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1. Introduction

Matrix factorization is a very powerful tool in statistics and data analysis.
It was used as early as in the 70’s in econometrics in reduced-rank regres-
sion [27, 22, 29]. There, matrix factorization is mainly a tool to estimate a coef-
ficient matrix under a low-rank constraint. There was recently a renewed interest
in matrix factorization as a data analysis tool for huge datasets. Nonnegative
matrix factorization (NMF) was introduced by [35] as a tool to represent a huge
number of objects as linear combinations of elements of “parts” of objects. The
method was indeed applied to large facial image datasets and the dictionary
indeed contained typical parts of faces. Since then, various methods of matrix
factorization were successfully applied such various fields as collaborative filter-
ing and recommender systems on the Web [34, 51], document clustering [46],
separation of sources in audio processing [42], missing data imputation [26],
quantum tomography [23, 25, 53, 7, 39], medical image processing [21] topics
extraction in texts [43] or transports data analysis [12]. Very often, matrix fac-
torization provides interpretable and accurate representations of the data matrix
as the product of two much smaller matrices. The theoretical performances of
matrix completion were studied in a series of papers by Candès with many co-
authors [10, 11, 9]. Minimax rates for matrix completion and more general ma-
trix estimation problems were derived in [32, 8, 30, 31, 41]. Bayesian estimators
and aggregation procedures were studied in [1, 47, 38, 2, 37, 4, 17, 36, 16, 15].

To apply matrix factorization techniques to multivariate time series is a very
natural idea. First, the low-rank structure induced by the factorization leads
to high correlations that are indeed observed in some applications (this struc-
ture is actually at the core of cointegration models in econometrics [20, 28, 5]).
Moreover, the factorization provides a decomposition of each series in a dictio-
nary which member that can be interpreted as latent factors used for example
in state-space models, see e.g. Chapter 3 in [33]. For this reasons, matrix fac-
torization was used in multivariate time series analysis beyond econometrics:
electricity consumptions forecasting [18, 40], failure detection in transports sys-
tems [48], collaborative filtering [24], social media analysis [45] to name a few.

It is likely that the temporal structure in the data can be exploited to obtain
an accurate and sensible factorization: autocorrelation, smoothness, periodic-
ity... Indeed, while some authors use matrix factorization as a black box for
data analysis, others propose in a way or another to adapt the algorithm to the
temporal structure of the data [54, 45, 14, 24]. However, there is no theoretical
guarantee that this leads to better predictions or better rates of convergence.
Moreover, the aforementionned theoretical studies [10, 11, 9, 32, 8, 30, 31, 41]
all assumed i.i.d noise, strongly limiting their applicability to study algorithms
designed for time series such as in [54]. The objective of this paper is to address
both issues.
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Consider for example that one observes a d series (xi,t)
T
t=1 = X and assume

that X = M+ε where M is a rank k matrix and ε is some noise. In a first time,
assume that entries εi,t of ε are i.i.d with variance σ2. Theorem 3 in [32] implies

that there is an estimator M̂1 of M, such that 1
dT ‖M̂1 −M‖2F = O(σ2 k(d+T )

dT ),
up to log terms. Moreover, Theorem 5 in the same paper shows that this rate
cannot be improved. Here, we propose an estimator M̂ = ÛV̂, where Û is a
d × k matrix and V̂ is k × T . We study this estimator under the assumption
that the rows εi,· of ε are independent, centered, with covariance matrix Σε,

allowing a temporal dependence in the noise. We prove that 1
dT ‖M̂ −M‖2F =

O(‖Σε‖op
k(d+T )

dT ) where ‖Σε‖op is the operator norm of Σε. Note that in the

i.i.d case Σε = σ2
IT , we recover the rate of [32] as ‖Σε‖op = σ2. However,

our result is more general: we provide examples where the noise is non i.i.d
and we still have a control on ‖Σε‖op. For example, when the noise is row-wise
AR(1), that is εi,t+1 = ρεi,t + ηi,t where the ηi,t are i.i.d with variance σ2 and

|ρ| < 1, we have ‖Σε‖op � σ2 1+|ρ|
1−|ρ| . Moreover, our estimator can be tuned to take

into account a possible periodicity or smoothness of the series. This is done by
rewriting Ŵ = V̂Λ where Λ is a τ ×T matrix encoding the temporal structure,

and τ � T . In this case, we always improve on the rate O(‖Σε‖op
k(d+T )

dT ).
We obtain the following rates, for some constant C(β, L):

no structure τ -periodic case β-smooth case

order of
‖Σε‖opk(d+T )

dT
‖Σε‖opk(d+τ)

dT
‖Σε‖opkd

dT +
(

‖Σε‖opk
dT

) 2β
2β+1

1
dT ‖M̂−M‖2F

All the results are first stated under a known structure, that is, we assume
that we know the rank k, the period τ or the smoothness β of the series. We
provide at the end of the paper a model selection procedure that allows to obtain
the same rates of convergence without assuming this prior knowledge.

Finally, we should mention the nice paper [44] where the authors studied
time-evolving adjacency matrices for graphs with autoregressive features. How-
ever, the rows of an adjacency matrix are not interpreted as time series, so the
objective of this work is quite different from ours.

The paper is organized as follows. In Section 2 we introduce the notations
that will be used in all the paper. In Subection 3.1 we study matrix factorization
without additional temporal structure. In Section 3.2, we study the estimator
M̂ = ÛV̂Λ in the general case, and show how it improves the rates of con-
vergence for a well chosen matrix Λ for periodic and/or smooth series. Finally,
adaptation to unknown rank, periodicity and/or smoothness is tackled in Sec-
tion 4. The proofs are given in Section 5.

2. Setting of the problem and notation

Assume that we observe a multivariate series

X = (xi,t)(i,t)∈�1,d�×�1,T �.
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where d ∈ N
∗ and T ∈ N\{0, 1}. This multivariate series is modelled as a

stochastic process. We actually assume that

X = M+ ε, (1)

where ε is a noise and M is a matrix of rank k ∈ �1, T �. Then, there exist
U ∈ Md,k(R) and W ∈ Mk,T (R) such that M = UW. We will refer to W as
the dictionary or as the latent series.

We also want to model more structure in M. This is done by rewritting
W = VΛ, where τ ∈ N \ {0}, V ∈ Mk,τ and Λ ∈ Mτ,T , where Λ is a known
matrix. The matrix Λ depends on the structure assumed on M.

Example 2.1 (Periodic series). Assume that T = pτ with p ∈ N
∗ for the

sake of simplicity. To assume that the latent series in the dictionary W are
τ -periodic is exactly equivalent to writing W = VΛ where V ∈ Mk,τ (R) and
Λ = (Iτ | . . . |Iτ ) ∈ Mτ,T (R) is defined by blocks, Iτ being the indentity matrix
in Mτ,τ (R).

Example 2.2 (Smooth series). We can assume that the series inW are smooth.
For example, say that they belong a a Sobolev space with smoothness β, we have

Wi,t =
∞∑

n=0

Ui,nen

(
t

T

)
where (en)n∈N is the Fourier basis (the definition of a Sobolev space is reminded
is Section 3.2 below). Of course, there are infinitely many coefficientsUi,n and to
estimate them all is not feasible, however, for τ large enough, the approximation

Wi,t �
τ−1∑
n=0

Ui,nen

(
t

T

)
will be suitable, and can be rewritten as W = UΛ where Λi,t = ei(t/T ). More
details will be given in Section 3.2, where we actually cover more general basis
of functions.

So our complete model will finally be written as

X = M+ ε = UVΛ+ ε, (2)

where U ∈ Md,k(R) and V ∈ Mk,τ (R) are unknown, but τ � T and Λ ∈
Mτ,T (C) such that rank(Λ) = τ are known (note that the unstructured case
corresponds to τ = T and Λ = IT ).

Note that more constraint can be imposed on the estimator. For example, in
nonnegative matrix factorization [35], one imposes that all the entries in Û and

Ŵ are nonnegative. Here, we will more generally assume that ÛV̂ belongs to
some prescribed subset S ⊆ Md,T (R).

In what follows, we will consider two norms on Md,T . For a matrix A, the
Frobenius norms is given by

‖A‖F = trace(AA∗)1/2.
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and the operator norm by

‖A‖op = sup
‖x‖=1

‖Ax‖

where ‖ · ‖ is the Euclidean norm on R
T .

2.1. Estimation by empirical risk minimization

By multiplying both sides in (2) by the pseudo-inverse Λ+ = Λ∗(ΛΛ∗)−1, we
obtain the “simplified model”

X̃ = M̃+ ε̃

with X̃ = XΛ+, M̃ = UV and ε̃ = εΛ+. In this model, the estimation of M̃
can be done by empirical risk minimization:

̂̃
MS ∈ arg min

A∈S
r̃(A) (3)

where

r̃(A) = ‖A− X̃‖2F ; ∀A ∈ Md,τ (R).

Therefore, we can define the estimator M̂S =
̂̃
MSΛ of M.

In Section 3, we study the statistical performances of this estimator. The first
step is done in Subsection 3.1, where we derive upper bounds on∥∥∥∥̂̃MS − M̃

∥∥∥∥2
F

.

The corresponding upper bounds on∥∥∥M̂S −M
∥∥∥2
F

are derived in Subsection 3.2.

3. Oracle inequalities

Throughout this section, assume that ε fulfills the following..

Assumption 3.1. The rows of ε are independent and have the same T -dimen-
sional sub-Gaussian distribution, with second moment matrix Σε. Moreover,

ε1,.Σ
−1/2
ε is isotropic and has a finite sub-Gaussian norm

Kε := sup
‖x‖=1

sup
p∈[1,∞[

p−1/2
E(|〈ε1,.Σ−1/2

ε , x〉|p)1/p < ∞.
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In the sequel, we also consider K̃ε := K2
ε ∨ K4

ε.
We remind (see e.g Chapter 1 in [13]) that when X ∼ N (0, In),

sup
‖x‖=1

sup
p∈[1,∞[

p−1/2
E(|〈X,x〉|p)1/p = C (4)

for some universal constant C > 0 (that is, C does not depend on n). Thus, for
Gaussian noise, Assumption 3.1 is satisfied and Kε = C does not depend on the
dimension T .

3.1. The case Λ = IT

In this subsection only, we assume that Λ = IT (and thus τ = T ). So the

simplified model is actually the original model X̃ = X, M̃ = M, ε̃ = ε and̂̃
MS = M̂S .

Theorem 3.2. Under Assumption 3.1, for every λ ∈]0, 1[ and s ∈ R+,

1

dT

∥∥∥M̂S −M
∥∥∥2
F

� 1 + λ

1− λ
· min
A∈S

1

dT
‖A−M‖2F +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ T + s)

dT

with probability larger than 1− 2e−s.

As a consequence, if we have indeed M ∈ S, then with large probability,

1

dT

∥∥∥M̂S −M
∥∥∥2
F

� 4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ T + s)

dT
.

Thus, we recover the rate O(‖Σε‖op k(d+T )
dT ) claimed in the introduction.

Remark 3.3. Since the bound relies on the constant ‖Σε‖op, let us provide its
value in some special cases:

1. If cov(ε1,t, ε1,t′) = σ21{t=t′} then

‖Σε‖op = σ2.

More generally, when ε1,1, . . . , ε1,T are uncorrelated,

‖Σε‖op = max
t∈�1,T �

var(ε1,t).

2. Let (ηt)t∈Z be a white noise of standard deviation σ > 0 and assume that
there exists θ ∈ R

∗ such that ε1,t = ηt − θηt−1 for every t ∈ �1, T �. In
other words, (ε1,t)t=1,...,T is the restriction of a MA(1) process to �1, T �.
So,

Σε = σ2

⎛⎜⎜⎜⎜⎜⎝
1 + θ2 −θ 0 . . . 0
−θ 1 + θ2 0 . . . 0
...

. . .
...

0 . . . 0 1 + θ2 −θ
0 . . . 0 −θ 1 + θ2

⎞⎟⎟⎟⎟⎟⎠
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and then

‖Σε‖op = σ2

[
1 + θ2 − 2θ min

�∈�1,T �
cos

(

π

1 + T

)]
� σ2(1 + θ)2.

3. Let (ηt)t∈Z be a white noise of standard deviation σ > 0 and assume that
there is a ρ with |ρ| < 1 such that ε1,t = ρε1,t−1 + ηt. So (ε1,t)t=1,...,T is
the restriction of a AR(1) process to �1, T �. So,

Σε = σ2

⎛⎜⎜⎜⎜⎜⎝
1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

...
. . .

...
ρT−2 . . . ρ 1 ρ
ρT−1 . . . ρ2 ρ 1

⎞⎟⎟⎟⎟⎟⎠
= σ2

[
IT +

T−1∑
t=1

ρt
(
Jt
T + (J∗

T )
t
)]

.

where

JT =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
0 . . . 0 0 1
0 . . . 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

As ‖JT ‖op = 1, we have

‖Σε‖op � σ2

(
1 + 2

T∑
t=1

|ρ|t
)

� σ2

(
1 +

2|ρ|
1− |ρ|

)
= σ2 1 + |ρ|

1− |ρ| .

3.2. The general case

Let us now come back to the general case. An application of Theorem 3.2 to the
“simplified model” (2.1) shows that for any λ ∈]0, 1[ and s ∈ R+,∥∥∥∥̂̃MS − M̃

∥∥∥∥2
F

� 1 + λ

1− λ
·min
A∈S

∥∥∥AΛ− M̃
∥∥∥2
F
+

4ck

λ(1− λ)
(d+τ+s)K̃ε̃‖ΣεΛ+‖op (5)

with probability larger than 1− 2e−s.

In order to obtain the desired bound on ‖M̂S−M‖2F , we must now understand

the behaviour of ‖ΣεΛ+‖op and K̃ε̃.

Lemma 3.4. For any matrix C ∈ MT,τ (C),

‖Σε1,.C‖op � ‖Σε‖op‖C∗C‖op.
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The situation regarding K̃ε̃ = K2
ε̃ ∨ K4

ε̃ is different, we are not aware of a
general simple upper bound on Kε̃ = KεΛ+ in terms of Kε and Λ+. Still, there
are two cases where we actually have Kε̃ = Kε. Indeed, in the Gaussian case,
Kε̃ = Kε = C, see (4) above. For non Gaussian noise, we have the following
result.

Lemma 3.5. Assume that there is c(τ, T ) > 0 such that ΛΛ∗ = c(τ, T )Iτ . If
Σε = σ2IT with σ > 0, then Kε̃ = Kε.

Note that the assumption on Λ is fullfilled by the examples covered in Sub-
sections 3.3 and (3.4).

The previous discussion legitimates the following assumption.

Assumption 3.6. Kε̃ � Kε.

Finally, note that∥∥∥M̂S −M
∥∥∥2
F
=

∥∥∥∥(̂̃MS − M̃)Λ

∥∥∥∥2
F

�
∥∥∥∥̂̃MS − M̃

∥∥∥∥2
F

‖ΛΛ∗‖op

and in the same way∥∥∥A− M̃
∥∥∥2
F
=
∥∥(AΛ−M)Λ+

∥∥2
F

� ‖AΛ−M‖2F ‖ΛΛ+‖(ΛΛ∗)−1‖op.

By Inequality (5) together with Lemmas 3.4 and 3.5, we obtain the following
result.

Corollary 3.7. Fix λ ∈]0, 1[ and s ∈ R+. Under Assumption 3.1 and Assump-
tion 3.6,

1

dT

∥∥∥M̂S −M
∥∥∥2
F

� 1 + λ

1− λ
· min
A∈S

1

dT
‖AΛ−M‖2F +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ τ + s)

dT

with probability larger than 1− 2e−s.

Corollary 3.7 provides an oracle inequality: it says that our estimator provides
the optimal tradeoff between a variance term in ‖Σε‖opk(d+τ)/(dT ), and a bias
term. The bias term is the distance of M to its best approximation by a matrix
of the form AΛ. In order to explicit the rates of convergence, assumptions can
be made to upper-bound the bias term. We now apply Corollary 3.7 in the case
of periodic time series, and then in the case of smooth time series. In each case,
we explicit the bias term and the rate of convergence.

3.3. Application: periodic time series

In the case of τ -periodic time series, remind that we assumed for simplicity that
there is an integer p such that τp = T and we defined

Λ = (Iτ | . . . |Iτ ) ∈ Mτ,T (R).
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Then

ΛΛ∗ =
T

τ
Iτ ⇒ ‖ΛΛ∗‖op =

T

τ
and ‖(ΛΛ∗)−1‖op =

τ

T
.

Therefore, by Corollary 3.7, for every λ ∈]0, 1[ and s ∈ R+, under Assump-
tions 3.1 and 3.6,

1

dT

∥∥∥M̂S −M
∥∥∥2
F

� 1 + λ

1− λ
· min
A∈S

1

dT
‖AΛ−M‖2F +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ τ + s)

dT

with probability larger than 1− 2e−s. Now, define

S = {A ∈ Mn,T (R): rank(A) � k and ∀i, ∀t,Ai,t+τ = Ai,t}

and assume that M ∈ S. Then,

1

dT

∥∥∥M̂S −M
∥∥∥2
F
= O

(
‖Σε‖op

k(d+ τ)

dT

)
which is indeed an improvement with respect to the rate obtained without taking

the periodicity into account, that is O(‖Σε‖op k(d+T )
dT ).

3.4. Application: time series with smooth trend

Assume we are given a dictionary of functions (en)|n|�N for some finite N ∈ N.
This dictionary can for example be a finite subset of a basis of an Hilbert space
(en)n∈Z, like the Fourier basis or a wavelet basis.

Define

ΛN =

(
en

(
t

T

))
(n,t)∈�−N,N�×�1,T �

.

Note that ΛN is a τ × T matrix where τ = 2N + 1.
Assume that

ΛNΛ∗
N = T Iτ .

This implies that ‖(ΛNΛ∗
N )−1‖op = 1/T and ‖ΛNΛ∗

N‖op = T . This can be the
case for a well-chosen basis, otherwise, we can apply the Gram-Schmidt to the
dictionary of functions.

Example 3.8. (Fourier’s basis) Consider the Fourier basis (en)n∈Z defined by

en(x) = e2iπnx ; ∀n ∈ Z, ∀x ∈ R.

On the one hand, for every n ∈ �−N,N� and t ∈ �1, T �, |en(t/T )| = 1. On the
other hand, for every m,n ∈ �−N,N� such that m 
= n,

T∑
t=1

en

(
t

T

)
em

(
t

T

)
=

T∑
t=1

e2iπ(n−m)t/T

=
e2iπ(n−m)/T (1− e2iπ(n−m))

1− e2iπ(n−m)/T
= 0.
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Therefore, by Corollary 3.7, for every λ ∈]0, 1[ and s ∈ R+, under Assump-
tions 3.1 and 3.6,∥∥∥M̂S −M

∥∥∥2
F

� 1 + λ

1− λ
· min
A∈S

‖AΛN −M‖2F

+
4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ (2N + 1) + s)

dT
(6)

with probability larger than 1−2e−s. We will now show the consequences of these
results when the rows of M are smooth in the sense that they belong to a given
Sobolev ellipsoid. In this case, we will not have a A such that ‖AΛ−M‖2F = 0,
but this quantity will be small and can be controlled as a function of N . We
introduce a few definitions.

Definition 3.9. The Sobolev ellipsoidW (β, L) is the set of functions f : [0, 1] →
R such that f is β − 1 times differentiable, f (β−1) is absolutely continuous and∫ 1

0

f (β)(x)dx � L2.

From now, we assume that en(x) = e2iπnx is the Fourier basis. It is well-
known from Chapter 1 in [50] that any f ∈ W (β, L) and x ∈ [0, 1],

f(x) =

∞∑
n=−∞

cn(f)en(x)

and that there is a (known) constant C(β, L) > 0 such that

1

T

T∑
t=1

⎡⎣f ( t

T

)
−
∑

n�|N |
cnen

(
t

T

)⎤⎦2

� C(β, L)N−2β . (7)

Definition 3.10. We define S(k, β, L) ⊂ Md,T (R) as the set of matrices M
such that M = UW, U ∈ Mk,T (R), W ∈ Md,k(R) and

1. For any i ∈ �1, d�, ‖Ui,·‖2 � 1,
2. For any 
 ∈ �1, k� and t ∈ �1, T �, W�,t = f�

(
t
T

)
for some f� ∈ W (β, L).

Denote VN,W = (cn(f�))��k,|n|�N .

Then (7) implies

1

dT
‖M−UVN,WΛN‖2F � C(β, L)N−2β .

Pluging this into (6) gives

1

dT

∥∥∥M̂S(k,β,L) −M
∥∥∥2
F

� 1 + λ

1− λ
· C(β, L)N−2β +

4cK̃ε‖Σε‖op
λ(1− λ)

· k(d+ τ + s)

dT
.

If β is known, an adequate optimization with respect to N gives the following
result.
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Corollary 3.11. Assume that M ∈ S(k, β, L). Under Assumptions 3.1 and 3.6,
the choice N = �(dTC(β, L)/(‖Σε‖opk))1/(2β+1)� ensures

1

dT

∥∥∥M̂S(k,β,L) −M
∥∥∥2
F

� C
[
‖Σε‖op

kd+ s

dT
+ C(β, L)

1
2β+1

(
‖Σε‖op

k

dT

) 2β
2β+1

]

with probability larger than 1 − 2e−s, where C > 0 is some constant depending
on λ, c and Kε.

However, in practice, β is not known - nor the rank k. This problem is tackled
in the next section.

4. Model selection

Assume that we have many possible matrices Λτ , for τ ∈ T ⊂ {1, . . . , T} and for
each τ , many possible Sτ,k for different possible ranks k ∈ K ⊂ {1, . . . , d ∧ T}.

Consider s ∈ R+ and the penalized estimator M̂s = M̂S
τ̂s,k̂s

with

(τ̂s, k̂s) ∈ arg min
(τ,k)∈T ×K

{∥∥∥M̂Sτ,k
−X

∥∥∥2
F
+ pens+τ+k(τ, k)

}
,

where

pens(τ, k) =
2ck

λ
(d+ τ + s)K̃ε‖Σε‖op.

Theorem 4.1. Under Assumptions 3.1 and 3.6, for every λ ∈]0, 1[,

1

dT

∥∥∥M̂Sτ̂s,k̂s
−M

∥∥∥2
F

� min
(τ, k) ∈ T × K

A ∈ Sτ,k

{(
1 + λ

1− λ

)2
1

dT
‖AΛτ −M‖2F

+
16cK̃ε‖Σε‖op
λ(1− λ)2

· k(d+ τ + s)

dT

}
.

with probability larger than 1− 2e−s.

Remark 4.2. The reader might feel uncomfortable with the fact that the model
selection procedure leads to k̂s and τ̂s that depend on the prescribed confidence
level s. Note that if k = k0 is known, that is K = {k0}, then it is clear from the
definition that τ̂s actually does not depend on s.

As an application, assume that M ∈ S(k, β, L) where k is known, but β is
unknown. Then the model selection procedure is feasible as it does not depend
on β, and it satisfies exactly the same rate as M̂S(k,β,L) in Corollary 3.11.
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5. Proofs

5.1. Additional notations

Let us first introduce a few additional notations.
First, for the sake of shortness, we introduce the estimation risk R and the

empirical risk r. These notations also make clear the fact that our estimator can
be seen as an empirical risk minimizer.

R(A) = ‖A−M‖2F and r(A) = ‖A−X‖2F ; ∀A ∈ Md,T (R).

Let Δ(S) = {A−B ; A,B ∈ S}.
For any A ∈ Md,T (C), the spectral radius of A is given by

ρ(A) := max{|λ| ; λ ∈ sp(A)}.

Note that ‖A‖2op = ρ(AA∗) = ρ(A∗A).
For any subset K of Md,T (C),

rk(K) = max{rank(A) ; A ∈ K}

and
K1 = {A ∈ K : ‖A‖F � 1}.

5.2. Some lemmas

Let us now state the key lemmas for the proof of our results. The first one will
be used to estimate how far from the minimizer of R is the minimizer of r.

Lemma 5.1. For any A ∈ Md,T (R),

R(A)− r(A) + ‖ε‖2F = 2〈ε,A−M〉F .

Moreover, for every λ ∈]0, 1[,

R(A) � r(A)− ‖ε‖2F
1− λ

+
1

λ(1− λ)

〈
ε,

A−M

‖A−M‖F

〉2

F

(8)

and

r(A)− ‖ε‖2F � (1 + λ)R(A) +
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

. (9)

Proof. Consider A ∈ Md,T (R). First of all,

R(A)− r(A) = ‖A−X‖2F − ‖A−M‖2F
= 〈X−M, 2A−X−M〉2F
= −‖ε‖2F + 2〈ε,A−M〉F .
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Then, for any λ ∈]0, 1[,

R(A)− r(A) + ‖ε‖2F = 2
√

λR(A)

〈
ε,

A−M√
λ · ‖A−M‖F

〉
F

. (10)

On the one hand, by Equation (10) together with the classic inequality 2ab �
a2 + b2 for every a, b ∈ R,

R(A)− r(A) + ‖ε‖2F � λR(A) +
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

.

So, Inequality (8) it true.
On the other hand, by Equation (10) together with the classic inequality

−2ab � a2 + b2 for every a, b ∈ R,

r(A)−R(A)− ‖ε‖2F � λR(A) +
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

.

So, Inequality (9) it true.

In the proof of the theorems, A will be replaced by an estimator of M that
will be data dependent. Thus, it is now crucial to obtain uniform bounds on
the scalar product in Lemma 5.1. In machine learning theory, concentration
inequalities are the standard tools to derive such a uniform bound, see [6] for
a comprehensive introduction to concentration inequalities for independent ob-
servations, and their applications to statistics. Some inequalities for time series
can be found for example in [19], and were applied to machine learning in [3].
Here, we require more specifically a concentration inequality on random matri-
ces. Such inequalities can be found in [49, 52]. We will actually use the following
result (Theorem 5.39 and Remark 5.40.2 from [52]). As the proof can be found
in [52], we don’t reproduce it here.

Proposition 5.2. Under Assumption 3.1, there exists a deterministic constant
m > 1, not depending on ε, d and T , such that for every s ∈ R+,∥∥∥∥1dε∗ε− Σε

∥∥∥∥
op

� mmax

⎧⎨⎩
√

T

d
+

√
s

d
;

(√
T

d
+

√
s

d

)2
⎫⎬⎭ K̃ε‖Σε‖op

with probability larger than 1− 2e−s, where K̃ε := K2
ε ∨ K4

ε.

We are now in position to provide a uniform bound on the scalar product in
Lemma 5.1.

Lemma 5.3. Under Assumption 3.1, there exists a constant c > 1, not depend-
ing on ε, d and T , such that for every s ∈ R+ and K ⊂ Md,T (R),

sup
A∈K1

〈ε,A〉2F � c · rk(K1)(d+ T + s)K̃ε‖Σε‖op

with probability larger than 1− 2e−s.
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Proof. Consider a subset K of Md,T (R) and s ∈ R+. Let σ1(ε) � · · · � σd(ε)
be the singular values of ε. On the one hand, consider a matrix A ∈ K1 with
singular values σ1(A) � · · · � σrk(K1)(A). By Cauchy-Schwarz’s inequality:

|〈ε,A〉F | �
rk(K1)∑
i=1

σi(ε)σi(A)

�

∣∣∣∣∣∣
rk(K1)∑
i=1

σi(ε)
2

∣∣∣∣∣∣
1/2

‖A‖F � rk(K1)1/2σ1(ε).

Then,

sup
A∈K1

〈ε,A〉2F � rk(K1)σ1(ε)
2. (11)

On the other hand, consider

ω ∈

⎧⎨⎩
∥∥∥∥1dε∗ε− Σε

∥∥∥∥
op

� mmax

⎧⎨⎩
√

T

d
+

√
s

d
;

(√
T

d
+

√
s

d

)2
⎫⎬⎭ K̃ε‖Σε‖op

⎫⎬⎭ .

Then,∣∣∣∣1dσ1(ε(ω))
2 − ‖Σε‖op

∣∣∣∣ =

∣∣∣∣1d‖ε(ω)‖2op − ‖Σε‖op
∣∣∣∣

=

∣∣∣∣1d‖ε(ω)∗ε(ω)‖op − ‖Σε‖op
∣∣∣∣

�
∥∥∥∥1dε(ω)∗ε(ω)− Σε

∥∥∥∥
op

� m

(√
T

d
+

√
s

d
+

2T

d
+

2s

d

)
K̃ε‖Σε‖op.

In particular,

σ1(ε(ω))
2 � m(

√
Td+

√
sd+ 2T + 2s+ d)K̃ε‖Σε‖op

� m

(
2d+

5

2
T +

5

2
s

)
K̃ε‖Σε‖op

� c (d+ T + s) K̃ε‖Σε‖op (12)

with c = 5m/2. Therefore, by Inequalities (11) and (12) together with Proposi-
tion 5.2,

sup
A∈K1

〈ε,A〉2F � c · rk(K1)(d+ T + s)K̃ε‖Σε‖op

with probability larger than 1− 2e−s.
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5.3. Proof of Theorem 3.2

Consider λ ∈]0, 1[ and s ∈ R+. By applying the Inequalities (8) and (9) of
Lemma 5.1 successively:

R(M̂S) � r(M̂S)− ‖ε‖2F
1− λ

+
1

λ(1− λ)

〈
ε,

M̂S −M

‖M̂S −M‖F

〉2

F

� 1 + λ

1− λ
· min
A∈S

R(A) +
2

λ(1− λ)
sup

A∈Δ(S)1
〈ε,A〉2F .

By Lemma 5.3:

R(M̂S) � 1 + λ

1− λ
· min
A∈S

R(A) +
4ck

λ(1− λ)
(d+ T + s)K̃ε‖Σε‖op

with probability larger than 1− 2e−s.

5.4. Proof of Lemma 3.4

First of all,

Σε1,.C = E(C∗ε∗1,.ε1,.C) = C∗
E(ε∗1,.ε1,.)C = C∗ΣεC.

Then, since the matrix ΣεC is Hermitian,

‖Σε1,.C‖op = sup
x∈Cτ\{0}

‖C∗ΣεCx‖
‖x‖ = sup

x∈Cτ\{0}

x∗C∗ΣεCx

‖x‖2

= sup
x∈Cτ\{0}

x∗C∗ΣεCx

‖Cx‖2 × ‖Cx‖2
‖x‖2

�
(

sup
y∈CT \{0}

y∗Σεy

‖y‖2

)(
sup

x∈Cτ\{0}

‖Cx‖2
‖x‖2

)
= ‖Σε‖op‖C∗C‖op.

5.5. Proof of Lemma 3.5

Since ε̃ = εΛ+, Σε = σ2IT and ΛΛ∗ = c(τ, T )Iτ ,

Σ
−1/2
ε̃ = ((Λ+)∗ΣεΛ

+)−1/2

= σ−1((Λ+)∗Λ+)−1/2

= σ−1(ΛΛ∗)1/2

= σ−1c(τ, T )1/2Iτ .

Then, for any x with ‖x‖ = 1,

〈ε̃1,.Σ−1/2
ε̃ , x〉 = σ−1c(τ, T )−1/2〈ε1,.Λ∗, x〉
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= c(τ, T )−1/2‖xΛ‖ ·
〈
ε1,.Σ

−1/2
ε ,

xΛ

‖xΛ‖

〉
.

Moreover,
‖xΛ‖2 = xΛΛ∗x∗ = c(τ, T )xx∗ = c(τ, T ).

Therefore,

Kε̃ = sup
‖x‖=1

sup
p∈[1,∞[

p−1/2
E(|〈ε̃1,.Σ−1/2

ε̃ , x〉|p)1/p

= c(τ, T )−1/2

× sup
‖x‖=1

{
‖xΛ‖ sup

p∈[1,∞[

p−1/2
E

(∣∣∣∣〈ε1,.Σ−1/2
ε ,

xΛ

‖xΛ‖

〉∣∣∣∣p)1/p
}

= Kε

and finally, K̃ε̃ = K̃ε.

5.6. Proof of Theorem 4.1

For short, let us denote

M̂s := M̂S
τ̂s,k̂s

.

Consider λ ∈]0, 1[. On the one hand, by applying the Inequalities (8) and (9) of
Lemma 5.1 successively:

R(M̂s) � r(M̂s)− ‖ε‖2F
1− λ

+
1

λ(1− λ)

〈
ε,

M̂s −M

‖M̂s −M‖F

〉2

F

=
1

1− λ
· min
(τ,k)∈T ×K

{r(M̂τ,k) + pens+τ+k(τ, k)− ‖ε‖2F }

+
1

1− λ

⎛⎝−pens+τ+k(τ̂s, k̂s) +
1

λ

〈
ε,

M̂s −M

‖M̂s −M‖F

〉2

F

⎞⎠
� 1

1− λ
· min
(τ,k)∈T ×K

{(1 + λ)R(M̂τ,k) + pens+τ+k(τ, k) + ψε(M̂τ,k)}

(13)

+
1

1− λ
(−pens+τ+k(τ̂s, k̂s) + ψε(M̂s)),

where

ψε(A) =
1

λ

〈
ε,

A−M

‖A−M‖F

〉2

F

; ∀A ∈ Md,T (R).

On the other hand, consider (τ, k) ∈ T × K. Since ε̃ = εΛ+
τ ,

ψε(M̂τ,k) =
1

λ

〈
ε,

(
̂̃
Mτ,k − M̃)Λτ

‖M̂τ,k −M‖F

〉2

F

=
1

λ

〈
εΛ+

τ ΛτΛ
∗
τ ,

̂̃
Mτ,k − M̃

‖M̂τ,k −M‖F

〉2

F
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� 1

λ
· sup
A∈Δ(Sτ,k)1

〈ε̃,AΛ∗
τ 〉2F � 1

λ
‖Λ∗

τ‖2op · rk(Δ(Sτ,k)
1) · σ1(ε̃)

2.

As in the proof of Proposition 5.3, by Lemma 5.2 and since

‖ΣεΛ+
τ
‖op‖Λ∗

τ‖2op � ‖Σε‖op‖(ΛτΛ
∗
τ )

−1‖opρ(ΛτΛ
∗
τ ) = ‖Σε‖op,

with probability larger than 1− 2e−u,

ψε(M̂τ,k) � 2ck

λ
(d+ τ + u)K̃ε‖Σε‖op = penu(τ, k).

Take u = s+ τ + k, we obtain that with probability at least 1− 2e−s−τ−k,

ψε(M̂τ,k) � 2ck

λ
(d+ τ + (s+ τ + k))K̃ε‖Σε‖op = pens+τ+k(τ, k).

Then, by a union bound,

P(∀k, ∀τ : ψε(M̂Sτ,k
) � pens+τ+k(τ, k)) � 1− 2

∑
(τ,k)∈T ×K

e−s−τ−k

� 1− 2e−s

⎛⎝∑
τ≥1

e−τ

⎞⎠⎛⎝∑
k≥1

e−k

⎞⎠
� 1− 2e−s.

Together with Inequality (13), this gives, with probability at least 1− 2e−s,

R(M̂s) � 1

1− λ
· min
(τ,k)∈T ×K

{
(1 + λ)R(M̂τ,k) + 2pens+τ+k(τ, k)

}
. (14)

Finally, follow the proof of Corollary 3.7 to obtain, on the same event with
probability at least 1− 2e−s, for any τ and k,

R(M̂Sτ,k
) � 1 + λ

1− λ
· min
A∈Sτ,k

‖AΛτ −M‖2F +
2

1− λ
pens+τ+k(τ, k).

Plugging this into (14) gives, with probability at least 1− 2e−s,

R(M̂s) � min
(τ,k)∈T ×K

{(
1 + λ

1− λ

)2

min
A∈Sτ,k

‖AΛτ −M‖2F

+
4

(1− λ)2
pens+τ+k(τ, k)

}
.

Finally, note that k � d so

pens+τ+k(τ, k) =
2ck

λ
(d+ τ + (s+ τ + k))K̃ε‖Σε‖op
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� 4ck

λ
(d+ τ + s)K̃ε‖Σε‖op

and so, with probability at least 1− 2e−s,

R(M̂s) � min
(τ,k)∈T ×K

{(
1 + λ

1− λ

)2

min
A∈Sτ,k

‖AΛτ −M‖2F

+
16ck

λ(1− λ)2
(d+ τ + s)K̃ε‖Σε‖op

}
.

This ends the proof.
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