section 3 (and Appendix B), we
compare the methods on synthetic data sets for linear re-
gression. In particular, we observe and discuss the behav-
ior of each method in terms of accuracy, false detection
rate and computational time for three families of design

matrices and at least three levels noise. In Section 4 (and
Appendix C), we apply the methods to classification prob-
lems on similar synthetic problems. We also analyze the
implications of the feature selection methods in terms of
induced sparsity and prediction accuracy on a real data set
from genomics.

1.2 Notations

In the rest of the paper, we denote with e the vector
whose components are equal to one. For q ≥ 1, ‖ · ‖q de-
notes the �q norm defined as ‖x‖q = (

∑
i |xi |q)1/q . For

any d-dimensional vector x, we denote with x[j ] the j th
largest component of x. Hence, we have x[1] ≥ · · · ≥ x[d].

2. SPARSE REGRESSION FORMULATIONS

In this section, we introduce the different formula-
tions and algorithms that have been proposed to solve the
sparse regression problem. We focus on the cardinality-
constrained formulation, its Boolean relaxation, the Lasso
and Elastic-Net estimators, the MCP and SCAD penalty.

2.1 Integer Optimization Formulation

As mentioned in introduction, a natural way to compute
sparse regressors is to explicitly constrain the number of
non-zero coefficients, i.e., solve

(2) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

)
s.t. ‖w‖0 ≤ k,

where � is an appropriate loss function, appropriate in the
sense that �(y, ·) is convex for any y. In this paper, we fo-
cus on Ordinary Least Square (OLS), logistic regression
and Hinge loss, as presented in Table 1 on page 556. Un-
fortunately, such a problem is NP-hard [38] and believed
to be intractable in practice. The original attempt by Fur-
nival and Wilson [23] using “Leaps and Bounds” scaled
to problems with n, p in the 10s. Thanks to both hardware
improvement and advances in mixed-integer optimiza-
tion solvers, Bertsimas, King and Mazumder [5], Bert-
simas and King [4] successfully used discrete optimiza-
tion techniques to solve instances with n, p in the 1000s
within minutes. More recently, Bertsimas and Van Parys
[8], Bertsimas, Pauphilet and Van Parys [7] proposed a
cutting plane approach which scales to data sizes of with
n, p in the 100,000s for ordinary least square and n, p

in the 10,000s for logistic regression. To the best of our
knowledge, our approach is the only method which scales
to instances of such sizes, while provably solving such an
NP-hard problem.

2.1.1 Convex integer formulation. Bertsimas and
Van Parys [8], Bertsimas, Pauphilet and Van Parys [7]
consider an �2-regularized version of the initial formula-
tion (2),

(3) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

) + 1

2γ
‖w‖2

2 s.t. ‖w‖0 ≤ k,
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where γ > 0 is a regularization coefficient. From a statis-
tical point of view, this extra regularization, referred to as
ridge or Tikhonov regularization, is needed to account for
correlation between features [30] and mitigate the effect
of noise. Indeed, regularization and robustness are two in-
timately connected properties, as illustrated by Bertsimas
and Fertis [3], Xu, Caramanis and Mannor [48]. In addi-
tion, Breiman et al. [10] proved that subset selection is a
very unstable problem and highlighted the stabilizing ef-
fect of Ridge regularization. Introducing a binary variable
s ∈ {0,1}p to encode the support of w and using convex
duality, problem (3) can be shown equivalent to a convex
integer optimization problem as stated in the following
theorem.

THEOREM 1 ([7], Theorem 1). For any convex loss
function �, problem (3) is equivalent to

min
s∈{0,1}p :s�e≤k

max
α∈Rn

f (α, s)

:=
(
−

n∑
i=1

�̂(yi, αi) − γ

2

p∑
j=1

sjα
�XjX

�
j α

)
,

(4)

where �̂(y,α) := maxu∈R uα−�(y,u) is the Fenchel con-
jugate of the loss function � (see [2], Chapter 6.4), as re-
ported in Table 1. In particular, the function f is continu-
ous, linear in s and concave in α.

In the special case of OLS, the function f is a quadratic
function in α

f (α, s) = −1

2
‖α‖2 − Y�α − γ

2
αXsX

�
s α,

where XsX
�
s := ∑p

j=1 sjXjX
�
j . As a result, the inner

maximization problem can be solved in closed form: The
maximum is attained at α�(s) = −(In +γXsX

�
s )−1Y and

the objective value is

max
α

f (α, s) = 1

2
Y�(

In + γXsX
�
s

)−1
Y.

2.1.2 Cutting-plane algorithm. Denoting

c(s) := max
α∈Rn

f (α, s),

which is a convex function in s, the cutting-plane algo-
rithm solves the convex integer optimization problem

min
s∈{0,1}p c(s) s.t. s�e ≤ k,

by iteratively tightening a piece-wise linear lower approx-
imation of c. Pseudo-code is given in Algorithm 1 (p.
558). Proof of termination and details on implementation
can be found in Bertsimas and Van Parys [8] for regres-
sion and Bertsimas, Pauphilet and Van Parys [7] for classi-
fication. This outer-approximation scheme was originally
proposed by Duran and Grossmann [15] for general non-
linear mixed-integer optimization problems.

2.1.3 Implementation and publicly available code.
A naive implementation of Algorithm 1 would solve a
mixed-integer linear optimization problem at each iter-
ation, which can be as expensive as explicit enumera-
tion of all feasible supports s. Fortunately, with mod-
ern solvers such as Gurobi [26] or CPLEX [31], this
outer-approximation scheme can be implemented using
lazy constraints, enabling the use of a single Branch-and-
Bound tree for all subproblems.

The algorithm terminates when the incumbent solution
is ε-optimal for some fixed tolerance level ε (we chose
ε = 10−4 in our simulations). We also need to impose a
time limit on the algorithm. Indeed, as often in discrete
optimization, the algorithm can quickly find the optimal
solution, but spends a lot of the time proving its optimal-
ity. In our experiment, we fixed a time limit of 60 seconds
for regression and 180 seconds for classification. Such
choices were guided by confidence in the quality of the
initial solution s1 we provide to the algorithm (which we
will describe in the next section) as well as time needed
to compute c(s) and ∇c(s) for a given support s.

The formulation (3) contains two hyper-parameters, k

and γ , to control for the amount of sparsity and regu-
larization respectively. In practice, those parameters need
to be tuned using a cross-validation procedure. Since the
function to minimize does not depend on k, any piece-
wise linear lower approximation of c(s) computed to
solve (3) for some value of k can be reused to solve the
problem at another sparsity level. In recent work, Ken-
ney, Chiaromonte and Felici [33] proposed a combination
of implementation recipes to optimize such search proce-
dures. As for γ , we apply the procedure described in Chu
et al. [12], starting with a low value γ0 (typically scaling
as 1/maxi ‖xi‖2) and inflate it by a factor 2 at each itera-
tion.

Algorithm 1 Outer-approximation algorithm

Require: X ∈ R
n×p , Y ∈ R

n, k ∈ {1, . . . , p}
t ← 1
repeat

st+1, ηt+1 ← argmins∈{0,1}p,η{η : ∑p
j=1 sj ≤ k, η ≥ c(si) + ∇c(si)�(s − si),∀i = 1, . . . , t}

t ← t + 1
until ηt < c(st ) − ε

return st
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To bridge the gap between theory and practice, we
present a Julia code which implements the described
cutting-plane algorithm publicly available on GitHub.1

The code requires a commercial solver like Gurobi
or CPLEX and our open-source package
SubsetSelection for the Lagrangian relaxation,
which we introduce in the next section. We also call the
open-source library LIBLINEAR [19] to efficiently com-
pute c(s) in the case of Hinge and logistic loss.

2.2 Lagrangian Relaxation

As often in discrete optimization, it is natural to con-
sider the Boolean relaxation of problem (4)

(5) min
s∈[0,1]p :e�s≤k

max
α∈Rn

f (α, s),

and study its tightness, as done by Pilanci, Wainwright
and El Ghaoui [40].

2.2.1 Tightness result. The above problem is recog-
nized as a convex/concave saddle point problem. Accord-
ing to Sion’s minimax theorem [41], the minimization and
maximization in (5) can be interchanged. Hence, saddle
point solutions (ᾱ, s̄) of (5) should satisfy

ᾱ ∈ arg max
α∈Rn

f (α, s̄),

s̄ ∈ arg min
s∈[0,1]p f (ᾱ, s) s.t. s�e ≤ k.

Since f is a linear function of s, a minimizer of f (ᾱ, s)

can be constructed easily by selecting the k smallest com-
ponents of the vector (−γ

2 ᾱ�XjX
�
j ᾱ)j=1,...,p . If those k

smallest components are unique, the so constructed binary
vector must be equal to s̄ and hence the relaxation (5) is
tight. In fact, the previous condition is necessary and suf-
ficient as proven by Pilanci, Wainwright and El Ghaoui
[40].

THEOREM 2 ([40], Proposition 1). The Boolean re-
laxation (5) is tight if and only if there exists a saddle
point (ᾱ, s̄) such that the vector

β̄ := (
ᾱ�XjX

�
j ᾱ

)
j=1,...,p

has unambiguously defined k largest components, that
is, there exists λ ∈ R such that β̄[1] ≥ · · · ≥ β̄[k] > λ >

β̄[k+1] ≥ · · · ≥ β̄[p].

This uniqueness condition in Theorem 2 seems often
fulfilled in real-world applications. It is satisfied with high
probability, for instance, when the covariates Xj are in-
dependent (see [40], Theorem 2). In other words, ran-
domness breaks the complexity of the problem. Similar
behavior has already been observed for semi-definite re-

1https://github.com/jeanpauphilet/SubsetSelectionCIO.jl

laxations [32, 49]. Such results have had impact in prac-
tice and propelled the advancement of convex proxy based
heuristics such as Lasso. Efficient algorithms can be de-
signed to solve the saddle point problem (5) without in-
volving sophisticated discrete optimization tools and pro-
vide a high-quality heuristic for approximately solving
(4) that could be used as a good warm-start in exact ap-
proaches.

2.2.2 Dual sub-gradient algorithm. In this section, we
propose and describe an algorithm for solving problem (5)
efficiently and make our code available as a Julia pack-
age. Our algorithm is fast and scales to data sets with n, p

in the 100,000s, which is two orders of magnitude larger
than the implementation proposed by Pilanci, Wainwright
and El Ghaoui [40].

For a given s, maximizing f over α cannot be done an-
alytically, with the noteworthy exception of ordinary least
squares, whereas minimizing over s for a fixed α reduces
to sorting the components of (−α�XjX

�
j α)j=1,...,p and

selecting the k smallest. We take advantage of this asym-
metry by proposing a dual projected sub-gradient algo-
rithm with constant step-size, as described in pseudo-code
in Algorithm 2. δ denotes the step size in the gradient up-
date and P the projection operator over the domain of f .
At each iteration, the algorithm updates the support s by
minimizing f (α, s) with respect to s, α being fixed. Then,
the variable α is updated by performing one step of pro-
jected sub-gradient ascent with constant step size δ. The
denomination “sub-gradient” comes from the fact that at
each iteration ∇αf (αT , sT ) is a sub-gradient to the func-
tion α �→ mins f (α, s) at α = αT .

In terms of computational cost, updating α requires
O(n‖s‖0) operations for computing the sub-gradient plus
at most O(n) operations for the projection on the feasible
domain. The most time-consuming step in Algorithm 2
is updating s which requires on average O(np + p logp)

operations.
The final averaging step α̂T = 1

T

∑
t αt is critical in sub-

gradient methods to ensure convergence of the algorithm
in terms of optimal value (see [2], Chapter 7.5).

Algorithm 2 Dual sub-gradient algorithm

s0, α0 ← Initial solution
T = 0
repeat

sT +1 ∈ argminsf (αT , s)

αT +1 =P(αT + δ∇αf (αT , sT ))

T = T + 1
until Stop criterion
α̂T = 1

T

∑
t α

t

return ŝ = argminsf (α̂T , s)

https://github.com/jeanpauphilet/SubsetSelectionCIO.jl
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THEOREM 3 ([2], Chapter 7.5). Assume the sequence
of sub-gradients {∇αf (αT , sT )} is uniformly bounded by
some constant L > 0, and that the set of saddle point so-
lutions Ā in (5) is non-empty. Then

f (α̂T , ŝ) ≥ f (ᾱ, s̄) − δL2

2
− dist2(α0, Ā)

2δT
,

where dist(α0, Ā) denotes the distance of the initial point
α0 to the set of saddle point solutions Ā.

As for any sub-gradient strategy, with an optimal choice
of step size δ,2 Theorem 3 proves a O(1/

√
T ) conver-

gence rate in terms of objective value, which is disap-
pointingly slow. However, in practice, convergence to-
wards the optimal primal solution s̄ is more relevant. In
that metric, our algorithm performs particularly well as
numerical experiments in Sections 3 and 4 demonstrate.
The key to our success is that the optimal primal solution
is estimated using partial minimization

ŝ = arg min
s

f (α̂T , s),

as opposed to averaging ŝ = 1
T

∑
t s

t , as studied by Nedić
and Ozdaglar [39] and commonly implemented for sub-
gradient methods. In addition, even though we are solving
a relaxation, we are interested in binary vectors s, which
can be interpreted as a set of features. To that extend, av-
eraging would not have been a suitable option since the
averaged solution is neither binary, nor k-sparse. With the
extra cost of computing c(st ) for all past iterates st as well
as c(ŝ), one can also decide to return the support vector
with the lowest value. This can only produce a better ap-
proximation of argmins∈{0,1}p :s�e≤k c(s).

2.2.3 Implementation and open-source package. The
algorithm terminates after a fixed number of iterations
Tmax which is standard for sub-gradient methods. In
our case, however, the quality of the primal variable
s should be the key concern. By computing c(st ) at
each iteration and keeping track of the best upper-bound
mint=1,...,T c(st ), one can use the duality gap or the num-
ber of consecutive iterations without any improvement on
the upper-bound as alternative stopping criteria. Comput-
ing c(st ) increases the cost per iteration, with the hope of
terminating the algorithm earlier. By default, our imple-
mentation stops after Tmax = 200 iterations or when the
duality gap is 10−4.

The constant step size rule is difficult to implement in
practice. Indeed, as seen in Theorem 3, an optimal step
size should depend on quantities that are hard do estimate
a priori, namely L and dist2(α0, Ā). In particular for lo-
gistic loss, L can be arbitrarily large. Instead, one can use

2δ = dist(α0,Ā)

L
√

T
.

an adaptive stepsize rule such as

δT = mint=1,...,T c(st ) − maxt=1,...,T f (αt , st )

‖∇αf (αT , sT )‖2 .

We implemented such a rule and refer to Bertsekas [2],
Chapter 7.5, for proofs of convergence and alternative
choice.

We apply the same grid-search procedures as for the
cutting-plane algorithm in order to cross-validate the hy-
perparameters k and γ .

We make our code publicly available as a Julia pack-
age named SubsetSelection and source repository
can be found on GitHub.3 Our code implements Algo-
rithm 2 for six loss functions including those presented
in Table 1. The package consists of one main function,
subsetSelection, which solves problem (5) for a
given value of k. The algorithm can be extended to more
loss functions, and cardinality-penalized estimators as
well, as described in Appendix A.

2.3 Lasso—�1 Relaxation

Instead of solving the NP-hard problem (1), Tibshirani
[43] proposed replacing the non-convex �0-pseudo norm
by the convex �1-norm which is sparsity-inducing. In-
deed, extreme points of the unit �1 ball {x : ‖x‖1 ≤ 1}
are 1-sparse vectors. The resulting formulation

(6) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

) + λ‖w‖1,

is referred to as the Lasso estimator. More broadly, �1-
regularization is now a widely used technique to induce
sparsity in a variety of statistical settings (see [29], for an
overview). Its popularity has been supported by an exten-
sive corpus of theoretical results from signal processing
and high-dimensional statistics. Since the seminal work of
Donoho and Huo [13], assumptions needed for the Lasso
estimator to accurately approximate the true sparse signal
are pretty well understood. We refer to reader to Candes,
Romberg and Tao [11], Meinshausen and Bühlmann [37],
Zhao and Yu [51], Wainwright [44] for some of these re-
sults. In practice however, those assumptions, namely mu-
tual incoherence and restricted eigenvalues conditions, are
quite stringent and hard to verify. In addition, even when
the Lasso regressor provably converges to the true sparse
regressor in terms of �2 distance and identifies all the cor-
rect features, it also systematically incorporates irrelevant
ones, a behavior observed and partially explained by Su,
Bogdan and Candes [42] and of crucial practical impact.

3https://github.com/jeanpauphilet/SubsetSelection.jl

https://github.com/jeanpauphilet/SubsetSelection.jl
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2.3.1 Elastic-net formulation. The Lasso formulation
in its original form (6) involves one hyper-parameter λ

only, which controls regularization, that is, robustness of
the estimator against uncertainty in the data (see [3, 48]).
At the same time, the �1 norm in the Lasso formulation
(6) is also used for its fortunate but collateral sparsity-
inducing property. Robustness and sparsity, though re-
lated, are two very distinct properties demanding a sep-
arate hyper parameter each. The ElasticNet (ENet) for-
mulation proposed by Zou and Hastie [52]

(7) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

) + λ

[
α‖w‖1 + 1 − α

2
‖w‖2

2

]
,

addresses the issue by adding an �2 regularization to the
objective. For α = 1, problem (7) is equivalent to the
Lasso formulation (6), while α = 0 corresponds to Ridge
regression. Although this extra regularization reduces bias
and improves prediction error, it does not significantly im-
prove feature selection, as we will see on numerical exper-
iments in Section 3. In our view, this is due to the fact that
�1-regularization primarily induces robustness of the esti-
mator, through shrinkage of the coefficients [3, 48]. In that
perspective, it leads to first-rate out-of-sample predictive
performance, even in high-noise regimes (see [28], for ex-
tensive experiments). Nonetheless, the feature selection
ability of �1-regularization ought to be challenged.

2.3.2 Algorithms and implementation. For �1-regu-
larized regression, Least Angle Regression (LARS) [16]
is an efficient method for computing an entire path of so-
lutions for various values of the λ parameter, exploiting
the fact that the regularization path is piecewise linear.
More recently, coordinate descent methods [20, 21, 47]
have successfully competed with and surpassed the LARS
algorithm, especially in high dimension. Their implemen-
tation through the glmnet package [22] is publicly avail-
able in R and many other programming languages. In
a different direction, proximal gradient descent methods
have also been proposed, and especially the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) proposed by
Beck and Teboulle [1].

2.4 Non-convex Penalties

Recently, other formulations have been proposed, of the
form

(8) min
w∈Rp

n∑
i=1

�
(
yi,w

�xi

) +
p∑

j=1

pλ,γ

(|wj |),
where pλ,γ (·) is a function parametrized by λ and γ ,
which control respectively the tradeoff between empiri-
cal loss and regularization, and the shape of the function.
We will consider two popular choice of penalty functions
pλ,γ (·), which are non-convex and are proved to recover
the true support even when mutual incoherence condition
fails to hold [34].

2.4.1 Minimax Concave Penalty (MCP). The minimax
concave penalty of Zhang [50] is defined on [0,∞) by

pλ,γ (u) = λ

∫ u

0

(
1 − t

γ λ

)
+

dt

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λu − u2

2γ
if u ≤ γ λ,

γ λ2

2
if u > γλ,

for some λ ≥ 0 and γ > 1. The rationale behind the MCP
can be explained in the univariate OLS case: In the uni-
variate case, MCP and �1-regularization lead to the same
solution as γ → ∞, while the MCP is indeed equivalent
to hard-thresholding when γ = 1. In other words, in one
dimension or under the orthogonal design assumption, the
MCP produces the so-called firm-shrinkage estimator in-
troduced by Gao and Bruce [25], which should be un-
derstood as a continuous tradeoff between hard- and soft-
thresholding.

2.4.2 Smoothly Clipped Absolute Deviation (SCAD).
Fan and Li [17] originally proposed the smoothly clipped
absolute deviation penalty, defined on [0,∞) by

pλ,γ (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λu if u ≤ λ

γλu − (u2 + λ2)/2

γ − 1
if λ < u ≤ γ λ,

λ2(γ 2 − 1)

2(γ − 1)
if u > γλ,

for some λ ≥ 0 and γ > 2. The rationale being the SCAD
penalty is similar to the MCP but less straightforward.
We refer to Fan and Li [17] for a comparison of SCAD
penalty with hard-thresholding and �1-penalty and to Bre-
heny and Huang [9] for a comparison of SCAD and MCP.

2.4.3 Algorithms and implementation. For such non-
convex penalties, Zou and Li [53] designed a local linear
approximation (LLA) approach where, at each iteration,
the penalty function is linearized around the current iter-
ate and the next iterate is obtained by solving the result-
ing convex optimization problem with linear penalty. An-
other, more computationally efficient, approach has been
proposed by Breheny and Huang [9] and implemented
in the open-source R package, ncvreg. Their algorithm
relies on coordinate descent and the fact that the objec-
tive function in (8) with OLS loss is convex in any wj ,
the other wj ′, j ′ �= j being fixed. For logistic loss, they
locally approximate the loss function by a second-order
Taylor expansion at each iteration and use coordinate de-
scent to compute the next iterate.

3. LINEAR REGRESSION ON SYNTHETIC DATA

In this section, we compare the aforementioned meth-
ods on synthetic linear regression data where the ground
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truth is known to be sparse. The convex integer op-
timization algorithm of Bertsimas and Van Parys [8],
Bertsimas, Pauphilet and Van Parys [7] (CIO in short)
was implemented in Julia [35] using the commercial
solver Gurobi 7.5.0 [26], interfaced using the optimiza-
tion package JuMP [14]. The Lagrangian relaxation is
also implemented in Julia and openly available as the
SubsetSelection package (SS in short). We used the
implementation of Lasso/Enet provided by the glmnet
package [22], available both in R and Julia. We also
compared to MCP and SCAD penalty formulations im-
plemented in the R package ncvreg [9]. The compu-
tational tests were performed on a computer with Xeon
@2.3 GHz processors, 1 CPUs, 16 GB RAM per CPU.
Skeleton code for our experiments can be found on our
GitHub page.4

3.1 Data Generation Methodology

The synthetic data was generated according to the
following methodology: We draw xi ∼ N (0p,�), i =
1, . . . , n independent realizations from a p-dimensional
normal distribution with mean 0p and covariance ma-
trix �. We randomly sample a weight vector wtrue ∈
{−1,0,1} with exactly ktrue non-zero coefficient. We
draw εi, i = 1, . . . , n, i.i.d. noise components from a nor-
mal distribution scaled according to a chosen signal-to-
noise ratio

√
SNR = ‖Xwtrue‖2/‖ε‖2. Finally, we com-

pute Y = Xwtrue + ε. With this methodology, we are able
to generate data sets of arbitrary size (n,p), sparsity ktrue,
correlation structure � and level of noise

√
SNR. The

signal-to-noise ratio relates to the percentage of variance
explained (PV E). Indeed, Hastie, Tibshirani and Tib-
shirani [28] showed that PV E = SNR/(1 + SNR). Ac-
cordingly, we will consider SNR values ranging from 6
(PV E = 85.7%) to 0.05 (PV E = 4.8%).

3.2 Metrics and Benchmarks

Statistical performance of the methods is assessed in
terms of Accuracy (A),

A(w) := |{j : wj �= 0,wtrue,j �= 0}|
|{j : wtrue,j �= 0}| ,

i.e., the proportion of true features which are selected, and
False Discovery Rate (FDR),

FDR(w) := |{j : wj �= 0,wtrue,j = 0}|
|{j : wj �= 0}| ,

i.e., the proportion of selected features which are not in
the true support. We refer to the quantities in the numera-
tors as the number of true features (TF) and false features
(FF), respectively. One might argue that accuracy as we

4https://github.com/jeanpauphilet/SparseRegression

defined it here is a purely theoretical metric, since on real-
world data, the ground truth is unknown and there is no
such thing as true features. Still, accuracy is the only met-
ric which assesses feature selection only, while derivative
measures such as predictive power depend on more fac-
tors than the features selected alone. Moreover, accuracy
has some practical implications in terms of interpretabil-
ity and also in terms of predictive power: Common sense
and empirical results suggest that better selected features
should yield diminished prediction error. To that end, we
also compare the performance of the methods in terms of
out-of-sample Mean Square Error

MSE(w) := 1

n

n∑
i=1

(
yi − x�

i w
)2

,

which will be the metric of interest on real data. Note that
the sum can be taken over the observations in the training
(in-sample) or test set (out-of-sample).

Practical scalability of the algorithms is assessed in
terms of computational time. In order to provide a fair
comparison between methods that are not implemented
in the same programming language, we report computa-
tional time for each algorithm relative to the time needed
to compute a Lasso estimator with glmnet in the same
language and on the same data. For these experiments, we
fixed a time limit of 60 seconds for the cutting-plane al-
gorithm and considered 150 iterations of the sub-gradient
algorithm for the Boolean relaxation.

3.3 Synthetic Data Satisfying Mutual Incoherence
Condition

We first consider Toeplitz covariance matrix � =
(ρ|i−j |)i,j . Such matrices satisfy the mutual incoherence
condition (MIC), required by �1-regularized estimators to
be statistically consistent. We compare the performance
of the methods in six different regimes of noise and cor-
relation described in Table 2 (p. 562).

3.3.1 Feature selection with a given support size. We
first consider the case when the cardinality k of the sup-
port to be returned is given and equal to the true sparsity

TABLE 2
Regimes of noise (SNR) and correlation (ρ) considered in our

experiments on regression with Toeplitz covariance matrix

Low correlation High correlation

Low noise ρ = 0.2, SNR = 6 ρ = 0.7, SNR = 6
p = 20,000, k = 100 p = 20,000, k = 100

Medium noise ρ = 0.2, SNR = 1 ρ = 0.7, SNR = 1
p = 10,000, k = 50 p = 10,000, k = 50

High noise ρ = 0.2, SNR = 0.05 ρ = 0.7, SNR = 0.05
p = 2000, k = 10 p = 2000, k = 10

https://github.com/jeanpauphilet/SparseRegression
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FIG. 1. Accuracy as n increases, for the CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with OLS
loss, under the mutual incoherence condition. We average results over 10 data sets.

ktrue for all methods, while all other hyper-parameters are
cross-validated on a separate validation set. In this case,
accuracy and false discovery rate are complementary. In-
deed, in this case∣∣{j : wtrue,j �= 0}∣∣ = ∣∣{j : wj �= 0}∣∣ = ktrue,

which leads to A = 1 − FDR so that we may consider
accuracy by itself.

As shown on Figure 1 (p. 563), all methods converge
in terms of accuracy. That is their ability to select correct
features as measured by A smoothly converges to 1 with
an increasing number of observations n → ∞. Noise in
the data has an equalizing effect on all methods, mean-
ing that noise reduces the gap in performance. Indeed, in
high-noise regimes, all methods are comparable. On the

contrary, correlation is discriminating: High correlation
strongly hinders the performance of Lasso/ENet, moder-
ately those of SCAD and very slightly CIO, SS and MCP
methods. Among all methods, �1-regularization is the less
accurate, selects fewer correct features than the four other
methods and is sensitive to correlation between features.
SCAD provides modest improvement over ENet in terms
of accuracy, in comparison with CIO, SS and MCP. Un-
surprisingly, we observe a gap between the solutions re-
turned by the cutting-plane method and its Boolean relax-
ation, gap which decreases as noise increases. All things
considered, CIO and the MCP penalization are the best
performing method in all six regimes, with a fine advan-
tage for CIO.
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FIG. 2. Computational time relative to Lasso with glmnet as n increases, for CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP
(in orange), SCAD (in pink) with OLS loss, under the mutual incoherence condition. We average results over 10 data sets.

Figure 2 on page 564 reports relative computational
time compared to glmnet in log scale. It should be
kept in mind that we restricted the cutting-plane algo-
rithm to a 60-second time limit and the sub-gradient al-
gorithm to Tmax = 200 iterations. All methods terminate
in times of one to two orders of magnitude larger than
glmnet (seconds for the problem size at hand), contra-
dicting the common belief that �1-penalization is the only
tractable alternative to exact subset selection. Computa-
tional time for the discrete optimization algorithm CIO
and sub-gradient algorithm SS highly depends on the reg-
ularization parameter γ . For low γ , which are suited in
high noise regimes, the algorithm is extremely fast, while
it can take as long as a minute in low noise regimes. This
phenomenon explains the relative comparison of SS with

glmnet in Figure 2. For this is an important practical as-
pect, we provide detailed experiments regarding compu-
tational time in Appendix B.1. As previously mentioned,
stopping the algorithm SS after a consecutive number of
non-improvements can drastically reduce computational
time. Empirically, this strategy did not hinder the quality
of the solution in regression settings, but was not as suc-
cessful in classification setting, so we did not reported its
performance. As CIO has a fixed time limit independent
of n, the relative gap in terms of computational time with
glmnet narrows as sample size increases.

Finally, though a purely theoretic metric, accuracy has
some intuitive and practical implications in terms of out-
of-sample prediction. To support our claim, Figure 3 (p.
565) represents the out-of-sample MSE for all five meth-
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FIG. 3. Out-of-sample mean square error as n increases, for the CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange),
SCAD (in pink) with OLS loss, under the mutual incoherence condition. We average results over 10 data sets.

ods, as n increases, for the six noise/correlation settings
of interest. There is a clear connection between perfor-
mance in terms of accuracy and in terms of predictive
power, with CIO performing the best. Still, good predic-
tive power does not necessarily imply that the features se-
lected are mostly correct. SCAD, for instance, seems to
provide a larger improvement over ENet in terms of pre-
dictive power than in accuracy. Similarly, SS dominates
MCP in terms of out-of-sample MSE, while this is not the
case in terms of accuracy.

3.3.2 Feature selection with cross-validated support
size. We now compare all methods when ktrue is no longer
given and needs to be cross-validated from the data itself.

For each value of n, each method fits a model on a
training set for various levels of sparsity k, either explic-

itly or by adjusting the penalization parameter. For each
sparsity level k, the resulting classifier incorporates some
true and false features. Figure 4 (p. 566) represents the
number of true features against the number of false fea-
tures for all five methods, for a range of sparsity levels
k, all other hyper-parameters being tuned so as to mini-
mize MSE on a validation set. To obtain a fair compar-
ison, we used the same range of sparsity levels for all
methods. Some methods only indirectly control the spar-
sity k through a regularization parameter λ and do not
guarantee to return exactly k features. In these cases, we
calibrated λ as precisely as possible and used linear inter-
polation when we were unable to get the exact value of k

we were interested in. From Figure 4, we observe that in
low correlation settings, CIO and MCP strictly dominate
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FIG. 4. Number of true features TF vs. number of false features FF for the CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in
orange), SCAD (in pink) with OLS loss, under the mutual incoherence condition. We average results over 10 data sets with a fixed n.

ENet, SCAD and SS. There is no clear winner between
CIO and MCP. When noise is low, CIO tends to make
less false discoveries, while the latter is generally more
accurate, but the difference between all methods dimin-
ishes as noise increases. In high correlation settings, no
method clearly dominates. CIO, SS and MCP are better
for small support size k, while ENet and SCAD domi-
nate for larger supports. In high noise and high correlation
regimes though, Enet and SCAD seem to clearly domi-
nate their competitors. In practice however, one does not
have access to “true” features and cannot decide on the
value of k based on such ROC curves. As often, we se-
lect the value k� which minimizes out-of-sample error on
a validation set. To this end, Figure 5 (p. 567) visually
represents validation MSE as a function of k for all five

methods.The vertical black line corresponds to k = ktrue.
For each method, k� is identified as the minimum of the
out-of-sample MSE curve. From Figure 5, we can expect
the Lasso/ENet and SCAD formulations to select many
irrelevant features, while CIO, SS and MCP are relatively
close to the true sparsity pattern.

As a result, for every n, each method selects k� features,
some of which are in the true support, others being irrel-
evant, as measured by accuracy and false detection rate
respectively. Figures 6 (p. 568) and 7 (p. 569) report the
results of the cross-validation procedure for increasing n.
In terms of accuracy (Figure 6), all five methods are rel-
atively equivalent and demonstrate a clear convergence:
A → 1 as n → ∞. The first to achieve perfect accuracy
is ENet, followed by SCAD, MCP, CIO and then SS. On
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FIG. 5. Out-of-sample mean square error as k increases, for the CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange),
SCAD (in pink) with OLS loss, under the mutual incoherence condition. We average results over 10 data sets with a fixed n.

false detection rate however (Figure 7), the methods rank
in the opposite order. Among all five, CIO and SS achieve
the lowest FDR with FDR as low as 0% in low noise set-
tings and around 30% when noise is high. On the con-
trary, ENet persistently returns around 80% of incorrect
features in all regimes of noise and correlation. Concern-
ing MCP and SCAD, in low noise regimes, false detection
rate quickly drops as sample size increases. Yet, for large
values of n, we observe a strictly positive FDR on average
(around 15% in our experiments) and high variance, sug-
gesting that feature selection with these regularizations is
pretty unstable. As noise increases, FDR for those meth-
ods remains significant (around 50%), with a fine advan-
tage of MCP over SCAD. In our opinion, this is due to
the fact that MCP and SCAD, just like Lasso/ENet, do

not enforce sparsity explicitly, like CIO or SS do, but rely
on regularization to induce it.

3.4 Synthetic Data Not Satisfying Mutual
Incoherence Condition

We now consider a “hard” correlation structure, that is,
a setting where the standard Lasso estimator is inconsis-
tent. Fix p, ktrue and a scalar θ ∈ ( 1

ktrue
, 1√

ktrue
)5 Define �

as a matrix with 1’s on the diagonal, θ ’s in the first ktrue
positions of the (ktrue + 1)th row and column, and 0’s ev-
erywhere else. Such a matrix does not satisfy MIC (see
[34], Appendix F.2. for a proof). As opposed to the pre-
vious setting, we fix wtrue = ( 1√

ktrue
, . . . , 1√

ktrue
,0, . . . ,0),

5in our experiment we take θ = 1
2ktrue

+ 1
2
√

ktrue
.
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FIG. 6. Accuracy A as n increases, for the CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD (in pink) with
OLS loss, under the mutual incoherence condition. We average results over 10 data sets.

and compute noisy signals, for increasing noise levels. In
this setting, the �1-penalty result in an estimator that puts
nonzero weight on the (k + 1)th coordinate, while MCP
and SCAD penalties eventually recover the true support
[34].

3.4.1 Feature selection with a given support size. We
first consider the case when the cardinality k of the sup-
port to be returned is given and equal to the true sparsity
ktrue. In this setting, �1-estimators are expected to always
return at least 1 incorrect feature, while MCP and SCAD
will provably recover the entire support [34].

As shown on Figure 8 (p. 570), we observe empiri-
cally what theory dictates: The accuracy of ENet reaches
a threshold strictly lower than 1. Non-convex penalties

MCP and SCAD, on the other hand, see their accuracy
converging to 1 as n increases. Cardinality-constrained
estimators CIO and SS, which are also non-convex, be-
have similarly, although no theory like Loh and Wain-
wright [34] exists, to the best of our knowledge. As far
as accuracy is concerned (left panel), CIO dominates all
other methods. Interestingly, while ENet is the least accu-
rate in the limit n → +∞, it is sometimes more accurate
than non-convex penalties for smaller values of n.

We report computational time in Appendix B.2.1.

3.4.2 Feature selection with cross-validated support
size. Behavior of the methods when ktrue is no longer
given and needs to be cross-validated from the data it-
self is very similar to the case where � satisfies the MIC.
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FIG. 7. False detection rate FDR as n increases, for the CIO (in green), SS (in blue with Tmax = 200), ENet (in red), MCP (in orange), SCAD (in
pink) with OLS loss under the mutual incoherence condition. We average results over 10 data sets.

To avoid redundancies, we report those results in Ap-
pendix B.2.2.

3.5 Real-World Design Matrix X

To illustrate the implications of feature selection on
real-world applications, we consider an example from ge-
nomics. We collected data from The Cancer Genome At-
las Research Network6 on n = 1145 lung cancer patients.
The data set consists of p = 14,858 gene expression data
for each patient. We discarded genes for which informa-
tion was only partially recorded so there is no missing
data. We used this data as our design matrix X ∈ R

n×p

and generated synthetic noisy outputs Y , for 10 uniformly

6http://cancergenome.nih.gov

log-spaced values of SNR, as in Hastie, Tibshirani and
Tibshirani [28] (Table 3 p. 569).

We held 15% of patients in a test set (171 patients).
We used the remaining 974 patients as a training and vali-
dation set. For each algorithm, we computed models with
various degrees of sparsity and regularization on the train-
ing set, evaluated them on the validation set and took the
most accurate model. Figure 9 (p. 570) represents the ac-

TABLE 3
Regimes of noise (SNR) considered in our regression experiments on

the Cancer data set

SNR 0.05 0.09 0.14 0.25 0.42 0.71 1.22 2.07 3.52 6
PVE 0.05 0.08 0.12 0.20 0.30 0.42 0.55 0.67 0.78 0.86

http://cancergenome.nih.gov
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FIG. 8. Accuracy (left panel) and out-of-sample mean square error (right panel) as n increases, for the CIO (in green), SS (in blue with
Tmax = 150), ENet (in red), MCP (in orange), SCAD (in pink) with OLS loss, in the absence of mutual incoherence. We average results over
10 regression data sets with (SNR,p, k) ∈ {(6,20,000,100), (1,10,000,50), (0.05,2000,10)}.

FIG. 9. Accuracy and false detection as SNR increases, for the CIO (in green), SS (in blue with Tmax = 150), ENet (in red), MCP (in orange),
SCAD (in pink) with OLS loss. We average results over 10 data sets with SNR = 0.05, . . . ,6, ktrue = 50, and real-world design matrix X.
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FIG. 10. True features against false features, for the CIO (in green), SS (in blue with Tmax = 150), ENet (in red), MCP (in orange), SCAD (in
pink) with OLS loss. We average results over 10 data sets, ktrue = 50 and real-world design matrix X.

curacy and false detection rate of the resulting regres-
sor, for all methods, as SNR increases. ENet ranks the
highest both in terms of number of true and false fea-
tures. On the contrary, MCP is the least accurate, while
making fewer incorrect guesses. CIO, SS, SCAD demon-
strate in-between performance. Nevertheless, differences
in feature selection does not translate into significant dif-
ferences into predictive power in this case (see Figure B.8
in Appendix B.3 page 11).

As previously mentioned, these results are the conclu-
sion of a cross-validation procedure to find the right value
of k. In Figure 10 (p. 571), we represent the ROC curve
corresponding to four of the ten regimes of noise. For low
noise, ENet is dominated by SCAD, SS, MCP and CIO.
As noise increases however, ENet gradually improves and
even dominates all methods in very noisy regimes. These
ROC curves are of little interest in practice, where true
features are unknown—and potentially do not even ex-
ist. They raise, in our view, interesting research questions
about the cross-validation procedure and its ability to ef-
ficiently select the “best” model.

3.6 Summary and Guidelines

In this section, we compared five feature selection
methods in regression, in various regimes of noise and
correlation, and under different design matrices. Based on
those extensive experiments, we can make the following
observations:

• As far as accuracy is concerned, non-convex methods
should be preferred over �1-regularization for they pro-
vide better feature selection, even in the absence of
the MIC. In particular, MCP, the cutting-plane algo-
rithm for the cardinality-constrained formulation, and
its Boolean relaxation have been particularly effective
in our experiments.

• In terms of false detection rate, cardinality-constrained
formulations improve substantially over ENet and
SCAD, and moderately over MCP.

• Computational time might still be the limiting factor
in the use of such methods in practice. To that mat-
ter, publicly available software, such as the ncvreg
package for SCAD and MCP estimators and our pack-
age SubsetSelection for the Boolean relaxation,
should be advertised to practitioners since they com-
pete with glmnet, which remains the gold standard
for tractability. For time can be a crucial bottleneck
in practice, we provide detailed experiments regarding
computational time and scalability of the algorithms in
Appendix B.1.

• In practice, we should recommend using a combina-
tion of all these methods: Lasso or ENet can be used
as first feature screening/dimension reduction step, to
be followed by a more computationally expensive non-
convex feature selection method if time permits.
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• While Lasso/ENet performs poorly in low noise set-
tings, its competes and sometimes dominates other
methods as noise increases. This observation supports
the view that �1-regularization is, first and foremost, a
robustness story [3, 48]: Through shrinkage of the co-
efficients, the �1 penalty reduces variance in the esti-
mator and improves out-of-sample accuracy, especially
in presence of noise. Experiments by Hastie, Tibshirani
and Tibshirani [28] even suggested that Lasso outper-
forms cardinality-constrained estimators in high noise
regimes. Our experiments suggest that their observa-
tions are still valid but less obvious as soon as the best
subset selection estimator is regularized as well (with
an �2 penalty in our case).

4. SYNTHETIC AND REAL-WORLD CLASSIFICATION
PROBLEMS

In this section, we compare the five methods included in
our study on classification problems. For implementation
considerations, we use CIO and SS with the Hinge loss
and ENet, MCP and SCAD with the logistic loss.

4.1 Methodology and Metrics

Synthetic data is generated according to the same
methodology as for regression, except that we now com-
pute the signal Y according to

Y = sign(Xwtrue + ε),

instead of Y = Xwtrue + ε previously.
On synthetic data, feature selection is assessed in terms

of accuracy A and false detection rate FDR as in the pre-
vious section. Prediction accuracy, on the other hand, is
assessed in terms of Area Under the Curve (AUC). The
AUC corresponds to the area under the receiver operating
characteristic curve, which represents true positive rate
against false positive rate. The AUC ranges from 0.5 (for
a completely random classifier) to 1. This area also cor-
responds to the probability that a randomly chosen pos-
itive example is correctly ranked with higher suspicion
than a randomly chosen negative example. Correspond-
ingly, 1 − AUC is a common measure of prediction error
for real-world data.

4.2 Synthetic Data Satisfying Mutual Incoherence
Condition

In this section, we consider consider Toeplitz covari-
ance matrix � = (ρ|i−j |)i,j , which satisfy MIC. We com-
pare the performance of the methods in six different
regimes of noise and correlation described in Table 4 (p.
572).

4.2.1 Feature selection with a given support size. We
first conducted experiments where the cardinality k of
the support to be returned is given and equal to the true
sparsity ktrue for all methods. We report the results in Ap-
pendix C.1.1.

TABLE 4
Regimes of noise (SNR) and correlation (ρ) considered in our
experiments on classification with Toeplitz covariance matrix

Low correlation High correlation

Low noise ρ = 0.2, SNR = 6 ρ = 0.7, SNR = 6
p = 10,000, k = 100 p = 10,000, k = 100

Medium noise ρ = 0.2, SNR = 1 ρ = 0.7, SNR = 1
p = 5000, k = 50 p = 5000, k = 50

High noise ρ = 0.2, SNR = 0.05 ρ = 0.7, SNR = 0.05
p = 1000, k = 10 p = 1000, k = 10

4.2.2 Feature selection with cross-validated support
size. We now compare the methods on cases where the
support size needs to be cross-validated from data.

For every n, each method selects k� features, some of
which are in the true support, others being irrelevant, as
measured by accuracy and false detection rate respec-
tively. Figures 11 (p. 573) and 12 (p. 574) report the re-
sults of the cross-validation procedure for increasing n. In
terms of accuracy (Figure 11), all methods increase in ac-
curacy as n increases, although CIO and SS converge sig-
nificantly slower than ENet, MCP and SCAD. However,
this lower accuracy comes with the benefit of a strictly
lower false detection rate (Figure 12).

4.3 Synthetic Data Not Satisfying Mutual
Incoherence Condition

As for regression, we now consider the covariance ma-
trix that does not satisfy MIC [34], in three regimes of
noise. We consider the case when the cardinality k of the
support to be returned is given and equal to the true spar-
sity ktrue.

Results are shown on Figure 13 (p. 575) and corrob-
orate our previous observations in the case of regres-
sion: the accuracy of ENet reaches a threshold strictly
lower than 1. Non-convex penalties MCP and SCAD, on
the other hand, will see their accuracy converging to 1,
yet for a fixed n there are not necessarily more accurate
than ENet. Cardinality-constrained estimators CIO and
SS dominate all other methods, with a clear edge for CIO.

4.4 Real-World Design Matrix X

To illustrate the implications of feature selection on
real-world applications, we re-consider the example from
genomics we introduced in the previous section. Our n =
1145 lung cancer patients naturally divide themselves into
two groups, corresponding to different tumor types. In
our sample for instance, 594 patients (51.9%) suffered
from Adenocarcinoma while the remaining 551 patients
(48.1%) suffered from Squamous Cell Carcinoma, mak-
ing our data amenable to a binary classification task. Our
goal is to identify a genetic signature for each tumor type,
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FIG. 11. Accuracy A as n increases, for the CIO (in green), SS (in blue with Tmax = 200) with Hinge loss, ENet (in red), MCP (in orange), SCAD
(in pink) with logistic loss, under the mutual incoherence condition. We average results over 10 data sets.

which only involves a limited number of genes, to better
understand the disease or narrow the search for potential
treatment for instance. We held 15% of patients from both
groups in a test set (171 patients). We used the remain-
ing 974 patients as a training and validation set. For each
algorithm, we computed models with various degrees of
sparsity on the training set, evaluated them on the vali-
dation set and took the most accurate model. Table 5 re-
ports the induced sparsity k� and out-of-sample accuracy
in terms of AUC on the test set for each models. Results
correspond to the median values obtained over ten differ-
ent training/validation splits. Compared to the regression
cases, we now have a real-world design matrix X and real
world signals Y as well.

The first conclusion to be drawn from our results is that
the all the feature selection methods considered in this
paper, including the convex integer optimization formu-
lation, scale to sizes encountered in real-world impactful
applications. MCP and SCAD provide the sparsest classi-
fiers with median sparsity of 39 and 79.5 respectively. At
the same time, they achieve the lowest prediction accu-
racy, which questions the relevance of the genes selected
by those methods. The �1-based formulations, Lasso and
ENet, reach an AUC above 0.98 with 114 and 398.5
genes respectively. In comparison, CIO and SS have sim-
ilar accuracy while selecting respectively only 87 and 65
genes.
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FIG. 12. False detection rate FDR as n increases, for the CIO (in green), SS (in blue with Tmax = 200) with Hinge loss, ENet (in red), MCP (in
orange), SCAD (in pink) with logistic loss, under the mutual incoherence condition. We average results over 10 data sets.

5. CONCLUSION

In this paper, we provided a unified treatment of meth-
ods for feature selection in statistics. We focused on five
methods: the NP-hard cardinality-constrained formula-
tion (3), its Boolean relaxation, �1-regularized estimators
(Lasso and Elastic-Net) and two non-convex penalties,
namely the smoothly clipped absolute deviation (SCAD)
and minimax concave penalty (MCP).

In terms of statistical performance, we compared the
methods based on two metrics: accuracy and false detec-
tion rate. A reasonable feature selection method should
exhibit a two-fold convergence property: the accuracy and
false detection rate should converge to 1 and 0 respec-
tively, as the sample size increases. Jointly observed, these

two properties ensure the method selects all true features
and nothing but true features.

Most of the literature on feature selection so far has
focused solely on accuracy, from both a theoretical and
empirical point of view. Indeed, on that matter, our ob-
servations match existing theoretical results. When mu-
tual incoherence condition is satisfied, all five methods
attain perfect accuracy, irrespective of the noise and cor-
relation level. As soon as mutual incoherence fails to hold
however, �1-regularized estimators do not recover all true
features, while non-convex formulations do. In all our ex-
periments, Lasso-based formulations are the least accu-
rate and sensitive to correlation between features, while
cardinality-constrained formulation and the MCP non-
convex estimator are the most accurate. As far as accu-
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FIG. 13. Accuracy (left panel) and out-of-sample mean square error (right panel) as n increases, for the CIO (in green), SS (in blue with
Tmax = 150) with Hinge loss, ENet (in red), MCP (in orange), SCAD (in pink) with logistic loss, when the mutual incoherence condition does not
hold. We average results over 10 data sets with (SNR,p, k) ∈ {(5,10,000,100), (1,5000,50), (0.05,1000,10)}.

racy is concerned, we observe a clear distinction between
convex and non-convex penalties, which echoes in our
opinion the distinction between robustness and sparsity.
Robustness is the property of an estimator to demonstrate
good out-of-sample predictive performance, even in noisy
settings, and convex regularization techniques are known
to produce robust estimators [3, 48]. When it comes to
sparsity however, non-convex penalties are theoretically
more appealing, for they do not require stringent assump-
tions on the data [34]. Because both properties should de-
serve attention, we believe—and observe—that the best
approaches are those combining a convex and a non-
convex component. The �1-regularization on its own is
not sufficient to produce reliably accurate feature selec-
tion.

In real-world applications, false detection rate is at
least as important as accuracy. We were able to observe
a zero false detection rate for Lasso-based formulations

TABLE 5
Median of the results on Lung Cancer data, over 10 different

training/validation set splits

Method Sparsity k� Out-of-sample AUC

Exact sparse 87.5 0.9798
Boolean relaxation 65 0.9821
Lasso 114 0.9814
ENet 398.5 0.9806
MCP 39 0.9741
SCAD 79.5 0.9752
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TABLE 6
Summary of the advantages and disadvantages of each method

Method Pros and cons

Exact sparse (+) Very good A/FDR. Convergence robust to noise/correlation.
(−) Commercial solver and extra computational time.

Boolean relaxation (+) Good A/FDR. Convergence robust to noise/correlation.
(−) Heuristic.

Lasso/ENet (+) Whole regularization path at no extra cost.
(−) FDR very sensitive to noise. A very sensitive to correlation.

MCP (+) Excellent A.
(−) Unstable FDR.

SCAD (+) Very good A.
(−) Unstable FDR. A sensitive to correlation.

only under the mutual incoherence condition and in low
noise settings where SNR → ∞. Otherwise, false detec-
tion rate remains strictly positive and stabilizes above
80% (we observed this behavior as early as for SNR ≤
25). False detection rate for non-convex penalties MCP
and SCAD quickly drops as n increases, but remains
strictly positive (around 15–30%) and highly volatile,
even for large sample sizes. The exact sparse formula-
tion is the only method in our study which clearly out-
performs all other methods, in all settings, and both for
regression and classification, with the lowest false de-
tection rate. Its Boolean relaxation demonstrates a sim-
ilar behavior but less acute, especially in classification.
In our opinion, such an observation speaks in favor of
formulations that explicitly constrain the number of fea-
tures instead of using regularization to induce sparsity.
In practice, one could use Lasso or non-convex penal-
ties as a good feature screening method, that is to dis-
card irrelevant features and reduce the dimensionality of
the problem. Nonetheless, in order to select relevant fea-
tures only, we highly recommend the use of cardinality-
constrained formulation or its relaxation, depending on
available computing resources. Table 6 (p. 576) summa-
rizes the advantages and disadvantages we observed for
each method.

Those observations would be of little use if the best
performing method were neither scalable nor available
to practitioners. To that end, we released the code of a
cutting-plane algorithm which solves the exact formula-
tion (3) in minutes for n and p in the 10,000s. Though
computationally expensive, this method requires only one
to two orders of magnitude more time than other meth-
ods. We believe this additional computational cost is af-
fordable in many applications and justified by the re-
sulting improved statistical performance. For more time-
sensitive applications, its Boolean relaxation provides a
high-quality approximation. We proposed a scalable sub-
gradient algorithm to solve it and released our code in

the Julia package SubsetSelection, which can
compete with the glmnet implementation of Lasso in
terms of computational time, while returning statisti-
cally more relevant features. With SubsetSelection,
we hope to bring to the community an easy-to-use and
generic feature selection tool, which addresses deficien-
cies of �1-penalization but scales to high-dimensional
data sets.

SUPPLEMENTARY MATERIAL

Supplement to “Sparse Regression: Scalable Algo-
rithms and Empirical Performance” (DOI: 10.1214/19-
STS701SUPP; .pdf). Supplementary information.
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