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Abstract: In this paper, we propose an estimator for g(x) under the model
Yi = g(Zi), i = 1, 2, ..., n where Zi, i = 1, 2, ... are random variables
with known distribution but unknown observed values, Yi, i = 1, 2, ... are
observed data and g(x) is an unknown strictly monotonically increasing
function (we call g(x) transformation function). We prove the almost sure
convergence of the estimator and construct confidence intervals and bands
when Zi, i = 1, 2, ... are i.i.d data based on their asymptotic distribution.
Corresponding case when Zi being linear process is handled by resampling
method. We also design the hypothesis test regarding whether g(x) equals
an expected transformation function or not. The finite sample performance
is evaluated by applying the method to simulated data and an urban waste
water treatment plant’s dataset.
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1. Introduction and assumptions

1.1. Introduction

In this article, we focus on model

Yi = g(Zi), i = 1, 2, ..., n (1.1)

Here Yi are observed data and Zi are random variables with known distribution
but unknown observed values. We are interested in estimating strictly increas-
ing function g(x) (we call it transformation function) for given x under this
situation. We first provide some examples to clarify the motivation to estimate
transformation function g(x).

Example 1. Suppose there is a production line and we want to control the
quality of products and minimize the cost of materials at the same time. It
is reasonable to assume the quality Y of products as a decreasing function of
property of materials, |Z− z0| with z0 being the design point. Moreover, the dis-
tribution of quality of materials can assume to be known. (For example, tensile
strength of materials satisfies Weibull distribution [17].) However, it is difficult
to use regression model since testing materials’ quality is of great cost and always
brings damage to materials. Instead, if the distribution of quality of materials
is known, then distribution of |Z − z0| can be calculated and model (1.1) can be
applied to understand relationship between quality of products and property of
materials. After estimating g, we know how sensitive the quality of products is
affected by quality of materials.

Example 2. Consider the model in figure 1. Suppose the probability distribution
of input signal is known and the output signal data can be acquired. Then, two
things are worth considering. The first one is to understand how the amplifier
enlarges the input signal, that is, to estimate the transformation function g(x).
The second thing is to test whether the transformation function g coincides
with the expected transformation function h, which comes from physical laws or
experience. For example, according to [14], observed concentration Yi, i = 1, 2, ...
from an experiment can be modelled as

Yi = μ exp(a+ b× Zi), i = 1, 2, ... (1.2)

With μ being the true concentration and a, b unknown constant. Zi is assumed
to be a standard normal random variable (but its value cannot be observed in
measurement). Researchers having concentration data may hope to justify the
correctness of model (1.2), especially whether log(Yi) is a linear function of Zi

or not.

Example 3. In the third example, we consider a type of time series data

Yn = g(Zn), Zn = Σm
k=1akεn−k, εi ∼ i.i.d N(0, 1) (1.3)
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Fig 1. A standard amplifier system

Since we suppose that εi, i = ...,−1, 0, 1, ... are standard normal random vari-
ables, Zn is also of normal distribution. We want to estimate g(x) for some x
in this situation. For example, in [9], daily number of respiratory symptoms per
child is recorded and is related to daily SO2 and NO2. In that paper, transforma-
tion function g(x) = v0 log(x)+ ε with ε being an ARIMA series are considered.
If instead, we ignore the error ε and want to estimate transformation function
in a non-parametric way, then model (1.1) can be applied to this problem.

To summarize, example 1 and 3 involves estimating transformation function
g(x) in i.i.d data and dependent data, and example 2 involves testing equivalence
of a transformation function. All of these three topics will be covered in this
paper.

According to [15], suppose Z is a random variable with continuous cumulative
distribution FZ , then FZ(Z) is of uniform distribution. Thus, random variables
Z with strictly increasing cumulative distribution function (which is invertible)
can be naturally related to a random variable U with uniform distribution by
choosing g(x) = F−1

Z (x). There are discussions on estimating FZ(x) and F−1
Z (x),

related results can be found in [6] and [18]. There are also some researches
related to estimating monotone functions. For example, Zhao and Woodroofe
[19] considered model Yk = μk + Zk and used isotonic method to estimate
monotone trend, Dietz and Killeen [8] proposed a test on whether time series
data have an increasing order, Mukerjee [11] considered monotone regression
problem, etc.

The aforementioned models mainly consider estimating trends of data, but
model (1.1) composites function g on data Zk, k = ...,−1, 0, 1, .... Worse still,
we do not know exact observed values of Zk, so regression methods (like [11])
cannot be applied to this problem. However, the methods we propose in this
paper can be applied to estimate g(x) and perform tests under model (1.1).

In this paper, we provide an estimator for strictly increasing transformation
function g(x) and discuss its asymptotic properties when random variable Zi

are i.i.d or short range dependent. In section 2, we demonstrate how to estimate
transformation function and construct confidence intervals and bands for i.i.d
data. We also provide a test similar to Kolmogorov-Smironv test [10] on testing
whether g(x) = h(x), the expected transformation function. In section 3, we
discuss how to estimate transformation function and how to construct confidence
interval through sub-sampling methods for linear processes. In section 4, several
numerical examples are provided and conclusion is made in section 5. Proofs of
main theorems will be given in the appendix.
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1.2. Frequently used notations and assumptions

In this part, we introduce frequently used notations for this paper, other symbols
will be defined when being used. Besides, we will list basic assumptions and
constraints on random variables and transformation function below.

Suppose that Zi, i = 1, 2, ..., n are random variables with known cumula-
tive distribution function FZ(x) and density fZ(x), Yi being unknown random
variables satisfying Yi = g(Zi) ∀i. We define empirical distribution function as

F̂K(x) =
1

n
Σn

i=11Ki≤x (1.4)

Here subscript K can be chosen as Y or Z. Similarly, quantile and sample
quantile function are respectively defined as

ξK(p) = inf {x|FK(x) ≥ p} , ξ̂K(p) = inf
{
x|F̂K(x) ≥ p

}
(1.5)

Assumption A1: Zi, i = 1, 2, ... are i.i.d with strictly increasing cumulative
distribution function (but we do not assume continuity).

Assumption A2: Zi, i = 1, 2, ... are causal stationary linear short range de-
pendent processes (details can be seen in [18]). That is, Zk = Σ∞

i=0aiεk−i with
a0 = 1, εi, i = 1, 2, ... being i.i.d. random variables and satisfy

sup
x∈R

fε(x) + |f ′
ε(x)|+ |f ′′

ε (x)| < ∞ (1.6)

Here fε is density of innovation ε. Moreover, suppose ∃α > 0, q ≥ 2 such that
E|εk|α < ∞ and

Σ∞
i=1|ai|min(α/q,1) < ∞ (1.7)

Assumption A3: Zi, i = 1, 2, ... satisfy α-mixing condition (details can be
seen at [12] and [1]).

Assumption B1: g is strictly monotonically increasing (for decreasing g, h =
−g is increasing).

Assumption B2: g is differentiable.
Assumption B3: g is twice continuously differentiable, fZ is continuously

differentiable on (a, b) defined in table 1. Moreover, we assume that ∃γ > 0 such
that

sup
a<x<b

FZ(x)(1− FZ(x))

f2
Z(x)

|f ′
Z(x)− fZ(x)

g′′(x)

g′(x)
| ≤ γ (1.8)

Notice that this equation implies that g′(x), fZ(x) > 0 on (a, b), and correspond-
ingly fY (x) > 0, x ∈ (g(a), g(b)).

While other conditions are natural and frequently used in density and quan-
tile estimation, condition A2 and B3 seems complex and needs explanation. For
condition A2, uniform bound of density fε and its derivative is used to make
sure that Bahadur representation [2] of density fZ exists and uniform conver-
gence in theorem 5 holds. For point-wise estimation or construction of point-wise
confidence intervals, (1.6) can be weakened by introducing a stronger mixing
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Table 1

Frequently used notations

Notation Meaning
FZ(x), fZ(x) Cumulative distribution and density of known random variable Z
FY (x), fY (x) Cumulative distribution and density of unknown random variable Y

f̂Y (x) Estimated density of unknown random variable
ξK(p) pth quantile function of distribution of random variable K

ξ̂K(p) pth sample quantile function of random variable K
g(x) Transformation function satisfying Yi = g(Zi), i = 1, 2, ...n

ĝ(x) Estimated transformation function at x

F̂K(x) Empirical distribution function of random variable K
a, b Here, −∞ ≤ a = sup {x|FZ(x) = 0}, ∞ ≥ b = inf {x|FZ(x) = 1}
1K∈A If K ∈ A, then function is equal to 1 and the function is equal to 0

otherwise

condition [16]. In section 4, we will construct a counter example to see what
happens when condition A2 is violated. Necessity of (1.7) can be illustrated by
an example when α = 2. Suppose α = 2, covariance of Z0 and Zk, k > 0 is given
by

Cov(Zk, Z0) = Σ∞
i=0Σ

∞
s=0aiasEεk−iε−s = Eε20Σ

∞
s=0ak+sas

⇒ Σ∞
k=0|Cov(Zk, Z0)| ≤ Σ∞

s=0|as|(Σ∞
k=s|ak|)

(1.9)

If (1.7) holds in this example, then summation of covariance is finite, which
implies that dependency of data is not strong.

According to lemma 1.4.1 in [5], if FY (x)(1 − FY (x))
|f ′

Y (x)|
f2
Y
(x)

is uniformly

bounded, then deviation of composite function fY (F
−1
Y (y)) with y 
= y0, a fixed

point, can be controlled by a simple function of y, y0 ∈ (0, 1) globally. This im-
plies uniform convergence of quantile processes. Property of quantile function
is relatively hard to study because it grows fast when x is close to a and b near
which density is always small and we need an easily-controlled upper bound to
perform analysis. Besides, in confidence band estimation and testing, we need
uniform convergence of quantile process ξ̂Y , so this condition is a must. Combine
this condition with (1.1) and lemma 1 and 2, we get (1.8). Example 4, figure
2(c) and 2(d) shows that, when assumption B3 is violated, confidence bands will
be wide even when sample size is relatively large.

2. Estimation of transformation function with i.i.d data

In this section, we discuss estimation and test of transformation function on i.i.d
data, including estimation, construction of confidence intervals and confidence
bands. Based on Kolmogorov-Smirnov test, we provide a test on whether the
transformation function is equal to the desired one and discuss performance of
test under an alternative. First we provide two lemmas.

Lemma 1. Assume random variable Y, Z satisfy Y = g(Z) and g satisfies B1,
with the notation in table 1, then we have

FY (g(x)) = FZ(x), ∀x ∈ [a, b] (2.1)
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Proof. Because g is strictly increasing, we have

FY (g(x)) = P (Y ≤ g(x)) = P (g(Z) ≤ g(x)) = P (Z ≤ x) = FZ(x) (2.2)

and the lemma is proved.

Lemma 2. Assume B1, random variable Y = g(Z), then we have, ∀p ∈ (0, 1)

ξY (p) = g(ξZ(p)), ξ̂Y (p) = g(ξ̂Z(p)) (2.3)

Proof. From definition, on one hand, FY (g(ξZ(p))) = FZ(ξZ(p)) ≥ p, this is
because FZ is right continuous. Therefore, ξY (p) ≤ g(ξZ(p)). On the other hand,
since g is strictly increasing, its inverse function g−1(y) is strictly increasing.
Therefore we have ξZ(p) ≤ g−1(ξY (p)) ⇒ g(ξZ(p)) ≤ ξY (p), and the first part

is proved. For the second part, we notice that F̂K(x),K = Y, Z are also a right
continuous cumulative distribution functions, thus the discussion above can be
directly applied to ξ̂Y (p), ξ̂Z(p), and the second part is proved.

2.1. Estimation of transformation function

This section aims at providing an estimator and constructing confidence inter-
vals and confidence bands for transformation function. Combine with lemma 1
and 2, the estimator is not difficult to provide.

Theorem 1. Suppose A1 and B1, and for ∀x ∈ (a, b) being given, define ĝ(x) =

ξ̂Y (FZ(x)). Then we have

ĝ(x) →a.s. g(x), n → ∞ (2.4)

Moreover, for α ∈ (0, 1/2) being given, suppose ζ(y) being quantile function of
standard normal distribution, then

lim inf
n→∞

P (ξ̂Y (c1) ≤ g(x) ≤ ξ̂Y (c2)) ≥ 1− α (2.5)

Here, c1 = FZ(x)+
ζ(α/2)

√
FZ(x)(1−FZ(x))√

n
, c2 = FZ(x)+

ζ(1−α/2)
√

FZ(x)(1−FZ(x))√
n

.

Notice that |c2− c1| = O
(

1√
n

)
, at x ∈ R such that ξY (FZ(x)) is continuous,

according to convergence of sample quantile (proposition 5.7 in [4] and Glivenko–

Cantelli theorem), we have c2 − c1 → 0 ⇒ ξ̂Y (c2) − ξ̂Y (c1) → 0 in probability
as sample size increases. Thus, we can use the result in theorem 1 to construct
point-wise confidence intervals. If in addition we assume density of FZ exists,
then we can apply uniform convergence theorem in [5] to construct confidence
bands.

Theorem 2. Suppose A1, B1, B3, and suppose δn = (25 log log n)/n, define
φ(x) as a kernel function satisfying the following condition:

1) φ is of finite support, i.e. there exists a compact interval [d1, d2] such that
supp φ ⊆ [d1, d2].
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2) φ is continuously differentiable on [d1, d2].

3)
∫ d2

d1
φ(x) = 1. We define the estimated density f̂Y (x) as

f̂Y (x) =
1

nh
Σn

i=1φ(
x− Yi

h
) (2.6)

Here, h = h(n) is a bandwidth satisfying (log log n)1/2h → 0 and
√
nh2

log logn → ∞.

Also suppose that [c, d] is a closed interval in R such that a < c < d < b. Then
we can find a Kiefer process K(y, n), 0 ≤ y ≤ 1 [6] such that

sup
c≤x≤d

|
√
n(ĝ(x)− g(x))f̂Y (ĝ(x))−

K(FZ(x), n)√
n

| → 0 a.s. (2.7)

Remark 1. φ and h(n) satisfying requirements in theorem 2 exist. For example,
we can choose φ as

φ(x) =

{
1
2π (1 + cos(x)) if x ∈ [−π, π]

0 otherwise
(2.8)

and h(n) = (1/n)1/6.

Remark 2 (Estimating derivative of g). If we assume A1, B1 and B3, according
to lemma 1,

fY (g(x))g
′(x) = fZ(x) ⇒ g′(x) = fZ(x)/fY (g(x)) (2.9)

This implies that we can use estimator fZ(x)

f̂Y (̂g(x))
to estimate the derivative of g.

Here we prove
fZ(x)

f̂Y (ĝ(x))
→a.s. g

′(x) (2.10)

with given x ∈ [c, d] and bandwidth h(n) is chosen similar as in theorem 2.

Proof. From (A.8), (A.9) and (A.14) and assumption B3,

|f̂Y (ĝ(x))− fY (g(x))| ≤ |f̂Y (ĝ(x))− f̂Y (g(x))|+ |f̂Y (g(x))− fY (g(x))|

= Oa.s.

(
(log logn)1/2

h2
√
n

)
+Oa.s.

(
h+

(log logn)1/2

h
√
n

)
(2.11)

This implies that f̂Y (ĝ(x)) →a.s. fY (g(x)). For fY (g(x)) 
= 0 and fZ(x) is
continuous at x, the result is proved.

By applying theorem 2, we are able to construct confidence band for transfor-
mation function. Compare with point-wise confidence intervals, confidence band
is more reliable since we do not have to assign x a priori and we can monitor
different x in once observation. For example, in example 2, acceptable design
points of a product can be a closed interval instead of a fix point. If this hap-
pens, we want to control the estimation error uniformly among the acceptable
design points and we need a uniformly confidence band.
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Table 2

Bisection method for finding c in constructing confidence band (discussion can be seen in
corollary 2)

Input: Confidence level 1− α, 0 < α < 1, error tolerance ε,
start point 0 < a < b
while s(a)× s(b) > 0, do

a = a/2, b = 2× b
while |b− a| > ε, do

If s(a)× s(a+b
2

) ≤ 0

a = a, b = a+b
2

Else
a = (a+ b)/2, b = b

Output (a+ b)/2

Corollary 1 (Confidence band within an interval). Suppose the same conditions
as in theorem 2, and suppose c > 0 is a positive number, then we have

lim
n→∞

supP ( sup
c≤x≤d

|
√
n(ĝ(x)− g(x))f̂Y (ĝ(x))| > c) ≤ P ( sup

0≤y≤1
|B(y)| > c)

= Σk �=0(−1)k+1 exp(−2k2c2)
(2.12)

In real situation, we always construct confidence bands with given confidence
level 1 − α. Thus, in corollary 2, we use bisection method in [13] to derive
constant c in (2.12) such that P (sup0≤y≤1 |B(y)| > c) → α when tolerance ε in
table 2 tends to 0.

Corollary 2. Suppose 0 < α < 1 is a given constant and c is derived from
table 2 with s(x) = P (sup0≤y≤1 |B(y)| > x)− α and tolerance ε. Then we have
P (sup0≤y≤1 |B(y)| > c) → α as ε → 0.

Proof. From (A.20), we know that s(x) is continuous on (0,∞). Also, from
definition of s, we know that s(x) → 1−α > 0 as x → 0 and s(x) → −α < 0 as
x → ∞ and s(x) is decreasing. Therefore, s(x) = 0 has a solution c∗ in (0,∞)
and for arbitrary start point a, b, after iterations we have a ≤ c∗ ≤ b. From
bisection method, we have |c − c∗| ≤ ε and since s(x) is continuous at c∗, we
know that P (sup0≤y≤1 |B(y)| > c) → α as ε → 0.

2.2. Testing

In this section, we mainly consider testing H0 : g = h versuses H1 : g 
= h under
uniform norm. Here h is a known or desired transformation function and g is
the underlying one. We consider the test that reject H0 when

sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
|ĝ(x)− h(x)| > c (2.13)

Here c is a positive constant and δn is the same as in theorem 2. Similar as
confidence band estimation, we need to quantify influence of randomness uni-
formly. However, in the test setting, asymptotically we want to know value of
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|g(x) − h(x)| in [a, b] − {±∞} in order to calculate the infinity norm, so we
choose compact set δn ≤ FZ ≤ 1− δn with δn → 0 as n → ∞, which asymptot-
ically equals [a, b]−{±∞} instead of a fixed interval [c, d]. One of the purposes
for testing is illustrated in example 2, another purpose is to detect abnormal
status of a device. Transformation function h for a normal operated device is
fixed, and if estimated transformation function ĝ 
= h with high probability, it is
possible that something goes wrong with the device. We will discuss asymptotic
behavior of test statistics (2.13) under the null in theorem 3 and one alternative
in theorem 4.

Theorem 3. Suppose A1, B1, B3. Consider testing H0 : g(x) = h(x) ∀ x ∈
(a, b) versus H1 : ∃a < x < b such that g(x) 
= h(x). Suppose δn is defined the
same as in theorem 2. Then under the null hypothesis, we have, given c > 0,

P ( sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
|ĝ(x)− h(x)| > c) → P ( sup

0≤y≤1
|B(y)| > c)

= Σk �=0(−1)k+1 exp(−2k2c2)

(2.14)

Here B(y) is a Brownian bridge.

Like theorem 14.2.2 in [10], we also consider power of test (2.13) under non-
asymptotic alternatives. Theorem 4 shows that power of test (2.13) will decrease

if deviation of h and g in uniform norm is of order O
(

1√
n

)
. Theorem 4 also

provides a term supa<x<b

√
nfZ(x)|h(x)−g(x)|

g′(x) to quantify influence of closeness of

h and g on power. In the abnormality detection problem, this term can be used
to evaluate whether the test result is trustful or not.

Theorem 4. Consider the test (2.13) and same condition as in theorem 3, h is
continuously differentiable on [a, b] and has positive derivative on (a, b). Define

events Mn = supδn≤FZ(x)≤1−δn

√
n fZ(x)

h′(x) |ĝ(x)− h(x)| > c.

1) If ∃x0 ∈ (a, b) such that g(x0) 
= h(x0), then P (Mn) → 1 as n → ∞.

2) We suppose alternative H ′
1 : h(x) = g(x) + 1√

n
s(x), here s(x) ∈ C1 on

[a, b] and s′(x) ≥ 0 on [a, b]. Suppose B(y) is a standard Brownian bridge, then
the power of test satisfies

lim
n→∞

supP (Mn) ≤ P ( sup
0≤y≤1

|B(y)| ≥ c− sup
a<x<b

fZ(x)|s(x)|
g′(x)

) (2.15)

Theorem 4 shows that supa<x<b

√
nfZ(x)|h(x)−g(x)|

g′(x) influences power of test. If

it is bigger than c, asymptotically power of test gets close to 1. On the contrary,
if this term is less than c, then the power of test will be less than 1 even when

sample size is large. From another perspective, if supa<x<b

√
nfZ(x)|h(x)−g(x)|

g′(x) is

small, in order to maintain sufficiently large power, constant c cannot be too
large, which affects confidence level of test.
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3. Estimation for dependent data

In this section, we concentrate on transformation function estimation with
weakly dependent data. We first provide convergence and uniform convergence
result and then we will use subsampling algorithm to construct point-wise con-
fidence interval. Theorem 5 and 6 are generalization of theorem 1. Linear pro-
cesses, including ARMA model, are widely used in modelling dependent data,
especially in time series analysis. In this section, we focus on linear process in
the following analysis.

Theorem 5. Assume A2, B1, B2, then for given x, if fZ(x) > 0, then we
have ĝ(x) →a.s. g(x). If in addition we suppose [c, d] being interval such that
infc≤x≤d fZ(x) > 0, then we have ĝ(x) → g(x) almost surely and uniformly on
[c, d].

Remark 3. We only need uniform bound on fε and f ′
ε to prove point-wise

convergence. For uniform convergence in theorem 5, in addition we need uniform
bound on f ′′

ε .

Theorem 6 proves consistency of subsampling point-wise confidence intervals.
Subsampling involves calculating statistics with sequential portions of data and
deriving asymptotic valid confidence intervals based on those statistics [12].
Since the portions of data are also realizations of random variables with same
joint distribution, as long as asymptotic distribution of the statistics exists, the
portions of data catch the dependent structure of underlying random variables.
Therefore, subsampling is a useful tool to deal with dependent data.

Theorem 6. Suppose B1, B2, A2 and A3, and suppose x is a given constant
such that ∃c < x < d and infc≤y≤d fZ(y) > 0, g(x)′ > 0. Define η being a
positive constant. For b = b(n) satisfying: b/n → 0 and b → ∞, we define
statistics

Sn,b(η, x) =
1

n− b+ 1
Σn−b+1

i=1 1
{√

b|ĝb,i(x)− ĝ(x)| ≤ η
}

(3.1)

Here, ĝb,i(x) = ξ̂Y,b,i(FZ(x)) with ξ̂Y,b,i(p) being sample quantile with sample
{Yi, Yi + 1, ..., Yi + b− 1} Then, we have:

1) Sn,b(η, x) → P (
√
n|ĝ(x)− g(x)| ≤ η) in probability.

2) Suppose d(1− α) = inf {η|Sn,b(η, x) ≥ 1− α}, then

P (
√
n|ĝ(x)− g(x)| ≤ d(1− α)) → 1− α (3.2)

In example 3, with the help of theorem 5 and 6, we can make sure that
estimator ĝ(x) converges almost surely to the true transformation function and
for every given x, theorem 6 can be used to quantify the influence of randomness
on estimation.
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4. Numerical experiments and examples

In this section, we demonstrate finite sample performance on the aforementioned
estimator. We divide this section into two parts. In the first part, we apply this
estimator to several constructed data and show what happens when conditions
are violated. In the second part, we will apply the aforementioned theories to
study a real problem. In this problem, we want to know how well the primary
settler of an urban waste water treatment plant cleans the organics in waste
water (detail explanation and data can be gathered at [7] and the reference
therein).

4.1. Finite sample behavior of statistics on constructed data

For the independent cases, we will use false rate, which is defined as the ratio
of the number of cases in which true value is outside confidence intervals and
the number of all cases, to evaluate accuracy of confidence intervals. For a 95%
confidence interval, ideal false rate should be no large than 0.05. For confidence
intervals, we fix a point and see how false rate changes with different sample size.
For confidence bands, we randomly choose x ∈ R satisfying normal distribution
and see whether g(x) is outside confidence band or not.

Example 4 (i.i.d data with normal distribution). In this example, we suppose
Zi, i = 1, 2, ..., n satisfy standard normal distribution. Notice that, for large x,

1− FZ(x)

fZ(x)
=

∫ ∞

x

exp

(
1

2
x2 − 1

2
t2

)
dt =

∫ ∞

0

exp

(
−1

2
y2 − xy

)
dy

≤
∫ ∞

0

exp(−xy)dy =
1

x

(4.1)

Similarly, for x → −∞, FZ(x)
fZ(x) = O

(
1
|x|

)
. We also have |f ′

Z(x)/fZ(x)| = x.

Constraint x ∈ [−2, 2], and choose g(x) as 1) (x + 4)2, 2) log(x + 5), 3) x3.
Notice that for g(x) = x3, it has 0 derivative at x = 0 and g′′/g′ is of order
1/|x|, which tends to infinity as x → 0. This violates assumption B3. Figure
3(c) and 2(d) show that confidence band will be wide when B3 is violated. Other
functions all satisfy assumption B3. Main results are demonstrated in figure 4
and table 3. In table 3, confidence level is chosen as 0.95 and number of iteration
is 3000.

According to figure 4, when derivative of g(x) is not close to 0, confidence
bands will be tight and close to confidence intervals, and when |g′(x)| is small,
the performance of confidence bands will be inferior. When assumption B3 is
violated, width of confidence bands will be enlarged significantly. The width of
confidence intervals is not sensitive for small |g′(x)|. However, large |g′| will
affect the width of confidence intervals. Table 3 shows that, false rates of confi-
dence intervals and bands are about 0.05 with sample size is about 1000.

In the test problem, we evaluate performance of tests by ratio of correct test,
which is defined as the ratio of the number of tests making correct decisions and
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Table 3

Finite sample performance of estimated confidence intervals under normal data and
different transformation functions, confidence level is 0.95, ci means confidence interval and

cb means confidence band

function x sample size false rate for ci false rate for cb

(x+ 4)2 4.0
300 0.479 0.121
600 0.110 0.077
1200 0.050 0.051

log(x+ 5) 3.5
300 0.135 0.122
600 0.073 0.075
900 0.048 0.054

x3 3.5
300 0.346 0.116
600 0.092 0.079
900 0.046 0.048

Fig 2. 2(a) to 2(c) respectively demonstrates behavior of estimator for different g(x) when
sample size is 1500 and confidence level is 0.95, and 2(d) demonstrates performance of es-
timator with 20000 samples. Red line, blue line and green dashed line respectively represents
the estimated transformation function, point-wise confidence interval and confidence band for
transformation function. Stars represent true values of transformation function. Notice that
g(x) = x3 violates assumption B3. From 2(c) and 2(d) we can see that confidence band will
be significantly enlarged when assumption B3 is not satisfied.

the number of all tests. In ideal situation, ratio of correct test should be close
to confidence level 1−α under null hypothesis and close to 1 under alternatives
asymptotically.



Estimating transformation function 3107

Table 4

Ratio of correct test (example 5) under different g(x) and h(x), sample size is 1000,
confidence level is 0.85

h(x)/g(x) h(x) h(x) + x/n1/8 h(x) + x/
√
n h(x) + log(x+ 5)/

√
n

(x+ 4)2 0.84 0.32 0.165 0.14
log(x+ 5) 0.87 1.0 0.985 1.0
ex 0.91 1.0 0.49 0.665

Table 5

Ratio of correct test (example 5) under different g(x) and h(x), sample size is 10000,
confidence level is 0.85

h(x)/g(x) h(x) h(x) + x/n1/8 h(x) + x/
√
n h(x) + log(x+ 5)/

√
n

(x+ 4)2 0.89 0.97 0.17 0.615
log(x+ 5) 0.885 1.0 0.99 1.0
ex 0.895 1.0 0.455 0.855

Example 5 (Testing for equivalence of transformation function). In this exam-
ple, we examine finite sample performance of test under different g(x) and dif-
ferent perturbations. We suppose sample size is n1 = 1000, n2 = 10000 and h(x)
equals 1) (x+4)2, 2) log(x+5) and 3) ex. Random variable Zi, i = ...,−1, 0, 1, ...
satisfy standard normal distribution. Also, we suppose the underlying g(x) sat-
isfies: 1) g(x) = h(x), 2) g(x) = h(x) + x

n1/8 , 3) g(x) = h(x) + x√
n
. We suppose

H0 : g(x) = h(x), perform tests for 200 times and calculate the ratio of correct
tests to evaluate performance of tests. Under assumption 1), correct test should
accept H0 to avoid first kind error and under assumption 2) and 3), correct test
should reject H0 to avoid second kind error. Confidence level is set as 0.85. The
result is demonstrated in table 4 and 5. From the experiment, when difference

of h(x) and underlying g(x) is of O
(

1√
n

)
, whether or not the test can separate

h and g depends on the form of perturbations and function g.

For dependent situation, we also apply false rate to evaluate performance of
estimator. When assumption A2 is violated, we give an example and it shows
that subsampling point-wise confidence intervals fail to be correct under this
situation.

Example 6 (Transformation function estimation with MA data). In this ex-
ample, we suppose that Zi, i = 1, 2, ..., n are MA(m) normal data. That is, we
suppose i.i.d innovations εi, i = ...,−1, 0, 1, ... satisfy standard normal distribu-
tion N(0, σ2) for some σ > 0 and let Zi = Σm

k=0αkεi−k, α0 = 1. Notice that,
marginal distribution of Zi is normal distribution N(0, σ2Σm

k=0α
2
k). MA(m) se-

quence is strong mixing (definition can be seen in [1]) for Zt and Zt+s, s > k
are independent. Therefore, condition A2 is satisfied for MA(m) sequence with
normal innovation.

For a normal example, we choose sample size n = 3000 and m = 10 with
coefficients αk = 0.90k, k = 1, 2, ..., 10 and εi ∼ N(0, 1). For a counter exam-
ple, we choose sample size n = 3000, m = 50000 and coefficients αk = 1, k =
1, 2, ..., 50000, εi ∼ N(0, 10−6). Since sample size is only 3000, the second ex-
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Table 6

Finite sample performance of estimated confidence intervals for dependent data

function x sample size lag false rate for confidence interval

(x+ 4)2

1.0 3000 5 0.078
1.0 6000 5 0.061
1.0 6000 10 0.096
2.0 6000 5 0.069

log(x+ 10)

1.0 3000 5 0.071
1.0 6000 5 0.064
1.0 6000 10 0.066
2.0 6000 5 0.052

x3

1.0 3000 5 0.016
1.0 6000 5 0.025
1.0 18000 5 0.051
1.5 6000 5 0.03
1.0 15000 10 0.038

ample has strong dependency and large supx∈R fε as well.
Similar as example 4, g(x) is chosen as 1) (x+4)2, 2) log(x+10), 3) x3. We

choose b(n) in theorem 6 as n3/5. For the first case, we also compute false rate
defined in example 4 and the result is demonstrated in table 6. From figure 3 and
table 6, we see that dependency affects accuracy of confidence intervals. As de-
pendency becomes stronger, we need more data to construct a precise confidence
interval.

4.2. Numerical study on water treatment plant data

In this section, we apply results mentioned above to study relationship between
chemical demand of oxygen in input waste water (DQO-E) and the chemical
demand of oxygen in water that has passed the primary settler (DQO-D) in a
waste water treatment plant [7]. This index is always used to quantify amount
of organics in water. Instead of regression model, here we will treat DQO-E in
wasted water as a random variable and suppose primary settler as a function
g that decreases the concentration of organics in the waste water. Thus, the
remaining organics (quantified by DQO-D) is equal to g(DQO−E). Intuitively,
heavier the input water is polluted, more organics will be remained after the
water is cleaned. Thus, it is safe to assume that g is strictly increasing. Q-Q plot
of gamma distribution and DQO-E shows that gamma distribution is a suitable
approximation for DQO-E. Through maximum likelihood estimate, shape and
scale parameter are estimated as 10.97 and 37.10, so we suppose that DQO-E
has gamma distribution Γ(10.97, 0.0270). Notice that gamma distribution with

shape and rate α > 1 and β has density βα

Γ(α)x
α−1 exp(−βx). Thus, we have

f ′
Z(x)

fZ(x)
=

α− 1

x
− β (4.2)

When |x| is sufficiently small, fZ(x) > 0 is increasing according to (4.2). From
mean value theorem, FZ(x) = xfZ(sx) ≤ xfZ(x), here 0 ≤ sx ≤ x. Therefore,
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Fig 3. 3(a) to 3(c) respectively demonstrates behavior of estimator for different g(x) when
sample size is 3000 and confidence level is 0.95. Red line, blue line and stars respectively rep-
resents the estimated transformation function, point-wise confidence interval and true values
of transformation function. 3(d) is a counter example which is strong dependent and has large
supx∈R fε.

as long as
g′′(x)x

g′(x)
= O (1) , x → 0 (4.3)

condition B3 is satisfied when x → 0. On the other hand, notice that, as x being
large

1− FZ(x)

fZ(x)
= x

∫ 1

0

(z + 1)α−1 exp(−βxz)dz + x

∫ ∞

1

(z + 1)α−1 exp(−βxz)dz

≤ x

∫ 1

0

2α−1 exp(−βxz)dz + 2α−1

∫ ∞

0

zα−1

xα−1
exp(−βz)dz

=
2α−1

β
(1− exp(−βx)) +

2α−1

βαxα−1
Γ(α)

(4.4)
Here, Γ(α) is gamma function and since α > 0, gamma function converges
absolutely. Thus, as long as

g′′(x)

g′(x)
= O (1) , x → ∞ (4.5)
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Table 7

Test for fitting gamma distribution of chemical demand of oxygen in input waste water

Null assumption statistics P-value
h(x) = x 0.768 0.546

Fig 4. Q-Q plot for chemical demand of oxygen in input waste water

condition B3 is satisfied as x → ∞. We suppose transformation function g in
the example satisfies condition (4.3) and (4.5).

We apply the test introduced in theorem 3 to test whether gamma distri-
bution suits DQO-E data or not (that is, we suppose DQO-E is a function h
of a Γ(10.97, 0.0270) random variable and test h(x) = x). In order to avoid
bias introduced by estimated shape and scale parameters, we use Monte Carlo
method presented in Julian and Peter [3] to calculate p-value. The result is
demonstrated in table 7. Figure 5 demonstrates the relation between DQO-E
and DQO-D. Slope of g will decrease as input demand of oxygen in waste water
increases, so we can make conclusion that primary settler is efficient in cleaning
organics when there is high concentration of organic matters in waste water.

5. Conclusion

In this paper, we focus on model Yi = g(Zi), i = 1, 2, ... with Zi being random
variables with known distribution and g(x) being an unknown strictly monotonic
function. We try to estimate g(x) in this model. For i.i.d data, we propose
an estimator of g(x) and construct point-wise confidence intervals as well as
confidence bands. For short-range dependent data, we prove the consistency
of the proposed estimator and use a resampling method to create confidence
intervals. Moreover, a goodness of fit test for correctness of g(x) is presented
and an alternative of this test is discussed as well.

In numerical part, we study finite sample performance of proposed estimator
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Fig 5. Relation between DQO-E and DQO-D (definition see 4.2), sample size is 518 and
confidence level is 0.99

and test for different g(x) and alternatives. Width of confidence bands are sen-
sitive with g′(x). If g′(x) is close to 0, then confidence bands will be much wider
than point-wise confidence intervals and if g′ is relatively large, then confidence
bounds will be close to confidence intervals. On the contrary, small derivative
of g will not severely affect point-wise confidence intervals.

In reality, this model can be applied to study relations between input sig-
nals with known distribution and responses with unknown distribution, such as
correspondence between quality of materials and quality of products, electricity
signals with white noises and power of motors, significance of a symptom and
concentration of toxic materials in the atmosphere, etc.

Appendix A

Proofs of the main theorems will be demonstrated here.

Proof of theorem 1. For the 1st part, according to [4],

ĝ(x) →a.s. g(x) ⇔ Σ∞
n=11|̂g(x)−g(x)|>ε

< ∞ for ∀ε > 0 (A.1)

From definition of sample quantile, we have

1
ĝ(x)−g(x)>ε

≤ 1
F̂Y (ξY (FZ(x))+ε)<FZ(x)

(A.2)

From strong law of large number (theorem 6.2 in [4]), we have F̂Y (ξY (FZ(x))+
ε) →a.s. FY (ξY (FZ(x)) + ε) > FZ(x), thus

Σ∞
i=11F̂Y (ξY (FZ(x))+ε)<FZ(x)

< ∞ (A.3)
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Also, similarly we can get that Σ∞
n=11ĝ(x)−g(x)<−ε

< ∞ and we prove the result.

For the second part, we prove that

lim
n→∞

supP (ξ̂Y (c1) > g(x)) ≤ α/2, lim
n→∞

supP (ξ̂Y (c2) < g(x)) ≤ α/2 (A.4)

For large n, c1 +
1
n < 1 and according to definition of ξ̂Y (c1) and c1, ξ̂Y (c1) >

g(x) ⇒ F̂Y (g(x)) ≤ F̂Y (ξ̂Y (c1)) ⇒ F̂Y (g(x)) < c1 + 1
n . For Zi, i = 1, 2, ..., n

obeys A1, Yi = g(Zi), the observed data Yi are i.i.d and correspondingly 1Yi≤x

are i.i.d observations. From central limit theorem, and lemma 1, we have

√
n(F̂Y (g(x))− FZ(x)) →D N(0, FZ(x)(1− FZ(x))) (A.5)

Thus,

lim
n→∞

supP (ξ̂Y (c1) > g(x))

≤ lim
n→∞

P

(√
n(F̂Y (g(x))− FZ(x))√
FZ(x)(1− FZ(x))

≤ ζ(α/2) +
1√

n(FZ(x)(1− FZ(x)))

)
= α/2

(A.6)

Similarly, we have limn→∞ supP (ξ̂Y (c2) < g(x)) ≤ α/2 and theorem 1 is
proved.

Proof of theorem 2. Because of B3, then according to [6], since Y = g(Z), Z ∈
[a, b], and g strictly increasing, then Y ∈ [g(a), g(b)] and according to lemma 1,
we have fY (g(x))g

′(x) = fZ(x), f
′
Y (g(x))g

′(x)2 + fY (g(x))g
′′(x) = f ′

Z(x), thus
suppose z = g(x) and

sup
g(a)<z<g(b)

FY (z)(1− FY (z))|
f ′
Y (z)

f2
Y (z)

|

= sup
a<x<b

FZ(x)(1− FZ(x))

f2
Z(x)

|f ′
Z(x)− fZ(x)

g′′(x)

g′(x)
| ≤ γ

(A.7)

There exists a version of Kiefer process (definition see [6]), such that

sup
δn≤FZ(x)≤1−δn

|n(ĝ(x)− g(x))fY (g(x))−K(FZ(x), n)|

=a.s. O((n log logn)1/4(logn)1/2)
(A.8)

For sufficiently large n, δn < FZ(c) < FZ(d) < 1− δn and the estimation above
holds for ∀x ∈ [c, d]. On the other hand, for φ′ is continuous on its support
[d1, d2] and equal to 0 outside its support, define φm = maxx∈[d1,d2] |φ′|, from
mean value theorem, we have, ∃η ∈ R such that

|f̂Y (ĝ(x))− f̂Y (g(x))| = |f̂Y (η)′(ĝ(x)− g(x)| ≤ φm

h2
|ĝ(x)− g(x)| (A.9)
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We next consider f̂Y (g(x))− fY (g(x)). From integral transformation, we have

f̂Y (g(x))− fY (g(x)) =
1

h

∫ ∞

−∞
F̂Y (g(x)− hy)φ′(y)dy − fY (g(x))

=
1

h

∫ ∞

−∞
(F̂Y (g(x)− hy)− FY (g(x)− hy))φ′(y)dy

+

∫ ∞

−∞
φ(y)(fY (g(x)− hy)− fY (g(x)))dy

(A.10)

From theorem A in [6], since FY (Yi) are uniform random variable, we pick
y = FY (g(x) − hz) in that theorem, suppose that c ≤ x ≤ d and h sufficiently
small such that g(a) < g(c)− hd2, g(b) > g(d)− hd1, use lemma 1 and we have

sup
c≤x≤d, d1≤z≤d2

|n(F̂Y (g(x)−hz)−FY (g(x)−hz))−K(FZ(x), n)| =a.s. O(log2 n)

(A.11)
For n sufficiently large and h < h0, h0 sufficiently small, we have g(a) < g(c)−
h0d2 < g(d)−h0d1 < g(b) and since fY (x) is continuous differentiable according
to B3, its derivative at [g(c)− h0d2, g(d)− h0d1] is bounded, and suppose f0 =
maxx∈[g(c)−h0d2,g(d)−h0d1] |f ′

Y (x)|. From the law of iterated logarithm [6], we
have

lim sup
n→∞

sup
0≤y≤1

|K(y, n)|/(2n log logn)1/2 =a.s. 1/2 (A.12)

From assumption B3, [c, d] is a closed interval and minx∈[c,d] |fY (g(x))| > 0.
According to (A.8), for sufficiently large n,

sup
x∈[c,d]

|ĝ(x)− g(x)| ≤ sup
x∈[c,d]

|K(FZ(x), n)

n|fY (g(x))|
|+Oa.s.(

(log log n)1/4(logn)1/2

n3/4
)

= Oa.s.(
(log logn)1/2√

n
)

(A.13)
Besides, supp φ ⊆ [d1, d2], from (A.11) and (A.10), we have

sup
c≤x≤d

|f̂Y (g(x))− fY (g(x))|

≤ 1

h

∫ ∞

−∞
|(F̂Y (g(x)− hy)− FY (g(x)− hy))φ′(y)|dy

+

∫ ∞

−∞
φ(y)|(fY (g(x)− hy)− fY (g(x)))|dy

≤ ( sup
0≤y≤1

|K(y, n)

n
|+Oa.s.(

log2 n

n
))
φm(d2 − d1)

h
+ f0h

∫ d2

d1

|yφ(y)|dy

=a.s. O(h+
(log logn)1/2

h
√
n

)

(A.14)
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To prove theorem 2, from triangle inequality and (A.8), (A.9) and (A.14),

sup
c≤x≤d

|
√
n(ĝ(x)− g(x))f̂Y (ĝ(x))−

K(FZ(x), n)√
n

|

≤ sup
c≤x≤d

|
√
n(ĝ(x)− g(x))fY (g(x))−

K(FZ(x), n)√
n

|

+ sup
c≤x≤d

√
n|ĝ(x)− g(x)||f̂Y (ĝ(x))− f̂Y (g(x))|

+ sup
c≤x≤d

√
n|ĝ(x)− g(x)||f̂Y (g(x))− fY (g(x))|

≤ Oa.s.(
(log logn)1/4(logn)1/2

n1/4
) + sup

c≤x≤d

√
nφm

h2
|ĝ(x)− g(x)|2

+Oa.s.((log logn)
1/2h+

(log logn)

h
√
n

)

= Oa.s.(
(log logn)1/4(logn)1/2

n1/4
) +Oa.s.(

log logn√
nh2

)

+Oa.s.((log logn)
1/2h+

(log logn)

h
√
n

)

(A.15)

Thus, let (log logn)1/2h → 0 and
√
nh2

log logn → ∞, we prove the result.

Proof of corollary 1. Define An =
{
supc≤x≤d |

√
n(ĝ(x)− g(x))f̂Y (ĝ(x))| > c

}
.

From triangle inequality,

sup
c≤x≤d

|
√
n(ĝ(x)− g(x))f̂Y (ĝ(x))|

≤ sup
0≤y≤1

|K(y, n)√
n

|+ sup
c≤x≤d

|
√
n(ĝ(x)− g(x))f̂Y (ĝ(x))−

K(FZ(x), n)√
n

|
(A.16)

For ∀ ε> 0 given and sufficiently large n, P (supc≤x≤d |
√
n(ĝ(x)−g(x))f̂Y (ĝ(x))−

K(FZ(x),n)√
n

| < ε) = 1. Therefore, P (An) ≤ P (sup0≤y≤1 |
K(y,n)√

n
| > c− ε) for large

n. According to [5], K(y, n)/
√
n is a Brownian bridge and according to [5],

P (sup0≤y≤1 |B(y)| ≤ c) = 1−Σk �=0(−1)k+1 exp(−2k2c2). Thus, from continuity
of measure,

lim
n→∞

supP (An) ≤ lim
ε→0

P ( sup
0≤y≤1

|K(y, n)√
n

| > c− ε) = P ( sup
0≤y≤1

|K(y, n)√
n

| ≥ c)

(A.17)

The final thing is to prove that P (sup0≤y≤1 |
K(y,n)√

n
| = c) = 0. From continuity

of measure, for c > 0,

P ( sup
0≤y≤1

|K(y, n)√
n

| = c) = lim
n→∞

P (c− 1/n < sup
0≤y≤1

|K(y, n)√
n

| ≤ c+ 1/n)

≤ lim
n→∞

Σk �=0 exp(−2k2(c− 1/n)2)− exp(−2k2(c+ 1/n)2)

(A.18)
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From mean value theorem, there exists ηk ∈ [c − 1/k, c + 1/k], such that
exp(−2k2(c− 1/n)2)− exp(−2k2(c+ 1/n)2) = −8 exp(−2k2η2k)k

2ηk/n, so

Σk �=0 exp(−2k2(c− 1/n)2)− exp(−2k2(c+ 1/n)2) = O(1/n) (A.19)

and the result is proved.

Suppose s(c) = Σk �=0(−1)k+1 exp(−2k2c2), c > 0, then we have, for ε suffi-
ciently close to 0, c− |ε| > c/2 and

|s(c+ ε)− s(c)| ≤ 4Σk �=0| exp(−2k2η2k)k
2ηkε|

≤ 8Σk �=0| exp(−2k2(c/2)2)k2cε| = O(ε)
(A.20)

Here ηk belongs to c and c+ ε. This shows that s is continuous.

Proof of theorem 3. Define events

Mn = sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
|ĝ(x)− h(x)| > c (A.21)

According to triangular inequality,

sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
|ĝ(x)− h(x)| ≤ sup

0≤y≤1
|K(y, n)√

n
|

+ sup
δn≤FZ(x)≤1−δn

|
√
n
fZ(x)

h′(x)
(ĝ(x)− h(x))− K(FZ(x), n)√

n
|

(A.22)

For ∀ ε > 0, and sufficiently large n, according to (A.8) and since fY (h(x)) =
fZ(x)/h

′(x), we have

P ( sup
δn≤FZ(x)≤1−δn

|
√
n
fZ(x)

h′(x)
(ĝ(x)− h(x))− K(FZ(x), n)√

n
| < ε) = 1 (A.23)

and

lim
n→∞

supP (Mn) ≤ lim
n→∞

supP ( sup
0≤y≤1

|K(y, n)√
n

| > c− ε)

= P ( sup
0≤y≤1

|B(y)| > c− ε) (A.24)

For ∀ε>0. From continuity of measure, limn→∞ supP (Mn)≤P (sup0≤y≤1 |B(y)|
≥ c). On the other hand,

sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
|ĝ(x)− h(x)| ≥

sup
δn≤FZ(x)≤1−δn

|K(FZ(x), n)√
n

|

− sup
δn≤FZ(x)≤1−δn

|K(FZ(x), n)√
n

−
√
n
fZ(x)

h′(x)
(ĝ(x)− h(x))|

(A.25)
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Also using (A.8), and continuity of measure,

lim
n→∞

inf P (Mn > c) ≥ lim
n→∞

inf P ( sup
δn≤y≤1−δn

|K(y, n)√
n

| > c+ ε)

= P ( sup
0<y<1

| B(y)| > c+ ε)
(A.26)

Since B is a Brownian bridge, when y = 0, 1, B(y) = 0 a.s. For c > 0,
P (sup0<y<1 | B(y)| > c + ε) = P (sup0≤y≤1 | B(y)| > c + ε). Also, since ε is
arbitrary, continuity of measure shows that

lim
n→∞

inf P (Mn) ≥ P ( sup
0≤y≤1

| B(y)| > c) (A.27)

From (A.19), we know that, when c > 0,

P ( sup
0≤y≤1

|B(y)| ≥ c) = P ( sup
0≤y≤1

| B(y)| > c) (A.28)

and the theorem is proved.

Proof of theorem 4. Since FZ is strictly increasing and x0 ∈ (a, b), for suffi-
ciently large n, δn < FZ(x0) < 1− δn. Thus we have

sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
|ĝ(x)− h(x)|

≥ sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

h′(x)
(|g(x)− h(x)| − |ĝ(x)− g(x)|)

≥
√
n
fZ(x0)

h′(x0)
|g(x0)− h(x0)| −

√
n
fZ(x0)

h′(x0)
|ĝ(x0)− g(x0)|

(A.29)

Use Mn to represent the same thing as in proof of theorem 3,

P (Mn) ≥ P (
√
n
fZ(x0)

h′(x0)
|g(x0)− h(x0)| − c >

√
n
g′(x0)

h′(x0)

fZ(x0)

g′(x0)
|ĝ(x0)− g(x0)|)

(A.30)

According to (A.8),
√
n fZ(x0)

g′(x0)
(ĝ(x0) − g(x0)) →a.s. K(FZ(x0), n)/

√
n so it is

Op(1). On the other hand,
√
n|g(x0)− h(x0)| → ∞, we know that P (Mn) → 1

and the first part is proved.
For the second part, notice that

sup
δn≤FZ(x)≤1−δn

√
n

fZ(x)

g′(x)(1 + s′(x)√
ng′(x)

)
|ĝ(x)− g(x)− s(x)√

n
|

≤ sup
δn≤FZ(x)≤1−δn

√
n
fZ(x)

g′(x)
|ĝ(x)− g(x)|+ sup

a<x<b

fZ(x)|s(x)|
g′(x)

(A.31)

And we get the result.
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Proof of theorem 5. According to theorem 1 in [18], we choose p in that theorem
as FZ(x), since fZ(x) > 0, ξZ(FZ(x)) = x. This is because, on one hand, from
definition of ξZ , FZ(x) ≥ FZ(x) ⇒ x ≥ ξZ(FZ(x)). On the other hand, for y < x
close to x, from definition of derivative, FZ(y) < FZ(x)− 1

2fZ(x)(x−y) < FZ(x).
Since FZ is increasing and right continuous at point x, from definition of ξZ ,
FZ(ξZ(FZ(x))) ≥ FZ(x) ⇒ ξZ(FZ(x)) ≥ x, thus the equality holds. We have

ξZn (FZ(x))− x =
FZ(x)− F̂Z(x)

fZ(x)
+Oa.s.(n

−3/4(log log n) log3/4(n)) (A.32)

According to proposition 1 and lemma 3 in [18], we have that ∃0 < σ1 < ∞
being a constant such that

lim sup
n→∞

|
√
n(F̂Z(x)− FZ(x))√

2 log log n
| =a.s. σ1 ⇒ F̂Z(x)−FZ(x) = Oa.s.

(√
log logn√

n

)
(A.33)

Thus, in particular, ξ̂Z(FZ(x)) →a.s. x. Since ξ̂Y (FZ(x)) = g(ξ̂Z(FZ(x))) and g
is continuous, we have

ĝ(x) = ξ̂Y (FZ(x)) →a.s. g(x) (A.34)

For the second part, according to theorem 2 and remark 6 in [18], under condi-
tion A2, notice that fZ(x) > 0, x ∈ [c, d] ⇒ FZ(x) being strictly increasing and
thus,

sup
c≤x≤d

|ξ̂Z(FZ(x))− x| = oa.s.

(
cq(n)√

n

)
(A.35)

Here, cq(n) = (logn)1/q(log logn)2/q if q > 2 and (logn)3/2(log logn) if q = 2.
Since [c, d] is a closed interval and g is continuous, thus is uniform continuous
on [c, d]. Therefore, uniformly convergence is proved.

Proof of theorem 6. According to [12], the only thing to prove is that
√
n(ĝ(x)−

g(x)) converges to a non-degenerated distribution. According to lemma 11 in
[18], for q ≥ 2, for sufficiently large n, |an| < 1 (otherwise the summation will
not converge), then

Σ∞
i=n|ai|min(1,α/2) ≤ Σ∞

i=n|ai|min(1,α/q) < ∞ (A.36)

Thus, we have √
n(F̂Z(x)− FZ(x)) →d N(0, σ2) (A.37)

weakly. N is a normal distribution with unknown variance. Therefore, according
to [18], similar with theorem 5, we have

ξ̂Z(FZ(x))− x =
FZ(x)− F̂Z(x)

fZ(x)
+Oa.s.(n

−3/4(cq(n) log n)
1/2) (A.38)
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Thus,
√
n(ξ̂Z(FZ(x)) − x) →d N(0, σ2/f2

Z(x)). Since g is differentiable at x,
according to lemma 2 and delta method, we have

√
n(ĝ(x)− g(x)) =

√
n((g(ξ̂Z(FZ(x))))− g(x)) →d N(0, g′(x)2σ2/f2

Z(x))
(A.39)

Since g′, fZ(x) 
= 0, the result is proved.
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