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1. Introduction

Spectral density matrices play a large role in characterising the second order
properties of multivariate time series. The spectral density matrix is the fre-
quency domain analog of the covariance matrix, and describes the variance in
each dimension or the covariance between dimensions that can be attributed to
oscillations in the data within certain frequencies. Just as how partial correla-
tions between the dimensions can be extracted as a function of the inverse of
a covariance matrix, conditional relationships attributable to variations in the
oscillations of the data can be obtained from the inverse of the spectral density
matrix [12]. Thus, it is necessary to obtain a positive-definite estimate of the
spectral density matrix, but this can be challenging whenever the dimensionality
of the time series is relatively large compared to the length of the time series.

The utility of estimating the inverse of the spectral density matrix is in esti-
mating the frequency domain analog of the partial correlation structure, known
as partial coherence, of the multivariate time series. This has been useful in
many different contexts, including intensive care monitoring [19], brain connec-
tivity in neuroimaging studies [36], signal processing [27], hydrology [24], and
cardiology [34]. High-dimensional time series arise in various scientific contexts,
such as in recordings of brain activity from numerous regions of the brain [36]
or financial time series obtained from a large number of assets in a portfolio
[14]. However, estimating the conditional relationships between the dimensions
of the time series using partial coherence can be challenging in finite samples.

There have only been a few papers dedicated to developing rigorous theory
in the context of a high-dimensional time series. For instance, [13] and [21] both
developed methods to give sparse estimates of the parameters of a vector au-
toregressive (VAR) model. [2] studied the theoretical properties of regularised
estimates of the parameters of a broad class of time series models. [38] considered
the estimation of large covariance and precision matrices from high-dimensional
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sub-Gaussian or heavier-tailed observations with slowly decaying temporal de-
pendence. [11] studied a Dantzig-selector type regularized estimator for linear
functionals of high-dimensional linear processes. These recent works, however,
focused primarily on time series models in the time domain.

There have been developments in frequency domain methodologies, though
these proposed methodologies lack theoretical justifications. For instance, [17],
[18], and [37] developed variations of a shrinkage framework developed by [4]
for data-driven �2-penalised estimation of the spectral density matrix, and illus-
trated their utility for connectivity analysis in neuroimaging data; [25] developed
a graphical lasso approach for estimating a graphical model for high-dimensional
time series data in the spectral domain; [1] utilised a dynamic factor model to
study the network structure of high-dimensional financial time series. These
methodological papers have deep roots in the application areas, where we are
aware of the demand of estimating high-dimensional spectral density matrices
and its inverse, where the latter is necessary in order to quantify the condi-
tional dependency structure of the data. However, there remains a critical gap
in theoretical investigations on frequency domain methodologies for estimating
the inverse of high-dimensional spectral density matrices.

The aim of this paper is to study the theoretical behaviours of estimators of
the spectral density matrix and its inverse in high dimension. We summarise
the main contributions of this paper.

First, it is arguable that the most important ingredient in high-dimensional
statistical inference, in contrast with classical ones, is the fixed-sample results.
To be specific, in order to allow for high dimensions, a common practice is
to exploit concentration inequalities, then to provide fixed-sample results to
control the differences between the sample and the population versions, and
finally to use union bound arguments to derive desirable results. To the best
of our knowledge, this paper is the first to show such fixed-sample results on
the error control of the smoothed periodogram matrices in Theorem 3.1. This
is a challenging task, and the main difficulty in developing such methods comes
from the fact that the text book results on frequency domain time series are
limited to asymptotic results only [5, 6].

Second, once the fixed-sample results are established, a wide range of high-
dimensional statistics methods are ready to be justified, including estimation,
prediction and inference tools. In this paper, we use the sparse precision ma-
trix estimation problem as an example, and demonstrate the theoretical (see
Proposition 3.2) and numerical performances of applying the constrained �1-
minimisation for inverse matrix estimation [clime, 8] to spectral analysis of
time series data. We would like to mention that the possible applications of
Theorem 3.1 are way beyond Proposition 3.2, while we use the sparse precision
matrix estimation as an example.

The rest of this paper is organised as follows. In Section 2, we explain the
methodology used in this paper. The theoretical results are collected in Sec-
tion 3, including two main theorems. The technical details thereof can be found
in the Appendix. In Section 4, we demonstrate the numerical performances of
our proposed methods, via simulations and real data analysis.
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2. Methodology

2.1. Framework and notation

In order to study the theoretical performances, we adopt the functional depen-
dency framework [45]. Let Xt = (Xt,1, . . . , Xt,p)

� ∈ R
p be centred random

vectors satisfying

Xt = G(. . . , et−1, et) =: G(Ft), (2.1)

where et are i.i.d. random vectors, Ft = (. . . , et−1, et), and

G(Ft) = (g1(Ft), . . . , gp(Ft))
�.

With this notation, we have Xt,i = gi(Ft) for each i ∈ {1, . . . , p}. Let ẽ0, {et, t ∈
Z} be i.i.d. random vectors. For t = 1, 2, . . ., define F̃t=(. . . , e−1, ẽ0, e1, . . . , et),
i.e. replace e0 with ẽ0 in Ft. Define X ′

t,i = gi(F̃t) and

θt,i =
(
E|Xt,i −X ′

t,i|2
)1/2

, (2.2)

which is used as a dependency measure. It has been pointed out in [45] that a
large family of common time series models, including linear processes, Volterra
series, nonlinear transforms of linear processes and some nonlinear time series
models, can be characterised by imposing proper conditions on (2.2). As a price
we have to pay for this generality, the functional dependency assumption does
exclude the long-range memory models, which can be handled by the temporal
dependency structure proposed by [38].

For rest of this paper, for any vector v = (v1, . . . , vm)� ∈ C
m, let ‖v‖q :=(∑m

i=1 |vi|q
)1/q

be the �q-norm of v; for any matrix A = (Aij)
p
i,j=1 ∈ C

p×p, let
‖A‖w := supv: ‖v‖w≤1 ‖Av‖w. We use the sparsity definition in [9] to characterise
the sparsity of precision matrices, i.e. let the parameter space Gq(cn,p,Mn,p) be
denoted by

Gq(cn,p,Mn,p) :=

{
Θ = (Θij)

p
i,j=1 : maxj=1,...,p

∑p
i=1 |Θij |q ≤ cn,p,

‖Θ‖1 ≤ Mn,p, λmax(Θ)/λmin(Θ) ≤ M1,

}
, (2.3)

where 0 ≤ q < 1, cn,p and Mn,p are potentially diverging as n and p grow.

2.2. The sparse inverse periodogram estimator

In the following sections, we define the spectral density matrix, introduce the
estimators thereof, and propose a method to estimate the inverse of the high-
dimensional spectral density matrix for any arbitrary frequency. We convert the
time domain time series data into frequency domain using the discrete Fourier
transform, which results in the data being a complex-valued vector. Motivated
by the properties of the complex-valued normal distribution, we separate the
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real and imaginary parts of the transformed data and double the dimension of
the vectors. At each frequency point, we adopt a moving window and construct
the estimator of the inverse of the periodogram, based on the clime estimator
proposed in [8]. The detailed algorithm is in Algorithm 1. We will first state our
algorithm, and explain the details regarding the smoothed periodogram and its
inverse in Sections 2.3 and 2.4, respectively.

Algorithm 1 Sparse Inverse Periodogram Estimation.
procedure SIPE({Xi ∈ Rp}ni=1, h)

for j ∈ {−�(n− 1)/2�, . . . , �n/2�} do
ωj ← j/n
d(ωj) ←

∑n
t=1 Xt exp(−ı2πωjt) � d(ωj) ∈ Cp

end for
DC ←

(
d(ω−�(n−1)/2), . . . ,d(ω�n/2�)

)�
� DC ∈ Cn×p

D ← (�(DC),�(DC)) � D ∈ Rn×2p

for j ∈ {−�(n− 1)/2�, . . . , �n/2�} do
ind ← (j − h, j − h+ 1, . . . , j + h) mod (n+ 1)(

A1 B1

B2 A2

)
← clime(Dind) � Dind ∈ R|ind|×2p, A1, A2, B1, B2 ∈ Rp×p

Θj ← (A1 +A2)/2 + ı(B1 −B2)/2 � Θj ∈ Cp×p

end for
return {Θi ∈ Cp×p}ni=1.

end procedure

In Algorithm 1, �(·) and �(·) denote the real and imaginary parts of an
object, respectively, and preserve the same format of the object. In our case, the
input DC ∈ R

n×p, and therefore �(DC),�(DC) ∈ R
n×p. As for the algorithm

clime, see Section 2.4 and [8] for details.

2.3. Real-valued smoothed periodogram estimators

Let {Xt}t∈Z be a p-variate mean zero stationary real-valued time series with
autocovariance matrix function Γ(h) = Cov(Xt,Xt+h) = E(XtX

�
t+h), for h ∈

Z. Under these conditions, {Xt} has a continuous spectral density matrix given
by

f(ω) =
∑
h∈Z

Γ(h) exp(−ı2πωh), ω ∈ [−1/2, 1/2).

Given an interval of the whole time series, namely {Xt}t=1,...,n, the periodogram
defined at the Fourier frequencies {ωj = j/n, −�(n − 1)/2	 ≤ j ≤ �n/2	} by
Pn(ωj) = n−1d(ωj)d

∗(ωj), where d(ωj) =
∑n

t=1 Xt exp(−ı2πωjt), and for any
complex-valued vector v, v∗ denotes v�, i.e. the conjugate transpose of v.

When p = 1, it is known that E(Pn(ω)) converges uniformly to f(ω) on
[−1/2, 1/2] [e.g. 6, Proposition 10.3.1], but Pn(ω) does not converge in proba-
bility to f(ω) as T → ∞ [e.g. 6, Theorem 10.3.2]. A common remedy is to use
the smoothed periodogram, given by

f̃n(ωj) =
1

2Mn + 1

∑
|k|≤Mn

Pn(ωj+k).
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When p = 1, it can be shown that if Mn → ∞ and Mn/n → 0 as n → ∞,

f̃n(ωj) is a consistent estimator of f(ωj).
When p → ∞ as T → ∞, we are interested in the conditional dependence

structures of the pairs of coordinate, namely by defining Θ(ω) =
(
f(ω)

)−1
, our

goal now is to provide a sparse estimator of Θ(ω) with desirable large-sample
properties. Note that both f(ω) and Θ(ω) are complex-valued matrices. To
make the following discussion easier, we first transform them into real-valued
matrices.

For any j = −�(n− 1)/2, . . . , �n/2	 and ωj = j/n, since

f̃n(ωj) =
1

(2Mn + 1)n

∑
|k|≤−Mn

d(ωj+k)
(
d(ωj+k)

)∗
=

1

(2Mn + 1)n

∑
|k|≤Mn

{( n∑
t=1

Xt cos(2πωj+kt)

)( n∑
t=1

Xt cos(2πωj+kt)

)�

+

( n∑
t=1

Xt sin(2πωj+kt)

)( n∑
t=1

Xt sin(2πωj+kt)

)�}

+ ı
1

(2Mn+1)n

∑
|k|≤Mn

{( n∑
t=1

Xt cos(2πωj+kt)

)( n∑
t=1

Xt sin(2πωj+kt)

)�

−
( n∑

t=1

Xt sin(2πωj+kt)

)( n∑
t=1

Xt cos(2πωj+kt)

)�}
=:Aj + ıBj ,

it follows from Lemma A.1 in the Appendix, that Θ(ωj) has the form Ãj + ıB̃j ,

where Ãj and B̃j satisfy(
Aj −Bj

Bj Aj

)(
Ãj −B̃j

B̃j Ãj

)
= I.

Therefore, our problem is transformed to finding the inverse of

(
Aj −Bj

Bj Aj

)
.

Therefore, for any j = −�(n − 1)/2, . . . , �n/2	 and ωj = j/n, instead of

directly studying f̃n(ωj), our targets are now

Σj :=

(
Ref(ωj) Imf(ωj)
−Imf(ωj) Ref(ωj)

)
and sample version

Σ̂j =
1

(2Mn + 1)n

∑
|k|≤Mn

n∑
s=1

n∑
�=1(

XsX
�
� cos(2πωj+k(s− l)) XsX

�
� sin(2πωj+k(s− l))

−XsX
�
� sin(2πωj+k(s− l)) XsX

�
� cos(2πωj+k(s− l))

)
.
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2.4. Penalised precision matrices at every frequency point

Now we have a sequence of expanded but real-valued smoothed periodogram
matrices at every frequency point, i.e.

{
Σ̂j , j = −�(n − 1)/2	, . . . , �n/2	

}
. As

for each one, our goal is to obtain a sparse inverse matrix. In the last decade,
a number of statistical methods have been proposed to achieve this goal, in-
cluding graphical Lasso [e.g. 48], node-wise regression [e.g. 30], constrained �1-
minimisation for inverse matrix estimation [clime, 8], adaptive clime[9] and
the innovated scalable efficient estimation [15], among others.

In this paper, we do not intend to compare different sparse precision matrix
estimation methods, but to apply the clime method for the sake of simplicity in
technical details, and to provide with an example for consistent sparse precision
matrix estimation in the high-dimensional frequency domain time series context.
For details of the climemethod, we refer readers to [8], which studies the inverse
of the covariance matrices, and in which the sparse precision matrix estimators
are obtained based on the sample covariance matrices of i.i.d. random vectors.
For completeness, we include the definition of the estimators.

For each j ∈ {−�(n− 1)/2	, . . . , �n/2	}, let

Θ̂j = (Θ̃j,kl) = arg min
‖Σ̂jΘj−I‖∞≤λ,Θj∈R2p×2p

‖Θj‖1. (2.4)

In practice, one can also symmetrise the estimator and obtain

Θ̃j = (Θ̃j,kl),

where

Θ̃j,kl = Θ̃j,lk = Θ̂j,kl1{Θ̂j,kl ≤ Θ̂j,lk}+ Θ̂j,lk1{Θ̂j,lk ≤ Θ̃j,kl}.

3. Theory

In Theorem 3.1, we will provide fixed-sample results for the spectral density ma-
trix of a high-dimensional time series, in the form of an entry-wise error control
between the smoothed periodogram estimator and the spectral density matrix.
This is a fundamental step in proving many different types of high-dimensional
statistical problems. To theoretically justify the sparse precision matrix estima-
tor we proposed in Section 2, but more importantly, to demonstrate the power
of Theorem 3.1, in Proposition 3.2, we show the uniform consistency of the
sequence of precision matrices {Θ̂j}.

As pointed out in Section 2.1, in order to provide the desired results, we are
using the functional dependency framework described by (2.1) and (2.2). To
further characterise the dependency, we introduce Assumption 1. This is also
used in [11], and we refer interested readers there for examples.

Assumption 1. Assume for some constant 0 < ρ < 1,

max
i=1,...,p

θt,i = O(ρt),
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and for some constant κ > 0 and C0 > 0,

max
1≤i≤p

E(exp{κ|X0,i|}) ≤ C0.

Note that the fixed-sample result holds for all dimensionality, but in order
to achieve desirable consistency results, we need extra conditions on the di-
mensionality of the data, which is detailed in Assumption 2. Note that we can
actually handle a super-polynomial rate of n for p, but in order to be specific,
we assume p is of any polynomial rate of n as described in Assumption 2.

Assumption 2. Assume:

• there exists constant c > 0 such that p ≤ cnr for some r > 0;

• Mn/T → 0, and there exists a constant δ > 0 such that M
−1/2
n (n/Mn)

δ →
0.

Assumption 3 is only used to achieve the consistency of the sparse preci-
sion matrix estimators in Proposition 3.2. Under Assumption 2, Equation (3.1)
holds even when the �1- and �q-norms of Θj , j = 1, . . . , n, diverge, as n grows
unbounded. Therefore, Assumption 3 is a reasonably weak condition.

Assumption 3. Recall the parameter space Gq(cn,p,Mn,p) defined in (2.3). As-
sume for q ∈ [0, 1) the following holds:

M1−q
n,p

(
Mn,pMn

n
+

Mn,pn
δ

M
1/2+δ
n

)1−q

cn,p = o(1). (3.1)

Theorem 3.1 (Smoothed periodogram). Under Assumption 1, there exists a
constant C1 > 0 depending only on κ and C0 such that for any δ > 0 and H > 0,
the following holds

P

{
sup

k∈{−�(n−1)/2	,...,�n/2	}
max

i,j=1,...,p
|f̃ij,n(ωk)− fij(ωk)|

> C1Mn/n+ 8(n/Mn)
1/2+δn−1/2

}
≤ C2p

2n−H , (3.2)

where C2 > 0 is a constant with respect to n, depending on C1 and H.
If we further assume Assumption 2, then we have

sup
k∈{−�(n−1)/2	,...,�n/2	}

max
i,j=1,...,p

|f̃ij,n(ωk)− fij(ωk)| = oP (1).

The fixed-sample result in (3.2) holds for any choices of sample size n, di-
mensionality p and the smoothing window size Mn. It holds in the functional
dependency framework detailed in Assumption 1, and provides an entry-wise
error control of the smoothed periodogram and the spectral density matrix. We
adopt a union bound argument to handle the dimensionality and to provide a
uniform result across the sampled frequency points.
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It is worth mentioning that the probability upper bound allows for anyH > 0,
which allows for the dimensionality diverges at any arbitrary polynomial rate
as the sample size diverges. This is made explicit in Assumption 2.

The detailed proof of Theorem 3.1 is in the Appendix. Here, we briefly out-
line the sketch of the proof. We start with a fixed frequency point and a fixed
entry in the matrix. In order to bound the errors between the smoothed peri-
odogram matrix f̃ and the spectral density matrix f , we introduce a series of
instrumental quantities, including an m-dependent series using conditional ex-
pectations, its truncated version which is truncated in magnitude by (log(n))2,
and a centred version by subtracting the unconditional expectations. The ma-
jority of the efforts are therefore dedicated to bound the differences of all these
different quantities. Applying triangle inequality yields desirable results for a
fixed frequency point and a fixed entry in the matrix. Finally, we apply a union
bound argument to obtain (3.2).

Proposition 3.2. Under Assumptions 1 and the parameter space defined in
(2.3), for a constant δ > 0, any w ∈ [1,∞] and

λ � Mn,pMn

n
+

Mn,pn
δ

M
1/2+δ
n

,

we have for a sufficiently large constant C1 > 0,

P

(
sup

j∈{−�(n−1)/2,...,�n/2	}
‖Θ̂(ωj)−Θ(ωj)‖w≤C1M

1−q
n,p λ1−qcn,p

)
≥1−C2p

2n−H ,

(3.3)
where C2 > 0 is a constant with respect to n, depending on C1 and H.

If we further assume Assumptions 2 and 3, then we have

sup
j∈{−�(n−1)/2,...,�n/2	}

‖Θ̂(ωj)−Θ(ωj)‖w = oP (1).

Proposition 3.2 is an application of Theorem 3.1 on the sparse precision
matrix estimation. The proof is in fact straightforward based on (3.2) and the
proof techniques developed in [8]. Since it is built upon Theorem 3.1, we allow
for the same flexibility that in (3.3), H is allowed to be any positive value, and
therefore the dimensionality p is allowed to be of any arbitrary order of the
sample size n. In practice, the window width Mn and the penalty level λ are
chosen via data-driven methods, which will be elaborated in Section 4.

Remark 1. For the interest of the periodogram itself, Theorem 3.1 can be in-
terpreted as an error control of the smoothed periodogram estimators in terms
of the entry-wise sup-norm. In addition, for general w-norm of matrices, one
can obtain an error control of the inverse of Θ̂)(ωj) by exploiting Theorem 2.5
in [39]. In particular, when w = 2, it has been pointed out in [3] that∥∥∥∥{Θ̂(ωj)

}−1

− f(ωj)

∥∥∥∥
2

�
∥∥∥Θ̂(ωj)−Θ(ωj)

∥∥∥
2
.
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4. Numerical results

4.1. Simulations

In this section, we verify our proposed methodology using simulated data. We
consider multivariate time series having dimension p = 10 or 50 with sample size
n = 200 or 400. These are challenging scenarios for spectral analysis because the
amount of data available to estimate the spectral density matrix and its inverse
is related to the smoothing span 2Mn + 1 used to smooth the periodogram
matrix, and not the length of the time series. In our simulations, we choose Mn

using the generalised cross-validation (GCV) criterion developed by [33], and
the penalty level in clime by the Stability Approach to Regularization Selection
(StARS) method [28]. We construct the smoothed periodogram matrix f̃n(ω)
and calculate its inverse (whenever possible) and use these estimators in order
to assess relative performance.

We investigated multiple scenarios in this study: we simulated from (1) a p-
variate Gaussian white noise model, (2) a p-variate first-order vector autoregres-
sive (VAR(1)) model, whose parameters we give below, (3) a p-variate VAR(1)
model whose conditional dependence structure between the dimensions is driven
by a sparse precision matrix of the innovations, and (4) a p-variate vector au-
toregressive moving average (VARMA) model, whose parameters we give below.

Setting (1) allows us to see how our methodology performs relative to the
smoothed periodogram matrix in a very simple scenario where the spectral den-
sity matrix and its inverse do not change across frequencies, which allow us to
evaluate relative performance only as a function of dimensionality. Setting (2)
allows us to see how our methodology performs when the data exhibit some de-
gree of autocorrelation and lagged cross-correlation. To construct the VAR(1)
model, we set the p × p coefficient matrix to be a banded matrix such with
diagonal entries set to be 0.5, and for the jth row, j ∈ {1, . . . , p− 2}, we set the
(j+1)th column to be −0.3 and the (j+2)th column to be 0.2. We use the iden-
tity matrix as the covariance matrix for the innovations in the model. Setting
(3) creates heterogeneity in the marginal variances, and hence, in the diago-
nal elements of the spectral density matrix, but truth has a sparse conditional
dependence structure. In particular, we let the VAR(1) coefficient matrix be a di-
agonal matrix with entries randomly selected from the interval (0.25, 0.75), and
a random sign. The precision matrix for the innovations vector is sparse, with
off-diagonal elements equal to 0 or 0.5 with probability 0.5. Setting (4) allows us
to see how our methodology performs when the data generating mechanism has
a relatively more complicated dependency structure. We borrow the parameter
settings for the VARMA(2,2) model from another paper [44]. Namely, for the
autoregressive part of the model, we use diagonal coefficient matrices such that
the diagonal element of the k-th coefficient matrix is equal to 0.4/k. For the
moving average part of the model, the k-th coefficient matrix is block diagonal
with 5×5 lower triangular blocks with value 0.3/k on the diagonals and 0.3/(2k)
on the off-diagonal. We use the identity matrix as the covariance matrix for the
innovations in the model. Thus, the dependencies between dimensions is null
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between the blocks and is non-null within the blocks.
We evaluate performance in the following ways. First, we use the mean inte-

grated squared error (MISE), defined by

MISE
({

Θ̂(ωj)
}n

j=1
,
{
Θ(ωj)

}n

j=1

)
=

2

n

n/2∑
j=1

∥∥Θ̂(ωj)−Θ(ωj)
∥∥2
∗,

where {ωj}n/2j=1 denote the Fourier frequencies in the interval (0, 0.5), ‖·‖∗ denotes
the Frobenius norm of a matrix but discarding the diagonal entries, i.e. for a
matrix A = (Aij) ∈ Rp×p,

‖A‖∗ =

√√√√ p∑
i=1

∑
j 
=i

A2
ij .

The reason we are discarding the diagonal entries is that we are mainly interested
in the off-diagonal entries, and the penalisations deployed in obtaining the sparse
precision matrix estimators inevitably introduce bias, especially for the diagonal
entries. If one would like a better estimator of the diagonal entries, one can
adopt an optional second step updating the diagonal entries only by forcing the
product of the smoothed periodogram matrix and the sparse precision matrix
to be identity. Due to the lack of theoretical guarantees, we omit this optional
step in this paper.

We compare our estimator (SIPE) to the näıve inverse of the smoothed peri-
odogram matrix (Näıve), with smoothing span being the modified Daniell kernel
with bandwidth picked using the GCV criterion, and the shrinkage estimator
(Shrinkage) by [4]. We collect the numerical results averaged over 50 repetitions
in each setting in Table 1. Each cell of the table is of the form mean (standard
deviation). Since the Näıve estimator and the Shrinkage estimator do not pro-
duce sparse estimation, we only report the evaluations on the support recovery
for the SIPE. We define the true positive proportion (TPP) and true negative
proportion (TNP) as follows.

TPP =
#non-zero off-diagonal entries in the estimator

#non-zero off-diagonal entries in the truth
,

TNP =
#zero off-diagonal entries in the estimator

#zero off-diagonal entries in the truth
.

The results reported are averaged across all frequencies.
First, looking across all simulation settings, we see that the smoothed peri-

odogram matrix sometimes cannot be inverted, motivating the need for some
type of regularisation. The spectral density matrix for the white noise (WN)
model is the identity matrix across all frequencies. The Shrinkage is biased to-
wards a scaled identity matrix, hence its superior performance in this setting
for all dimensionalities and sample sizes. When the time series data possess au-
tocorrelation, such as in the VAR(1), sparse VAR(1) (sVAR(1)), and VARMA
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Table 1

Simulation results for estimating the inverse of the spectral density matrix, with mean
integrated squared error (MISE), and true positive proportions (TPP) and true negative
proportions (TNP). All results entries are in the form of mean (standard deviation).

Hyphenated entries (-) denote that the smoothed periodogram matrix could not be inverted.
TPP and TNR are reported for SIPE only. MISE entries for all simulation settings except

for the VARMA were multiplied by 103 for clarity.

MISE - Precision Matrix SIPE
p T Näıve Shrinkage SIPE TPP TNP

WN
10 200 21.62 (31.58) 0.39 (1.23) 0.17 (0.69) 0.83 (0.05) 0.82 (0.05)

400 13.17 (21.24) 0.22 (0.62) 0.60 (1.91) 0.74 (0.05) 0.74 (0.05)
50 200 202.44 (258.17) 0.04 (0.01) 0.54 (1.62) 0.71 (0.01) 0.69 (0.01)

400 13.05 (20.57) 0.02 (0.01) 1.06 (3.11) 0.62 (0.01) 0.62 (0.01)
VAR(1)

10 200 16.36 (47.10) 3.76 (3.93) 3.60 (0.02) 0.91 (0.02) 0.90 (0.03)
400 8.94 (18.89) 3.69 (6.13) 3.60 (0.01) 0.89 (0.02) 0.87 (0.02)

50 200 - 3.62 (0.44) 4.18 (3.85) 0.86 (0.01) 0.81 (0.02)
400 - 3.57 (0.55) 3.71 (1.04) 0.86 (0.01) 0.84 (0.01)

sVAR(1)
10 200 119.64 (230.51) 12.57 (19.40) 10.18 (20.18) 0.97 (0.02) 0.97 (0.03)

400 47.04 (99.37) 12.87 (25.12) 9.90 (19.62) 0.94 (0.03) 0.94 (0.03)
50 200 - 17.11 (24.30) 15.97 (23.27) 0.97 (0.01) 0.96 (0.02)

400 - 14.31 (20.97) 15.96 (23.27) 0.95 (0.02) 0.94 (0.02)
VARMA

10 200 131.28 (121.97) 1.60 (0.28) 2.06 (0.33) 0.84 (0.03) 1.00 (0.00)
400 31.03 (11.54) 1.40 (0.17) 2.14 (0.23) 0.80 (0.02) 1.00 (0.00)

50 200 - 7.19 (0.62) 14.02 (0.91) 0.81 (0.01) 0.76 (0.02)
400 - 6.48 (0.38) 15.39 (0.61) 0.82 (0.01) 0.80 (0.01)

models, SIPE is competitive with the shrinkage estimator with respect to MISE,
yet can reasonably estimate the zero and non-zero entries of the precision ma-
trices. In contrast, the shrinkage estimator behaves like a ridge estimator, and
hence, by construction cannot obtain sparse estimates of the inverse spectral
density matrix. We see that our estimator yields favourable estimates of the
spectral precision matrix while giving relatively good estimates on which en-
tries of the spectral precision matrix are truly zero or non-zero.

4.2. Analysis of the Google Flu Trends data

We give an empirical illustration of our proposed methodology by analysing the
Google Flu Trends data set. Researchers at Google used select Google search
terms to predict influenza activity [20]. The resulting data set consists of weekly
predicted numbers of influenza-like-illness related visits out of every 100,000
random outpatient visits within select cities throughout the United States of
America. The data set is further aggregated at the state-level and region-level,
where the latter comprises of different states. The version of the Google Flu
Trends data set we used is the state-level aggregate of log-transformed weekly
data from 1 January 2006 to 6 October 2013. The resulting time series thus has
p = 50 dimensions and length n = 406.

The goal of our analysis is to investigate the conditional dependencies of the
time series across states. To this end, we need to estimate the partial coherence
matrix, which is a function of the inverse of the spectral density matrix. The
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Fig 1. Power spectra for each state’s time series in the Google Flu Trends data. Each colour
denotes the power spectrum for one state.

partial coherence matrix is the frequency domain analog of partial correlation,
and can be interpreted as the correlation between two time series that have been
bandpass filtered at frequency ω, after removing the linear effects of the other
time series. The (j, k)th element of the partial coherence matrix is ρjk(ω) =
|Θjk(ω)|2/[Θjj(ω)Θkk(ω)], where Θ(ω) is the inverse spectral density matrix.
We use our methodology to obtain a sparse estimate of Θ(ω), from which we
can then obtain estimates of partial coherence. We are only interested in the
partial coherence matrix, and so we centre each time series to have mean zero
and then we standardised them to have unit variance.

To pick the parameters of our method, we chooseMn using the GCV criterion.
Each of the fifty time series were driven by frequencies within the frequency band
(0, 0.10), as shown by the diagonal entries of f̃n in Figure 1. Indeed, for each of
the fifty time series, the variance attributed to each Fourier frequency outside of
this band is less than 5% of the overall variation. Thus, we estimate the partial
coherence within this frequency band, and we further summarise our results by
taking the median partial coherence within this frequency band. We show our
results in Figure 2.

Each of four geographically distinct states (California, New York, Minnesota
and Mississippi) yields different conditional independencies as estimated by par-
tial coherence. First, we see a local spatial structure. For instance, we see con-
ditional dependencies between Minnesota and its neighbouring Midwest states,
and conditional dependencies between Mississippi and Alabama. Note that the
spatial structure of the data was not included in the analysis, yet the associa-
tion in the time series between neighboring states is still relatively strong even
after removing for the effects of the other states. Second, we also conditional
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Fig 2. The conditional dependence structure of the Google Flu Trends data across the fifty
states between one state marked by an ‘X’ and the other forty-nine states. In the top-left,
top-right, bottom-left and bottom-right, the ‘X’es are California, New York, Minnesota and
Mississippi, respectively. Yellow and red colours indicate high and low values of partial co-
herence, respectively.

dependencies between geographically distance states, e.g., New York with Wash-
ington and Wisconsin. Altogether, the partial coherence gives us information on
conditional dependencies that can be attributed to the frequencies driving the
variation in the data. Our analysis show both spatially localized and spatially
distant conditional dependence structures in the level of influenza activity in
the United States, which is consistent with the results by Davis et al. [13].

Appendix

In this section, we collect all the necessary technical details.

Lemma A.1. Let Z := A + ıB ∈ C
p×p, with A,B ∈ R

p×p. Assume Z is non-
singular and the inverse of Z is denoted as Z−1, then Z−1 = Ã + ıB̃, where
Ã, B̃ ∈ R

p×p, satisfying(
A −B
B A

)(
Ã −B̃

B̃ Ã

)
= I2p.
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Proof. It follows from the fact ZZ−1 = Ip that

Ip = (A+ ıB)(Ã+ ıB̃) = (AÃ−BB̃) + ı(BÃ+AB̃),

which is equivalent to(
A −B
B A

)(
Ã

B̃

)
=

(
Ip
0

)
, and

(
A −B
B A

)(
−B̃

Ã

)
=

(
0
Ip

)
.

Therefore, (
A −B
B A

)(
Ã −B̃

B̃ Ã

)
= I2p.

Proof of Theorem 3.1. This proof starts with proving the result for any fixed
ω. For any (i, j) ∈ {1, . . . , p}⊗2, note that the (i, j) entry of the periodogram
Pn(ω) can be written as

Pn,ij(ω) =
1

n

n∑
t=1

Xt,i exp(−ı2πωt)

n∑
t=1

Xt,j exp(ı2πωt)

=
1

n

n∑
t=2

t−1∑
l=1

Xt,iXl,j exp(−ı2πω(t− l))

+
1

n

n∑
l=2

l−1∑
t=1

Xt,iXl,j exp(−ı2πω(t− l)) +
1

n

n∑
t=1

Xt,iXt,j

=:P
(1)
n,ij(ω) + P

(2)
n,ij(ω) + P

(3)
n,ij . (A.1)

Next, we are to bound the three terms in the right-hand side of (A.1) sepa-
rately. As for the term (I), we will approximate it by a similar quantities built
up by m-dependent random variables. Let

f̃
(1)
n,ij(ω) :=

1

2Mn + 1

Mn∑
s=−Mn

P
(1)
n,ij(ω + s/n) =

1

n

n∑
t=2

t−1∑
l=1

Xt,iXl,jat−l(ω),

where

ak(ω) =
1

2Mn + 1

Mn∑
s=−Mn

exp(−ı2πk(ω + s/n))

=
1

2Mn + 1
exp(−ı2πkω)

Mn∑
s=−Mn

exp(−ı2πks/n)

=
1

2Mn + 1
exp(−ı2πkω)

Mn∑
s=−Mn

cos(2πks/n)

= exp(−ı2πkω)
sin(2π(Mn + 1/2)k/n)

(2Mn + 1) sin(πk/n)
. (A.2)
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The last identity in (A.2) follows from the trigonometric identity that for any
α, which is not a multiple of 2π, and any positive integer m ∈ N+, we have

m∑
k=0

cos(φ+ kα) = sin((m+ 1)α/2) cos(φ+mα/2)/ sin(α/2).

In addition, for any α, which is not a multiple of π, and any m ∈ N+, it holds
that∣∣∣∣ sin(mα)

sin(α)

∣∣∣∣ = ∣∣∣∣exp(ımα) sin(mα)

exp(ıα) sin(α)

∣∣∣∣ = ∣∣∣∣1− exp(ı2mα)

1− exp(ı2α)

∣∣∣∣ =
∣∣∣∣∣
m−1∑
n=0

exp(ı2α)

∣∣∣∣∣ ≤ m.

Then for k ∈ {1, . . . , n− 1}, we have

sin2(2π(Mn + 1/2)k/n)

(2Mn + 1)2 sin2(πk/n)
≤ 1. (A.3)

For k ∈ {�n/(Mn + 1/2)	+ 1, . . . , �n− n/(Mn + 1/2)	}, we have

| sin(πk/n)| ≥ π/2min(k, n− k)/n. (A.4)

Combining (A.3) and (A.4) we have

n−1∑
k=1

|ak(ω)|2 =

n−1∑
k=1

sin2(2π(Mn + 1/2)k/n)

(2Mn + 1)2 sin2(πk/n)

=

⎛⎝�n/(Mn+1/2)	∑
k=1

+

�n−n/(Mn+1/2)	∑
k=�n/(Mn+1/2)	+1

+
n−1∑

k=�n−n/(Mn+1/2)	+1

⎞⎠
sin2(2π(Mn + 1/2)k/n)

(2Mn + 1)2 sin2(πk/n)

≤min

{
2�n/(Mn + 1/2)�+ π2

3

n2

(2Mn + 1)2
, n− 1

}
,

where the last inequality follows from the fact that
∑∞

k=1 = π2/6. Then,

n∑
k=1

|ak(ω)|2 ≤ min

{
2�n/(Mn + 1/2)�+ π2

3

n2

(2Mn + 1)2
+ 1, n

}
=: An;

and

max
k=1,...,n

|ak(ω)| = 1, (A.5)

by noting that |an(ω)| = 1.
For i = 1, . . . , p, let X̄t,i = E(Xt,i|Ft,m), where Ft,m = (et−m, . . . , et) with

m = �(log(n))2�. Note that

Xt,i − X̄t,i =

∞∑
j=m+1

(
E(Xt,i | Ft,j)− E(Xt,i | Ft,j−1)

)
=:

∞∑
j=m+1

dj ,
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with
{
E(d2j )

}1/2 ≤ θt,j . It follows from Assumption 1 and Theorem 1(ii) in [45],
that {

E((X̄t,j −Xt,j)
2)
}1/2

= O(ρm). (A.6)

Define

f̄
(1)
ij,n(ω) =

1

n

n∑
t=2

t−1∑
l=1

X̄t,iX̄l,jat−l(ω).

It follows from Proposition 1 in [29], (A.5) and (A.6) that

E|f̄ (1)
ij,n(ω)− f̃

(1)
ij,n(ω)| = O(nρm). (A.7)

Now let M = (log(n))2 and define

X̆t,i = X̄t,i1{|X̄t,i| ≤ M}, X̂t,i = X̆t,i − E(X̆t,i),

f̆
(1)
ij,n(ω) =

1

n

n∑
t=2

t−1∑
l=1

X̆t,iX̆l,jat−l(ω), f̂
(1)
ij,T (ω) =

1

n

n∑
t=2

t−1∑
l=1

X̂t,iX̂l,jat−l(ω).

Note that for centred random vectors, we have

|E(X̄t,i1{|X̄t,i| ≤ M})| = |E(X̃t,i1{|X̃t,i| > M})| ≤ E
{
|X̄t,i|1{|X̄t,i| > M}

}
≤
∫ ∞

M

P
{
|X̄t,i| > t

}
dt ≤ C0

∫ ∞

M

exp(−κt) dt = C0κ
−1 exp(−κM), (A.8)

where the last inequality follows from Assumption 1 and Markov’s inequality.
It also follows from Assumption 1 that

P(f̄
(1)
ij,n(ω) �= f̆

(1)
ij,n(ω)) ≤ max

{ n∑
t=1

P(|Xt,i| ≥ M),

n∑
t=1

P(|Xt,j | ≥ M)
}

≤ 2C0n exp(−κM). (A.9)

To this end, we have for any ε > 0,

P
{
|f̃ (1)

ij,n(ω)− f̂
(1)
ij,n(ω)| > ε

}
≤P

{
|f̃ (1)

ij,n(ω)− f̄
(1)
ij,n(ω)| > ε/3

}
+ P

{
|f̄ (1)

ij,n(ω)− f̆
(1)
ij,n(ω)| > ε/3

}
+ P

{
|f̆ (1)

ij,n(ω)− f̂
(1)
ij,n(ω)| > ε/3

}
=:(I) + (II) + (III). (A.10)

Moreover, it follows from Markov’s inequality and (A.7) that

(I) ≤
E
(
|f̃ (1)

ij,n(ω)− f̄
(1)
ij,n(ω)|

)
ε/3

= O(nρmε−1). (A.11)

It follows from (A.9) that

(II) ≤ P(f̄
(1)
ij,n(ω) �= f̆

(1)
ij,n(ω)) ≤ 2nC0 exp{−κM}. (A.12)
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Due to Markov’s inequality and (A.8), the following holds

(III) = O
(
nε−1 exp

(
−2κM

))
. (A.13)

Finally, combining (A.10), (A.11), (A.12) and (A.13), we obtain that

P
{
|f̃ (1)

ij,n(ω)− f̂
(1)
ij,n(ω)| > ε

}
= O

(
nρmε−1 + n exp{−κM}+ nε−1 exp

(
−2κM

))
.

(A.14)

Note that (X̂t,i, X̂t,j), 1 ≤ t ≤ n are also m-dependent random vectors with
zero means. In addition, we have (A.5),

max
t=1,...,n

i=1,...,p

E(X̂2
t,i) ≤ K0, max

t=1,...,n

i=1,...,p

E(X̂4
t,i) ≤ K0,

where K0 only depends on C0 following from Assumption 1. Therefore it follows
from Proposition 3 in [29] that for any x ≥ 1, y ≥ 1 and any constant Q > 0 we
have,

P(|f̂ (1)
ij,n(ω)− E

(
f̂
(1)
ij,n(ω)

)
| ≥ x/n)

≤ 2e−y/4 + C1n
3M2

(
x−2y2m3(M2 + n)

n∑
k=1

|ak(ω)|2
)Q

+ C1n
4M2 max

{
P

(
|X̂0,i| ≥

C2x

ym2(M + n1/2)

)
,P

(
|X̂0,j | ≥

C2x

ym2(M + n1/2)

)}
,

where C1 and C2 are positive constants depending only on Q, κ and C0.
For any δ > 0 and H > 0, letting x = (n/Mn)

1/2+δn1/2 and y = (log(n))2,
there exists a constant C3 > 0 only depending on H, κ and C0, such that

P(|f̂ (1)
ij,n(ω)− E

(
f̂
(1)
ij,n(ω)

)
| ≥ (n/Mn)

1/2+δn−1/2)

≤2n− log(n)/4 + C3n
3−(1+2δ)QAQ

nM
(1+2δ)Q
n (log(n))4+10Q

≤C3n
−H . (A.15)

Combining (A.14) and (A.15), we have

P(|f̃ (1)
ij,n(ω)− Ef̂

(1)
ij,n(ω)| ≥ 2(n/Mn)

1/2+δn−1/2) ≤ C3n
−H .

We now seek to bound E|f̂ (1)
ij,n(ω)− f̃

(1)
ij,n(ω)|. Note that

E|f̂ (1)
ij,n(ω)− f̃

(1)
ij,n(ω)|

≤E|f̂ (1)
ij,n(ω)− f̆

(1)
ij,n(ω)|+ E|f̆ (1)

ij,n(ω)− f̄
(1)
ij,n(ω)|+ E|f̄ (1)

ij,n(ω)− f̃
(1)
ij,n(ω)|

≤2C0Mn2 exp(−κM) +O(n exp{−κM}) +O(nρm) ≤ O(Mnρm),

which implies

P(|f̃ (1)
ij,n(ω)− E(f̃

(1)
ij,n(ω))| ≥ 3(n/Mn)

1/2+δn−1/2) ≤ C3n
−H . (A.16)
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Similarly arguments lead to

P(|f̃ (2)
ij,n(ω)− E(f̃

(2)
ij,n(ω))| ≥ 3(n/Mn)

1/2+δn−1/2) ≤ C3n
−H , (A.17)

and

P

(∣∣∣∣∣ 1n
n∑

t=1

Xt,iXt,j − E

{
1

n

n∑
t=1

Xt,iXt,j

}∣∣∣∣∣ ≥ n−1/2+δ

)
≤ C4n

−H . (A.18)

Combining (A.16)-(A.18), we obtain

P(|f̃ij,n(ω)− E(f̃ij,n(ω))| ≥ 7(n/Mn)
1/2+δn−1/2) ≤ C5n

−H , (A.19)

where C4, C5 > 0 are constants only depending on δ,H, κ and C0.
It follows from a slight modification of Theorem 10.4.1 in [6] and Assump-

tion 1 that there exists a constant C6 > 0 only depending on κ and C0 such
that

max
i,j

|fij(ω)− E(f̃ij,n(ω))| ≤ C6Mn/n. (A.20)

Combining (A.19) and (A.20) yields that for any (i, j) we have

P(|f̃ij,n(ω)− fij(ω)| ≥ C6Mn/n+ 8(n/Mn)
1/2+δn−1/2) ≤ C5n

−H .

Therefore, using the union bound argument we can show that there exists a
constant C > 0 depending only on κ and C0 such that for any δ > 0 and H > 0
the following holds

P

{
sup

k∈{−�(n−1)/2	,...,�n/2	}
max

i,j=1,...,p
|f̃ij,n(ωk)− fij(ωk)|

> CMn/n+ 8(n/Mn)
1/2+δn−1/2

}
≤ p2n−H .

Proof of Proposition 3.2. It is due to Theorem 7.2 in [9] that for any symmetric
matrix A and w ∈ [1,∞], the relation ‖A‖w ≤ ‖A‖1 holds; therefore it is enough
to consider only the w = 1 case.

Define the event

An :=

{
sup
ω

max
k,l=1,...,p

|f̃ij,n(ω)− fij(ω)| ≤ C

(
Mn

n
+

1√
Mn

( n

Mn

)δ
)}

,

where C > 0 and δ > 0 are constants. It follows from Therorem 3.1 and As-
sumption 2 that

P{An} → 1,

as n → ∞.
Let O := {−�(n− 1)/2	, . . . , �n/2	}. In the event An, we have

sup
ω∈O

‖Σ̂(ω)Θ(ω)− I‖∞ ≤ sup
ω

‖Θ(ω)‖1 sup
ω

‖Σ̂(ω)− Σ(ω)‖∞
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≤ sup
ω

‖Θ(ω)‖1 sup
ω

‖f̃T (ω)− f(ω)‖∞

≤CMn,pMn

n
+

CMn,pn
δ

M
1/2+δ
n

� λ,

where Mn,p is defined in (2.3). Then due to the definition of Θ̂(ω), we have for

any ω, on the event An, ‖Θ̂(ω)‖1 ≤ ‖Θ(ω)‖1 ≤ Mn,p.
Therefore, in the event An,

sup
ω∈O

‖Θ̂(ω)−Θ(ω)‖∞= sup
ω∈O

‖(Θ(ω)Σ̂(ω)− I)Θ̂(ω) + Θ(ω)(I − Σ̂(ω)Θ̂(ω))‖∞

≤ sup
ω∈O

‖Θ̂(ω)‖1 sup
ω∈O

‖Θ(ω)Σ̂(ω)− I‖∞ + sup
ω∈O

‖Θ(ω)‖1 sup
ω∈O

‖I − Σ̂(ω)Θ̂(ω)‖∞

≤2Mn,pλ := tn.

Moreover, we are to bound the �1 errors. it follows from Lemma 7.1 in [9]
that in the event An we have

sup
ω∈O

‖Θ̂(ω)−Θ(ω)‖1 ≤ 12cn,pt
1−q
n ,

where cn,p is defined in (2.3), and we complete the proof.
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