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Abstract: In this paper we investigate a semiparametric testing approach
to answer if the parametric family allocated to the unknown density of a
two-component mixture model with one known component is correct or
not. Based on a semiparametric estimation of the Euclidean parameters of
the model (free from the null assumption), our method compares pairwise
the Fourier’s type coefficients of the model estimated directly from the data
with the ones obtained by plugging the estimated parameters into the mix-
ture model. These comparisons are incorporated into a sum of square type
statistic which order is controlled by a penalization rule. We prove under
mild conditions that our test statistic is asymptotically χ2

1-distributed and
study its behavior, both numerically and theoretically, under different types
of alternatives including contiguous nonparametric alternatives. We discuss
the counterintuitive, from the practitioner point of view, lack of power of
the maximum likelihood version of our test in a neighborhood of challenging
non-identifiable situations. Several level and power studies are numerically
conducted on models close to those considered in the literature, such as in
McLachlan et al. [21], to validate the suitability of our approach. We also
implement our testing procedure on the Carina galaxy real dataset which
low luminosity mixes with the one of its companion Milky Way. Finally we
discuss possible extensions of our work to a wider class of contamination
models.
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1. Introduction

Let us consider n independent and identically distributed random variables
(X1, . . . , Xn) drawn from a two-component mixture model with probability den-
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sity function g defined by:

g(x) = (1− p)f0(x) + pf(x), x ∈ R, (1)

where f0 is a known probability density function, corresponding to a known
signal, and where the unknown parameters of the model are the mixture pro-
portion p ∈ (0, 1) and the probability density function f ∈ F (a given class of
densities) associated to an unknown signal. Model (1) is widely used in statis-
tics and is usually so-called the contamination model. This class of models is
especially suitable for detection of differentially expressed genes under various
conditions in microarray data analysis, see McLachlan et al. [21] or Dai and
Charnigo [10]. In astronomy such a model has been used to model mixtures of
X-ray sources, see Melchior and Goulding [23] and Patra and Sen [26]. Recently
some applications have been also developed in selective Statistical Editing, see
Di Zio and Guarnera [6], in biology to model trees diameters, see Podlaski and
Roesch [27] or in kinetics to model plasma data, see Klingenber et al. [16].

Many techniques have been proposed to estimate the Euclidean and func-
tional parameters p and f in model (1). The most popular methods for known
finite order mixture models, such as the moment method, see Lindsay [19], the
moment generating function based method, see Quandt and Ramsey [28], or the
maximum likelihood method, see Lindsay [18], are largely used but suffer from
the requirement of assigning a parametric form to the f density. Moreover, such
parametric methods can be non-reliable if a model is close to a non-identifiable
one, as for instance in the Gaussian case, taking in model (1) f0(·) = f(0,1)(·)
and f(·) = (f(0,1)(·) + f(μ,1)(·))/2 and writing the double representation

(1− p)f(0,1)(x) + p

(
f(0,1)(x) + f(μ,1)(x)

2

)
= (1− p

2
)f(0,1)(x) +

p

2
f(μ,1)(x) (2)

where f(μ,s) denotes the Gaussian density function with mean μ and variance s.
The above example illustrates Bordes et al. [8] (Proposition 2) which establishes
an almost-everywhere identifiability result for the contamination model when
f0 is supposed to be zero-symmetric and f symmetric with repect to a location
parameter μ. The sufficient identifiability constraint established by these authors
is: varf0 �= varf + μ2±k0

3k0
for k0 ∈ N

∗. Note that in the double representation
(2) the previous condition is clearly not satisfied since we have varf0 = varf +
μ2−k0

3k0
= 1 for k0 = 2. This type of identifiability except on a set of parameters

of measure zero, so called generic identifiability, is more widely investigated in
Allman et al. [1].

As described in Section 4, slight modifications of the above model can eas-
ily trap parametric estimation near spurious modeling representations. Since
then, some semiparametric approaches have been developed, such as the pio-
neer work by Bordes et al. [8], to relax that parametric modelling. These authors
only restricted, for example, their study to the class of location-shift symmetric
densities in order to make model (1) semiparametrically identifiable. More re-
cently, different nonparametric approaches have been also considered, such as in
Nguyen and Matias [22] where f0 is a uniform distribution on [0, 1]. In Ma and
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Yao [20], where f0 is only supposed to belong to a parametric family, a tail iden-
tifiability approach is used, considering symmetric distributions embedded in a
nonparametric envelop. We also recommend the recent work by Al Mohamad
and Boumahdaf [3] who consider situations where the unknown component f
is defined through linear constraints. In Balabdaoui and Doss [5] a log-concave
assumption is done on the family F to insure the identifiability of the model.
In Patra and Sen [26] the identifiability and estimation problem is considered
under tail conditions with very few shape constraints assumptions.

The goal of the present paper is to answer a very natural question, explicitly
raised in McLachlan et al. [21] (Section 6) or Patra and Sen [26] (Section 9.2),
which is basically “can we test if the unknown component of the contamination
model belongs to a given class of parametric densities?”, or more formally can
we test

H0 : f ∈ F = {fξ; ξ ∈ Λ} against H1 : f /∈ F , (3)

where fξ is a probability density function parametrized by an Euclidean pa-
rameter ξ belonging to a parametric space Λ. For simplicity we will restrict
ourselves to the case where fξ belongs to S, the set of symmetric probability
density functions with respect to a location parameter μ ∈ R, that is: there
exists μ ∈ R, part of the parameter ξ, such that

fξ(x+ μ) = fξ(−x+ μ).

However we discuss in Section 10 how our approach can be generalized to any
class of parametric densities provided that model (1) can be

√
n-estimated semi-

parametrically. This problem has been considered recently by Suesse et al. [32],
who use a maximum likelihood estimate-based testing approach. In general the
behavior of the maximum likelihood estimator is difficult to control or figure
out, as illustrated in Section 7, under the alternative since the model is then
misspecified. To get a consistent testing method under both H0 and H1, at the
price of some shape restriction about H1, we propose to use an H0 ∪ H1 con-
sistent semiparametric estimation approach in order to build a H0-free statistic
(do not forcing to fit into the parametric model). To the best of our knowl-
edge this is the first time that an H0-free semiparametric approach is used to
test mixture models. The advantage of this new strategy will be demonstrated,
both theoretically and numerically, on very counterintuitive examples in the
close neighborhood of non-identifiable situations, see Fig. 1 and comments. For
a general overview about semiparametric mixture models we recommend the
recent surveys by Xiang et al. [38] or Gassiat [12]. Note that the test against a
specific distribution, proposed in Bordes and Vandekerkhove [9] (Section 4.1),
does not allow to test versus a complete class of probability density functions,
which is our goal here. To point out the interest of the statistical community
about the contamination problem testing, let us mention the very recent work by
Arias-Castro and Huang [4] on the sparse variance contamination model testing
and references therein.
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The main idea of our test is based on the following data driven smooth
test procedure developed by Ledwina [17], extending the idea of Neyman [25].
Writing S the set of symmetric probability density functions with respect to a
location parameter μ ∈ R, the idea of our test consists in estimating the ex-
pansion coefficients of f in an orthogonal basis, first assuming f ∈ S, and to
compare these estimates to those obtained by assuming f ∈ F . This approach
has been used in Doukhan et al. [11], see also references therein, but the speci-
ficity of the two-component mixture model necessitates a special adaptation of
the Neyman smooth test. In our case we develop a two rates procedure, one
rate driven by the asymptotic normality of the test statistic and another one
driven by the almost sure rate of convergence of the semiparametric estima-
tors. As we will discuss along this paper, the approach of Suesse et al. [32],
restricted to model (1), does not allow to investigate the asymptotic behavior of
the test statistic under alternative assumptions (possibly contiguous) since the
asymptotic behavior of the maximum likelihood estimator cannot be controlled
properly under distribution misspecification. Another side of our nonparamet-
ric approach is that it can easily deal with situations where f0 is only known
through a training data. This situation is illustrated in Section 9 through a real
dataset collecting the radial velocity of the Carina galaxy and its companion
Milky Way.

The paper is organized as follows: in Section 2 we describe our two-step test
methodology; in Section 3 we state the assumptions and asymptotic results
under the null hypothesis; Section 4 is dedicated to the test behavior under
the alternative; Section 5 is devoted to the study of our testing procedure under
contiguous nonparametric alternatives (inspired from the parametric contiguous
alternative concept); in Section 6 we discuss the choice of the reference measure
when considering orthogonal bases for the unknown density decomposition; in
Section 7 we conduct a power comparison between the semiparametric and
maximum likelihood versions for our test, this section enlightens interestingly
the fact that a maximum likelihood approach could force, in certain setups of
the McLachlan et al. [21] (Section 6) Gaussian mixture model, to consider the
number q of components defining f equal to 1 when in reality q = 2; Section 8 is
dedicated to a simulation-based empirical and power levels study; in Section 9
we proceed with the application of our testing method to the datasets (breast
cancer, colon cancer, HIV) previously studied in McLachlan et al. [21] and
to the Galaxy dataset studied in Patra and Sen [26]. Finally in Section 10 we
discuss further leads of research connected with the contamination model testing
problem.

2. Testing problem

Let us consider an independent and identically distributed sample denoted
(X1, . . . , Xn), drawn from a probability density function g defined in (1) with
respect to a given reference measure ν. The problem addressed in this section
deals with testing the unknown component f assuming the fact that f belongs
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to S, the set of symmetric densities. More precisely, denoting

F = {fξ; ξ = (μ, θ) ∈ Λ}

the set of symmetric densities with respect to ν, with mean μ and scale/shape
parameter θ, where (μ, θ) is supposed to belong to a compact set Λ of R × Θ,
our goal is to test

H0 : f ∈ F against H1 : f ∈ S\F . (4)

The symmetry condition, meanning that there exists μ ∈ R such that f(−x +
μ) = f(x+ μ), is a semiparametric identifiability and parameter picking condi-
tion proposed in Bordes et al. [8]. The scale/shape parameter θ corresponds to
the variance in the Gaussian case but it can also be a vector as in the Gener-
alized Gaussian distribution (GGD). In that latter case the scale parameter α
along with the shape parameter β both belong to R

+∗ which leads to consider
θ = (α, β)� ∈ R

+∗ × R
+∗ = Θ.

Our test procedure consists in estimating the expansion coefficients of the
unknown density f in an orthogonal basis, first assuming f ∈ S, and comparing
in contrast these estimates to those obtained when f is supposed to strictly
belong to a parametric sub-family F of S. As intuitively expected, we will
show how the study of the successive expansion coefficient differences helps
in detecting possible departure from H0 given the data. We will denote by
Q = {Qk; k ∈ N}, a ν-orthogonal basis satisfying Q0 = 1 and such that∫

R

Qj(x)Qk(x)ν(dx) = q2kδjk, (5)

with δjk = 1 if j = k and 0 otherwise, and where the normalizing factors q2k ≥ 1
will allow to control the variance of our estimators, as illustrated in Lemmas 1
and 3. We assume that Q is an L2(R, ν) Hilbert basis, which is satisfied if there
exists κ > 0 such that

∫
R
eκ|x|ν(dx) < ∞, and that the following integrability

conditions are satisfied:∫
R

f2
0 (x)ν(dx) < ∞ and

∫
R

f2(x)ν(dx) < ∞.

Then, for all x ∈ R, we have

g(x) =
∑
k≥0

akQk(x) with ak =

∫
R

Qk(x)g(x)ν(dx)/q
2
k,

f0(x) =
∑
k≥0

bkQk(x) with bk =

∫
R

Qk(x)f0(x)ν(dx)/q
2
k,

f(x) =
∑
k≥0

ckQk(x) with ck =

∫
R

Qk(x)f(x)ν(dx)/q
2
k.

From (1) we have

ak = (1− p)bk + pck.
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Let us denote by Z a random variable with density fμ,θ and consider

αk(μ, θ) = E(Qk(Z))/q2k.

The null hypothesis can be reformulated as ck = αk(μ, θ), for all k ≥ 1, or
equivalently as

H0 : there exist (μ, θ) ∈ Λ such that ak = (1− p)bk + pαk(μ, θ), for all k ≥ 1.
(6)

Since the probability density function f0 is known, the coefficients bk are auto-
matically known. For all k ≥ 1, the coefficients ak can be estimated empirically
by:

ak,n =
1

n

n∑
i=1

Qk(Xi)

q2k
, n ≥ 1.

To obtain H0-free estimators of the parameters (p, μ) and αk’s, the estimator
of (p, μ) will be obtained without assuming the null hypothesis, that is using
the semiparametric estimator ϑ̄n = (p̄n, μ̄n) introduced in Bordes et al. [8] and
studied more deeply in Bordes and Vandekerkhove [9]. Indeed, as numerically

demonstrated in Section 7, the maximum likelihood estimator (p̂n, μ̂n, θ̂n) un-
der the null assumption tends to provide the best H0-fitted model when the
semiparametric estimator of Bordes and Vandekerkhove [9] is not influenced by
the constraint under the null and can provide very distant, both Euclidean and
functional, estimations under H1 (when the model is misspecified under the null
assumption). In the same way, considering the relation (1), the estimator of θ
is obtained by the H0-free method of moments. The estimator of αk(μ, θ) is
obtained by using a standard plug-in approach, that is:

αk,n = αk(μ̄n, θ̄n).

To illustrate our general approach, let us consider the case where the parameter
θ coincides with the variance parameter. This is the case for instance when F
is equal to G the set of normal densities with mean μ and variance θ = s. Then
the method of moments yields

s̄n =
M̄2,n − (1− p̄n)m2

p̄n
− (μ̄n)

2, (7)

where M̄2,n = n−1
∑n

i=1 X
2
i , and m2 =

∫
R
x2f0(x)ν(dx). Coming back now to

generality and looking at the H0 reformulation in (6), we can expect that the
differences

Rk,n = ak,n − p̄n(αk,n − bk)− bk, for all k ≥ 1,

will allow us to detect any possible departure from the null hypothesis. For sim-
plicity matters and without loss of generality, since the bk’s are known constants,
we assume from now on them to be equal to zero. For all k ≥ 1, we define the
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k-th order coefficient of our test statistic (incorporating the k-th order departure
information from H0)

Tk,n = nU�
k,nD̂

−1
k,nUk,n, (8)

where Uk,n = (R1,n, . . . , Rk,n) and where D̂k,n is an estimator of

Dk,n = diag(var(R1,n), . . . , var(Rk,n)),

normalizing the test statistic as in Munk et al. [24]. To avoid instability in the

evaluation of D̂−1
k,n, following Doukhan et al. [11], we add a trimming term e(n)

to every i-th, i = 1, . . . , k, diagonal element of D̂k,n as follows:

D̂k,n[i] = max(v̂ar(Ri,n), e(n)), 0 ≤ i ≤ k, (9)

where v̂ar(Ri,n) is a weakly consistent estimator of var(Ri) and e(n) → 0, as
n → +∞.

Following Ledwina [17] and Inglot et al. [15] we suggest a data driven pro-
cedure to select automatically the number of coefficients needed to answer the
testing problem. We introduce the following penalized rule to pick parsimo-
niously (trade-off between H0 departure detection and complexity of the proce-
dure involved by index k) the “best” rank k for looking at Tk,n:

Sn = min
{
argmax
1≤k≤d(n)

(s(n)Tk,n − βkpen(n))
}
, (10)

where respectively s(n) → 0 is a normalizing rate, d(n) → +∞, pen(n) is a
penalty term such that pen(n) → +∞, as n → +∞, and the βk’s are penaliza-
tion factors. In practice we will consider βk = k, k ≥ 1, and pen(n) = log(n),
n ≥ 1. To match the asymptotic normality regime, under H0, of the test statistic
Tk,n defined in (8), the normalizing factor s(n) is usually taken equal to one,
but in our case, due to the specificity of the semiparametric mixture estimation
(possibly adapted to nonparametric contiguous alternatives), we chose:

s(n) = nλ−1, with 0 < λ < 1/2. (11)

The above calibration is connected with the almost sure convergence rate of the
estimators p̄n and μ̄n which satisfy |p̄n−p0|2 = oa.s.(n

−1/2+α) and |μ̄n−μ0|2 =
oa.s.(n

−1/2+α) for all α > 0, see Theorem 3.1 in Bordes and Vandekerkhove [9].
Note that the selection rule in (10), adapted to the semiparametric framework,
strongly differs from the BIC criterion used by Suesse et al. [32].

Remark 1. It is important to notice at this point that we could have also
investigated a test expressed like this:

H0 : there exists ξ = (μ, θ) ∈ Λ such that F = Fξ,

against its alternative, where F denotes the cumulative distribution function of
f . For simplicity and without loss of generality, consider the Gaussian case with
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known mean μ = 0 (p still unknown) and variance parameter s = θ and write
Fs(·) = F (

√
s×·). Write also F(0,1) the standard Gaussian cumulative distribu-

tion function. In such a perspective we could have used a strategy inspired from
the simple hypothesis test of Bordes and Vandekerkhove [9] (Section 4.1). Since
according to Theorem 3.2 in Bordes and Vandekerkhove [9] the semiparametric

estimator F̂n of F satisfies a functional central limit theorem, one could consider
sn in (7) as a natural estimate of s under H0 and evaluate the square of

√
n[F̂n,sn − F(0,1)] =

√
n[F̂n,sn − Fsn ] +

√
n[Fsn − F(0,1)]

over a set of fixed values (x1, . . . , xk), where F̂n,sn(·) = F̂n(
√
sn×·). By using the

delta method, we can show that the second term of the above quantity is asymp-
totically normal, however the behavior of the first term looks much more difficult
to analyze due to the random factor term sn inside the semiparametric estimate
F̂n. In addition of this technical difficulty, it would also be more satisfactory to
investigate a Kolmogorov type test based on

√
n supx∈R |Fn(

√
snx) − F(0,1)(x)|,

embracing the whole complexity of F(0,1), instead of a χ2(k)-type test based on
the above expression evaluated over a k-grid. Again this is a very challenging
problem. In that sense our approach allows to get a sort of asymptotic framework
to capture the whole complexity of f through its (asymptotically unrestricted) de-
composition in a base of orthogonal functions.

3. Assumptions and asymptotic behavior under H0

To test consistently (4), based on the statistic T (n) = TSn,n, we will suppose
the following conditions:

(A1) The coefficient order upper bound d(n) involved in (10) satisfies d(n) =
O(log(n)e(n)), where e(n) is the trimming term in (9).

(A2) For all k ≥ 1, αk(·, ·) is a C1 function and there exists nonnegative con-
stants M1 and M2 such that for all (μ, θ) ∈ Λ,

|αk(μ, θ)| ≤ M1 and ‖α̇k(μ, θ)‖ ≤ M2,

where α̇k denotes the gradient (∂αk/∂μ, ∂αk/∂θ)
� and ‖ · ‖ denotes the

Euclidean norm on R
2.

(A3) There exists a nonnegative constant M3 such that for all k ∈ N
∗,

1

k

k∑
i=1

var

(
Qi(X1)

q2i

)
≤ M3.

Under these three conditions, which will be checked respectively in Lemma 1 and
3 for the Gaussian and the Lebesgue reference measure, we state the following
theorem.

Theorem 2. If assumptions (A1-3) hold, then under H0:

P(Sn = 1) −→ 1, as n → +∞.
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The above result states that under H0 the infinite collection (6) of equality
expansion conditions is asymptotically examined simply at rank k = 1, thanks
to the penalization term involved in the test statistic TSn,n where Sn is defined
in (10). This basic result allows to deduce the following standard asymptotic
distribution of the test statistic under the null, which convergence is also nu-
merically illustrated in Appendix G.

Corollary 3. If assumptions (A1-3) hold, we have under H0 the convergence
in law

T (n)
L−→ Z , as n → +∞,

where Z denotes a χ2-distributed random variable with one degree of freedom.

Remark 4. Theorem 2 and Corollary 3 still hold if we replace in T (n) the
semiparametric estimators and their (asymptotic) variances by their maximum
likelihood counterparts. The proofs of these two results are completely similar to
the semiparametric case and rely on the asymptotic normality of the maximum
likelihood estimator detailed in Appendix F. In this case the rate of the selection
rule is the standard one, which namely is s(n) = 1.

4. Asymptotic behavior under H1

In the next proposition we study the behaviour of our test statistic under
H1 : f ∈ S \ F .

Proposition 1. If f ∈ S \ F , then the test statistic T (n) tends to +∞ in
probability with a drift-type behavior Tn ≥ OP (n

λ), 0 < λ < 1/2, as n → +∞.

We would like to stress the fact that the identifiability conditions supposed
when considering the class of symmetric densities S, are crucial in the proof
of Proposition 1. As mentioned in Bordes et al. [8], there exists various non
identifiability cases for model (1). Let us remind the following one from Bordes
and Vandekerkhove [9]: if we take f0 to be ϕ and f to be (ϕ(·−μ)+ϕ(·+μ))/2,
where ϕ is an even probability density function, then the parameters are not
uniquely identifiable from g because we have the double writing

g(x) = (1− p)ϕ(x) + pf(x− μ) = (1− p

2
)ϕ(x) +

p

2
ϕ(x− 2μ), x ∈ R.

This example is very interesting since it clearly shows the difficulty of estimating
model (1) when the probability density function of the unknown component is a
mixture including exactly the same shape as the known component. In particular
if ϕ is a given Gaussian distribution and we want to test if the 2nd component
is Gaussian, we could possibly either reject or accept H0 with our testing pro-
cedure depending on the convergence of our semiparametric estimators. Indeed
the maximum likelihood estimator would converge towards the natural under-
lying Gaussian model and the semiparametric method could possibly converge
towards both solutions. To avoid this concern, we recommend to check that the
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departures between the maximum likelihood estimator and the semiparametric
one is not driven by a factor 2, i.e μ̂n ≈ 2μ̄n and p̂n ≈ p̄n/2. To advise on this
possible proximity, one could check if μ̂n/2 and 2p̂n respectively belong to the
95% confidence intervals of μ and p derived from the asymptotic normality of
(p̄n, μ̄n), see Bordes and Vandekerkhove [9]. Now if so, we suggest to initialize
the semiparametric approach close the maximum likelihood estimator to force
it to detect the possibly existing F-component in model (1).

5. Contiguous alternatives

5.1. Contiguous contamination models

We consider in this section a vanishing convolution-class of nonparametric con-
tiguous alternatives. More specifically, the null hypothesis consists here in con-
sidering that the observed sample Xn = (X1, . . . , Xn) comes from

H0 : Xi = (1− Ui)Yi + UiZi, i = 1, . . . , n,

where (Ui)i≥1 and (Yi, Zi)i≥1 are respectively independent and identically dis-
tributed sequences distributed according to a Bernoulli distribution with param-
eter p and f0 ⊗ fμ,θ, where fμ,θ is the unknown density function with respect
to the reference measure ν. For each n ≥ 1, the contiguous alternative consists
in the fact that the observed sample X(n) = (Xn

1 , . . . , X
n
n ) comes from a row

independent triangular array:

H
(n)
1 : Xn

i = (1− Ui)Yi + UiZ
n
i , i = 1, . . . , n, (12)

where Zn
i = Zi + δnεi, (εi)i≥1 is an independent and identically distributed

sequence of random variables, independent from the Z’s and δn → 0 as n → +∞
(vanishing factor). We assume here that, ∀i ≥ 1, Zi+ δnεi /∈ S. In the Gaussian
case this assumption is insured if the ε′s are non Gaussian. It is also assumed
that the E(e|ε1|) < ∞. This type of contiguous modeling looks natural to us as,
in any experimental field, measurement errors could happen, represented above
by the δnεi’s, and additively impact the Z true underlying phenomenon. We
also remind at this point that the distribution of the Y ’s is theoretically known
by assumption.

The whole contiguous models collection will be denoted H∗
1 = ⊗∞

n=1H
(n)
1 .

To emphasize the role of index n in the triangular array, we will denote all the
estimators depending onX(n) or any function depending onG(n), the cumulative

distribution function of the X
(n)
i ’s, with the extra superscript (n); for example,

with this new notational rule, the estimator p̄n(X
(n)) of p will be denoted p̄

(n)
n .

Similarly we will denote by ĝ
(n)
n the kernel density estimator of g(n) involved in

the contiguous alternative setup, see Appendix D, defined by

ĝ(n)n (x) =
1

nhn

n∑
i=1

K

(
x−Xn

i

hn

)
, x ∈ R, (13)
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where the bandwidth hn satisfies hn → 0, nhn → +∞ and K is a symmetric
kernel density function detailed in Appendix E.1.

5.2. Fast contiguous alternatives

We first consider contiguous alternatives with a rate of convergence to the null
hypothesis too fast to be detected by our testing procedure. Under the alterna-

tive H
(n)
1 we will consider the following assumptions:

(A4) The bandwidth setup is hn = n−1/4−γ , with 0 < γ < 1/12.
(A5) The vanishing factor satisfies δn = n−ξ, with ξ > λ + 2γ + 1/2, where λ

is given by (11).
(A6) There exists a nonnegative constant C such that for all k ∈ N,

|E (Qk(X + δnε1)−Qk(X)) |/q2k ≤ Cδn,

where X is H0 distributed.

Condition (A6) is checked in Lemmas 2-4 for the Gaussian and the Lebesgue
reference measures. It is also satisfied for any reference measure with bounded
support. For simplicity, we refer to condition (A2-3) under H∗

1 in the proposi-
tion below. This means that both conditions are satisfied for all n ≥ 1 replacing
X1 by Xn

1 . Following the proof of these conditions in Appendix B under H0 it is
possible to establish explicit moment conditions on ε, adapted to the moments
of Z, to insure (A2-3) under H∗

1 . These conditions being technical and their
proof being painful but straightforward, we do not detail them here.

Proposition 2. If assumptions (A1-6) hold, then under H∗
1 :

Sn
P−→ 1 and T (n)

L−→ Z , as n → +∞,

where Z is a χ2-distributed random variable with one degree of freedom.

5.3. Slow contiguous alternatives

In Assumption (A5) the convergence rate of δn to zero is too fast to distinguish
the asymptotic null hypothesis when n tends to infinity. Contrarily, we now
consider two convergence rates which are too slow to recover the asymptotic
null distribution of the test statistic, despite the convergence of the contiguous
alternative towards the null hypothesis. These convergence rates are given under
the following assumptions:

(A7) E(ε) = 0 and there exists 0 < ξ′ < 1/4 such that δn = n−ξ′ .
(A8) E(ε) �= 0 and there exists 0 < ξ′′ < 1/8 such that δn = n−ξ′′ ,

where ε denotes a generic random variable involved in the Zn’s definition. The
rate in (A7) will control the mean deviation due to the perturbations ε and
the rate given in (A8) will allow to control the variance of these perturbations
when there is no mean deviation.
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Proposition 3. If assumption (A7) or (A8) holds, then under H∗
1 :

T (n)
P−→ +∞ , as n → +∞.

Moreover, under (A7), Sn
P−→ 1 when under (A8), Sn

P−→ 2, as n → +∞.

Remark 5. Le us notice that here is a gap between the rate ξ > 1/2 in (A5)
and the rates ξ′ < 1/4 and ξ′′ < 1/8 in (A7-A8). For now we are not able,
given the various rates of convergence involved in our proofs, to establish the
limiting distribution of T (n) for a rate between 1/2 and 1/4.

We provide, in Appendix L, a numerical illustration of our test sensitivity
when applied to model (12) for a wide range of factors δn.

6. Choice of the reference measure and test construction

In order to run our test, we have to select now a reference measure ν and an
ad. hoc. orthogonal family Q = {Qk, k ∈ N}. The choice of the ν clearly relies
on support of the Xi’s. If the support is compact, one can choose a uniform dis-
tribution for ν and their associated Legendre polynomials. Since our numerical
studies are dedicated to the Gaussian case, we illustrate here the choice of ν
corresponding to two measures on the real line: the Gaussian and the Lebesgue
one. The verification of conditions (A2–3) for these two measures is relegated
in Appendix B.

Gaussian reference measure. In the present paper, we chose for ν the standard
normal distribution to address the Gaussianity testing problem. This choice is
adapted to any R-supported probability distribution. The ν-orthogonal basis Q
corresponds then to the collection of the f(0,1)-orthogonal Hermite polynomials
defined for all k ≥ 0 by:

Hk(x) = k!

	k/2
∑
m=0

(−1)mxk−2m

m!(k − 2m)!2m
, x ∈ R. (14)

We have in particular ‖Hk‖2 = k! and, for illustration purpose, the six first
polynomials are:

H0 = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x.

Lemma 1. Let Hk be defined by (14) and let Qk(x) = Hk(x), for all x ∈ R.
Assume that we want to test H0 : f ∈ G, where G is the set of Gaussian densities.
Then conditions (A2–3) are satisfied.

Remark 6. Lemma 1 can be extended to any non Gaussian null distribution f
with known moments as discussed in Remark 7 in Appendix B



Semiparametric density testing in the contamination model 4755

Lemma 2. Let Hk be defined by (14) and let Qk(x) = Hk(x), for all x ∈ R.
Then condition (A6) is satisfied.

Lebesgue reference measure. Another possible choice for the reference measure
ν is the Lebesgue measure over R. In that case, we would rather consider the
set of orthogonal Hermite functions defined by:

Hk(x) = hk(x) exp(−x2/2), x ∈ R, (15)

where hk(x) = 2k/2Hk(
√
2x), with Hk defined in (14). In that setup we have

‖Hk‖2 = k!2k.

Lemma 3. Let Hk be defined by (15) and let Qk(x) = Hk(x), for all x ∈ R.
Then conditions (A2–3) are satisfied.

Lemma 4. Let Hk be defined by (15) and let Qk(x) = Hk(x), for all x ∈ R.
Then condition (A6) is satisfied.

Test construction. The computation of the test statistic T (n) = TSn,n, see ex-
pressions (8) and (10), is grounded on the computation of the αi(μ, s) quantities.
We detail here the expression of R1,n and var(R1,n) when the reference measure
is Gaussian associated with the Hermite polynomials. To overcome the complex
dependence between the estimators a1,n, p̄n, μ̄n and s̄n, we split the sample into
four independent sub-samples of size n1, n2, n3, n4, with n1 + n2 + n3 + n4 = n.
We use the first sample to estimate a1, the second sample to estimate p, the
third one to estimate μ, and the last one to estimate s. We get α1(μ, s) = μ and
α1,n = μ̄n which makes

R1,n =
1

n1

n1∑
i=1

Xi − p̄n2 μ̄n3 , and

var(R1,n) =
var(X)

n1
+ var(p̄n2)var(μ̄n3) + var(p̄n2)E(μ̄n3)

2 + E(p̄n2)
2var(μ̄n3).

We propose a consistent estimator of var(R1,n):

V1,n = S2
X,n1

+ vp,n2vμ,n3 + μ̄2
n3
vp,n2 + p̄2n2

vμ,n3 ,

where S2
X,n1

denotes the empirical variance based on (X1, . . . , Xn1), and vp,n2 ,
respectively vμ,n3 , denotes the consistent estimator of var(p̄n2), respectively
var(μ̄n3)), obtained from Bordes and Vandekerkhove [9]. The computation of
the test statistic first requires the choice of d(n), e(n) and s(n). A previous
study showed us that the empirical levels and powers were overall weakly sensi-
tive to d(n) for d(n) large enough. From that preliminary study we decided to
set d(n) equal to 10. The trimming e(n) is calibrated equal to (log(n))−1. The
normalization s(n) = nα−1 is setup close enough to n−1/2, with α equal to 2/5,
which seemed to provide good empirical levels.
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Secondly, since the probability density functions considered in our set of
simulation are R-supported we use the standard Gaussian distribution for ν
and its associated Hermite polynomials for Q. All our simulations are based on
200 repetitions. Let us remind briefly that the empirical level is defined as the
percentage of rejections under the null hypothesis and that the empirical power
is the percentage of rejections under the alternative. Finally the asymptotic level
is standardly fixed to 5%.

7. Semiparametric and maximum likelihood approaches comparison

In our testing procedure we estimate (p, μ) by using the semiparametric es-
timators proposed in Bordes and Vandekerkhove [9] instead of the maximum
likelihood estimators. In the same way our estimation of θ, see expression (7),
is H0-free contrary to what would happen when using the maximum likeli-
hood technique. Both approaches are asymptotically equivalent under the null
hypothesis, see Remark 4, and all the simulations we did shown very simi-
lar empirical levels when comparing the semiparametric and maximum likeli-
hood approaches under null models. However, under certain types of alterna-
tives, the maximum likelihood approach can lead to very unexpected empiri-
cal powers. These behaviors are due to compensation phenomenon in models
close, for example, to the non-identifiable one described in Section 4. To il-
lustrate clearly this point we detail here the Gaussianity test in these cases.
Write

g(x) = (1− p)f(0,1)(x) + pha,s(x− μ), x ∈ R, (16)

where ha,s(x) = (f(0,s)(x−a)+f(0,s)(x+a))/2, a �= 0, f(0,s) being the Gaussian
density, centered at zero, with variance s. When μ = ±a and s = 1, we notice
that (16) can be reformulated as

g(x) = (1− p

2
)f(0,1)(x) +

p

2
f(0,1)(x− 2μ), x ∈ R. (17)

In this case there are two different parametrizations for (16): one that we call
the null parametrization, coinciding with H0 with null parameters p0 = p/2,
μ0 = 2μ and s0 = 1, see the right hand side of (17). The other one is called
the alternative parametrization, coinciding with H1 with p1 = p, μ1 = μ and
s1 = μ2 + 1, see the right hand side of (16). By construction the maximum
likelihood estimator will favor the null parameters. We study now this phe-
nomenon through a set of simulations where the parameters are μ = 4, s = 1
and p = 0.4. For comparison, we use the same initial values for the both semi-
parametric and maximum likelihood algorithms, namely (p, μ, s) = (0.3, 6, 8.5),
which is exactly between the null parametrization (p, μ, s) = (0.2, 8, 1), and the
alternative parametrization (p, μ, s) = (0.4, 4, 17). It is of interest to study now
the behavior of the semiparametric and maximum likelihood testing methods
when the true model deviates smoothly from the null hypothesis in two ways:
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i) the unknown component is a ha,1 with μ �= a, i.e

g(x) = (1− p)f(0,1)(x) + p

(
1

2
f(0,1)(x− a− μ) +

1

2
f(0,1)(x+ a− μ)

)
︸ ︷︷ ︸

μ-symmetric mixture detected by the semiparametric method

=
(
(1− p)f(0,1)(x) +

p

2
f(0,1)(x+ a− μ))

)
+

p

2
f(0,1)(x− a− μ)

≈
(
1− p

2

)
f(0,1)(x) +

p

2
f(0,1)(x− a− μ))︸ ︷︷ ︸, when μ → a,

(a+ μ)-centered Gaussian attracting the maximum likelihood method

this case will be called the mean deviation trap, and ii) the unknown component
is a ha,s with μ = a but s �= 1, i.e.

g(x) = (1− p)f(0,1)(x) + p

(
1

2
f(0,s)(x− 2μ) +

1

2
f(0,s)(x)

)
︸ ︷︷ ︸

μ-symmetric mixture detected by the semiparametric method

=
(
(1− p)f(0,1)(x) +

p

2
f(0,s)(x))

)
+

p

2
f(0,1)(x− 2μ)

≈
(
1− p

2

)
f(0,1)(x)) +

p

2
f(0,s)(x− 2μ))︸ ︷︷ ︸, when s → 1

(2μ)-centered Gaussian attracting the maximum likelihood method

this case will be called the variance deviation trap.
It is very important to point out now that the above phenomenons illustrate

the risk of considering only one single Gaussian component (q = 1) in the generic
mixture model defining f in McLachlan et al. [21] (Section 6) when actually two
Gaussian components (q = 2) would be necessary to accurately fit the model.

Mean deviation trap. We consider deviations from the null model obtained
by considering μ = 3, 2, 1 and s = 1. Figure 1 shows the g probability den-
sity function under these respective alternatives. It can be observed that, if we
try to visually detect a mixture of two Gaussian distributions, the probability
density function of the left-side component moves clearly aside the Gaussian
distribution family as μ moves largely away from a = 4, i.e. when μ = 1, but
we bet that many practitionners would probably vote “intuitively” for a mix-
ture of two Gaussian distributions when μ = 3 or 2. Figure 10 in Appendix H
illustrates the difficulty of the maximum likelihood estimator to recognize the
alternative model when the mean deviation is not distant enough (here μ = 3
and a = 4). Based on a run of 200 repetitions, it is shown that the maximum
likelihood estimation is trapped at the null parametrization which namely is
(p, μ, s) = (0.2, 7, 1) when on the opposite, the semiparametric estimation de-
tects the correct (p, μ, s) = (0.4, 3, 17) alternative parametrization. In Fig. 2 we
display respectively the empirical power of our testing procedure based on the



4758 D. Pommeret and P. Vandekerkhove

Fig 1. The probability density function g in model (16) when a = 4, s = 1, and μ = 3, 2, 1.

maximum likelihood and the semiparametric approach for μ = 3, 2, 1, a = 4,
s = 1, and for n = 1000, 2000, 5000. As expected the maximum likelihood
approach barely detects the alternative for small values of n when its semi-
parametric counterpart surpasses it with up to 10 times more correct decision
results. The reason of this lack of power is due to the fact that our test focuses
more on the moments of the second components than those of the first one and,
as seen in Fig. 1, the second components looks pretty much Gaussian even for
μ = 1.

Fig 2. Empirical powers obtained with the maximum likelihood approach (left) and semipara-
metric approach (right) under the mean deviation trap effect for μ = 3, 2, 1 and a = 4.

Variance deviation trap. We consider the variance deviations s = 2, 3, 4, fix-
ing μ = a = 4. Figure 3 shows the g probability density function under these
alternatives. The corresponding empirical powers are displayed in Fig. 4. We

Fig 3. The probability density function g in model (16) with μ = a = 4 and s = 2, 3, 4.
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can observe that both powers associated with the maximum likelihood and
semiparametric approach increase according to the variance deviation but it is
worth to notice that the detection based on the maximum likelihood approach
is again very poor compared to the semiparametric approach. As a conclusion,

Fig 4. Empirical powers obtained with the maximum likelihood approach (left) and semipara-
metric approach (right) under the variance deviation trap effetct for s = 2, 3, 4 �= 1, with
μ = a = 4.

this set of numerical experiments shows the clear interest, in terms of testing
power, of considering the semiparametric versus the maximum likelihood ap-
proach especially in a close neighborhood of non-identifiable type (1) Gaussian
models.

8. Simulations: empirical levels and powers

In all our simulation we consider the case where f0 is a known Gaussian den-
sity, centered at zero and variance equal to one. The unknown density will be
parameterized by its mean μ and its variance θ = s. We chose as orthogonal
basis the family of Hermite polynomials.

8.1. Empirical levels

McLachlan et al. [21] considered the two-component Gaussian version of the
mixture model (1) through three datasets arising from the bioinformatics lit-
erature: the breast cancer data, with n = 3226, the colon cancer data, with
n = 2000, and the HIV data, with n = 7568. The estimation of their associated
parameters are respectively: (p̂n, μ̂n, ŝn) = (0.36, 1.52, 0.99), (0.58, 1.61, 2.08),
and (0.98,−0.15, 0.79). To make sure that our methodology will have reliable
behaviors when applied on this collection of datasets, we investigate the em-
pirical levels of our testing procedure across parameter values such as n ∈
{2000, 3000, 7500} and (p, μ, s) = (1/3, 1.5, 1), (0.5, 1.5, 2) and (0.98,−0.15, 0.8)
which are values in the range of the above targeted applications. For this pur-
pose, for each value of n, p, μ and s, we compute the test statistic T (n) based
on the sample and compare it to the 5%-critical value of its approximated dis-
tribution under H0 (χ2(1) according to Corollary 3). Note that, for numerical
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simplicity, we initialize our parameter estimation step at the true value of the
Euclidean parameter. The collection of empirical levels obtained for this set of
simulated examples is reported in Fig. 11 of Appendix I. It appears that a signif-
icant number of observations is needed to get close to the theoretical level. This
drawback can be balanced by the fact that today, as mentioned in the Intro-
duction, genomic datasets usually contain thousands of genes which makes our
methodology in practice suitable for a wide class of standard (from the sample
size view point) microarray analysis problems.

8.2. Empirical powers

In this section we consider the Gaussian testing problem (3) with F = G where
G =

{
f(μ,s); (μ, s) ∈ Λ ⊂ R× R

+∗} denotes the set of Gaussian densities with
mean μ and variance s, compared to Student and Laplace alternatives. First a
1-shifted Student distribution t(3), having a shape far enough from the Gaussian
distribution, with a shift μ = 1. Second a shifted Student t(10), again with a shift
equal to 1, but having a shape closer to the null Gaussian distribution. Third a
Laplace distribution L(1, 1) with mean 1 and variance 2. The last alternative is
a Laplace L(1, 2) with mean 1 and variance 8. The empirical powers for Student
and Laplace alternatives are respectively summarized in Fig. 5 and 6. We also
compare these empirical powers with those obtained by the maximum likelihood
approach in Appendix K.

As expected, when comparing pairwise the Student alternatives, the power
is greater for the t(3) distribution compared to the t(10) distribution. The t(3)
is very clearly detected by the test since the detection level is greater than
80% for all the cases and even close to 100% for n = 7000. Now, similarly to
the mean and variance deviation trap setups investigated in Section 7, we can
observe that the power is greater as p increases, which practically means that the
Student component is enhanced in the model (remind that our test procedure
is focused on the 2nd-component moments analysis). We display the mixture
densities corresponding to this set of alternatives in Fig. 12 of Appendix J. For
the first Student alternative, comparing p = 1/2 and p = 0.98, we can observe
that a serious jump happens in terms of dissimilarity between the alternative
model and the best fitted (same mean and variance) Gaussian null-model. For
p = 0.98, the Student distribution strongly prevails and the test is automatically
empowered. The second alternative is also detected, but with a lower power, let
say between 40 % and 90%, due to the proximity of the Student t(10) with the
Gaussian N (0, 1).

In Fig. 12 of Appendix J we can see how close the null distribution and the
t(10) alternative are, especially for p = 1/3 and p = 1/2, and visually evaluate
how challenging these testing problems really are.

The empirical powers for Laplace alternatives are given in Fig. 6. The power
is larger with the alternative L(1, 2) than with the alternative L(1, 1). Indeed
the L(1, 2) distribution has a stronger shape departure from the Gaussian than
the L(1, 1), and the associated mixture densities inherit these characteristics as
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Fig 5. Respectively left and right: the empirical powers when the alternative is a shifted
Student t(3), resp. a shifted Student t(10), for parameter values p = 1/3 (�), p = 1/2 (◦)
and p = 0.98 (�) with sample sizes n = 2000, 3000, 7500.

Fig 6. Respectively left and right: the empirical powers when the alternative is a Laplace
L(1, 1), resp. a Laplace L(1, 2), for parameter values p = 1/3 (�), p = 1/2 (◦) and p = 0.98
(�) with sample sizes n = 2000, 3000, 7500.

we can see in Fig. 12 of Appendix J. These alternatives are globally very well
detected by our method and the power increases strongly when p gets closer to
1 (see Fig. 6 curve in green).

9. Real datasets

Microarray data We consider 3 datasets arising from the bioinformatics lit-
erature and studied in McLachlan et al. [21]. Figure 7 shows the non parametric
kernel estimations of their probability density functions. Each of them deals
with genes expressions modeled by the two-component mixture model (1) in
which f was arbitrarily, for simplicity matters, considered as Gaussian (without
any theoretical justification). The goal of this section is to answer if the classical
Gaussian assumption was a posteriori correct or not.

Breast cancer data. We consider the breast cancer data studied in Hedenfalk
et al. [14]. It consists in n = 3226 gene expressions in breast cancer tissues
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Fig 7. Respectively the kernel density estimators of the breast data, colon data and HIV data
distributions.

from women with BRCA1 or BRCA2 gene mutations. The maximum likelihood
parameter estimations under the Gaussian null model are p̂n = 0.36, μ̂n =
1.53, ŝn = 0.98. By the semiparametric method we obtain p̄n = 0.41, μ̄n =
1.35 and s̄ = 1.31. It can be noticed here that nonparametric and maximum
likelihood estimators give pretty similar results here which may corroborate
the null hypothesis. Our test procedure provides a p-value equal to 0.82, with
Sn = 1. As a consequence the normality of the second mixture component under
H0 cannot be rejected.

Colon cancer data. We consider the colon cancer data analysed in Alon et al.
[2]. The samples comes from colon cancer tissues and normal colon tissues. It
contains n = 2000 expressions of genes. The maximum likelihood estimations
of the parameters are p̂n = 0.58, μ̂n = 1.61, ŝn = 2.08; The semiparametric
method provides p̄n = 0.72, μ̄n = 1.28 and s̄ = 2.33. By using our testing
procedure we obtain a p-value less than 10−8 with Sn = 4. Here we clearly
reject the normality under H0. The rejection of the Gaussian mixture can be
explained here by the fact that the nonparametric and the maximum likelihood
estimators lead to notably different values especially on p.

HIV data. We consider the HIV dataset of vant’ Wout et al. [36]. It contains
expression levels of n = 7680 genes in CD4-T-cell lines, after infection with the
HIV-1 virus. The maximum likelihood estimations of the parameters are p̂n =
0.98, μ̂n = −0.15, ŝn = 0.79. The semiparametric method provides p̄n = 0.99,
μ̄n = 0.20 and s̄ = 0.80. The p-value given by our testing procedure is equal
to 0.64, associated with the decision Sn = 1. As a consequence the normality
under H0 cannot be rejected despite the fact that the maximum likelihood and
semiparametric estimations of μ are quite different but both close to 0, meaning
a strong overlap of the mixed distributions (see the almost symmetry of the
third probability density function in Fig. 7).

Galaxy data We consider here the Carina dataset, see Walker et al. [35],
studied previously in Patra and Sen [26]. Carina is a low luminosity galaxy
companion of the Milky Way. The data collects n = 1266 measurements of the
radial velocity of stars in Carina. This is a contamination model in the sense
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Fig 8. Left side: estimated density of the Milky Way Radial velocities. Right side: in black, the
plot of the Carina dataset nonparametric density estimate. In red, resp. in blue, the plot of the
model (1) probability density function under f = f(μ,s) and obtained by plugging (p̄n, μ̄n, s̄n),
resp. (p̃n, μ̃n, s̃n), into (p, μ, s).

that the measurements of stars in the Milky Way are mixed with some of Ca-
rina (overlapping). The Milky Way is largely observed, see Robin et al. [29].
Figure 8 shows the density f0 of the radial velocity of Milky Way, estimated
over n′ = 170, 601 observations. This density is clearly not zero-symmetric but
in such a case it is enough to refer to the tail-oriented set of identifiability
conditions of Proposition 3 i) in Bordes et al. (2006) to make the semipara-
metric estimation method still valid. Note also that the asymptotic results of
Bordes and Vandekerkhove [9] still hold if the cumulative distribution function

F0 is replaced by a smooth empirical estimate F̃0,n′ based on a n′ = ϕ(n) sized
training data provided with n/n′ → 0 as n → +∞. Unfortunately the study
of the maximum likelihood estimate, see Section 5 of Appendix F, cannot be
generalized straightforwardly since the non-parametric estimation of the Kull-
back distance, obtained by replacing f0 by a kernel density estimate f̂0,n in the
log-likelihood, is known to be very a delicate problem, see Berrett et al. [7] and
references therein. Though, the fact that the unknown component of g under
H0 is supposed to have a parametric form should definitely help to control some
technical tail issues specific to the Kullback estimation. We obtained for p and
μ, respectively the proportion and the mean of the Carina radial velocity, the
following estimations:

p̄n = 0.361 and μ̄n = 222.60.

In their study, Patra and Sen (2016) obtained very similar values: p̃ = 0.323
and μ̃ = 222.9. However, the estimation of the variance s appears to be highly
sensitive to the estimation of p. Using the plug-in estimator given by (7) we get
s̄n = 453.93. Note that the estimation given in Patra and Sen [26] was s̃n = 56.4
which looks far from the expected value given the data. To illustrate this remark,
we compare in Fig. 8 the kernel density estimate of the observed data with the
probability density of model (1), obtained by replacing (p, μ, s) by our estimates
(p̄n, μ̄n, s̄n) and the Patra and Sen [26]’s estimates (p̃n, μ̃n, s̃n). We can observe
that our estimation provides an excellent fitting when the variance estimated
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by Patra and Sen [26] appears to be way too small. Our test procedure yields a
p-value equal to 0.75 with a test statistic TSn,n = T1 = 0.097. As a consquence,
there is no evidence here to reject the normality of the Carina radial velocity.

10. Discussion and perspectives

In this paper we proposed an H0-free testing procedure to deal with the del-
icate problem of the contamination model parametrization. In our numerical
study we focused our attention on the Gaussianity testing problem however
it is very important to remind that our asymptotic results can be generalized
to any suitable distribution (possibly non-symmetric). Indeed, if the unknown
distribution of model (1) is embedded in a nonparametric envelop S provided
with identifiability constraints and if there exists a corresponding semiparamet-
ric

√
n-consistent method, then the asymptotic results in Sections 3-4 extends

straightforwardly. For this latter case, we recommend the recent work by Al
Mohamad and Boumahdaf [3] who consider in model (1) an unknown com-
ponent defined through linear constraints. In their paper, the authors derive
an original consistent and asymptotically normally distributed semiparametric
estimation method with asymptotic closed form variance expressions. Indeed,
when considering null assumptions different from the Gaussian case, basically
only the shape parameter estimation, usually deduced from moment equations,
and the choice of the orthogonal basis described in Section 2 could possibly
change, depending on the support of the tested distribution. Wavelet functions
and Laguerre polynomials could respectively be used for probability density
functions on the whole, respectively positive, real line, when Legendre, or co-
sine bases could be used for densities with compact support. Also, with a slight
adaptation of our work, we could definitely test the unknown component of the
contamination model considered in the recent work by Ma and Yao [20] where
the first component density is only supposed to belong to a parametric family
(the first component is not entirely known anymore). For each case, the use of
the maximum likelihood or semiparametric approach could be again discussed.
On the other hand, as it has been demonstrated in Section 7, see Figs. 2 and
4, the semiparametric testing approach shows better power performances than
the maximum likelihood version especially in the neighborhood of the mean and
variance deviation trap situations (up to 10 times more efficient for small sam-
ple sizes). We also proposed in Section 5 a vanishing convolution-class of non-
parametric contiguous alternatives and studied theoretically their detectability
under certain convergence rate conditions. In a futur work it would be very in-
teresting to address the contiguous detection problem associated with the mean
and variance deviation trap setups. This would namely consist in looking at the
asymptotic behavior of our test when replacing respectively the parameters μ
and s in the mean and variance deviation trap setups by sequences μn and sn
converging respectively towards a and 1 as n goes to infinity. The major tech-
nical difficulty here is that we are not able to establish yet optimal bounds of
convergence for the semiparametric Euclidean estimator associated with a tri-
angular array driven by the above asymptotic parametrization, see Remark 10
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in Appendix E.2. Future work is also to consider a K-sample extension, K ≥ 2,
in the spirit of Wylupek [37], Ghattas et al. [13], or more recently Doukhan et
al. [11]. More precisely, we could test the equality of K unknown components
through K observed mixture models.

Appendix A: Proofs of the main results

Theorem 2. Let us prove that P(Sn ≥ 2) vanishes as n → +∞. By definition of

Sn in (10) and D̂k,n[·] in (9) we have for all λ ∈ ]0, 1/2[:

P(Sn ≥ 2)

= P

(
∃ k ∈ {2, . . . , d(n)} :

nλU�
k,nD̂

−1
k,nUk,n − k log (n) ≥ nλU�

1,nD̂
−1
1,nU1,n − log (n)

)
≤ P

(
∃ k ∈ {2, . . . , d(n)} : nλU�

k,nD̂
−1
k,nUk,n ≥ (k − 1) log (n)

)
≤ P

⎛⎝∃ k ∈ {2, . . . , d(n)} :

k∑
j=2

nλ(Rj,n)
2 ≥ (k − 1) log (n)e(n)

⎞⎠
≤ P

(
∃ (j, k) with 2 ≤ j ≤ k ≤ d(n) : nλ(Rj,n)

2 ≥ log (n)e(n)
)

≤ P

⎛⎝d(n)∑
j=2

nλ(Rj,n)
2 ≥ log (n)e(n)

⎞⎠ . (18)

It is important for us to keep the summation term up to d(n) in the left hand
side of the above inequality-type event in order to straightforwardly use the
almost sure rate of convergence of the semiparametric Euclidean parameters,
see (22)–(23). We decompose Rk,n as follows:

Rk,n = (ak,n − E(ak,n))− (p̄nαk,n − p0αk(μ0, θ0)), 1 ≤ k ≤ d(n). (19)

By using the inequality (a+ b)2 ≤ 2(a2 + b2), for all (a, b) ∈ R
2, we get

P

⎛⎝d(n)∑
k=2

nλ(Rk,n)
2 ≥ log (n)e(n)

⎞⎠
≤ P

⎛⎝d(n)∑
k=2

(ak,n − E(ak,n))
2 ≥ log(n)e(n)

4nλ

⎞⎠
+ P

⎛⎝d(n)∑
k=2

(p̄nαk,n − p0αk(μ0, θ0))
2 ≥ log(n)e(n)

4nλ

⎞⎠ . (20)



4766 D. Pommeret and P. Vandekerkhove

We study now all the above quantities separately. By the Markov inequality, we
first have

P

⎛⎝d(n)∑
k=2

(ak,n − E(ak,n))
2 ≥ log(n)e(n)

4nλ

⎞⎠
≤ 4nλ

log(n)e(n)

d(n)∑
k=2

E
(
(ak,n − E(ak,n))

2
)

=
4nλ

log(n)e(n)

d(n)∑
k=2

1

n
var

(
Qk(X1)

q2k

)
≤ 4d(n)

n1−λ log(n)e(n)
M3, (21)

where the right hand side term goes to zero as n → +∞ since d(n)/log(n)e(n) =
O(1) according to (A1) and (11).

Secondly, by decomposing p̄nαk,n − p0αk(μ0, θ0) = (p̄n − p0)αk,n + p0(αk,n −
αk(μ0, θ0)), we obtain the following majorization

P

⎛⎝d(n)∑
k=2

(p̄nαk,n − p0αk(μ0, θ0))
2 ≥ log(n)e(n)

4nλ

⎞⎠
≤ P

⎛⎝d(n)∑
k=2

(αk,n)
2(p̄n − p0)

2 ≥ log(n)e(n)

8nλ

⎞⎠
+ P

⎛⎝d(n)∑
k=2

p20(αk,n − αk(θ0, μ0))
2 ≥ log(n)e(n)

8nλ

⎞⎠ .

Since the αk,n’s are bounded by M1 according to (A2), we have

P

⎛⎝d(n)∑
k=2

α2
k,n(p̄n − p0)

2 ≥ log(n)e(n)

8nλ

⎞⎠ ≤ P

(
(p̄n − p0)

2 ≥ log(n)e(n)

8nλM1d(n)

)
, (22)

where the last right hand side term goes to zero as n → +∞ since λ ∈ ]0, 1/2[
and |p̄n − p0|2 = oa.s.(n

−1/2+α) for all α > 0, by Bordes and Vandekerkhove
[9]. By denoting ρ0 = (μ0, θ0) and ρ̄n = (μ̄n, θ̄n), we also have ‖ρ̄n − ρ0‖2 =
oa.s.(n

−1/2+α), for all α > 0. Since the α̇k,n’s are bounded by M2 according to
(A2), using the mean value theorem we obtain:

P

⎛⎝d(n)∑
k=2

(αk,n − αk(μ0, θ0))
2 ≥ log(n)e(n)

8nλ

⎞⎠ ≤ P

(
‖ρ̄n − ρ0‖2 ≥ log(n)e(n)

8nλM2
2 d(n)

)
(23)

which right hand side goes to zero as n → +∞. Hence from (18) and the controls
in probability (20–23), we obtain that P(Sn ≥ 2) → 0 as n → +∞.
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Corollary 3. From Theorem 2, TSn,n has the same limiting distribution as
T1,n = nR2

1,n/V1,n. Since the estimators θ̄n and μ̄n are independent and asymp-
totically Normally distributed towards the true values θ0 and μ0 we get, by
using the delta method, the following convergence in distribution:

√
nα1(μ̄n, θ̄n)

L−→ N (α1(μ0, θ0), D(μ0, θ0)V D(μ0, θ0), as n → +∞,

where D(·, ·) is the gradient α̇1(·, ·), and where V is the asymptotic variance of
(
√
nμ̄n,

√
nθ̄n). Combining this convergence in law with the following conver-

gence in probability:

V1,n
P−→ var(R1,n) and p̄n

P−→ p0, as n → +∞,

along with the independence and the asymptotic normality of the first estimated

coefficient a1,n =

n∑
i=1

Q1(Xi)/nq
2
1 , we get, by using the Slutsky’s Theorem, the

following limiting distribution:

√
n

R1,n√
V1,n

=

√
n

V1,n

(
1

n

n∑
i=1

Q1(Xi)

q21
− p̄nμ̄n

)
L−→ N (0, 1), as n → +∞,

which concludes the proof.

Proposition 1. The advantage of considering the semiparametric approach in
Bordes and Vandekerkhove [9] versus the maximum likelihood method is that
under H1 we keep the following consistency results in probability:

ϑ̄n = (p̄n, μ̄n)
P−→ (p0, μ0), θ̄n

P−→ θ0, Ri
P−→ ri = E(Qi(X)/q2i )− p0αi(μ0, θ0),

as n → +∞, for i ≥ 1, along with their associated asymptotic normality. As a

consequence, by using the Slutsky’s Theorem, the terms
√
n(Ri,n−ri)/

√
D̂k,n[i],

1 ≤ i ≤ k, are asymptotically normally distributed since D̂k,n[i] is a weakly
consistent estimator of var(Ri). Now, Clearly by (1) (with bi = 0), E(Qi(X)) =
p0E(Qi(Y )), where Y is a f -distributed random variable. Then we have the
following equivalence

ri = 0, for all i ≥ 1 ⇐⇒ E(Qi(Y )/q2i ) = αi(μ0, θ0), for all i ≥ 1.

This condition implies that the expansion of the Y s’ density matches with the
expansion of the unknown density f with mean μ0 and parameter θ0, which
is in contradiction with the semiparametric identifiability of model/setup H1,
see Bordes et al. [8]. Thus we can state that there exists an index j such that
rj �= 0. For simplicity matters let us consider j0 = min {j ≥ 1 : rj �= 0}. Since
from (8), for every k ≥ 1 fixed, we can decompose Tk,n as follows:
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s(n)Tk,n = nλU�
k,nD̂

−1
k,nUk,n

= nλ−1
k∑

	=1

⎛⎝√
n

⎡⎣R	,n − r	√
D̂k,n[�]

⎤⎦⎞⎠2

+ 2nλ−1/2
k∑

	=1

√
n

⎡⎣R	,n − r	√
D̂k,n[�]

⎤⎦ r	

+ nλ
k∑

	=1

r2	 ,

it comes that for all k < j0, Tk,n = Op(n
λ−1) since the r	’s are all equal to zero

for 1 ≤ � ≤ k, when instead for the index j0 we have Tj0,n ≥ nλr2j0+Op(n
λ−1/2).

It comes that for all k < j0 we have

P (s(n)Tk,n − βkpen(n) < s(n)Tj0,n − βj0pen(n)) −→ 1, as n → +∞.

This obviously shows, according to Sns’ definition (10), that Sn ≥ j0 with
probability one as n → +∞. Now, since Tk,n is a k-increasing sequence for
every given n ≥ 1, we have that TSn,n ≥ Tj0,n ≥ nλr2j0 + Op(n

λ−1/2) which
proves the wanted result. Note that the right hand side of the previous inequality
shows clearly a drift of our test statistic in OP (n

λ), 0 < λ < 1/2, under the
alternative H1.

Proposition 2. Similarly to the proof of Theorem 2, we have

P

(
S(n)
n ≥ 2

)
≤ P

⎛⎝d(n)∑
k=2

nλ
(
R

(n)
k,n

)2
≥ log(n)e(n)

⎞⎠ . (24)

To prove that the right hand side term of the above probability goes to zero as

n → +∞, we decompose R
(n)
k,n as follows:

R
(n)
k,n =

(
a
(n)
k,n − E(a

(n)
k,n)

)
−
(
p̄(n)n α

(n)
k,n − p0αk(μ0, θ0)

)
+ ψk,n, (25)

with α
(n)
k,n = αk(μ̄

(n)
n , θ̄

(n)
n ), and

ψk,n = p0E (Qk(X0 + δnε1)−Qk(X0)) /q
2
k, (26)

which denotes the expectation of the k-th difference between the H
(n)
1 and H0-

distribution type supported by the second component in the mixture model (1),
X0 being H0 distributed. By (A6) there exists c > 0 such that

ψ2
k,n ≤ cδ2n. (27)

We then have

P(S(n)
n ≥ 2)

= P

(
nλ

d(n)∑
k=2

(
(a

(n)
k,n − E(a

(n)
k,n))− (p̄(n)n α

(n)
k,n − p0αk(μ0, θ0)) + ψk,n

)2
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≥ log(n)e(n)

)

≤ P

(
nλ

d(n)∑
k=2

(
((a

(n)
k,n − E(a

(n)
k,n))− (p̄(n)n α

(n)
k,n − p0αk(μ0, θ0)))

2 + ψ2
k,n

)
≥ log(n)e(n)/2

)

≤ P

(
nλ

d(n)∑
k=2

(
(a

(n)
k,n − E(a

(n)
k,n))− (p̄(n)n α

(n)
k,n − p0αk(μ0, θ0))

)2
≥ log(n)e(n)/2− cnλd(n)δ2n

)

≤ P

(
d(n)∑
k=2

(
(a

(n)
k,n − E(a

(n)
k,n))

2 + (p̄(n)n α
(n)
k,n − p0αk(μ0, θ0))

2
)

≥ log(n)e(n)/(4nλ)− cd(n)δ2n/2

)

≤ P

(
d(n)∑
k=2

(
a
(n)
k,n − E(a

(n)
k,n)

)2
≥ C(k, n)/(8nλ)

)

+ P

(
d(n)∑
k=2

(
p̄(n)n α

(n)
k,n − p0αk(μ0, θ0)

)2
≥ C(k, n)/(8nλ)

)

where C(k, n)=log(n)e(n)−2cd(n)nλδ2n. By (A1) we have d(n)=O(log(n)e(n)),
and nλδ2n → 0 as n → +∞ due to (A5). It follows that

C(k, n) = log(n)e(n) + o(log(n)e(n)). (28)

We study the two above probabilities separately. First we have, according to the
Markov inequality and Condition (A3), that

P

⎛⎝d(n)∑
k=2

(
a
(n)
k,n − E(a

(n)
k,n)

)2
≥ C(k, n)

8nλ

⎞⎠ ≤ 8nλ

C(k, n)

d(n)∑
k=2

1

n
var

(
Qk(X

n
1 )

q2k

)

≤ 8d(n)

n1−λC(k, n)
M3,

where the last right hand side term goes to zero as n → +∞ according to (A1).
Secondly we have

P

⎛⎝d(n)∑
k=2

(
p̄(n)n α

(n)
k,n − p0αk(μ0, θ0)

)2
≥ C(k, n)

8nλ

⎞⎠
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≤ P

⎛⎝d(n)∑
k=2

(
α
(n)
k,n

)2 (
p̄(n)n − p0

)2
≥ C(k, n)

16nλ

⎞⎠
+ P

⎛⎝p20

d(n)∑
k=2

(
α
(n)
k,n − αk(μ0, θ0)

)2
≥ C(k, n)

16nλ

⎞⎠ .

By (A2) the αk’s are bounded by M1 which leads to

P

⎛⎝d(n)∑
k=2

(
α
(n)
k,n

)2 (
p̄(n)n − p0

)2
≥ C(k, n)

16nλ

⎞⎠
≤ P

⎛⎝d(n)∑
k=2

M2
1

(
p̄(n)n − p0

)2
≥ C(k, n)

16nλ

⎞⎠
≤ P

((
p̄(n)n − p0

)2
≥ C(k, n)

16nλd(n)M2
1

)
.

We next prove that the last right hand side term goes to zero as n → +∞.
Combining (A4)-(A5) with (ii) of Theorem 8 in Appendix E.2 we have for all
α > 0 and 0 < δ < 1/2,

|p̄(n)n − p0| = Oa.s.

((
n−1/2+α + δn/h

2
n

)1/2−δ
)

= Oa.s.

((
n−1/2+α + n−1/2+(1+2γ−ξ)

)1/2−δ
)
.

Two cases have to be considered now.

First case: if 1 + 2γ − ξ ≤ 0, we obtain

|p̄(n)n − p0| = Oa.s.

((
n−1/2+α

)1/2−δ
)
,

for all α > 0 and 0 < δ < 1/2, and it follows that for all β > 0

|p̄(n)n − p0| = Oa.s.

(
n−1/4+β

)
.

Second case: if 1 + 2γ − ξ > 0 we obtain

|p̄(n)n − p0| = Oa.s.

((
n−1/2+1+2γ−ξ

)1/2−δ
)
,

for all 0 < δ < 1/2. Writing u = ξ − 1/2− 2γ, we have
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|p̄(n)n − p0| = Oa.s.

(
n−u/2+β

)
,

for all β > 0. By (A5), u > λ and we obtain |p̄(n)n − p0| = oa.s.(n
−λ/2).

Finally, in both cases we have

|p̄(n)n − p0|2 = oa.s.(n
−λ) (29)

and the assertion that the right hand side term goes to zero follows from (28)

and (A1). Writing ρ0 = (μ0, θ0) and ρ̄
(n)
n = (μ̄

(n)
n , θ̄

(n)
n ), similarly (A5)-(A6)

give ‖ρ̄(n)n − ρ0‖2 = oa.s.(n
−λ). Since the α̇k’s are bounded by M2 according to

(A2), using the mean value Theorem, we obtain:

P

⎛⎝p20

d(n)∑
k=2

(
α
(n)
k,n − αk(μ0, θ0, )

)2
≥ C(k, n)

16nλ

⎞⎠
≤ P

(
‖ρ̄(n)n − ρ0‖2 ≥ C(k, n)

16nλd(n)M2
2

)
,

which last term goes to zero as n → +∞ according to (A1). Hence from (24), we
obtain that P(Sn ≥ 2) → 0 as n → +∞. Therefore, using the proofs of Corollary
3 we get the limiting distribution of the test statistic T (n) under H∗

1 .

Proposition 3. Let us compute the close forms of the quantities ψ1,n and ψ2,n

defined in (26). It first comes

ψ1,n = p0E(Q1(X0 + δnε1)−Q1(X0))

= p0E(a1,1(X0 + δnε1) + a1,0 − a1,1(X0)− a1,0)

= p0δnE(ε1),

and we have

R
(n)
1,n =

(
a
(n)
1,n − E(a

(n)
1,n)

)
−
(
p̄(n)α

(n)
1,n − p0α(μ0, θ0)

)
+ ψ1,n

= A−B + ψ1,n.

Combining Markov inequality and (A3) we obtain

P(|a(n)1,n − E(a
(n)
1,n)| ≥ 1/n) ≤ var

(
Q1(X

n
1 )

q21

)
< M3,

ensuring that A = Oa.s.(1/n). Moreover

B = α
(n)
k,n

(
p̄(n) − p0

)
+ p0

(
α
(n)
k,n − α(μ0, θ0)

)
= B1 +B2.

From (A2) we have |α(n)
k,n| ≤ M1 and from (29) we have (p̄(n)−p0) = oa.s.(n

−λ/2)

which prove that B1 = oa.s.(n
−λ/2). In the same way, using (A2) we can show

that B2 = oa.s.(n
−λ/2).
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By (A7) it follows that almost surely nλ(R
(n)
1,n)

2 ≈ nλ−2ξ′ → +∞, as n →
+∞. By construction we have T

(n)
1,n ≥ n(R

(n)
1,n)

2/(v̂ar(R
(n)
1,n) + e(n)) which leads

to the almost sure convergence

s(n)T
(n)
1,n − log(n)

a.s.−→ +∞, as n → +∞.

Under (A8) we obtain immediately that ψ1,n = 0 and R1,n = oa.s.(n
−λ/2).

Since T
(n)
1,n ≤ n(R

(n)
1,n)

2/e(n), it follows that almost surely

s(n)T
(n)
1,n − log(n)

a.s.−→ −∞, as n → +∞.

We also have

ψ2,n = p0E(Q2(X0 + δnε1)−Q2(X0))

= p0(E(a2,2(X0 + δnε1)
2 + a2,1(X0 + δnε1) + a2,0

− a2,2(X0)
2 − a2,1(X0)− a2,0))

= 2p0a2,2δ
2
nE(ε

2
1).

From the above expressions and by definition of R
(n)
2,n in (25) we can mimic the

previous arguments to show that almost surely R
(n)
2,n ≈ δ2n and that

s(n)T
(n)
2,n − 2 log(n)

= s(n)
(
n(R

(n)
1,n)

2D̂−1
1,n + n(R

(n)
k,n)

2D̂−1
2,n

)
− 2 log(n)

≥ nλ
(
(R

(n)
1,n)

2/(e(n) + v̂ar(R
(n)
1,n)) + (R

(n)
2,n)

2/(e(n) + v̂ar(R
(n)
2,n))

)
− 2 log(n),

where the last right hand side term goes to infinity as n → +∞ which gives us
the wanted result.

Appendix B: Proofs of technical lemmas

Proof of Lemma 1. Since the parameters (μ, s) belong to a compact set we can
fix: s0 < s < s1 and |μ| < μ1. We consider for simplicity k = 2�, � ≥ 0, in the
k-th order Hermite polynomial expression (14) and notice that for all (μ, s) ∈ Λ,

|E(Hk(
√
sZ + μ))| ≤ k!

	∑
m=0

E((
√
sZ + μ)2(	−m))

m!(2(�−m))!2m
, (30)

where Z is a N (0, 1) distributed random variable. Now since

E((
√
sZ + μ)2(	−m)) =

2(	−m)∑
j=0

C
2(	−m)
j

√
s
j
E(Zj)|μ|2(	−m)−j
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≤ E(Z2(	−m))(
√
s+ |μ|)2(	−m)

=
2(�−m)!

2(	−m)(�−m)!
(
√
s+ |μ|)2(	−m), (31)

including (31) in (30), we obtain:

|E(Hk(
√
sZ + μ))| ≤ k!

	∑
m=0

(
√
s+ |μ|)2(	−m)

m!(�−m)!2	

=
k!

�!

(
(
√
s+ |μ|)2 + 1

2

)	

. (32)

Since αk(μ, s) = E(Hk(
√
sZ + μ))/q2k, with q2k = k!, we deduce from (32) that

for all k ≥ 0 and for all (μ, s) ∈ Λ,

|αk(μ, s)| ≤
1

�!

(
(
√
s+ |μ|)2 + 1

2

)	

≤ exp

(
(
√
s1 + μ1)

2 + 1

2

)
,

which proves the first part of (A2).
For the second part of condition (A2), we detail for simplicity the majoriza-

tion of
∣∣ ∂
∂sE(Hk(sZ + μ))

∣∣, for k = 2� and � ≥ 1, which is:

∣∣∣∣ ∂∂sE(Hk(
√
sZ + μ))

∣∣∣∣ ≤ k!

2
√
s

	−1∑
m=0

2(�−m)E
(∣∣Z(

√
sZ + μ)2(	−m)−1

∣∣)
m!(2(�−m))!2m

.

Now since

E

(∣∣∣Z(
√
sZ + μ)2(	−m)−1

∣∣∣) ≤
2(	−m)−1∑

j=0

C
2(	−m)−1
j

√
s
j
E(Zj+1)|μ|2(	−m)−1−j ,

≤ E(Z2(	−m))(
√
s+ |μ|)2(	−m)−1,

we obtain∣∣∣∣ ∂∂sE(Hk(
√
sZ + μ))

∣∣∣∣ ≤ k!

2
√
s

	−1∑
m=0

(s+ |μ|)2(	−m)−1

m!(�−m− 1))!2	−1

=
k!

2
√
s(�− 1)!

(
(
√
s+ |μ|)2 + 1

2

)	−1

≤ k!

2
√
s0

exp

(
(
√
s1 + μ1)

2 + 1

2

)
,

which concludes the proof of (A2).
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We now consider condition (A3). We have

E(H2
k(X1)) = (1− p)E(H2

k(Z)) + pE(H2
k(
√
sZ + μ))

= (1− p)k! + pE(H2
k(
√
sZ + μ)). (33)

Let us consider the last term of the above right-hand side equality, for k = 2�
and � ≥ 0:

E(H2
k(
√
sZ + μ)) = (k!)2

	∑
m,q=0

E
(
(
√
sZ + μ)2(2	−(m+q)))

)
m!q!(2(�−m))!(2(�− q))!2m+q

.

By the Cauchy-Schwartz inequality, and the fact that for all n ≥ 1, we have√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, we obtain:

E(H2
k(
√
sZ + μ)) ≤ (k!)2

⎛⎝ 	∑
m=0

√
E
(
(
√
sZ + μ)4(	−m)

)
m!(2(�−m))!2m

⎞⎠2

= (k!)2

⎛⎝ 1

�!2	
+

	−1∑
m=0

√
E
(
(
√
sZ + μ)4(	−m)

)
m!(2(�−m))!2m

⎞⎠2

≤ (k!)2

(
1

�!2	
+

	−1∑
m=0

√
(4(�−m))!(

√
s+ |μ|)2(	−m)

2	(2(�−m)!)3/2m!

)2

≤ (k!)2e

22	+1/2(2π)3

(
(2π)32	+1/2

e �!
+

	−1∑
m=0

2	−m(�−m)−(	−m)−1e	−m(
√
s+ |μ|)2(	−m)

)2

≤ (k!)2e

22	+1/2(2π)3

(
(2π)32	+1/2

e �!
+

	∑
u=1

ρuu−u−1

)2

, (34)

where u = �−m and ρ = 2e(
√
s+ |μ|)2. Clearly, ρ ≤ ρ0 = 2e(

√
s0 + μ0)

2, and
the series on the right hand side converges. Combining (33) and (34) we obtain

var(Qk(X1)
2/q2k) ≤ E(Q2

k(X1))/q
4
k

= (1− p)/(k!) + pE(H2
k(
√
sZ + μ))/(k!)2

which gives us the wanted result.

Proof of Lemma 3. The polynomials defined by (15) satisfy the following equa-
tions:

xhk(x) = hk+1(x)/2 + khk−1(x) and h′
k(x) = 2khk−1(x), for all x ∈ R.
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It is also well known, see for instance Szegö [33], that there exists a constant
C > 0 such that, for all x ∈ R:

|Hk(x)| = exp(−x2/2)|hk(x)| ≤ C
√
k!2k. (35)

Since αk(μ, s) = E(Hk(sY + μ))/q2k, we deduce that for all s > 0, and μ ∈ R,

αk(μ, s) ≤ C/
√
k!2k,

which gives the first bound in (A2). Moreover, we have

H′
k(x) = exp(−x2/2) (−xhk(x) + h′

k(x))

= exp(−x2/2) (−(hk+1(x)/2− khk−1(x)) + 2khk−1(x))

= −Hk+1(x)/2 + kHk−1(x),

which leads to

H′
k(x)

q2k
= −Hk+1(x)

2k+1k!
+

Hk−1(x)

2k(k − 1)!
.

Combining this equality with (35) we obtain∣∣∣∣H′
k(x)

q2k

∣∣∣∣ ≤ C

( √
k + 1√
2k+1k!

+
1√

2k+1(k − 1)!

)
. (36)

Now since α̇k(μ, s) = E
(
(s−1/2Hk(

√
sY + μ),Hk(

√
sY + μ))

)
/2 it follows that

for all s > 0 and μ ∈ R:

‖α̇k(μ, s)‖ ≤ (s−1/2/2 + 1)C

( √
k + 1√

(k)!
√
2k+1

+
1

2
√

2k−1(k − 1)!

)
,

which gives the second bound in (A2).
Finally from (35) we obtain var(Qk(X1)/q

2
k) = var(Hk(X1)/q

2
k) ≤ C2/(k!2k),

which directly insures (A3).

Remark 7. Lemma 3 is very general. Lemma 1 can be extended to any null
distribution f with known moments such that the series given in (30) is bounded.
This is obviously the case for distributions with bounded support.

Proof of Lemma 2. By the Taylor expansion formula, and noticing that Qk is a
polynomial of order k, we have

|E (Qk(X0 + δnε1)−Qk(X0)) | = |
k∑

j=1

E

(
(δnε1)

jQ
(j)
k (X0)/j!

)
|

≤
k∑

j=1

δjn
j!
E
(
|ε1|j

)
E

(
|Q(j)

k (X0)|
)
,
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where Q
(j)
k denotes the j-th derivative of the Hermite polynomial Qk. These

polynomials, see for instance Szegö [33], satisfy Q
(1)
k = kQk−1, which implies

that Q
(j)
k = k!

(k−j)!Qk−j , for j ≤ k. It follows that

E

(
|Q(j)

k (X0)|
)
=

∫
R

|Q(j)
k (y)|g(y)ν(dy)

=
k!

(k − j)!

∫
R

|Qk−j(y)|g(y)ν(dy)

≤ k!

(k − j)!

√∫
R

(Qk−j(y))
2ν(dy)

∫
R

g2(y)ν(dy)

=
k!

(k − j)!
qk−jG,

where G =
√∫

R
g2(y)ν(dy) < ∞, since g belongs to L2(ν). Now because q2k = k!

and δn < 1, we get

|E (Qk(X0 + δnε1)−Qk(X0)) |/q2k ≤ Gδn

k∑
j=1

1√
(k − j)!j!

E
(
|ε1|j

)
≤ GδnE

(
e|ε1|

)
,

which gives the wanted result.

Proof of Lemma 4. By the Mean Value Theorem there exists a random variable
ξ lying between X0 + δnε1 and X0, such that

E (Qk(X0 + δnε1)−Qk(X0)) = E (δnε1Q
′
k(ξ)) .

From (36) we have |Q′
k(x)|/q2k < 2C for all x ∈ R, and we get

|E (Qk(X0 + δnε1)−Qk(X0)) |/q2k ≤ δnE (|ε1||Q′
k(ξ)|) /q2k

≤ 2CδnE (|ε1|) ,

and the lemma follows.

Appendix C: Contiguous alternative modelling

We study in this section the asymptotic behavior of the semiparametric estima-
tor (p̄n, μ̄n) introduced in Bordes and Vandekerkhove [9] when their model is
no longer fixed but depends on n through the following transformation:

g(n)(x) = pf0(x) + (1− p)f (n)(x− μ), x ∈ R, (37)

where (f (n))n≥1 is a sequence of ν-pdfs converging towards the limiting pdf
f . For simplicity, when f (n) is replaced by f in (37), the resulting model will
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be so-called the asymptotic model. In this framework, for each n ≥ 1, we con-
sider a sample (Xn

1 , . . . , X
n
n ) independent and identically drawn from the n-

local probability density function g(n)n. In addition, we suppose that for any
(n,m) ∈ N

∗ × N such that n �= m, we have (Xn
1 , . . . , X

n
n ) independent from

(Xm
1 , . . . , Xm

m ). The sequence (Xn
1 , . . . , X

n
n )n≥1 is commonly called a row inde-

pendent triangular-array. To handle easily the asymptotic normality of the Bor-
des and Vandekerkhove [9] semiparametric estimator based on the “corrupted”
sample (Xn

1 , . . . , X
n
n ), we consider the coupling :{

Xn
i = (1− Ui)Yi + UiZ

n
i , i = 1, . . . , n

Xi = (1− Ui)Yi + UiZi, i ≥ 1,
(38)

where (Ui)i≥1 and (Yi, Zi, εi)i≥1 are independent and identically distributed
samples respectively drawn from a Bernoulli distribution with parameter p and
a f0 ⊗ f(· − μ) ⊗ f1-distribution. The random variable Zn

i = Zi + δnεi is by
construction distributed according to f (n). Note that we have the following
stochastic bound:

|Xn
i −Xi| ≤ δn|εi|, i = 1, . . . , n. (39)

Appendix D: Estimation method

The cumulative distribution function (cdf) G(n) associated with model (37) is
defined by

G(n)(x) = (1− p)F0(x) + pF (n)(x− μ), x ∈ R,

where G(n), F0 and F (n) are cdfs corresponding to the pdfs g(n), f0 and f (n) re-
spectively. Let us denote by ϑ the Euclidean part (p, μ) of the model parameters
taking values in Γ. Assume that the asymptotic model is identifiable and denote
by ϑ0 = (p0, μ0) the true value of its unknown parameter ϑ. A way to estimate
consistently ϑ0, based on the triangular array (Xn

1 , . . . , X
n
n ), is to follow step

by step the Bordes and Vandekerkhove [9] procedure. Let us define

F (n)(x) =
1

p

(
G(n)(x+ μ)− (1− p)F0(x+ μ)

)
, x ∈ R. (40)

Because F (n) approximates the symmetric cdf F , we have F (n)(x) ≈ 1 −
F (n)(−x), for all x ∈ R. Let us introduce, for all x ∈ R, the functions

H
(n)
1 (x;ϑ,G(n)) =

1

p
G(n)(x+ μ)− 1− p

p
F0(x+ μ),

and

H
(n)
2 (x;ϑ,G(n)) = 1− 1

p
G(n)(−x+ μ) +

1− p

p
F0(−x+ μ).

We have, using (40) and the almost-symmetry of F (n),

H(n)(x;ϑ0, G
(n)) = H

(n)
1 (x;ϑ0, G

(n))−H
(n)
2 (x;ϑ0, G

(n)) ≈ 0, (41)
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whereas we can expect that for all ϑ �= ϑ0 an ad hoc norm of the function
H(n) will have a significant departure from zero. In Bordes et al. [8] the authors
considered the L2

G(R)-norm that proved to be interesting from both theoretical
and numerical point of view. Considering such a norm leads to the following
function d(n) on Θ:

d(n)(ϑ) =

∫
R

(H(n)(x;ϑ,G(n)))2dG(n)(x),

which will likely converge towards the contrast function

d(ϑ) =

∫
R

(H(x;ϑ,G))2dG(x),

associated with the asymptotic model (1), see Bordes and Vandekerkhove [9].
Because G(n) is unknown it is natural to replace it by its empirical version

Ĝ
(n)
n obtained from the n-sample (Xn

1 , . . . , X
n
n ). However, because we aim to

estimate ϑ by the minimum argument of the empirical version of d(n) using a
differentiable optimization routine, we need to replace G(n) in H(n) by a regular

version G̃
(n)
n of Ĝ

(n)
n . Therefore we obtain an emprical version d

(n)
n of d(n) defined

by

d(n)n (ϑ) =

∫
R

(H(n)(x;ϑ, G̃(n)
n ))2dĜ(n)

n (x) =
1

n

n∑
i=1

(H(n)(Xn
i ;ϑ, G̃

(n)
n ))2

where

Ĝ(n)
n (x) =

1

n

n∑
i=1

IXn
i ≤x, x ∈ R,

and G̃(n)
n (x) =

∫ x

−∞
ĝ(n)n (t)dt denotes the smoothed version of the empirical cdf

Ĝ
(n)
n since ĝ

(n)
n is a kernel density estimator of g(n) defined by (13). Note that

additional conditions on the bandwidth hn and the kernel function q will be
specified afterward.

In the sequel, when the above quantities are considered without superscript
(n) this will simply means that G(n) has been replaced by G and X(n) =
(Xn

1 , . . . , X
n
n ) by Xn = (X1, . . . , Xn) accordingly in their respective analyti-

cal expressions. Note that these estimators are then exactly the ones considered
in Bordes and Vandekerkhove [9] (Section 2). Finally we propose to estimate ϑ0

by
ϑ̄(n)
n = (p̄(n)n , μ̄(n)

n ) = argmin
ϑ∈Γ

d(n)n (ϑ).

Appendix E: Identifiability, consistency and asymptotic normality

E.1. General conditions and identifiability

In this section we give a set of conditions for which we obtain identifiability of
the asymptotic model parameters, consistency and asymptotic normality of our
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estimators. Let us denote by m0 and m the second-order moments of f0 and f
respectively. We introduce the set

Φ = R
∗×]0,+∞[\ ∪k∈N∗ Φk

where

Φk =

{
(μ,m)) ∈ R

∗×]0,+∞[;m = m0 + μ2 k ± 2

3k

}
.

Let us define Fq = {f ∈ F ;
∫
R
|x|qf(x)dx < +∞} for q ≥ 1. Denoting by

f̄0 the Fourier transform of the pdf f0 we consider one assumption, for which
the semiparametric identifiability of the model (1) parameters is obtained, see
Bordes et al. [8] (Proposition 2, p. 736).

Identifiability condition (I). For all n ≥ 1, let (f0, f) ∈ F2
3 , f̄0 > 0 and

(μ0,m)) ∈ Φ
(n)
c where Φc a compact subset of Φ. We have ϑ0 = (p0, μ0) ∈ Θ

where Θ is a compact subset of (0, 1)× Ξ where Ξ = {μ; (μ,m) ∈ Φc}.

Kernel conditions (K).

1. The even kernel density function K is bounded, uniformly continuous,
square integrable, of bounded variations and has second order moment.

2. The function K has first order derivative K ′ ∈ L1(R) and K ′(x) → 0 as
|x| → +∞. In addition if γ is the square root of the continuity modulus
of K, we have ∫ 1

0

(log(1/u))
1/2

dγ(u) < ∞.

Approximation conditions (A). The even kernel density function K is
bounded, twice differentiable with bounded first and second derivatives.

Bandwidth conditions (B).

1. hn ↘ 0, nhn → +∞ and
√
nh2

n = o(1),
2. nhn/| log hn| → +∞, | log hn|/ log logn → +∞ and there exists a real

number c such that hn ≤ ch2n for all n ≥ 1,
3. | log hn|/(nh3

n) → 0.

Comments. The two first conditions in (B) are necessary to obtain the
pointwize consistency of the ĝn sequence of kernel estimators towards g. The
third condition allows to control the distance between the empirical cdf Ĝn and
its regularized version G̃n. By using Corollary 1 in Shorack and Wellner [30],
see page 766, we obtain

‖G̃n − Ĝn‖∞ = Oa.s.(h
2
n),

which by (i) and the law of iterated logarithm, leads to

‖G̃n −G‖∞ = Oa.s.

((
log logn

n

)−1/2
)
. (42)
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Lemma 5. Suppose that the kernel function q satisfies Conditions (K) and
(A) and that the bandwidth (hn) satisfies Conditions (B), then we have:

(i) ‖G̃(n)
n − G̃n‖∞ = Oa.s. (δn/hn) ,

(ii) ‖ĝ(n)n − ĝn‖∞ = Oa.s.

(
δn/h

2
n

)
,

(iii) ‖(ĝ(n)n )′ − (ĝn)
′‖∞ = Oa.s.

(
δn/h

3
n

)
.

Proof. Let us detail the proof of result (ii). For all x ∈ R, the stochastic error

between ĝ
(n)
n (x) and ĝn(x) is controlled as follows:∣∣∣ĝ(n)n (x)− ĝn(x)

∣∣∣ = ∣∣∣∣∣ 1

nhn

n∑
i=1

(
K

(
x−Xn

i

hn

)
−K

(
x−Xi

hn

))∣∣∣∣∣ , x ∈ R

≤ 1

nhn

n∑
i=1

∣∣∣∣K (
x−Xn

i

hn

)
−K

(
x−Xi

hn

)∣∣∣∣
≤ 1

nh2
n

n∑
i=1

||K ′||∞ |Xn
i −Xi|

≤ ||K ′||∞δn
h2
n

×
(∑n

i=1 |εi|
n

)
, (43)

where the last inequality comes from (39). The above result shows that, accord-

ing to the Strong Law of Large numbers, ‖ĝ(n)n − ĝn‖∞ = Oa.s.(δn/h
2
n). The

proofs of (i) and (iii) are identic to the proof (ii).

E.2. Consistency and preliminary convergence rate

We denote for simplicity by ḣ(ϑ) and ḧ(ϑ) the gradient vector and hessian
matrix of any real function h (when it makes sense) with respect to argument
ϑ ∈ R

2.

Lemma 6. Assume that Conditions (K), (A) and (B) are satisfied and that
Θ is a compact subset of (0, 1)× Φc.

(i) If K is bounded over R then supϑ∈Θ

∣∣∣d(n)n (ϑ)− dn(ϑ)
∣∣∣ = Oa.s.(δn/hn).

(ii) If K ′ is bounded over R then
∥∥∥ḋ(n)n (ϑ0)− ḋn(ϑ0)

∥∥∥ = Oa.s.(δ
2
n/h

3
n) +

Oa.s.(δn/hn).

(iii) If K ′′ is bounded over R then supϑ∈Θ

∥∥∥d̈(n)n (ϑ)− d̈n(ϑ)
∥∥∥ = Oa.s.(δn/h

3
n).

Proof. For the proof of (i) let us write for all ϑ ∈ Θ:∣∣∣d(n)n (ϑ)− dn(ϑ)
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

(
H2(Xn

i ;ϑ, G̃
(n)
n )−H2(Xi;ϑ, G̃n)

)∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣H2(Xn
i ;ϑ, G̃

(n)
n )−H2(Xn

i ;ϑ, G̃n)
∣∣∣
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+
1

n

n∑
i=1

∣∣∣H2(Xn
i ;ϑ, G̃n)−H2(Xi;ϑ, G̃n)

∣∣∣
≤ Oa.s.

(
‖G̃(n)

n − G̃n‖∞
)

+Oa.s.

(
1

n

n∑
i=1

∣∣∣G̃n(X
n
i + μ)− G̃n(Xi + μ)

∣∣∣) . (44)

The second term in the right hand side of the above inequality can be handled
by using the mean value theorem as follows:

1

n

n∑
i=1

∣∣∣G̃n(X
n
i + μ)− G̃n(Xi + μ)

∣∣∣ ≤ 1

n

n∑
i=1

(‖g̃n − g‖∞ + ‖g‖∞)|Xn
i −Xi|

≤ δn(oa.s.(1) + ||g||∞)×
(∑n

i=1 |εi|
n

)
,

where according to Silverman [31], ‖g̃n−g‖∞ = oa.s.(1). Similarly to (43), using
the Strong of Large Numbers on the |εi|’s, we get that this second term is a
Oa.s.(δn). Since the first term in the right hand side of (44) is a Oa.s.(δn/hn)
according to Lemma 5 (i), we obtain the wanted result.

For the proof of result (ii), let proceed similarly to Bordes and Vandek-

erkhove [9] and investigate the partial derivative of ḋ
(n)
n (ϑ0) with respect to

μ (more complicated case). Consider for any cdf G, the generic expression
H(x, ϑ0, G) := H(x;ϑ0, G)∂H∂μ (x;ϑ0, G), x ∈ R. According to (2.4) in Bordes

and Vandekerkhove [9], we have at point ϑ0:∣∣∣∣∣∂d(n)n

∂μ
(ϑ0)−

∂dn
∂μ

(ϑ0)

∣∣∣∣∣ ≤ Δ1(X
(n), G̃(n)

n , G̃n) + Δ2(X
(n),Xn, G̃n),

where Δ1(X
(n), G̃(n)

n , G̃n) =
2

n

n∑
i=1

∣∣∣H(Xn
i ;ϑ0, G̃

(n)
n )−H(Xn

i ;ϑ0, G̃n)
∣∣∣ ,

Δ2(X
(n),Xn, G̃n) =

2

n

n∑
i=1

∣∣∣H(Xn
i ;ϑ0, G̃n)−H(Xi;ϑ0, G̃n)

∣∣∣ .
For Δ1(X

(n), G̃
(n)
n , G̃n), since H(·;ϑ0, G) = 0 and ∂H

∂μ (·;ϑ0, G) = 2f(·), we can
write:

Δ1(X
(n), G̃(n)

n , G̃n) ≤
2

n

n∑
i=1

∣∣∣H(Xn
i ;ϑ0, G̃

(n)
n )−H(Xn

i ;ϑ0, G̃n)
∣∣∣

×
∣∣∣∣∂H∂μ (Xn

i ;ϑ0, G̃
(n)
n )− ∂H

∂μ
(Xn

i ;ϑ0, G̃n)

∣∣∣∣
+

2

n

n∑
i=1

∣∣∣H(Xn
i ;ϑ0, G̃n)−H(Xn

i ;ϑ0, G)
∣∣∣
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×
∣∣∣∣∂H∂μ (Xn

i ;ϑ0, G̃
(n)
n )− ∂H

∂μ
(Xn

i ;ϑ0, G̃n)

∣∣∣∣
+

2

n

n∑
i=1

∣∣∣∣∂H∂μ (Xn
i ;ϑ0, G̃n)− 2f(Xn

i )

∣∣∣∣
×
∣∣∣H(Xn

i ;ϑ0, G̃
(n)
n )−H(Xn

i ;ϑ0, G̃n)
∣∣∣

+
4

n

n∑
i=1

|f(Xn
i )| ×

∣∣∣H(Xn
i ;ϑ0, G̃

(n)
n )−H(Xn

i ;ϑ0, G̃n)
∣∣∣

≤ c1

(
‖G̃(n)

n − G̃n‖∞ + ‖G̃n −G‖∞
)
‖g̃(n)n − g̃n‖∞

+ c2 (‖g̃n − g‖∞ + ‖f‖∞) ‖G̃(n)
n − G̃n‖∞

= Oa.s.

(
δ2n
h3
n

)
+Oa.s.

(
δn
hn

)
.

For Δ2(X
(n),Xn, G̃n) let us notice first that for any (x, x′) ∈ R

2 we have:∣∣∣H(x;ϑ0, G̃n)−H(x′;ϑ0, G̃n)
∣∣∣

≤ 1

p0

∣∣∣(G̃(x+ μ)− G̃(x′ − μ)) + (G̃(−x+ μ)− G̃(−x′ − μ))
∣∣∣

+
1− p0
p0

|(F0(x+ μ)− F0(x
′ − μ)) + (F0(−x+ μ)− F0(−x′ − μ))|

≤ 2

p0
(‖g̃n − g‖∞ + ‖g‖∞)|x− x′|+ 2(1− p0)

p0
‖f0‖∞|x− x′|, (45)

and ∣∣∣∣∂H∂μ (x;ϑ0, G̃n)−
∂H

∂μ
(x′;ϑ0, G̃n)

∣∣∣∣
≤ 1

p0
|(g̃n(x+ μ)− g̃n(x

′ − μ)) + (g̃n(−x+ μ)− g̃n(−x′ − μ))|

+
1− p0
p0

|(f0(x+ μ)− f0(x
′ − μ)) + (f0(−x+ μ)− f0(−x′ − μ))|

≤ 2

p0
(‖g̃′n − g′‖∞ + ‖g′‖∞)|x− x′|+ 2(1− p0)

p0
‖f ′

0‖∞|x− x′|. (46)

Using (45) and (46) we obtain

Δ2(X
(n),Xn, G̃n) ≤

2

n

n∑
i=1

∣∣∣H(Xn
i ;ϑ0, G̃n)−H(Xi;ϑ0, G̃n)

∣∣∣
×
∣∣∣∣∂H∂μ (Xn

i ;ϑ0, G̃n)−
∂H

∂μ
(Xi;ϑ0, G̃n)

∣∣∣∣
+

2

n

n∑
i=1

∣∣∣H(Xi;ϑ0, G̃n)−H(Xi;ϑ0, G)
∣∣∣
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×
∣∣∣∣∂H∂μ (Xn

i ;ϑ0, G̃n)−
∂H

∂μ
(Xi;ϑ0, G̃n)

∣∣∣∣
+

2

n

n∑
i=1

∣∣∣∣∂H∂μ (Xi;ϑ0, G̃n)− 2f(Xi)

∣∣∣∣
×
∣∣∣H(Xn

i ;ϑ0, G̃n)−H(Xi;ϑ0, G̃n)
∣∣∣

+
4

n

n∑
i=1

|f(Xi)| ×
∣∣∣H(Xn

i ;ϑ0, G̃n)−H(Xi;ϑ0, G̃n)
∣∣∣

= Oa.s.(δ
2
n) +Oa.s.(δ

2
n) +Oa.s.(δn||G̃n −G‖∞) +Oa.s.(δn),

which by (42) concludes the proof for (ii).
For the proof of result (iii) we use the following decomposition at any point

ϑ ∈ Γ:∥∥∥d̈(n)n (ϑ)− d̈n(ϑ)
∥∥∥

≤ 2

n

n∑
k=1

∥∥∥H(X
(n)
i ;ϑ, G̃(n)

n )Ḧ(Xn
i ;ϑ, G̃

(n)
n )−H(Xi;ϑ, G̃n)Ḧ(Xi;ϑ, G̃n)

∥∥∥
+

2

n

n∑
k=1

∥∥∥Ḣ(X
(n)
i ;ϑ, G̃(n)

n )ḢT (X
(n)
i ;ϑ, G̃(n)

n )− Ḣ(Xi;ϑ, G̃n)Ḣ
T (Xi;ϑ, G̃n)

∥∥∥
≤

4∑
j=1

Tj,1 + Tj,2,

where for j = 1, . . . , 4, Tj,1 and Tj,2 are alternatively equal to

2

n

n∑
k=1

|H(X
(n)
i ;ϑ, G̃(n)

n )|
∥∥∥Ḧ(Xn

i ;ϑ, G̃
(n)
n )− Ḧ(Xn

i ;ϑ, G̃n)
∥∥∥ = Oa.s.

(
δn
h3
n

)
2

n

n∑
k=1

|H(X
(n)
i ;ϑ, G̃(n)

n )|
∥∥∥Ḧ(Xn

i ;ϑ, G̃n)− Ḧ(Xi;ϑ, G̃n)
∥∥∥ = Oa.s. (δn)

2

n

n∑
k=1

∥∥∥Ḧ(Xi;ϑ, G̃n)
∥∥∥ ∣∣∣H(Xn

i ϑ, G̃
(n)
n )−H(Xn

i ;ϑ, G̃n)
∣∣∣ = Oa.s.

(
δn
hn

)
2

n

n∑
k=1

∥∥∥Ḧ(Xi;ϑ, G̃n)
∥∥∥ ∣∣∣H(Xn

i ;ϑ, G̃n)−H(Xi;ϑ, G̃n)
∣∣∣ = Oa.s. (δn)

2

n

n∑
k=1

∥∥∥Ḣ(Xn
i ;ϑ, G̃

(n)
n )

∥∥∥∥∥∥Ḣ(Xn
i ;ϑ, G̃

(n)
n )− Ḣ(Xn

i ;ϑ, G̃n)
∥∥∥ = Oa.s.

(
δn
h2
n

)
2

n

n∑
k=1

∥∥∥Ḣ(Xi;ϑ, G̃
(n)
n )

∥∥∥ ∥∥∥Ḣ(Xn
i ;ϑ, G̃n)− Ḣ(Xi;ϑ, G̃n)

∥∥∥ = Oa.s.

(
δn
h2
n

)
2

n

n∑
k=1

∥∥∥Ḣ(Xn
i ;ϑ, G̃n)

∥∥∥ ∥∥∥Ḣ(Xn
i ;ϑ, G̃

(n)
n )− Ḣ(Xn

i ;ϑ, G̃n)
∥∥∥ = Oa.s.

(
δn
h2
n

)
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2

n

n∑
k=1

∥∥∥Ḣ(Xi;ϑ, G̃n)
∥∥∥ ∥∥∥Ḣ(Xn

i ;ϑ, G̃n)− Ḣ(Xi;ϑ, G̃n)
∥∥∥ = Oa.s. (δn) .

The above results come from painful but straightforward calculations. To explain
briefly how we get these rates we can basically say that the first factors after
the sum sign are always Oa.s.(1) due to Silverman [31] if they are G̃n dependent
and Oa.s.(1+δn/h

1+k
n ), where k = 0, 1, 2 denotes the order of derivation of H, if

they are G̃
(n)
n dependent. Next, due to the mean value theorem, Silverman [31]

uniform consistency result on the kernel estimator and its derivatives and (39),

the difference terms involving Xn
i and Xi based on G̃n are all Oa.s.(δn). On the

other hand due to approximation Lemma 6, the difference terms involving G̃
(n)
n

and G̃n located at the same argument value Xn
i are all Oa.s.(δn/h

1+k
n ) where

k = 0, 1, 2 denotes the order of derivation of H.

Theorem 8. (i) Suppose that Conditions (K), (B) and (I) are satisfied, Γ
is a compact subset of (0, 1) × Φc, G is strictly increasing on R, F0 and F are
twice continuously differentiable with second derivatives in L1(R), then we have
‖ϑ̄n − ϑ0‖ = oa.s.(n

−1/4+α) for all α > 0.

(ii) Suppose in addition that Condition (A) is satisfied, then we have

‖ϑ̄(n)
n − ϑ0‖ = Oa.s.

((
n−1/2+α + δn/h

2
n

)1/2−δ
)
,

for all α > 0 and 0 < δ < 1/2.

(iii) Under the conditions of (i), the estimator ϑ̄n = (p̄n, μ̄n) is asymptotically
normally distributed:

√
n(p̄n − p0, μ̄n − μ0)

L−→ N (0,Σ), as n → +∞,

where Σ = I(ϑ0)
−1J(θ0)I(ϑ0)

−1, with

I(ϑ0) =

∫
R

Ḣ(x;ϑ0, G)Ḣ�(x;ϑ0, G)dG(x) > 0

and J(θ0) = V(H(X1, ϑ0, G)Ḣ(X1, ϑ0, G)).

(iv) Under the conditions of (ii), and if

√
n

(
δ2n
h3
n

+
δn
hn

)
−→ 0, and

δn
h3
n

−→ 0, as n → +∞, (47)

the estimator ϑ̄
(n)
n = (p̄

(n)
n , μ̄

(n)
n ) associated with the triangular array (X(n))n≥1

defined in (38) is asymptotically normally distributed:

√
n(p̄(n)n − p0, μ̄

(n)
n − μ0)

L−→ N (0,Σ), as n → +∞.
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Proof. The proofs of (i) and (iii) are detailed in Bordes and Vandekerkhove [9].
For the proof of result (ii) it is enough to notice that

sup
ϑ∈Θ

|d(n)n − d| ≤ sup
ϑ∈Θ

|d(n)n − dn|+ sup
ϑ∈Θ

|dn − d| = Oa.s.(δn/hn + n−1/2+α),

with α > 0, and consider γn = n−1/2+α + δn/hn along with ηn = (n−1/2+α +
δn/hn)

1/2−δ, with δ > 0 in the proof of Theorem 3.1 of Bordes and Vandek-
erkhove [9]. Doing so we insure that γn = o(η2n) which concludes the proof
of (ii).

For the proof of (iv) we consider the Taylor expansion of ḋ
(n)
n around ϑ0:

d̈(n)n (ϑ∗(n)
n )

√
n(ϑ̄(n)

n − ϑ0) = −
√
nḋ(n)n (ϑ0) = −

√
nḋn(ϑ0) + oa.s.(1),

where ϑ∗(n)
n lies in the line segment with extremities ϑ̄

(n)
n and ϑ0, and oa.s.(1) =

−√
n(ḋ

(n)
n (ϑ0) − ḋn(ϑ0)) according to Lemma 6 if

√
n(δ2/h3

n + δ/hn) → 0 as
n → +∞. Noticing now that:

‖d̈(n)n (ϑ∗(n)
n )− I(ϑ0)‖ ≤ ‖d̈(n)n (ϑ∗(n)

n )− d̈n(ϑ
∗
n
(n))‖+ ‖d̈(ϑ∗

n
(n))− I(ϑ0)‖

≤ sup
Θ

‖d̈(n)n − d̈n‖+ ‖d̈(ϑ∗
n
(n))− I(ϑ0)‖,

where the first term in the right hand side is a oa.s.(1) if δn/h
3
n → 0 as n → +∞

according to Lemma 6 (iii) and the second term is also a oa.s.(1) according to
(3.16) in the proof of Theorem 3.2 in Bordes and Vandekerkhove [9].

Remark 9. Since the bandwidth rate recommended in Bordes and Vandek-
erkhove (2010, Remark 3.1) to satisfy Condition (B) is n−1/4−γ, with γ ∈
(0, 1/8) we observe that for this range of rates condition (47) is satisfied if:

δ2n
n−5/4−3γ

+
δn

n−3/4−γ
−→ 0, and

δn
n−3/4−3γ

−→ 0, as n → +∞,

which leads to consider δn = n−3/4−ξ with ξ > 3γ.

Remark 10. The conditions imposed in (47) do not look optimal to us but
they provide for the first time, to the best of our knowledge, a framework for
nonparametric contiguous alternatives in the parametric family testing problem.
To improve these rates in the future we plan to carefully investigate the Donsker

theorem associated with the empirical process Gn =
√
n(Ĝ

(n)
n − G(n)), where

Ĝ
(n)
n denotes the empirical cdf of a G(n)-distributed generic triangular array

(Xn
1 , . . . , X

n
n ), where G(n) converges “smoothly enough” towards a given cdf G

and revisit the uniform almost sure convergence results of the kernel density
estimate and its derivatives in Silverman [31].

Appendix F: Asymptotic behavior of the MLE

In this section we propose to derive the asymptotic covariance matrix involved in
the Central Limit Theorem associated with the maximum likelihood estimator
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for the Gaussian case, that is when f belongs to G the set of normal densities
f(μ,s) with mean μ and variance θ = s. Let us denote by gφ(x) = (1−p)f(0,1)(x)+
pf(μ,s)(x) where φ = (φ1, φ2, φ3) = (p, μ, s) ∈ (0, 1) × Λ and �φ(x) = ln(gφ(x)).
We now define the gradient of �φ(x):

�̇φ(x) =

(
∂

∂φ1
�φ(x),

∂

∂φ2
�φ(x),

∂

∂φ3
�φ(x)

)�
.

For simplicity matters we denote ḟφi

(μ,s)(x) :=
∂

∂φi
f(μ,s)(x), i = 1, 2, 3. We then

obtain

∂

∂φ1
�φ(x) =

−f(0,1)(x) + f(μ,s)(x)

gφ(x)

∂

∂φ2
�φ(x) =

pḟμ
(μ,s)(x)

gφ(x)
, with ḟμ

(μ,s)(x) =
x− μ

s
f(μ,s)(x)

∂

∂φ3
�φ(x) =

pḟs
(μ,s)(x)

gφ(x)
, with ḟs

(μ,s)(x) =

[
− 1

2s
+

(x− μ)2

2s2

]
f(μ,s)(x).

The Hessian matrix of �φ(x) is denoted �̈φ(x) =

(
∂2

∂φi∂φj
�φ(x)

)
1≤i≤j≤3

with:

∂2

∂2φ1
�φ(x) = −

(−f(0,1)(x) + f(μ,s))
2(x)

g2φ(x)

∂2

∂2φ2
�φ(x) = p

f̈μ
(μ,s)(x)

gφ(x)
−
(
p
ḟμ
(μ,s)(x)

gφ(x)

)2

∂2

∂2φ3
�φ(x) = p

f̈s
(μ,s)(x)

gφ(x)
−
(
p
ḟs
(μ,s)(x)

gφ(x)

)2

,

and

f̈μ
(μ,s)(x) = −1

s
f(μ,s)(x) +

x− μ

s
ḟμ
(μ,s)(x) = −1

s
f(μ,s)(x) +

(
x− μ

s

)2

f(μ,s)(x)

f̈s
(μ,s)(x) =

[
1

2s2
− (x− μ)2

s3

]
f(μ,s)(x) +

[
− 1

2s
+

(x− μ)2

2s2

]
ḟs
(μ,s)(x)

∂2

∂φ1∂φ2
�φ(x) =

∂2

∂φ2∂φ1
�φ(x)

=
ḟμ
(μ,s)(x)

gφ(x)
− p

(−f(0,1)(x) + f(μ,s)(x))ḟ
μ
(μ,s)(x)

g2φ(x)

∂2

∂φ1∂φ3
�φ(x) =

∂2

∂φ3∂φ1
�φ(x)
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=
ḟs
(μ,s)(x)

gφ(x)
− p

(−f(0,1)(x) + f(μ,s)(x))ḟ
s
(μ,s)(x)

g2φ(x)

∂2

∂φ2∂φ3
�φ(x) =

∂2

∂φ3∂φ2
�φ(x) =

p(x− μ)

s2
×

[
−f(μ,s)(x) + sḟs

(μ,s)(x)
]

gφ(x)

− p2(x− μ)

s
×

f(μ,s)(x)ḟ
s
(μ,s)(x)

g2φ(x)
.

Given the above expressions we can derive under standard conditions, see van
der Vaart [34] page 63, the basic asymptotic normality of the MLE:

√
n(p̂n − p0, μ̂n − μ0, ŝn − s0)

L−→ N (0R3 , A(φ0)
−1B(φ0)A(φ0)

−1),

as n → +∞, where

A(φ0) = E

(
�̈φ0(X1)

)
and B(φ0) = E

(
�̇φ0(X1)�̇

T
φ0
(X1)

)
are respectively consistently estimated by

Ân =
1

n

n∑
i=1

�̈φ̂n
(Xi) and B̂n =

1

n

n∑
i=1

�̇φ̂n
(Xi)�̇

�
φ̂n

(Xi).

Appendix G: Graphs illustrating the asymptotic convergence under
the null

We illustrate the empirical distribution of T (n) for n = 1000, 2000, 3000 under
the null, with (p, μ, s) = (1/3, 1.5, 1) the first set of parameters considered in
Section 8.1. Based on 300 replications, we obtain the empirical distribution
functions displayed in Fig. 9.

Fig 9. In black: the empirical distribution functions of the test statistic T (n) under H0 with
(p, μ, s) = (1/3, 1.5, 1) respectively for n = 1000, 2000, 3000. In red: the graph of the χ2

1
asymptotic distribution function.

• For n = 1000, a few values of the test statistic are very large leading to a
heavy tailed empirical distribution function. We obtain for T (n) a mean
equal to 1.7 with a variance equal to 9.9. The Kolmogorov-Smirnov test
rejects the χ2

1 assumption with a p-value equal to 0.0009.
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• For n = 2000, very few values exceed the expected values for a Chi-squared
distribution. We obtain for T (n) a mean equal to 1.5 and a variance equal
to 3.3. The Kolmogorov-Smirnov test again rejects the χ2

1 assumption, but
here with a p-value equal to 0.08.

• Finally, for n = 3000, we obtain a mean for T (n) equal to 1.2 and a
variance equal to 2.2. The Kolmogorov-Smirnov test does not reject the
χ2
1 assumption, given a p-value equal to 0.39.

Appendix H: Graphs for maximum likelihood and semiparametric
estimators comparison

Fig 10. Boxplot of the maximum likelihood and semiparametric estimators of m, s, p when
n = 1000, under the mean deviation trap effect for μ = 3 and a = 4, based on 200 repetitions.

Appendix I: Empirical level graph

Fig 11. Empirical levels for parameter values (p, μ, s) = (1/3, 1.5, 1) (�), (p, μ, s) =
(0.5, 1.5, 2) (◦) and (p, μ, s) = (0.98,−0.15, 0.8) (�) with sample sizes n = 2000, 3000, 7500.

Appendix J: Graphs of the alternatives considered in Section 8.2

Row 1: 1-shifted Student t(3) alternative distribution (plain) and a null-type
Gaussian distribution with similar parameters N (1, 3) (dashed).
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Fig 12. Plot of the graph of g in model (1) under several conditions.

Row 2: 1-shifted Student t(10) alternative distribution (plain) and a null-type
Gaussian distribution with similar parameters N (1, 1.25) (dashed).
Row 3: L(1, 1) Laplace distribution (plain) and a null-type Gaussian component
with similar parameters N (1, 2) (dashed).
Row 4: L(1, 2) Laplace distribution (plain) and a null-type Gaussian component
with similar parameters N (1, 8) (dashed).
Columns 1, 2, 3 correspond respectively to p = 1/3, 1/2, 0.98.

Appendix K: Empirical powers comparison

In contrast with the very separate behaviors noticed under the mean or variance
deviation trap situations, see Section 7, there are most often situations where
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parametric and nonparametric approaches provide similar conclusions. For in-
stance, for a mixture of a standard Gaussian and a Student distribution, the
maximum likelihood and the nonparametric procedure give very similar powers.
This behavioral closeness is demonstrated in Fig. 13 where the empirical powers
obtained by both approaches under p = 1/3 and a shifted Student(3) alternative
with n = 2000, 3000, 7500 are displayed.

Fig 13. Empirical powers (in percentage of rejections) when the alternative is a shifted Student
t(3) for parameter value p = 1/3 with sample sizes n = 2000, 3000, 7500.

Appendix L: Sensitivity to contiguous alternatives

To illustrate the practical impact of dealing with Section 5.1 type contiguous
models, we consider that in model (12) the (Ui)i≥1 is an i.i.d. sequence of
Bernoulli random variables with parameter p = 1/3 and (Zi)i≥1 is an i.i.d. se-
quence of Gaussian random variables with mean μ = 1.5 and variance s = 1. We
fixe n = 3000 and choose an exponential distribution with parameter λ = 1/5
for the sequence (εi)i≥1. It is difficult to base our simulation on the theoreti-
cal rates given by (A5), (A7), (A8) since these rates are up to an unknown
factor. However, to illustrate the effect of the deviation from H0, we let the
perturbation vary from δ = 0.05 to 0.5 along a set of 8 different values. Fig-
ure 14 represents the rejection percentages with respect to this set of values.
We can observe that the empirical power is quite sensitive with respect to the
(vanishing by nature) perturbation factor δ, with about 50% of good decision
recovery for δ = 0.2 and more than 95% with δ = 0.4.

Acknowledgement

The authors acknowledge the Office for Science and Technology of the Em-
bassy of France in the United States, especially its antenna in Atlanta, for its
valuable support to this work. The authors would like also to thank the As-
sociated Editor along with the two referees for their remarks and insigthfull
comments.



Semiparametric density testing in the contamination model 4791

Fig 14. Rejection percentages under model (12) Laplace type contiguous alternatives with
δ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5} and n = 3000.
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