
Electronic Journal of Statistics
Vol. 14 (2020) 82–109
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1652

Model-based clustering with envelopes

Wenjing Wang, Xin Zhang, and Qing Mai

Department of Statistics, Florida State University, Tallahassee, FL, 32306
e-mail: wenjing.wang@stat.fsu.edu; henry@stat.fsu.edu; mai@stat.fsu.edu

Abstract: Clustering analysis is an important unsupervised learning tech-
nique in multivariate statistics and machine learning. In this paper, we pro-
pose a set of new mixture models called CLEMM (in short for Clustering
with Envelope Mixture Models) that is based on the widely used Gaus-
sian mixture model assumptions and the nascent research area of envelope
methodology. Formulated mostly for regression models, envelope method-
ology aims for simultaneous dimension reduction and efficient parameter
estimation, and includes a very recent formulation of envelope discrimi-
nant subspace for classification and discriminant analysis. Motivated by the
envelope discriminant subspace pursuit in classification, we consider par-
simonious probabilistic mixture models where the cluster analysis can be
improved by projecting the data onto a latent lower-dimensional subspace.
The proposed CLEMM framework and the associated envelope-EM algo-
rithms thus provide foundations for envelope methods in unsupervised and
semi-supervised learning problems. Numerical studies on simulated data
and two benchmark data sets show significant improvement of our propose
methods over the classical methods such as Gaussian mixture models, K-
means and hierarchical clustering algorithms. An R package is available at
https://github.com/kusakehan/CLEMM.
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1. Introduction

Cluster analysis (or clustering) is a cornerstone of multivariate statistics and
unsupervised learning. The goal of clustering is to divide the observed samples
into groups or clusters according to their similarity/dissimilarity (see, for ex-
ample, Hartigan [21], Jain et al. [24], Chi and Lange [7] for backgrounds on
clustering). Among various clustering approaches, two of the most widely used
algorithms are the K-means clustering [30] and the hierarchical clustering [25].
Both methods and their variations are iterative algorithms with different conver-
gence criteria (e.g. minimized dissimilarity within clusters) and starting points
(e.g. start the algorithm by assigning all observations to one cluster or assigning
each observation as its own cluster). On the other hand, to facilitate statistical
interpretation and inference, clustering analysis can also be based upon proba-
bilistic models [e.g. 3, 19, 31]. By assuming mixture distributions, clusters can
be determined based on the maximum likelihood estimators in the model. See
Lindsay [29] and Yao and Lindsay [40] for general backgrounds on mixture mod-
els. In this paper, we focus on the Gaussian mixture models (GMM) because of
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their popularity and effectiveness in approximating (non-Gaussian) multimodal
distributions (see [44, 6] for example).

Clustering algorithms suffer from the curse of dimensionality, as distance
measures and parameter estimation become more challenging with increased
dimensions [35]. Dimension reduction of the data thus may often improve clus-
tering accuracy and also provide informative visualization. However, due to the
unsupervised nature of clustering, many supervised dimension reduction meth-
ods for classification [e.g., 12, 36, 34, 43] or for regression [see 28, for an overview]
are not directly applicable to clustering. As a widely used unsupervised dimen-
sion reduction technique, principal component analysis (PCA) is often used as
a pre-processing step in clustering, especially when variables are highly corre-
lated. For example, Ding and He [17] explains the connections between PCA and
K-means clustering by showing that principal components are the continuous
solutions to the cluster membership indicators in K-means clustering. In model-
based clustering, there have been several proposals that share the same spirit of
modeling clusters by constrained estimation in a lower-dimensional subspace. In
particular, our parsimonious modeling approach is conceptually similar to the
factor analysis approaches in Rubin and Thayer [32] and Baek et al. [2], but
notably differs in several ways. First, nearly all the existing latent-subspace or
factor analysis methods are built upon the idea that covariance matrix in each
cluster has a “low-rank plus diagonal” structure, where the low-rank structure is
driven by a low-dimensional latent variable. In contrast, our method is built on
the envelope principle that is more flexible and general. It assumes that there
exists a subspace such that observations projected onto this subspace would
share a common structure that is invariant as the underlying cluster varies. In
other words, data projected onto this subspace contains no information about
the cluster differences and is thus immaterial to clustering. Therefore, clustering
becomes more efficient if we eliminate these extraneous variations. Secondly, the
subspace learning in our method is completely data-driven and integrated into
the likelihood framework and EM-algorithms. The targeted dimension reduction
subspace in our approach, i.e. the envelope, always exist and is a natural inferen-
tial and estimative object for dimension reduction in clustering. Finally, unlike
in PCA and factor analysis, the envelope method is more adaptive and direct.
The components useful for clustering are not necessarily the leading components
that are identified by PCA and factor analysis. In presence of highly correlated
variables, it is likely that some components with large variability are actually
not useful for clustering. The envelope, on the other hand, is a more targeted
dimension reduction subspace whose goal is to improve efficiency in Gaussian
mixture model parameter estimation and thus to obtain better clustering result.

Our proposed Clustering with Envelope Mixture Models (CLEMM) frame-
work advances the recent development of envelope methodology that was first
proposed in the context of response reduction in multivariate linear regression
by Cook et al. [11] and then further developed in a series of regression problems
such as predictor reduction [8], Bayesian modeling [27] and general multivariate
parameter estimation problems [13, 18, 41]. See [10] for an overview on envelopes
and [9] for more detailed backgrounds. Whilst all existing envelope methods con-
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centrate on supervised learning, particularly for regression problems, our work
differs obviously by tackling a unsupervised learning problem. Such an extension
is far from trivial, and new techniques are required throughout its development.
Moreover, our development for envelope-EM algorithms enriches the envelope
computational techniques [14, 15]. The CLEMM approach, which is essentially a
subspace-regularized clustering, also complements the sparse penalized solutions
in the literature [e.g., 38, 5].

The rest of the article is structured as follows. In Section 2 we formally intro-
duce the definition of CLEMM and illustrate the working mechanism of envelope
in clustering. We also connect with the recent study on envelope discriminant
analysis [43]. In Section 3, we derive the maximum likelihood estimators and
develop the envelope-EM algorithms for CLEMM. In Section 4, we explore an
important special case of CLEMM that further assumes shared covariance struc-
ture across clusters. Under this shared covariance assumption, the envelope-EM
algorithm can be even faster than the standard EM estimation in Gaussian
mixture models, which does not require subspace estimation. Model selection is
discussed in Section 5. Numerical analysis includes simulations and two bench-
mark datasets are given in Section 6. Finally, Section 7 contains a summary
and a short discussion on some future research directions. Proofs and technical
details are given in the Appendix.

2. Models

2.1. Notation and definitions

We first introduce the following notation and definitions to be used in this
paper. For a matrix B ∈ R

p×q, the subspace of Rp spanned by the columns of
B is denoted as B = span(B). When BTB is positive definite, we use PB =
PB = B(BTB)−1BT to denote the orthogonal projection onto the subspace
B = span(B). The orthogonal complement subspace B⊥ of B is constructed
with respect to the usual inner product and that B ∪B⊥ = R

p and B ∩B⊥ = 0.
The projection onto B⊥ is then written as QB = QB = Ip −PB.

We will use the following definitions of a reducing subspace and an envelope.
The definitions are equivalent to that given by Cook et al. [11] and contain
constructive properties of reducing subspaces and envelopes.

Definition 1. A subspace S ⊆ R
p is a reducing subspace of a symmetric matrix

M ∈ R
p×p if and only if M can be decomposed as M = PSMPS+QSMQS . The

M-envelope of B, denoted as EM(B) is the intersection of all reducing subspaces
of M that contains B.

In the following sections, we provide an intuitive construct of envelope in
clustering, where the matrix M in the above definition is replaced by the co-
variance of predictor X ∈ R

p and the subspace B will be the subspace that
captures the location and shape changes across clusters.
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2.2. CLEMM: Clustering with Envelope Mixture Models

In a multivariate Gaussian mixture model (GMM), the observed data Xi ∈
R

p, i = 1, . . . , n are assumed to be i.i.d. following the finite mixture Gaussian
distribution as

X ∼
K∑

k=1

πkN(μk,Σk), (2.1)

where πk ∈ (0, 1) and
∑K

i=1 πk = 1 are the mixing weights, N(μk,Σk) de-
notes the multivariate normal distribution with mean μk ∈ R

p and positive
definite covariance matrix Σk. The key to model-based clustering with GMM
is to estimate the parameters θ ≡ (π1, . . . , πK ,μ1, . . . ,μK ,Σ1, . . . ,ΣK). The
expectation-maximization (EM) algorithm [16] is a popular and standard ap-
proach for estimating these parameters. Specifically, the maximum likelihood
estimator (MLE) for θ is obtained by iteratively updating within the EM al-
gorithm. We will discuss more about the EM algorithm and the estimation
procedure in Section 3.

Motivated by envelope modeling techniques in regression and classification,
we assume that there exists a low-dimensional subspace that fully captures the
variation of data across all clusters. Let (Γ,Γ0) ∈ R

p×p be an orthogonal matrix,
where Γ ∈ R

p×u, u ≤ p, is the semi-orthogonal basis for the subspace of interest.
In particular, we refer to XM = ΓTX ∈ R

u as the material part of X – the part
that contains all the information about clusters; and we refer to XIM = ΓT

0 X ∈
R

p−u as the immaterial part of X – the part that is homogeneous and does
not vary across clusters. Without loss of generality, we assume E(X) = 0 and
propose the CLEMM as follows,

XM = ΓTX ∼
K∑

k=1

πkN(αk,Ωk), XIM = ΓT
0 X ∼ N(0,Ω0), XM |=XIM,

(2.2)
where αk ∈ R

u, πk ∈ (0, 1) is defined previously, Ωk ∈ R
u×u and Ω0 ∈

R
(p−u)×(p−u) are symmetric positive definite matrices. The above model as-

sumes that XM, which follows the GMM with parameters πk, αk and Ωk,
k = 1, . . . ,K, is multimodal and heterogeneous. In contrast, XIM is unimodal
and follows the multivariate normal distribution. In other words, the distri-
bution of the material part XM changes in both mean and covariance across
different clusters while the immaterial part XIM does not vary. Furthermore,
the last statement in (2.2) implies that the material part XM and the im-
material part XIM are independent of each other. This ensures that the im-
material part is not associated with the material part and can be eliminated
completely.

To better understand the connections between CLEMM and GMM, we note
that the CLEMM in (2.2) is equivalent (the proof is given in the Appendix) to
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the following parsimonious parameterization in the original GMM setting,

X ∼
K∑

k=1

πkN(μk,Σk), μk = Γαk, Σk = ΓΩkΓ
T + Γ0Ω0Γ

T
0 , k = 1, ...,K.

(2.3)
From (2.3), it can be seen that the centers of each clusters lie within the low-
dimensional subspace span(Γ), which is a reducing subspace of each Σk. As
a direct consequence, the marginal covariance of X can also be written as
Σx = ΓΩxΓ

T + Γ0Ω0Γ
T
0 , where Ωx is the marginal covariance of XM = ΓTX.

Therefore, the subspace span(Γ) is not only a reducing subspace of the intra-
cluster covariance Σk but also reduces the marginal covariance Σx. These obser-
vations will help us construct CLEMM estimation: CLEMM-Shared in Section
4. The parameterization in (2.3) also links the two-part (material and immate-
rial parts) model in (2.2) with the original GMM in (2.1), and helps deriving the
EM algorithms for CLEMM in Section 3. Similar to the envelope discriminant
subspace in Zhang and Mai [43], the smallest such subspace span(Γ) is uniquely
defined and always exists. We establish properties of the smallest such span(Γ)
in the following section.

2.3. Envelope in clustering: a latent variable interpretation

In this section, we recast the smallest subspace span(Γ) that satisfies (2.3) as an
envelope (cf. Definition 1). First, we introduce the latent variable Y ∈ {1, . . . ,K}
as the cluster indicator, then the GMM (2.1) can be expressed as,

Pr(Y = k) = πk, X | (Y = k) ∼ N(μk,Σk), (2.4)

where Y is latent and unobservable in clustering.
When the variable Y is observed class labels, (2.4) is commonly known as

the quadratic discriminant analysis (QDA) model; and if we further assume
shared covariance structure across classes, Σ1 = · · · = ΣK , then (2.4) be-
comes the linear discriminant analysis (LDA) model. In classification, the ul-
timate goal is to obtain the Bayes’ rule for classification defined as φ(X) =
argmaxk=1,...,K Pr(Y = k | X), which achieves the lowest possible error rate
for any classifier (i.e. the Bayes error rate). Zhang and Mai [43] introduced the
envelope discriminant subspace as the smallest subspace that is a reducing sub-
space of Σx and also retains the Bayes’ rule if we project the data onto it. With
observable Y in (2.4), the envelope discriminant subspace leads to the same
parameterization for μk and Σk as CLEMM in (2.3), where span(Γ) is the en-
velope discriminant subspace. This connection leads to the following properties
of CLEMM that are straightforward derivations from Proposition 3 in Zhang
and Mai [43] (and hence we omitted the proof).

Let L = span {(μ2 − μ1, . . . ,μK − μ1)} = span {(μ1, . . . ,μK)} (recall that

we have assumed E(X) =
∑K

k=1 πkμk = 0); and let Q = span{(Σ2 − Σ1, . . . ,
ΣK − Σ1)}. Then L contains the location changes across clusters and Q con-
tains the spectral changes in cluster-specific covariance matrices. The smallest
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subspace span(Γ) defined in CLEMM (2.2), or equivalently (2.3), is the enve-
lope EΣx

(L + Q). The subspace S = span(Γ) in CLEMM (2.3) can be defined
equivalently using the following coordinate-free statements,

L+Q ⊆ S,Σx = PSΣxPS +QSΣxQS . (2.5)

The intersection of any two subspaces that satisfy (2.5) is a subspace that still
satisfies (2.5). Therefore, the intersection of all such subspaces is uniquely de-
fined, minimal dimensional and satisfies (2.5). It is in fact the Σx-envelope of
L+Q, denoted as EΣx

(L+Q). With a bit abuse of notation, we henceforth use
Γ ∈ R

p×u as a semi-orthogonal basis for the envelope EΣx
(L + Q), which has

dimension u.

2.4. Working mechanism of CLEMM

Clearly, CLEMM can help reduce the total number of free parameters. For
GMM, there are (K − 1)p + Kp(p + 1)/2 free parameters in {μk,Σk}, k =
1, . . . ,K, where the factor (K − 1) is due to that we have assume E(X) = 0.
For CLEMM (2.3), the number of free parameters in {Γ,αk,Ωk,Ω0} is (p −
u)u+(K − 1)u+Ku(u+1)/2+ (p−u)(p−u+1)/2. The total reduction in the
number of free parameters is thus (K − 1)[(p − u) + {p(p + 1) − u(u + 1)}/2],
where [(p− u) + {p(p+ 1)− u(u+ 1)}/2] is the difference between the mixture

distribution of full data X ∼
∑K

k=1 πkN(μk,Σk) and the mixture distribution

of the material part of data XM = ΓTX ∼
∑K

k=1 πkN(αk,Ωk). By reducing
the number of free parameters and thus the model complexity, the CLEMM
parameterization leads to potential efficiency gain in parameter estimation with
EM algorithms. To provide more intuition about the working mechanism of
CLEMM and its potential advantages over the classical GMM, we next consider
some visualizations and an illustrative simulation example.

Figure 1a is a schematic plot of the envelope on a bivariate tri-cluster data.
Specifically, X = (X1, X2)

T ∼
∑3

k=1 πkN(μk,Σk) and the envelope dimension

u = 1 where Γ = (1, 1)T /
√
2 and Γ0 = (1,−1)T /

√
2. From this plot, we see

clearly that the centers of clusters varies along the envelope direction, and that
the heteroscedasticity is also captured by this direction. On the other hand, if
we project the data onto Γ0, the three clusters become one. By eliminating the
immaterial variation from ΓT

0 X, or equivalently, by projecting the data onto Γ,
we expect a substantial improvement in distinguishing the three clusters.

To further verify the actual efficiency gain by CLEMM, we consider a simula-
tion model (M1) in our numerical studies (see Section 6 for more details), where

X ∼
∑3

k=1 πkN(μk,Σk) has p = 15 variables and three clusters of relative sizes
(π1, π2, π3) = (0.3, 0.2, 0.5). The envelope has dimension u = 1 and each Σk has
a relatively complicated format such that the predictors are all highly correlated
with each other. Figure 1b plots the simulated data after being projected onto
a two-dimensional plane consists of the true envelope and an arbitrary direction
from the orthogonal complement of the envelope. Clearly, we see the distinctions



88 W. Wang, X. Zhang and Q. Mai

Fig 1. CLEMM working mechanism. Figure (a) and (b) are the true clusters and the true
distributions of the data. Figure (c) shows the clustering result by GMM and Figure (d)
illustrates the clustering result of CLEMM. The ellipses in each plots represent the true or
the estimated multivariate normal distributions.

among the three clusters lie within the envelope (horizontal axis), while the dis-
tributions are the same along the immaterial direction (vertical axis). Figure 1c
and Figure 1d show that actual estimated results from the classical GMM and
our proposed CLEMM. The parameter estimation of μk and Σk are reflected
by the three ellipses in the plot. Compared to the true distribution (eclipses)
in Figure 1b, CLEMM clearly improves the parameter estimation substantially.
Not surprisingly, if we compare the cluster labels by GMM and by CLEMM,
the mis-clustering error rate is also reduced drastically by CLEMM.

2.5. Connections with factor analyzers approaches

Baek et al. [2] proposed the Mixture of Common Factor Analyzers (MCFA)
model, which is a popular approach in the factor analysis-type clustering meth-
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ods and is thus included as a competitor in our numerical studies (Section 6).
Using our notation, the MCFA model can be summarized as,

X ∼
K∑

k=1

πkN(μk,Σk), μk = Γαk, Σk = ΓΦkΓ
T +D, k = 1, . . . ,K,

(2.6)
where D is a p×p diagonal matrix (e.g. D = σ2Ip). Therefore, this model can be
viewed as a special case of our CLEMM model (2.3). If we let Ωk = Φk + σ2Iu
and Ω0 = σ2Ip−u, then (2.3) reduces to (2.6). It assumes that the common co-
variance is isotropic and also restricts the shared subspace to contain the leading
eigenvalues, sinceΩk = Φk+σ2Iu now has larger eigenvalues thanΩ0 = σ2Ip−u.
The CLEMM approach is therefore more flexible than the factor analyzer ap-
proaches. The flexibility of CLEMM, however, leads to a more complicated EM
algorithm as we carefully derives in the following section.

3. Estimation

3.1. A brief review of the EM algorithm for GMM

Dempster et al. [16] introduced the EM algorithm which later become the most
popular technique to solve GMM. In this section, we first give a brief review
of the EM algorithm for GMM. To make our envelope-EM algorithm easier to
comprehend, we present it in a way that is parallel to the classical EM algorithm
for fitting GMM.

By introducing a latent variable Y , the GMM can be written as (2.4), Pr(Y =
k) = πk, X | (Y = k) ∼ N(μk,Σk), k = 1, . . . ,K. The log-likelihood of the “ob-

served data” {Xi}ni=1 can be written as �o(θ)=
∑n

i=1log{
∑K

k=1πkφ(Xi;μk,Σk)},
where φ(Xi;μk,Σk) is the density function of N(μk,Σk) and θ is the set of
all parameters, (π1, . . . , πK ,μ1, . . . ,μK ,Σ1, . . . ,ΣK). Directly solving this log-
likelihood is difficult and the EM algorithm iteratively updates the estima-
tor by treating Yi as missing data. Let {Xi, Yi}ni=1 be the “complete data”,
where Yi is unobserved. Then we have the complete data log-likelihood �c(θ) =∑n

i=1

∑K
k=1 yik log {πkφ(Xi;μk,Σk)}, where yik = 1 if the i-th observation be-

longs to the k-th cluster and 0 otherwise. The EM algorithm then estimates
θ by iteratively maximizing the conditional expectation of the complete log-
likelihood on the observed data. The EM algorithm for GMM is summarized as
follows.

Initialization: Choose an initial value θ(0) and set iteration number m = 0. We
can simply choose the clustering result from K-means and hierarchical clustering
as starting value. See [26] for more discussion on the choice of initial values for
GMM.

Iterating over the E-step and the M-step below to generate a sequence of
estimators θ(1),θ(2), . . ..
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E-step: Compute the expectation Q(θ | θ(m)) = E{�c(θ) | θ(m),Xi, i =
1, 2, . . . , n} for m = 1, 2 . . ., which is equivalent to

Q(θ | θ(m)) 

n∑

i=1

K∑
k=1

η
(m)
ik {log πk − 1

2
log |Σk| −

1

2
(Xi − μk)

TΣ−1
k (Xi − μk)},

where η
(m)
ik = Pr(Yi = k | X = Xi,θ

(m)) is the membership weight for each

data point and it satisfies
∑K

k=1 η
(m)
ik = 1, and the symbol “
” means equal up

to an additive constant. Specifically, we have,

η
(m)
ik =

π
(m)
k fk(Xi | μ(m)

k ,Σ
(m)
k )∑K

k=1 π
(m)
k fk(Xi | μ(m)

k ,Σ
(m)
k )

. (3.1)

M-step: Solve the optimization θ(m+1) = argmaxθ Q(θ | θ(m)), which leads to
the maximizers

π
(m+1)
k =

∑n
i=1 η

(m)
ik

n
, (3.2)

μ
(m+1)
k =

∑n
i=1 η

(m)
ik Xi∑n

i=1 η
(m)
ik

, (3.3)

Σ
(m+1)
k =

∑n
i=1 η

(m)
ik (Xi − μ

(m+1)
k )(Xi − μ

(m+1)
k )T∑n

i=1 η
(m)
ik

. (3.4)

It is well-established in the statistical literature that the EM algorithm is
guaranteed to converge monotonically to a local maximum of the log-likelihood
under mild conditions [16, 39, 4].

3.2. Envelope-EM algorithm for CLEMM

In this section, we develop the envelope-EM algorithm for estimating the
CLEMM parameters. The estimation problem in CLEMM is far more compli-
cated than fitting GMM or the envelope estimation in regression or classification.
First of all, we introduce the latent variable Y into the CLEMM assumptions
(2.2),

Pr(Y = k) = πk, ΓTX | (Y = k) ∼ N(αk,Ωk), ΓT
0 X | (Y = k) ∼ N(0,Ω0),

(3.5)
with ΓT

0 X |= ΓTX. If we know Γ, then the EM algorithm for CLEMM is a
straightforward extension of the EM algorithm for GMM. Unfortunately, Γ is
unknown and its estimation involves solving an non-convex objective function on
Grassmann manifold. Therefore, we have to efficiently integrate the optimization
for Γ into the EM algorithm.

To distinguish the parameters in CLEMM and GMM, we define the set of
unique parameters in CLEMM to be φ = (π1, . . . , πK ,α1, . . . ,αK ,Ω1, . . . ,ΩK ,
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Ω0,Γ). Then the GMM parameter θ is an estimable function of φ,

θ = θ(φ), μk(φ) = Γαk, Σk(φ) = ΓΩkΓ
T + Γ0Ω0Γ

T
0 , k = 1, . . . ,K.

(3.6)
To further distinguish the estimators, the CLEMM estimators are denoted as

φ̂
(m)

and θ̂
(m)

≡ θ(φ̂
(m)

) at the m-th iteration.
For our envelope-EM algorithm and in all of our numerical studies, we use the

same initialization as GMM. The E-step of envelope-EM is the same as the usual
EM for GMM, except that we need to replace the GMM estimator θ(m) with

the CLEMM estimator θ̂
(m)

= θ(φ̂
(m)

). The key step is the maximization of

Q(θ(φ) | θ̂
(m)

), which is now an over-parameterized function under the CLEMM
parameterization (2.3). Straightforward calculation shows that

Q(θ(φ) | θ̂
(m)

) 

n∑

i=1

K∑
k=1

η̂
(m)
ik {logπk − 1

2
(log|Ωk|+ log|Ω0|)

− 1

2
(Xi − Γαk)

T (ΓΩ−1
k ΓT + Γ0Ω

−1
0 ΓT

0 )(Xi − Γαk)},

where η̂
(m)
ik = Pr(Yi = k | X = Xi, θ̂

(m)
) is the membership weights for

each point. We carefully derived the maximizer for the above Q-function under
the CLEMM constraints. The results are summarized in the following proposi-
tion. We define the following quantities that are intermediate estimators for the
envelope-EM algorithm,

μ̃
(m)
k =

∑n
i=1 η̂

(m)
ik Xi∑n

i=1 η̂
(m)
ik

, Sx =

∑n
i=1(Xi −X)(Xi −X)T

n
,

S
(m)
k =

∑n
i=1 η̂

(m)
ik (Xi − μ̃

(m)
k )(Xi − μ̃

(m)
k )T∑n

i=1 η̂
(m)
ik

, S
(m)

=

K∑
k=1

π̂
(m)
k S

(m)
k .

The mean μ̃
(m)
k and covariance S

(m)
k take the same forms as in the GMM pa-

rameter estimation (3.3) and (3.4). The only difference is that the membership
weights η̂ik are now based on CLEMM estimator instead of the GMM estimator.

Proposition 1. Given η̂
(m)
ik (e.g. computed in the E-step of Algorithm 1), i =

1, . . . , n, k = 1, . . . ,K, the CLEMM estimators from maximizing (3.7) are,

α̂k = Γ̂
T
μ̃

(m)
k , Ω̂k = Γ̂

T
S
(m)
k Γ̂, Ω̂0 = Γ̂

T

0 SxΓ̂0,

where π̂
(m+1)
k =

∑n
i=1 η̂

(m)
ik /n and Γ̂ ∈ R

p×u is the minimizer of the following

objective function under the semi-orthogonal constraint ΓTΓ = Iu,

G(m)(Γ) = log |ΓTS−1
x Γ|+

K∑
k=1

π̂
(m+1)
k log |ΓTS

(m)
k Γ|. (3.7)
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Algorithm 1 Envelope-EM algorithm for CLEMM

1: Initialize π̂
(0)
k , μ̂

(0)
k , Σ̂

(0)
k for k = 1, . . . ,K, set m = 0.

2: E-step: For k = 1, . . . ,K, i = 1, . . . , n, calculate η̂
(m)
ik by replacing θ(m) with the CLEMM

estimators θ̂
(m)

= θ(φ̂
(m)

) in (3.1).
3: M-step:

• Calculate μ̃
(m)
k =

∑n
i=1 η̂

(m)
ik

Xi∑n
i=1 η̂

(m)
ik

and π̂
(m+1)
k =

∑n
i=1 η̂

(m)
ik

n
for k = 1, 2, ...,K.

• Solve for Γ̂ = arg minΓ∈G(p,u){
∑K

k=1 π̂
(m+1)
k log |ΓTS

(m)
k Γ|+ log |ΓTS−1

x Γ|}.
• For k = 1, 2, ...,K, update parameter estimates as

μ̂
(m+1)
k = Γ̂Γ̂

T
μ̃
(m)
k , Σ̂

(m+1)
k = Γ̂Γ̂

T
S
(m)
k Γ̂Γ̂

T
+ Γ̂0Γ̂

T
0 SxΓ̂0Γ̂

T
0 . (3.8)

4: Iterate over Steps 2 and 3 until convergence.

The objective function (3.7) for estimating the envelope is very similar to that
of the envelope QDA model [43]. In discriminant analysis, where Yi’s are fully

observed, the calculation can be simplified by replacing π̂
(m+1)
k with the observed

class size nk/n, where nk is the number of observations in class k, and similarly

by replacing S
(m)
k with the within-class sample covariance. Then (3.7) reduces to

the likelihood-based objective function for envelope QDA model. This shows the
intrinsic connections between model-based clustering and discriminant analysis.

Based on the results in Proposition 1, we now can summarize the envelope-
EM algorithm in Algorithm 1. In each iteration of M-step, we see that the
CLEMM estimators μk and Σk are coordinate-free since they depend on Γ̂ only

through span(Γ̂) (i.e. only through the projection matrices Γ̂Γ̂
T

and Γ̂0Γ̂
T

0 ).

Therefore, the optimization of Γ̂ involved in the CLEMM estimation is defined
on the set of all u-dimensional linear subspaces of Rp, which is known as the
Grassmann manifold and denoted as Gp,u. We discuss such optimization in the
next section.

3.3. Envelope subspace estimation

The constrained minimization of the objective function G(m)(Γ) can be done
through gradient descent on a Grassmann manifold. In particular, we have the
following closed-form expression for the gradient of G(m)(Γ) ignoring the or-
thogonality constraints ΓTΓ = Iu,

dG(m)(Γ)

dΓ
= 2S−1

x Γ
(
ΓTS−1

x Γ
)−1

+ 2

K∑
k=1

π̂
(m+1)
k S

(m)
k Γ

(
Γ

T

S
(m)
k Γ

)−1

. (3.9)

Many manifold optimization packages only requires the above “unconstrained”
matrix derivative, where the geometric constraints are taken into account by dif-
ferent techniques. For example, our implementation (more details can be found
in the Appendix) uses the curvilinear search algorithm proposed by [37].
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However direct optimization is computationally expensive and requires good
starting values. We adopt the idea of the 1D algorithm from [14] that is fast and
stable for obtaining a good initial estimator of envelopes in linear models [e.g.,
13]. For our problem, we propose the following modified 1D algorithm to obtain
an initial estimator of minimizing argminΓ∈G(p,u) G

(m)(Γ). We start with g0 =
G0 = 0 and G00 = Ip, let Gl = (g1, . . . ,gl) denote the sequential directions
obtained and let (Gl,G0l) be an orthogonal matrix. Then for l = 0, . . . , u − 1,
we obtain the sequential directions as follows.

• CalculateUl = GT
0lSxG0l andVlk = GT

0lS
(m)
k G0l, and define the following

stepwise objective function for w ∈ R
p−l+1,

fl(w) = log(wTU−1
l w) +

K∑
k=1

π̂
(m+1)
k log(wTVlkw). (3.10)

• Solve wl+1 = argminw∈Rp−l fl(w) under constraint wTw = 1.
• Set gl+1 = G0lwl+1 as the (l + 1)-th direction of the envelope.

After the above sequential steps, we obtain an initial estimator Gu ∈ R
p×u

for the optimization of G(m)(Γ) using its gradient (3.9). It is worth mentioning
that in the real data applications, we are likely to have the within-class sample

covariance matrix S
(m)
k to be very close to singular, if the probability πk is very

small. The singularity could lead to the unstable optimization ofG(m)(Γ). To our
experience, the estimation often improves (in stability and sometimes speed) by
adding a small diagonal matrix such as 0.01Ip to the sample covariance estimate

S
(m)
k of clusters k when this cluster has relatively small size.

4. CLEMM-Shared: a special case of CLEMM

Recall that the number of free parameters in GMM is of the order O(Kp2),
which can be much bigger than the number O(p2 +Ku2) for CLEMM. When
the dimension p is moderately high, GMM fitting becomes ineffective or even
problematic. As we have seen in our real data analysis, even when the true
clusters exhibit different covariance structures, it is often beneficial to fit a more
restrictive GMM by assuming Σ1 = · · · = ΣK = Σ to reduce the number of
parameters in estimation. More specifically, the number of free parameters in
GMM and CLEMM are reduced to order O(p2) under such assumptions. In this
section, we consider the special case of CLEMM under the shared covariance
assumption that Σ1 = · · · = ΣK = Σ, that is,

ΓTX ∼
K∑

k=1

πkN(αk,Ω), ΓT
0 X ∼ N(0,Ω0), ΓTX |= ΓT

0 X, (4.1)

where Ω ∈ R
u×u is a symmetric positive definite matrix that remains the same

across all clusters.
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Under this shared-covariance CLEMM model (4.1), the clusters share the
same shape and are only distinguishable by their centroids. We will refer to this
model as CLEMM-shared (and its counterpart GMM-shared) throughout our
discussion. In terms of envelope, only the subspace L = span(μ2−μ1, . . . ,μK −
μ1) is relevant and the envelope degenerates to EΣx

(L), which is the smallest sub-
space span(Γ) that satisfies (4.1). In the case of shared covariance GMM model,
the total number of free parameters is reduced by (K−1)(p−u) when we intro-
duce the envelope structure and assume that the mean differences across clusters
lie within a low-dimensional subspace. Similar to the general case, CLEMM-
shared performs dimension reduction and efficient parameter estimation under
the more restrictive shared covariance GMM.

Another more practical benefit of model (4.1) is that the envelope-EM al-
gorithm for CLEMM-shared can be further simplified and sped up over Algo-
rithm 1. In fact, by utilizing a special form of Grassmann manifold optimization
for shared covariance, we can accelerate the convergence of envelope-EM algo-
rithm to be even faster than the standard GMM with shared covariance. The
computational cost comparisons can be found in the Appendix E.2. We see that
the CLEMM is generally slower than GMM because of the Grassmann manifold
optimization involved, but the CLEMM-shared estimation can be faster than
the GMM-shared estimation.

The envelope-EM algorithm for CLEMM-shared is analogous to Algorithm 1.
We thus omit the details and only summarize the different M-step in the follow-
ing proposition. The full description of the algorithm is given in Appendix D,
Algorithm 2. Define the shared covariance estimator as

S(m) = n−1
n∑

i=1

K∑
k=1

η̂
(m)
ik (Xi − μ̃

(m)
k )(Xi − μ̃

(m)
k )T .

Proposition 2. Given η̂
(m)
ik (computed in the E-step in Algorithm 2), i =

1, . . . , n, k = 1, . . . ,K, the maximum likelihood estimators of CLEMM-shared
parameters are as follows,

α̂k = Γ̂
T
μ̃

(m)
k , k = 1, ...K, Ω̂ = Γ̂

T
S(m)Γ̂, Ω̂0 = Γ̂

T

0 SxΓ̂0,

where Γ̂ ∈ R
p×u is the minimizer of following objective function subject to

ΓTΓ = Iu,
F (m)(Γ) = log |ΓTS(m)Γ|+ log |ΓTS−1

x Γ|. (4.2)

From Proposition 2, we see the two major differences between CLEMM and
CLEMM-shared lie in the shared covariances {Ωk}Kk=1 versus Ω, and in the
objective function for solving for envelope. Since there are only two matrices
in F (m)(Γ), we can adopt the envelope coordinate descent (ECD) algorithm
recently proposed by [15]. The ECD algorithm has shown to be much faster
than the 1D algorithm and full Grassmann manifold updates without much loss
of accuracy. Therefore, we are able to improve the computation and speed up
the envelope-EM algorithm for CLEMM-shared.
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5. Model selection

Information criteria are often used to determine the number of clusters in GMM.
Examples include Akaike Information Criterion (AIC, Akaike [1]), Bayesian In-
formation Criterion (BIC, Schwarz [33]), Approximate Weight of Evidence Cri-
terion (AWE, Banfield and Raftery [3]), among others. We adopt the AWE cri-
terion to select the number of clusters, which suggests an approximate Bayesian
solution to choose the number of clusters based on the “complete” log-likelihood
�c(θ),

AWE(K) = −2 · �c(θ) + 2 · df(K) · (3/2 + logn), (5.1)

where df(K) is the number of free parameters that we have discussed earlier.
Minimizing AWE(K) over K ∈ {1, 2, . . . } gives us the estimated number of
clusters.

After determining K, which is the same for both GMM and CLEMM, we
then determine the envelope dimension u ∈ {1, . . . , p} as follows. For a given

K, we replace −2�c(θ) in (5.1) with the objective function value nG(m)(Γ̂) in

Proposition 1. This is because the objective function G(m)(Γ̂) are essentially the
partially minimized negative log-likelihood (see Appendix B for the derivations).
As such, the AWE criterion turns into a function of the envelope subspace
dimension u,

AWE(u) = n ·G(m)(Γ̂) + 2 · df(u) · (3/2 + logn). (5.2)

For the special case of CLEMM-shared, we replace G(m)(Γ̂) with F (m)(Γ̂) from

Proposition 2. This type of envelope objective functions, G(m)(Γ̂) and F (m)(Γ̂),
can also be interpreted as the quasi-likelihood for model-free envelope estimation
and consistent dimension selection [42]. This modified AWE criterion has very
promising performances in our simulations and real data applications.

6. Numerical studies

6.1. Simulations

In this section, we empirically compare the clustering results of GMM and
CLEMM. We also include K-means, Hierarchical Clustering (HC), and Bayes’
error of classification as benchmarks. The Bayes’ error is the lowest possible clas-
sification error estimated from the true parameters and using the class labels.
The built-in functions in R are used for K-means (kmeans) and HC (hclust)
algorithms. We also included the mixtures of factor analyzers with common
component-factor loadings method [2, MCFA], where we set the number of
component-factors the same as the envelope dimension. In addition, we include
the results of LDA and QDA to compare with supervised learning methods.
For LDA and QDA, we generate an independent testing data set with the same
sample size as the training data set and report the classification error rates on
the testing data set.
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To evaluate the clustering result, we assign observations to a cluster by
plugging-in the estimated parameters to the Bayes’ rule. Then the optimal clus-
tering is defined by the clustering error rate [5]: minπ∈P E{I(φ(X) �= π(Y ))}
where P = {π : [1, ...,K] → [1, ...,K]} is the set of permutation function and Y
is the latent label of observation X, and φ(X) being the Bayes’ rule of classifi-
cation.

We focus on the relative improvements of CLEMM over GMM in terms of
parameter estimation and also mis-clustering error rate. It is expected that the
parameter estimation from the EM algorithm and the envelope-EM algorithm
depends on the initialization. In order to have reasonably good initialization,

we consider the following initial values of π̂
(0)
k , μ̂

(0)
k and Σ̂

(0)

k for CLEMM and
GMM: (1) true population parameters; (2) the best K-means results (the lowest
within-cluster variation) among 20 random starting values; (3) HC with Wald
distance. We consider both the general CLEMM and the shared-CLEMM set-
tings.

For each of the five simulation models, we generate 100 independent data
sets with sample size n = 1000. Models (M1)–(M3) follow the general covari-
ance structure in (2.2) and Models (S1) and (S2) follow the shared covari-
ance structure in (4.1). The model parameters are set in the following way.
The entries in Γ ∈ R

p×u are first generated randomly from Uniform(0, 1);
and then we orthogonalize Γ such that (Γ,Γ0) is an orthogonal matrix. The
mean vectors μk = Γηk with each ηk ∈ R

u×1 randomly filled with N(0, 1)
random numbers. The symmetric positive definite matrices Ωk ∈ R

u×u and
Ω0 ∈ R

(p−u)×(p−u) are generated as AAT /‖AAT ‖F , where A is a square ma-
trix with compatible dimensions and the entries in A are randomly generated
from Uniform(0, 1). Finally, we let Σ∗

k = ΓΩkΓ
T + Γ0Ω0Γ

T
0 and standardize

it to Σk = σ2 · Σ∗/‖Σ∗‖F , where the scalar σ2 is chosen such that Bayes’ er-
ror is around 5–10%. Other model specific parameters are summarized in the
following.

• (M1). K = 3, π = (0.3, 0.2, 0.5), (p, u) = (15, 1), σ2 = 1.25.We encourage
more heteroscedasticity by letting Σ∗

k = exp(−k) · ΓΩkΓ
T + Γ0Ω0Γ

T
0 .

• (M2). K = 4, π = (0.25, 0.25, 0.25, 0.25), (p, u) = (15, 2), σ2 = 3.5. We
encourage more heteroscedasticity by lettingΣ∗

k = exp(−0.1×k)·ΓΩkΓ
T+

Γ0Ω0Γ
T
0 .

• (M3). K = 4, π = (0.25, 0.25, 0.25, 0.25), (p, u) = (15, 3), σ2 = 12.
• (S1) K = 3, π = (0.3, 0.2, 0.5), (p, u) = (15, 1), σ2 = 0.25.
• (S2) K = 4, π = (0.25, 0.25, 0.25, 0.25), (p, u) = (50, 2), σ2 = 2.

Table 1 summarizes the mis-clustering error rates of each method. Clearly,
CLEMM improves over GMM significantly regardless of the initial values. If we
use the true parameter as the initial value for the EM and the envelope-EM
algorithms, then CLEMM estimator almost achieves the Bayes’ error rate while
the GMM estimator may still have error rate more than twice of the Bayes’
error rate. In four out of the five models (except Model (S1)), the K-means



Model-based clustering with envelopes 97

Table 1

Clustering error rates (%). The reported numbers are averaged results and their standard
errors (in the parenthesis) over 100 replications.

Cluster error rate M1 M2 M3 S1 S2

CLEMM(True) 6.4 (0.1) 7.1 (0.1) 5.2 (0.1) 5.9 (0.1) 5.8 (0.1)

GMM(True) 16.1 (0.7) 14.3 (0.5) 6.6 (0.1) 6.4 (0.1) 8.0 (0.1)

MCFA(True) 11.5 (0.1) 41.5 (0.1) 43.1 (0.1) 8.7 (0.1) 21.3 (0.1)

CLEMM(k-means) 6.9 (0.2) 12.9 (1.2) 10.1 (1.0) 5.9 (0.1) 6.7 (0.4)

GMM(k-means) 23.3 (0.6) 26.9 (0.4) 29.3 (1.2) 6.4 (0.1) 10.6 (0.6)

MCFA(k-means) 11.8 (0.1) 41.4 (0.1) 47.2 (0.1) 7.7 (0.1) 23.9 (0.1)

CLEMM(HC) 6.8 (0.2) 17.4 (1.5) 10.0 (1.0) 6.1 (0.2) 9.3 (0.9)

GMM(HC) 24.8 (0.6) 27.1 (0.3) 25.9 (1.2) 6.6 (0.2) 13.9 (1.0)

MCFA(HC) 11.5 (0.1) 42.2 (0.1) 46.6 (0.1) 9.2 (0.1) 23.8 (0.1)

k-means 36.6 (0.1) 42.9 (0.3) 67.6 (0.3) 6.4 (0.1) 39.7 (0.2)

HC 32.3 (0.3) 45.0 (0.8) 62.4 (0.5) 8.9 (0.3) 39.5 (0.5)

Bayes error 5.9 (0.1) 6.5 (0.1) 5.0 (0.1) 5.8 (0.1) 5.6 (0.1)

LDA 8.6 (1.0) 25.8 (1.8) 24.1 (1.5) 6.2 (0.8) 6.3 (0.8)

QDA 6.7 (0.9) 8.0 (0.9) 6.1 (0.9) 7.2 (0.8) 13.1 (1.3)

and HC algorithms actually fail to provide a good initial estimator. However,
the CLEMM can drastically reduce the clustering error from those poor initial
estimators. This demonstrates that CLEMM is robust to initialization. In all
these models, the CLEMM demonstrates huge advantages over K-means and
HC because of the model-based natural and parsimonious modeling of means as
well as covariance matrices. Moreover, CLEMM either has a comparable perfor-
mance or even outperforms LDA and QDA in these models. This indicates that
CLEMM can utilize the latent lower-dimensional structure of data for better
clustering results.

Next, we compare the parameter estimation accuracy of GMM and CLEMM.
The results are summarized in Tables 2, 3 and 4 for the mean estimation of μk,
the cluster size estimation πk, and the covariance estimation Σk, respectively.
Again, not surprisingly, CLEMM has much more accurate parameter estima-
tion comparing to GMM, especially in the more general cases (M1)–(M3) where
the reduction in the number of free parameters is large. Even in the relatively
simpler cases of shared covariance Models (S1) and (S2), CLEMM still has sig-
nificant improvements over GMM. Moreover, as we include in Appendix E.2,
the computational time costs of the envelope-EM algorithm for CLEMM is
actually less than that of the EM algorithm for GMM under these two mod-
els.

Finally, we demonstrate the envelope dimension selection results by our AWE
criterion in Table 5, where we report the percentage of simulated data sets from
which the true dimension is selected by AWE. The dimension selection procedure
seems promising, and we will further illustrate the AWE selection criterion on
the following real data sets.
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Table 2

Estimation errors in cluster locations
∑K

k=1 ‖μ̂k − μk‖F . The reported numbers are
averaged results and their standard errors (in the parenthesis) over 100 replications.

∑K
k=1 ‖μ̂k − μk‖F M1 M2 M3 M4 M5

CLEMM(True) 0.21 (0.01) 0.49 (0.01) 0.84 (0.02) 0.10 (0.01) 0.39 (0.01)

GMM(True) 0.51 (0.02) 1.03 (0.04) 1.17 (0.02) 0.13 (0.01) 0.51 (0.01)

MCFA(True) 0.74 (0.08) 4.08 (0.11) 6.75 (0.22) 0.39 (0.08) 2.06 (0.11)

CLEMM(k-means) 0.24 (0.01) 1.08 (0.13) 1.73 (0.19) 0.10 (0.01) 0.50 (0.05)

GMM(k-means) 0.79 (0.02) 2.20 (0.08) 4.94 (0.22) 0.13 (0.01) 0.71 (0.06)

MCFA(k-means) 0.72 (0.07) 4.41 (0.11) 7.82 (0.22) 0.26 (0.04) 2.48 (0.10)

CLEMM(HC) 0.23 (0.01) 1.72 (0.19) 1.73 (0.20) 0.14 (0.03) 0.82 (0.10)

GMM(HC) 0.89 (0.04) 2.71 (0.11) 4.51 (0.23) 0.19 (0.03) 1.02 (0.09)

MCFA(HC) 0.68 (0.06) 4.78 (0.12) 7.59 (0.24) 0.47 (0.10) 2.47 (0.12)

Table 3

Estimation errors in cluster sizes
∑K

k=1 ‖π̂k − πk‖F . The reported numbers are averaged
results and their standard errors (in the parenthesis) over 100 replications.

∑K
k=1 ‖π̂k − πk‖F M1 M2 M3 S1 S2

CLEMM(True) 0.08 (0.01) 0.07 (0.01) 0.05 (0.01) 0.04 (0.01) 0.06 (0.01)

GMM(True) 0.23 (0.02) 0.18 (0.01) 0.06 (0.01) 0.04 (0.01) 0.07 (0.01)

MCFA(True) 0.17 (0.02) 0.41 (0.02) 0.49 (0.03) 0.12 (0.10) 0.37 (0.02)

CLEMM(k-means) 0.10 (0.01) 0.12 (0.01) 0.12 (0.02) 0.04 (0.01) 0.08 (0.01)

GMM(k-means) 0.32 (0.02) 0.35 (0.01) 0.36 (0.02) 0.04 (0.01) 0.10 (0.01)

MCFA(k-means) 0.18 (0.02) 0.43 (0.01) 0.56 (0.02) 0.11 (0.01) 0.45 (0.01)

CLEMM(HC) 0.10 (0.01) 0.23 (0.02) 0.11 (0.01) 0.04 (0.01) 0.13 (0.02)

GMM(HC) 0.35 (0.02) 0.39 (0.01) 0.34 (0.02) 0.05 (0.01) 0.17 (0.02)

MCFA(HC) 0.18 (0.02) 0.48 (0.01) 0.56 (0.03) 0.14 (0.01) 0.45 (0.01)

Table 4

Estimation errors in cluster shapes and scales
∑K

k=1 ‖Σ̂k −Σk‖F . The reported numbers
are averaged results and their standard errors (in the parenthesis) over 100 replications.

∑K
k=1 ‖Σ̂k − Σk‖F M1 M2 M3 S1 S2

CLEMM(True) 0.23 (0.01) 1.04 (0.03) 3.43 (0.09) 0.01 (0.01) 0.10 (0.01)

GMM(True) 0.47 (0.01) 2.24 (0.07) 5.96 (0.09) 0.02 (0.01) 0.12 (0.01)

MCFA(True) 2.85 (0.02) 7.31 (0.06) 19.52 (0.48) 0.47 (0.01) 4.35 (0.08)

CLEMM(k-means) 0.60 (0.02) 4.35 (0.17) 16.33 (0.53) 0.01 (0.01) 0.10 (0.01)

GMM(k-means) 0.79 (0.02) 5.40 (0.15) 21.47 (0.45) 0.02 (0.01) 0.13 (0.01)

MCFA(k-means) 2.85 (0.02) 7.38 (0.06) 20.50 (0.34) 0.46 (0.01) 4.38 (0.04)

CLEMM(HC) 0.60 (0.02) 5.05 (0.17) 15.94 (0.50) 0.01 (0.01) 0.12 (0.02)

GMM(HC) 0.79 (0.02) 5.98 (0.13) 20.80 (0.49) 0.02 (0.01) 0.14 (0.01)

MCFA(HC) 2.81 (0.01) 7.36 (0.07) 20.7 (0.43) 0.48 (0.01) 4.48 (0.07)

6.2. Real data analysis

We choose two benchmark classification data examples for comparing the rela-
tive performances of CLEMM and GMM, as well as the results from K-means,
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Table 5

Correct envelope dimension selection (%) out of 100 replications. We use the K-means
estimator as the initial values in the envelope-EM algorithm for CLEMM.

Model M1 M2 M3 S1 S2

Correct selection (%) 100 95 100 89 84

Fig 2. AWE scores for dimension selection in CLEMM.

MCFA and HC algorithms. For the EM and envelope-EM algorithms, we always
use the results from K-means as initial values for fair comparison.

The first example is the Forest Type data which contains four different forest
types (see https://archive.ics.uci.edu/ml/datasets/Forest+type+mapping). We
combine the original training and testing samples so that there are 523 observa-
tions and 27 variables. The second example is the Waveform data set (see Hastie
and Tibshirani [22] for more background) which is a simulated three-class clas-
sification data set with 21 predictors and 800 observations. The three classes of
waveforms are random convex combinations of two equal-lateral right triangle
function plus independent Gaussian noise. It is commonly used as a benchmark
data set in machine learning study to demonstrate the robustness of methods,
because the distribution is actually not a mixture of Gaussian distributions.

First of all, we determine the envelope dimension u using the AWE criterion
proposed in Section 5. Figure 2 visualizes the AWE scores for all candidate
envelope dimensions on the three data sets. It is clearly suggested from the
plots that we use u = 7 for the Forest Type data and u = 2 for the Waveform
data.

In Table 6, we report the clustering error rates of each methods. In addition
to the clustering methods, we also include the discriminant analysis results from
LDA and QDA by using the true class labels. For LDA and QDA error rates,
we use the R built-in functions LDA and QDA to obtain the prediction errors
of class membership from leave-one-out cross-validation. In both data sets, we
see substantial improvements by CLEMM over other clustering methods. It is
very encouraging to see that CLEMM (without knowing the class label) has
comparable results as the discriminant analysis methods (which makes use of

https://archive.ics.uci.edu/ml/datasets/Forest+type+mapping
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Fig 3. Forest type data. Cluster Visualization, where an observation with very large PC1
score (x-axis) is removed for better visualization.

the class label in estimation) in the Sound and Forest Type data. Moreover,
for the Waveform data, where X | Y is no longer Gaussian, the clustering
accuracy of CLEMM is even better than the classification accuracy of LDA and
QDA. This indicates that our CLEMM method is more robust to non-Gaussian
distributions than other clustering and discriminant analysis methods. Overall,
comparing with other clustering methods, CLEMM is better at capturing the
information from real data.

Table 6

Clustering and classification error rates (%) on the two data sets.

Cluster error CLEMM GMM MCFA K-means HC LDA QDA

Forest Type 13.0 38.0 20.8 22.2 24.5 11.1 17.2

Waveform 14.8 22.6 15.8 48.3 45.6 17.8 18.3

In Figure 3, we visualize the true classes and the estimated clusters by
CLEMM, GMM and MCFA. We visualize the data on the first two princi-
pal components of the data. We see clearly that CLEMM can better capture
the variability of clusters, especially for the cluster of “Sugi” Forest Type. For
the Waveform data, since we have the envelope dimension selected as u = 2,
we next investigate the visualization of different subspaces: envelope, LDA sub-
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Fig 4. Waveform data. Cluster Visualization by different subspaces: LDA visualization (with
true class labels); envelope visualization (with CLEMM estimated clusters); principal compo-
nents visualization (with GMM estimated clusters).

space, principal component subspace. In Figure 4, we visualize the clusters on
the envelope subspace estimated by CLEMM. This produces much better sepa-
rated clusters than the visualization of GMM estimated clusters on the principal
component subspace, and of true classes on the LDA subspace. The improve-
ment on visualization by CLEMM over the true classes on LDA subspace is
consistent with our earlier findings on the error rates (Table 6): the CLEMM
(without knowing Y ) is even more accurate than LDA classification (knowing
Y ). We can see that the first envelope direction can correctly characterize the
cluster location and material variation for one of the cluster (the blue dots).
The results in Figure 4 suggest that CLEMM can assist in data visualization
when the estimated envelope dimension is small.
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7. Discussion

In this paper, we extend the envelope methodology to unsupervised learning
problems by considering model-based clustering. The proposed parsimonious
model, CLEMM, can simultaneously achieve dimension reduction, visualization,
and improved parameter estimation and clustering. Compared to the standard
GMM, CLEMM is much more effective in capturing the cluster location changes
and the heterogeneous variation across different clusters. The envelope-EM al-
gorithm developed in this paper can also be modified to handle missing data in
general. As future research directions, the proposed clustering framework can be
extended to mixture discriminant analysis [22, 23], to incorporate regularization
techniques such as the ones from Friedman [20] and Cai et al. [5], and to various
unsupervised and semi-supervised problems.

Appendix A: Equivalence between (2.2) and (2.3)

Proof. We first show that (2.2) ⇒ (2.3). Because (Γ,Γ0) ∈ R
p×p is orthogonal

matrix, we can write X = ΓΓTX+Γ0Γ
T
0 X = ΓXM+Γ0XIM. By (2.2), we have

X ∼
∑K

k=1 πkN(Γαk,ΓΩkΓ
T + Γ0Ω0Γ

T
0 ), which implies (2.3).

We now show that (2.2) ⇐ (2.3). By (2.3), we have X ∼∑K
k=1 πkN(Γαk,ΓΩkΓ

T + Γ0Ω0Γ
T
0 ) which directly implies (2.2).

Appendix B: Proofs for Proposition 1

For a more general case, we do not the center the data first but assume μk−μ =

Γαk. Given an envelope subspace basis Γ, we maximize Q(φ | θ̂
(m)

) to update θ.

Q(φ | θ̂
(m)

) 

n∑

i=1

K∑
k=1

η̂
(m)
ik {log πk−

1

2
log |Σk|−

1

2
(Xi−μk)

TΣ−1
k (Xi − μk)}



n∑

i=1

K∑
k=1

η̂
(m)
ik {logπk − 1

2
(log|Ωk|+ log|Ω0|)

− 1

2
(Xi − μ− Γαk)

T (ΓΩ−1
k ΓT + Γ0Ω

−1
0 ΓT

0 )(Xi − μ− Γαk)}

We can calculate the maximizing values of all the parameters of interest.

Since π̂k =
∑n

i=1 η̂
(m)
ik

n , we have constraints that
∑K

k=1 π̂kαk = 0, i.e.∑n
i=1

∑K
k=1 η̂

(m)
ik αk = 0.

Maximizing value for μ We have
∑n

i=1

∑K
k=1 η̂

(m)
ik [μ− (Xi − Γαj)] = 0,

therefor the maximizing value for μ is,

μ̂ = X− Γ

∑n
i=1

∑K
k=1 η̂

(m)
ik αk

n
= X,

where the last equation holds because of constraints.



Model-based clustering with envelopes 103

Maximizing value for αk Replace μ byX, then we have α̂k is the minimizer
of the function

1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik {

(
ΓT (Xi −X)−αk

)T

Ω−1
k

(
ΓT (Xi −X)−αk

)
}

under the constraint that
∑n

i=1

∑K
k=1 η̂

(m)
ik αk = 0. We have α̂k =

ΓT (
∑n

i=1 η̂
(m)
ik )Xi∑n

i=1 η̂
(m)
ik

−X) = ΓT (μ̃
(m)
k −X) for k = 1, 2, ...,K.

Maximizing value for Ωk, Ω0 Replace the maximizing values for μ and αk,
we have

Q(φ | θ̂
(m)

) 
 −1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik log |Ωj |

−1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik [{ΓT (Xi − μ̃

(m)
k )}TΩ−1

k {ΓT (Xi − μ̃
(m)
k )}]

−n

2
log |Ω0| −

1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik [(Xi −X)TΓ0Ω

−1
0 ΓT

0 (Xi −X)]

Denote

Sx =

∑n
i=1(Xi −X)(Xi −X)T

n
,

S
(m)
k =

∑n
i=1 η̂

(m)
ik (Xi − μ̃

(m)
k )(Xi − μ̃

(m)
k )T∑n

i=1 η̂
(m)
ik

,

we have Ω̂k = ΓTS
(m)
k Γ, Ω̂0 = ΓT

0 SxΓ0.

Maximizing value for Γ We have

−2×Q(φ | θ̂
(m)

) 

n∑

i=1

K∑
k=1

η̂
(m)
ik log |ΓTS

(m)
k Γ|+ n log |ΓT

0 SxΓ0|

=

n∑
i=1

K∑
k=1

η̂
(m)
ik log |ΓTS

(m)
k Γ|+ n log |ΓTS−1

x Γ|

Therefore, we obtain Γ̂ by minimizing
∑n

i=1

∑K
k=1 η̂

(m)
ik log |ΓTS

(m)
k Γ| +

n log |ΓTS−1
x Γ| over the semi-orthogonal constrain that ΓTΓ = Iu.



104 W. Wang, X. Zhang and Q. Mai

Appendix C: Proofs for Proposition 2

Similar as the previous proof, we do not the center the data first but assume

μk−μ = Γαk. Given an envelope basis Γ, we maximize Q(φ | θ̂
(m)

) to update θ.

Q(φ | θ̂
(m)

) 

n∑

i=1

K∑
k=1

η̂
(m)
ik {log πk−

1

2
log |Σ| − 1

2
(Xi − μk)

TΣ−1(Xi − μk)}



n∑

i=1

K∑
k=1

η̂
(m)
ik {logπk − 1

2
(log|Ω|+ log|Ω0|)

− 1

2
(Xi − μ− Γαk)

T (ΓΩ−1ΓT + Γ0Ω
−1
0 ΓT

0 )(Xi − μ− Γαk)}

We can calculate the maximizing values of all the parameters of interest.

Since π̂k =
∑n

i=1 η̂
(m)
ik

n , we have constraints that
∑K

k=1 π̂kαk = 0, i.e.∑n
i=1

∑K
k=1 η̂

(m)
ik αk = 0.

Maximizing value for μ We have
∑n

i=1

∑K
k=1 η̂

(m)
ik [μ− (Xi − Γαk)] = 0,

therefor the maximizing value for μ is,

μ̂ = X− Γ

∑n
i=1

∑K
k=1 η̂

(m)
ik αk

n
= X,

where the last equation holds because of constraints.

Maximizing value for αk Replace μ̄ byX, then we have α̂k is the minimizer
of the function

1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik

{(
ΓT (Xi −X)−αk

)T

Ω−1
(
ΓT (Xi −X)−αk

)}

under the constraint that
∑n

i=1

∑K
k=1 η̂

(m)
ik αk = 0. We have α̂k =

ΓT (
∑n

i=1 η̂
(m)
ik )Xi∑n

i=1 η̂
(m)
ik

−X) = ΓT (μ̃
(m)
k −X) for k = 1, 2, ...,K.

Maximizing value for Ω and Ω0 Replace the maximizing values for μ and
αk, we have

Q(θ | θ(m)) 
 −n

2
log |Ω| − 1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik [{ΓT (Xi − μ̃

(m)
k )}TΩ−1

{ΓT (Xi − μ̃
(m)
k )}]− n

2
log |Ω0| −

1

2

n∑
i=1

K∑
k=1

η̂
(m)
ik

[(Xi −X)TΓ0Ω
−1
0 ΓT

0 (Xi −X)]
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Denote

Sx =

∑n
i=1(Xi −X)(Xi −X)T

n
,

S(m) =

∑n
i=1

∑K
k=1 η̂

(m)
ik (Xi − μ̃

(m)
k )(Xi − μ̃

(m)
k )T

n
,

we have Ω̂ = ΓTS(m)Γ, Ω̂0 = ΓT
0 SxΓ0.

Maximizing value for βk We have β̂k = Σ(m)−1

(μ
(m)
k − μ

(m)
1 ) and, by

plugging in, βk = PΓ̂(S(m))S
(m)−1

(
μ̃

(m)
k − μ̃

(m)
1

)
, k = 2, ...,K.

Maximizing value for Γ We have

− 2

n
Q(φ | θ̂

(m)
) 
 log |ΓTS(m)Γ|+ log |ΓT

0 SxΓ0|

= log |ΓTS(m)Γ|+ log |ΓTS−1
x Γ|

Therefore, we obtain Γ̂ by minimizing log |ΓTS(m)Γ| + log |ΓTS−1
x Γ| over the

semi-orthogonal constrain that ΓTΓ = Iu

Appendix D: EM algorithm for CLEMM-Shared

Algorithm 2 EM algorithm for CLEMM-Shared
1: Data {X1, ...,Xn} ⊂ R

p and parameters θ = (π1, ..., πK ,μ1, ...,μK ,Σ)

2: Initialize π̂
(0)
k , μ̂

(0)
k , Σ̂

(0)
for k = 1, 2, ...K.

3: E-step: For k = 1, ...,K, calculate η̂
(m)
ik .

4: M-step:

1. Calculate μ̃
(m)
k =

∑n
i=1 η̂

(m)
ik

Xi∑n
i=1 η̂

(m)
ik

and π̂
(m+1)
k =

∑n
i=1 η̂

(m)
ik

n
for k = 1, 2, ...,K.

2. Calculate Γ̂ = arg minΓ∈G(p,u)

{
log |ΓTS(m)Γ|+ log |ΓTS−1

x Γ|
}
.

3. For k = 1, ...,K

μ̂
(m+1)
k = X+ Γ̂Γ̂

T
[
μ̃
(m)
k −X

]
Σ̂

(m+1)
= Γ̂(Γ̂

T
S(m)Γ̂)Γ̂

T
+ Γ̂0(Γ̂

T
0 SxΓ̂0)Γ̂

T
0

5: Check convergence. If not converged, set m = m+ 1.

Appendix E: Additional numerical results and implementation
details

E.1. EM implementation details

For the convergence criterion of the EM algorithm, we check to see if �o(θ
(m+1))−

�o(θ
(m)) < 1e−7. We also stop running the algorithm if it reaches the maximum
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iteration times 800. It is worth mentioning that due to the non-convex estimation
of F (m)(Γ) and G(m)(Γ), the log-likelihood sequence �o(θ

(m)) might not be
non-decreasing all the time. We might encounter the situation when the log-
likelihood slightly drops, in this case, we will stop at the current iteration and
use the estimation from previous step.

E.2. Computation time comparison

In CLEMM, we use 1D algorithm to find initial value for Γ and then do full
manifold optimization to get the minimizer for G(m)(Γ). In CLEMM-Share,
we use ECD alone for optimization for F (m)(Γ). From Table 7, we see that
due to the estimation of the envelope subspace, CLEMM is slower than GMM.
However, in the special case of CLEMM-Shared, it is significantly faster than
GMM-Shared. The improvement comes from the ECD algorithm in solving Γ
and the fast convergence of EM algorithm due to the estimation of Γ.

Table 7

Computing time in seconds of (M1)-(M5). The reported numbers are averaged results and
their standard errors (in the parenthesis) over 100 replications.

Computing time M1 M2 M3 M4 M5

CLEMM(k-means) 102(4.2) 275(22) 148(5.0) 2.7(0.1) 17.1(0.5)

GMM(k-means) 23.4(1.2) 26.6(1.6) 24.1(1.2) 3.0(0.1) 28.3(1.3)
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