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The branching-ruin number as critical parameter
of random processes on trees
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Abstract

The branching-ruin number of a tree, which describes its asymptotic growth and
geometry, can be seen as a polynomial version of the branching number. This quantity
was defined by Collevecchio, Kious and Sidoravicius (2018) in order to understand the
phase transitions of the once-reinforced random walk (ORRW) on trees. Strikingly, this
number was proved to be equal to the critical parameter of ORRwW on trees.

In this paper, we continue the investigation of the link between the branching-ruin
number and the criticality of random processes on trees.

First, we study random walks on random conductances on trees, when the conduc-
tances have an heavy tail at 0, parametrized by some p > 1, where 1/p is the exponent
of the tail. We prove a phase transition recurrence/transience with respect to p and
identify the critical parameter to be equal to the branching-ruin number of the tree.

Second, we study a multi-excited random walk on trees where each vertex has M
cookies and each cookie has an infinite strength towards the root. Here again, we
prove a phase transition recurrence/transience and identify the critical number of
cookies to be equal to the branching-ruin number of the tree, minus 1. This result
extends a conjecture of Volkov (2003). Besides, we study a generalized version of this
process and generalize results of Basdevant and Singh (2009).
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The branching-ruin number

1 Introduction

Let us consider a random process on a tree which is parametrized with one param-
eter p. We say that this process undergoes a phase transition if there exists a critical
parameter p. such that the (macroscopic) behavior of the random process is significantly
different for p < p. and for p > p.. This is, for instance, the case of Bernoulli percolation
on trees, biased random walks (see [19, 20, 21]) or linearly edge-reinforced random
walks [22] on trees.

In [19], R. Lyons proved the following beautiful result. Bernoulli percolation and
biased random walks (among others) share the same critical parameter which is equal to
the branching number of the tree. The branching number, defined by Furstenberg [15],
is, roughly speaking, a quantity that provides a precise information on the asymptotic
growth and geometry of a tree, at the exponential scale (see (2.1) for a definition). For
instance, for trees that are “well-behaved” (such as spherically symmetric trees) and
whose spheres of diameter n have size m™, the branching number is equal to m. This
description is actually not accurate as some trees have a peculiar geometry, and the size
of their spheres is not a good indicator of their asymptotic complexity.

The phase transition of the once-reinforced random walk was studied in [8]. In order
to see a phase transition, one needs to consider trees that grow polynomially fast (see
[16]), and therefore the branching number is not the quantity that would provide a
relevant information in this case. Indeed, the branching number does not allow us
to distinguish among trees with polynomial growth as the branching number of any
tree with sub-exponential growth is equal to 1. In [8], it was proved that the critical
parameter for the once-reinforced random walk on trees is equal to the branching-ruin
number of the tree (see (2.2)). The branching-ruin number of a tree is best described as
the polynomial version of the branching number: if a well-behaved tree has spheres of
size n’, then the branching-ruin number of this tree is b. Again, this fact is not true in
general because of the possible complex asymptotic geometry of trees.

1.1 Exploring the branching-ruin number

The purpose of the current paper is to explore further the connections between the
branching-ruin number and the criticality of random processes on trees. We confirm the
intuition that the branching-ruin number, besides being an intrinsic way of measuring
trees, is deeply related to the behavior of a variety of random processes on trees which
should have the branching-ruin number as critical parameter (or a simple function
of it). As stated above, it has already been demonstrated that the usual branching
number has this kind of features, and we believe that we give here an excellent indicator
that the same is true for the branching-ruin number. For this purpose, we prove here
that the branching-ruin number is the critical parameter for the phase transitions
recurrence/transience of two natural random walks: we study random walks on random
conductances with heavy-tails and a model of excited random walks with hardcore
interaction called the M-digging random walk. Hence, we demonstrate here that the
branching-ruin number is not only related to the once-reinforced random walk but can be
found in other interesting situations, making it clear that it has not been only artificially
designed to study one particular model, but rather that it has indeed a deep meaning.

Before describing the models and the results more precisely in the next two subsec-
tions, let us explain roughly what we obtain and our techniques.

First, we study the well-known random walk among random conductances on trees in
the case where the conductances have a heavy-tail at 0. This class of processes attracted
the attention of researchers in recent years (see e.g. [14]). We prove that this walk has
a phase transition recurrence/transience depending on how heavy the tail is at 0, and
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that the critical exponent in the distribution function is the inverse of the branching-ruin
number. This is stated in Theorem 1.1.

Second, we study the M-digging random walk on trees defined by Volkov [25]. This
is a model of cookie random walks, with M cookies per site which have a hardcore
interaction, i.e. the walker is pushed one step back when jumping on a cookie. Previous
papers [25, 2] were only studying this model on regular trees and the conjectures of
Volkov were only about transience on trees containing the binary tree. Here, we reveal
that this model has in fact much richer class of phase transitions when is defined on
trees with polynomial growth. We prove that the M-digging random walk is recurrent
(resp. transient) if the number of cookies per site is larger (resp. smaller) than the
branching-ruin number of the tree, see Theorem 1.2.

As one can see, we therefore manage to stricklingly relate the branching-ruin number
to the criticality of two different processes other than the once-reinforced random walk.
We hope that the current work will be a stepping stone for similar studies that will reveal
further the ubiquity of the branching-ruin number.

Regarding the techniques, we follow the blueprint layed out in [8]. Unfortunately,
this blueprint is not a simple roadmap to follow and requires substantial work in order
to be applied to other situations. The strategy from [8] is to link the behavior of the
random walk to the behavior of some quasi-independent percolation. Then, the goal
is to prove that the critical parameter of this percolation can be expressed in terms of
branching-ruin number. This quasi-independent percolation roughly corresponds to the
set of edges that (some version of) the random walk crosses before returning to the root.

To prove Theorem 1.2 we can actually follow this strategy, but the results of [8] do
not apply directly and we need to adapt almost everything to the M-digging random
walk.

The proof of Theorem 1.1 is in fact very different from this. Even though we can this
time directly use the results from [8], these are far from enough to obtain the statement.
The main technical novelties appear in Section 5. The percolation used in [8] is kept
hidden in order to prove Theorem 1.1, as we do not need to re-prove anything thanks
to Proposition 3.2. Unlike this, the quasi-independent percolation we use throughout
Section 5 is not related to the random walk but rather to the environment, i.e. the
conductances. Indeed, the whole purpose of the section is to prove that one can find a
(random) subtree where the environment behaves nicely enough, in the sense precised
in (5.11). Once we have this nice subtree and have a control on its size, we can simply
apply Proposition 3.2.

1.2 Random walk on heavy-tailed random conductances

First, we study random walks on random conductances in the case where the con-
ductances have heavy tails at zero. Consider an infinite, locally finite, tree 7 with
branching-ruin number b (see (2.2) for a definition). Even though our results hold for
any branching-ruin number, for the sake of the following explanations, let us temporarily
assume that b > 1, so that simple random walk is transient on this tree (see Theorem
1.2, or [8]). Assign i.i.d. conductances, or weights, to each edge of 7 and let us de-
fine a nearest-neighbor random walk which jumps through an edge with a probability
proportional to the conductance of this edge. This model is very classical and has
been extensively study on various graph, including Z and Z¢. The behavior of the walk
depends on the common law of the conductances.

For instance, if the conductances are bounded away from 0 and from the infinity, the
behavior of the walk is close to the one of simple random walk and it will therefore be
transient on 7, moving at a speed similar to that of simple random walk.
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If the conductances can be very large, i.e. unbounded and for instance with an
heavy-tail at infinity, this should not affect the transience of the walk. Nevertheless,
this would have an important impact on the time that the random walk spends on small
areas of the environment. We do not prove anything in this direction in this paper
as our main interest is in the recurrence/transience of the walk, but we would like to
describe here what should happen. If the conductances can be extremely large with
a not-so-small probability, then the walker will meet, here and there, an edge with an
overwhelmingly large conductance and will cross this edge back-and-forth for a very
large number of times before moving on. The consequence of this mechanism is that the
random walker will spend most of its time on these traps and will move at a speed much
smaller than simple random walk on the same tree. This phenomenon is reminiscent
of Bouchaud’s trap model, see [13, 10, 11, 12], or [14] where an explicit link is made
between Bouchaud’s trap model and biased random walk on random conductances.

The last possible scenario is when the conductances could be extremely small, which
is what we are mainly interested in here. The extreme case would be percolation where
the random walk is recurrent as soon as the percolation is subcritical. In our case, the
conductances remain positive but have an heavy-tail at 0. This creates “barriers” of
edges with atypically small conductances that can make the walker come back to the
root infinitely often, even when the tree is transient for simple random walk. Let us now
describe our results.

Recall that 7 is an infinite, locally finite, tree and let F be the set of all its edges.
Let (C¢)ecr be a collection of i.i.d. random conductances that are almost surely positive.
Moreover, assume that

P<06<1> :%, for t > 0, (1.1)

where L : R — R is a slowly-varying function. For simplicity, we will also assume that
P (C. > 1) > 0 without loss of generality.

For a realisation of the environment (C.), we can define a random walk on these
conductances which jumps through an edge e with a probability proportional to C.. For
a formal definition of this random walk on random conductances (rRwrc), we refer to
Section 2.3.1. In the following, we say that a walk is transient if it does not return to
its starting point with positive probability. If a walk is not transient, it comes back to
the root almost surely and it is called recurrent. We also give a formal definition of
recurrence and transience in Section 2.3.1.

Finally, the branching-ruin number of 7, formally defined in (2.2), is denoted by
br.(T).

Theorem 1.1. Fix an infinite, locally finite, tree T and let b = br,.(T) € [0, 00] be its
branching-ruin number. Ifb < 1, then rRwrc is recurrent. Assuming b > 1, if mb > 1 then
RWRC is transient and if mb < 1 then it is recurrent.

1.3 The M-digging random walk

Our second main result concerns a model of multi-excited random walks on trees,
also known as cookie random walks.

Excited random walks were introduced by Benjamini and Wilson in [3] on Z¢, and
have been extensively studied (see [1, 4, 17, 18, 24]). Zerner [26, 27] introduced a
generalization of this model called multi-excited random walks (or cookie random walk).
These walks are well understood on Z, but not much is known in higher dimensions.

Here, we study an extreme case of multi-excited random walks on trees, introduced
by Volkov [25], called the M-digging random walk (M-DRW). We also study its biased
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version and generalize a result by Basdevant and Singh [2], see Theorem 3.3, who
studied it on regular trees.

Assign to each vertex M cookies, where M is a non-negative integer. Define a nearest-
neighbor random walk X as follows. Each time it visits a vertex, if there is any cookie
left there, it eats one of them and then jumps to the parent of that vertex. If no cookies
are detected, then it jumps to one of the neighbors with uniform probability. We refer to
Section 2.3.2 for a formal definition of this process.

Volkov [25] conjectured that this process is transient on any tree containing the
binary, which was proved by Basdevant and Singh [2]. Here, we obtain a much finer
description of the process and we can prove that this random walk actually undergoes a
phase transition on trees with polynomial gowth, i.e. on trees 7 where the branching-ruin
number br,.(T) is finite.

Theorem 1.2. Let T be an infinite, locally-finite, rooted tree, and let M € N. Ifbr,.(T) <
M + 1 then M-DRW is recurrent and if br.(7) > M + 1 then M-DRW is transient.

We refer to Theorem 3.3 for the more general result on the biased case and Theo-
rem 3.5 for the case where the number of cookies on each vertex is inhomogeneous over
the tree.

2 The models

In this section, we define relevant vocabulary and conventions. We then recall the
definition of the branching number and branching-ruin number of a tree, and finally we
formally define the models.

2.1 Notation

Let T = (V, E) be an infinite, locally finite, rooted tree with set of vertices V and set
of edges E. Let ¢ be the root of 7.

Two vertices v, u € V are called neighbors, denoted v ~ p, if {v,u} € E.

For any vertex v € V \ {o}, denote by v~! its parent, i.e. the neighbour of v with
shortest distance from p.

For any v € V, let |v| be the number of edges in the unique self-avoiding path
connecting v to ¢ and call |v| the generation of v. In particular, we have |g| = 0.

For any edge e € E denote by e~ and et its endpoints with |eT| = |e”| + 1, and define
the generation of an edge as |e| = |e™].

For any pair of vertices v and p, we write v < p if v is on the unique self-avoiding
path between ¢ and p (including it), and v < p if moreover v # p. Similarly, for two
edges e and g, we write g < ¢ if g < eT and g < e if moreover g* # et. For two vertices
v < p €V, we will denote by [v, u] the unique self-avoiding path connecting v to u. For
two neighboring vertices v and p, we use the slight abuse of notation [v, u] to denote the
edge with endpoints v and p (note that we allow p < v).

For two edges e1,e; € E, we denote e; A es the vertex with maximal distance from p
such that e; Aeg < ef and e; A ey < e;.

2.2 The branching number and the branching-ruin number

In order to define the branching number and the branching-ruin number of a tree,
we will need the notion of cutsets.

Let 7 be an infinite, locally finite and rooted tree. A cutset in 7 is a set 7w of edges
such that, for any infinite self-avoiding path (v;);>¢ started at the root, there exists a
unique ¢ > 1 such that [v;_;1,v;] € 7. In other words, a cutset is a minimal set of edges
separating the root from infinity. We use II to denote the set of cutsets.
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The branching number of 7 is defined as

— - —lel
br(T) = sup {7 >0: ;Ielg ;7 > 0} € [1, 0] (2.1)
The branching-ruin number of 7 is defined as
— - -
br.(T) := sup {’y >0: ;rellfl ; le] ™ > 0} € [0, ). (2.2)

These quantities provide good ways to measure respectively the exponential growth
and the polynomial growth of a tree. For instance, a tree which is spherically symmetric
(or regular) and whose n generation grows like 0™, for b > 1, has a branching number
equal to b. On the other hand, if such a tree grows like nb, for some b > 0, its branching-
ruin number is equal to b. We refer the reader to [21] for a detailed investigation of the
branching number and [8] for discussions on the branching-ruin number.

2.3 Formal definition of the models

2.3.1 The random walk on heavy-tailed random conductances

In this section, we provide a formal definition of the random walk on random conduc-
tances (RWRC).

First let us define the environment of the walk. To the edges of 7, we associate
i.i.d. random conductances C, € (0,0), e € E, with common law P, where E denotes
the corresponding expectation. We will assume that

P <C’e < 1) = @, fort >0, (2.3)

< e
where L : R — R is a slowly varying function.

Given a realisation of the environment (C,).c g, we define a reversible Markov chain
X = (X,,)n. We denote P¥ the law of this Markov chain when it is started from a vertex
v € V. Under Pg’, we have that Xy = ¢ and, if X,, = v and p ~ v, we have that

Clo
ZMNV C[wﬂ] .

We call P“ the quenched law of the random walk and denote E“ the corresponding
expectation. We define the annealed law of X started at ¢ as the semi-direct product
P, =P x Py, that is the random walk averaged over the environment. We denote E,

the corresponding annealed expectation.
For a vertex v € V, T'(v) stands for the return time to v, that is

Py (Xnp=pl Xy =v)=F (X1 =p) =

T(v) = inf{n >0: X, =v}.

A rwrc is said to be recurrent if it returns to g, IP,-almost surely. This process is transient
if it is not recurrent, that is

P,(T(0) = ) > 0.

As IPQ(T(,Q) = oo) =E (P;’ (T(g) = oo)) X is transient if, with positive P-probability,

we have that

Py (T(g) = oo) > 0.
Finally, as X is a Markov chain under P“, we have that it is transient if and only if the
walk returns finitely often to the root ¢ and, using a zero-one law on the environment, we
can prove that this happens with probability 0 or 1. Therefore, the notions of recurrence
and transience are well defined in the quenched and annealed sense.

EJP 24 (2019), paper 121. http://www.imstat.org/ejp/
Page 6/29


https://doi.org/10.1214/19-EJP383
http://www.imstat.org/ejp/

The branching-ruin number

2.3.2 The M-digging random walk

Let 7 = (V, E) be an infinite, locally-finite, tree rooted at a vertex o. We are going to
define a biased version of the M-DRW described above, which will also allow for an
inhomogeneous initial number of cookies.

Let M = (m,,v € V) be a collection of non-negative integers, with m, = 0, and fix
A > 0. For convenience, for e € E, we denote m, = m,+.

Let us define a random walk X = (X,,),>¢ as follows. For any vertex v € V, define

l(v)={ke€{0,....,n}: Xy =v}. (2.4)

For each edge e € E and each time n € IN, we associate the following weight:
Wa(e) = (1 - ]l{en(e—)gme_}) ATl (2.5)

As can be seen in (2.6) below, the model remains unchanged if, in the above definition,
we use A\l instead of A~l¢I*1. Our choice turns out to be convenient in the proofs.

For a non-oriented edge [v, |, we will simply write W,, (v, ) = Wy, (1, v) = Wy ([v, u])
We start the random walk at Xy = ¢. At time n > 0, for any v € V, on the event {X,, = v},
we define, for any u ~ v,

Wn(”» ,u)

P (X1 = p F) = ol
( v /'L‘ ") Zy/NVWn(VMU’/)

(2.6)

where F,, = 0(Xy,...,X,) is the o-field generated by the history of X up to time n. We
call this walk an M-digging random walk with bias A and denote it M-DRW,.

It will be very convenient to observe X only at times when it is on vertices with no
more cookies. For this purpose, let us define X = ()?n)n a nearest-neighbor random
walk on 7 as follows. Let g = 0 and, for any n € N,

Opt1 = inf {k > o, Xk 7é Xgn,gk(Xk) > mx, + ].} 2.7)

We define, for all n € N, )N(" =Xo,.
Next, we want to define not}vons of recurrence and transience for X. As above, we
define the return time of X, or X, to a vertex v € V by

T(v) = inf{k>1:X; =v}. (2.8)

In words, we consider that a vertex v is hit by X when it is hit by X in the usual
sense. The fact to choose this time to be greater than 1 will be convenient technically to
accommodate with the particularities of the root.

We say that X, or X, is transient if

P (T(0) = o) > 0. (2.9)

Otherwise, we say that X, or X, is recurrent.
Note that if we choose m, = M € N forall v € V' \ {p} and A = 1, then X is the
M-DRW described in Section 1.3.

3 Main results

We are about to state a sharp criterion of recurrence/transience in terms of a quantity
RT(T,), first introduced in [8].
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For a function ¢ : E — R™, we define the quantity

v

RT(T,v) := sup 7>0:;2§12 [[vw@] >o05. (3.1)

eem \ g<e

Let us roughly explain this last quantity. For a given edge e € E, ¢(e) will be chosen
to be the probability that the random walk restricted to [p, e*], once having hit e~, hits e™
before returning to the root. For a cutset 7 € II, the quantity > .. [] g<e 1 (g) appearing
in RT can be roughly seen as the average number of edges in 7 that the random walk
started from the root crosses before returning to the root. As we will see, the recurrence
or transience of the walks will be related to the fact that RT(7, ) is smaller or greater
than 1, see Proposition 3.2. This is the main input we use from [8].

3.1 Main results about Rwrc

It is straightforward to see that the two following results together imply Theorem 1.1.
The proof of Proposition 3.1 is given in Section 5.
Let us define, forany e € E, ¥go(e) = 1if |e| =1 and, if |e| > 1,

— §:g<e(2;1
E:ggeCL;I
Proposition 3.1. Fix an infinite, locally finite, tree 7 and let b = br.(T) € [0, 00| be its

branching-ruin number. Ifb < 1 then RT(T,vrc) < 1, P-almost surely. Assuming b > 1,
we have that

Yre(e) (3.2)

1. if mb > 1 then RT(T,vrc) > 1 with positive P-probability;
2. ifmb < 1 then RT(T,v¥rc) < 1, P-almost surely.

The following result is a direct consequence of Theorem 2.5 of [8], recalling the
discussion at the end of Section 2.3.1 and noting that condition (2.5) in [8] is trivially
satisfied by Markov chains, which in that context is translated into non-reinforced
environments. Therefore, we will omit its proof.

Proposition 3.2 (Theorem 2.5 of [8]). Fix an infinite, locally finite, tree 7. We have that

1. if RT(T,v¥rc) > 1 with positive P-probability then rwrc is transient;
2. if RT(T,¢rc) < 1 P-almost surely then Rwrc is recurrent.

3.2 Main results about the M/-DRW,

The following Theorem is more general than Theorem 1.2 in the introduction and
deals with the homogeneous case where M = (m,;v € V) is such that m, = 0 and
m, = M for all v € V'\ {p}. Let us emphasize that, in item (1) below, the phase transition
is given in terms of branching-ruin number whereas, in item (2), the phase transition is
given in terms of branching number.

Theorem 3.3. Let 7 be an infinite, locally-finite, rooted tree, and let M € IN, A > 0.

Denote X the M-DRW, on T with parameters A\ > 0 and M = (m,;v € V) such that
my, =0andm, = M forallv € V' \ {o}. We have that

1. in the case A = 1, ifbr.(T) < M + 1 then X is recurrent and if br,.(T) > M + 1 then
X is transient;

2. forany A\ > 1, ifbr(T) < AM*! then X is recurrent and if br(T) > AM*! then X is
transient;

3. for any A < 1, X is transient.
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Remark 3.4. If, for a tree T, br(7T) > 1, then we have that br,.(T) = oo, as proved in
Case V of the proof of Lemma 3.6. Therefore, the items (1) and (2) in Theorem 3.3 are
not contradictory.

Note that, for a b-ary tree, br(7) = b and our result therefore agrees with Corollary
1.7 of [2]. In [2], the authors prove that the walk is recurrent at criticality on regular
trees, but this is not expected to be true in general. We here choose not to explore more
the behavior at criticality.

We are about to state a sharp criterion of recurrence/transience in terms of a quantity
RT(T,-) as defined in (3.1), which will apply to the general case M = (m,;v € V) € NV.
We will then prove that Theorem 3.3 is a simple corollary of this general result.

For this purpose, we need some notation. Let us define a function v¥5s » on the edges
of E such that, for any e € E, ¢prx(e) = 1 if |e| = 1 and, for any e € E with |e| > 1,

Alel=1 et
Yua(e) = (>\|€_1> ifA#1,

1\ et L
brale) = <|€| 1) if A= 1.

le]

(3.3)

As we will see in Section 7, ¥ar,(e) corresponds again to the probability that X, or
X, when restricted to [0,€eT] (i.e. the path from the root to e™), hits et before returning
to o, after having hit e™.

We will prove the following result in Section 8.

Theorem 3.5. Consider an M-DRW, X on an infinite, locally finite, rooted tree T, with
parameters A > 0 and M = (m,;v € V) € NV. If RT(T,¢m,) < 1 then X is recurrent.
If RT(T,4¢um,») > 1 and if

dM € NN such that supm, < M, (3.4)
veV

then X is transient.

The following result concerns the homogeneous case. Theorem 3.3 is a straightfor-
ward consequence of Theorem 3.5 and Lemma 3.6.

Lemma 3.6. Consider an M-DRW, X on an infinite, locally finite, rooted tree T, with
parameters A > 0 and M = (m,;v € V) such that m, =0 and m, = M forallv € V' \ {p}.
We have that

1. for A =1, ifbr.(T) < M +1 then RT(T,vm ) < 1 and if br,.(T) > M + 1 then
RT(T ,Ymn) > 1;

2. for X\ > 1, if br(T) < AM*! then RT(T,v¥n ) < 1 and if br(T) > AM*+L then
RT(T ,Ymn) > 1;

3. for A < 1, we have RT(T,¥m,») < 1.

The proofs of Theorem 3.5 and Lemma 3.6 are given in Section 6.
Sections 4 and 5 are dedicated to random walks on random conductances, whereas
Sections 6, 7 and 8 will prove the results on the M-digging random walk.

4 Preliminary results

In this section, we state and prove results on quasi-independent percolation on trees
which will be useful in the core of proof of Theorem 1.1, given in Section 5. Proposition
4.2 below can be proved following line by line the argument in Section 8 of [8]. For the
sake of completeness, we give an outline of the proof in the Appendix A. It relies on the
concept of quasi-independent percolation defined as below (see also [21], page 144). In
the following, we denote by C(p) the cluster of open edges containing the root .
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Definition 4.1. An edge-percolation is said to be quasi-independent if there exists a
constant Cg € (0,00) such that, for any two edges e1,es € E with common ancestor
e1 N ea, we have that

P(e1,e2 € Co)er Aez € C(o)) <CoP(e1 € C(o)|er Aez € C(o))

(4.1)
x P( ez € Clo)|er Aeax € C(o)).

This previous notion is particularly useful when one tries to prove the super-criticality
of a correlated percolation.

Proposition 4.2. Consider an edge-percolation (not necessarily independent), such that
edges at generation 1 are open almost surely and, fore; € FE with |e;| > 1,

P (e1 € C(o)|eg € C(0)) = (er) > 0, (4.2)

where eg ~ e; and ey < e;. If RT(T,v) < 1 then C(p) is finite almost surely. If the
percolation is quasi-independent and if RT (T ,+) > 1 then C(p) is infinite with positive
probability.

The proof of Proposition 4.2 above is postponed in Appendix A.

Let us first apply this to a particular percolation in order to obtain a sufficient criterion
for subcriticality.

Corollary 4.3. Let T be a tree with branching ruin number br,.(T) = b € [0,o0]. Fix a
parameter § > 0 and perform a percolation (not necessarily independent) on T such that
(4.2) holds and assume moreover that v)(e) = 1 — §|e|~! as soon as |e| > ng, for some
integerng > 1. If § > b then the percolation is subcritical.

Proof. For a cutset m, let |7| = inf{|e|: e € 7}. First, note that for any a > b,

inf E le] ™ > ny® >0,
mell:|m|<ng
ecT

and therefore

inf Z le] ™ = inf Z le] ™ = 0.
ﬂ'El‘[:|7r\>noe mell

Sk ecm

Second, for any v > b/d, we have

wf > [Jwe) < it > @)

e€m g<e e€m g<e
: —1\7
S e, ;ql;[ (1—6lgl™")
le] (4.3)
< weHi:ﬁrfbng eezﬂ exp | —vd ; it
<

inf Z le| =7 =0.
en

well:|7|>no :

Hence RT(T,v¢) < 1 and by using Proposition 4.2 the cluster 7; is finite, almost
surely. N

Next, we use Proposition 4.2 and Corollary 4.3 to prove the following result. This
statement is crucial in order to be able to control the size of a convenient random subtree
defined in Section 5.
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Proposition 4.4. Let T be a tree with branching ruin number br,.(T) = b € [0, cc|. Fix a
parameter § > 0 and perform a quasi-independent percolation on 7 such that (4.2) holds
and assume moreover that 1)(e) > 1 — dle|~! as soon as |e| > ng, for some integer ny > 1.
Let Ts be the connected cluster containing the root o. We have that

1. if § < b then Tj is infinite with positive probability;
2. for any ¢ € (0,b) we have that, with positive probability, br.(Ts5) > b — 24.

Proof. First we prove (1). For 7 € II, we define || = min{]e|; e € w}. Notice that, for any
v>1,asy(e) >0foreveryec E,

inf Y T[] (@(9)” >o. (4.4)

II: |7 | <n
mell:|r|<ng cen g<e

If 6 < b, then for any v € (1,b/6), we have

inf Z H (¥(9))" > ‘ﬂ'EHi:\Ilrﬂ>n0 Z H (1 _ 5|g|71)7

II:
mellfr|>no eem g<e eem g<e

le
. 1
> c;g%eezﬁexp —75;z (4.5)
b _ . —~6
>2 c;relgeezﬂ|e| > 0,

where ¢ is some positive constant. Putting (4.4) and (4.5) together, we have that
RT(T,v) > 1. By Proposition 4.2, as the percolation is quasi-independent, the cluster 75
is infinite with positive probability.

Next, we turn to the proof of (2). Consider the previous percolation, with § < b and
fixp<b—9.

On the event {7 is infinite}, which has positive probability, we perform an indepen-
dent percolation on 75 for which an edge e stays open with probability (1 — ple|~1). We
proved that if p < br,.(75) then the percolation is supercritical and if p > br,.(7s) then it is
subcritical. We denote 75, the resulting cluster of the root.

On the other hand, performing this percolation on 75 is equivalent to performing a
quasi-independent percolation on the whole tree 7 where an edge e stays open with
probability v(e)(1 —ple|™"). As ¢(e)(1—ple| 1) > (1—dle["")(1—ple|™) > 1= (3+p)le| ™",
for |e| > ng, if p + 0 < b, this percolation is supercritical, i.e. 7; 5 is infinite with positive
probability.

This implies that, on the event {7; is infinite}, the cluster 7;, , is infinite with positive
probability. Therefore, by Corollary 4.3, br,.(75) > p with positive probability. As this
holds for any p < b — 4, we obtain the conclusion. §

5 Proof of Proposition 3.1 and Theorem 1.1

First, note that Theorem 1.1 is a straightforward consequence of Proposition 3.1 and
Proposition 3.2. While Proposition 3.2 is a restatement from [8], the proof of Proposition
3.1 presented in this section is quite involved and requires new arguments. The main
idea to prove transience is, first, to find a random subtree where the environment
behaves nicely and, second, to prove that this subtree is large enough so that it can
carry the walker to infinity.

5.1 Transience: proof of the first item of Proposition 3.1

In this section, we will prove that RT(T,¥rc) > 1, where we recall that this quantity
is defined in (3.1) and ¥ rc is defined in (3.2).
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In particular, we can rewrite

A
RT(T,¢Ypc) =sup ¢ A >0: inf <2311> >07. (5.1)
ecm

mell i<e Ci

Besides, recall that v)(e) represents the probability that a one-dimensional random walk
on the conductances (C,).cp, restricted to the ray connecting o to e™ and started at e,
hits e* before returning to .

Our goal is to prove that there exists a good subtree where the conductances (C,) are
not too small, in a sense precised later in (5.11). We first need the following estimate,
which in turn provides Corollary 5.2.

Proposition 5.1. For any p € N, and for any 7 > 0, there exists a positive finite constant
K, such that

E

(e

I 14 (+7)?2
(et < z""}‘| < K, n?Mm ) foralln € IN. (5.2)
i=1

Proof. Recall that for any non-negative random variable Z we have, for a > 1,
E[Z%] :/ au " 'P(Z > u)du.
0

For any b > 0 we have that any slowly varying function L(u) is o(u’), as u — oo. Hence,
for any 7 > 0, there exists a constant K, ,7y > 0 depending only on L and 7, such that,
for ¢ > 1g,

. 1 m L 1
E[C’;“|C’i_1§i117]< 1+/ au®~! (U)d iir
! um 1— i~ L(5)
(5.3)
a—m
— b(a )

For simplicity we drop 7 from the notation, and use (b;“))i. Notice that the sequence

a 32 ~
(bi);, when a > 1, is O(i%*1 V 1), that is there exists K, > 0 depending only on L, a

and 7 such that

~ [.a(4+m)? _
b < Ka(z ety 1),

for all ¢ € IN. In order to prove the proposition, we proceed by double induction. First we
prove that (5.2) holds for p = 1 and all n € IN. In fact, for m > 0, we have

E

(icfl) | N <ﬁ}] SSRGSV =0 E ). G
=1 =1 i=1

Note that, in the previous inequality, we use that P[C, > 1] > 0 for any e € F, so that the
conditional probability on the left-hand side is well-defined.

EJP 24 (2019), paper 121. http://www.imstat.org/ejp/
Page 12/29


https://doi.org/10.1214/19-EJP383
http://www.imstat.org/ejp/

The branching-ruin number

Assume that (5.2) holds for all p < g —1 and for all n € IN. Notice that (5.2) is trivially
true for n = 1 and p = 8. Suppose it is true for all n < N and for p = 5. To simplify the

2
notation, set n = % V 1. Next we prove the result for N + 1. We can suppose that Kz
is larger than

5 ~
02281 <j Hilod: (5:9)

where Ky = 1. We have

N+1 N+1

(Se) | Mier <;:;:]
=1
N 8 B B—1 ﬂ N N+1 -
- E (Zc;l) +0Ni1+2(.>(20 ) Niﬂ N{ct<i™}
i=1 j=1 i=1

J

N . N+1
< KsNP 460, +Z<) (ZC N et <y vy
i=1
s S e=paen?
<KBN’3"+K5((N+1) 1v1)+ (.)KjNMKﬁj((NH) 0 —1v1).
; J
j=1

(5.6)
In the step before the last one, we used independence between Cn41 and (C;)i<n.
As we can choose Kj to be larger than (5.5), we have

N+1 N+1

(Z o ) ‘ N{c <t }] < K5 (NP7 4 (N +1)P771) (5.7)

=1

It remains to prove that the right-hand side of (5.7) is less than Kg(/N + 1)5”. Notice that
the right-hand side of (5.7) equals

1 Bn 1
Bn _ < Bn
(N + 1)K, ((1 N+1) + +1)Kﬁ(N+1)

where we used (1 —z)® <1—zforallz € (0,1)anda>1. N

Corollary 5.2. For any e € (0,1), any ¢t > 0, there exist C,; > 0 such that, foranye € E,
we have that

P Yocp > el Y {o7 < gl } ) < Cerlel ™

g<e g<e

Proof. Using Proposition 5.1 and Markov’s inequality gives that, for any p € IN,

(1v(“;f>2

DGyt >l ) N{c' <l || < Kpelel ™ 5.8)

g<e g<e

This gives the conclusion by choosing p = [t/e] and by noting that (1 \Y %) +e<
(1vL)+me n

m
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Next, we will define a percolation on the tree 7 and prove that it is quasi-independent.
This step is crucial in the proof of Theorem 1.1: this is where we explicitly define the
random subtree on which the environment behaves well, and we then prove that this
tree is large enough.

Let us fix € € (0,1 A b) small enough, such that the following conditions are satisfied

(1+¢)
(1+4e)(1+¢e)<b—2  ifb>1. (5.10)

1
W§b—25 if b > 1, (5.9)

Let us define the percolation such that, for e € FE with |e| = 1, e is open almost surely
and if |e] > 1 then

m—+3 c

{eis open} := {C;l < |e\%}m Yoyt < pe|(va)TEEe b (5.11)

g<e

We will denote by 7¢ the cluster of open edges containing the root. Let us define the
function 1)c on edges such that ¢c(e) = 1 if |e| = 1 and, if |e| > 1 and ey is the parent of
e, that is the unique edge such that el = e¢~, then

Yo(e) == P(ee€Toleg € Te). (5.12)

Proposition 5.3. The percolation defined by (5.11) is quasi-independent. Moreover,
RT(T,v%c) > 1 and, with positive P-probability br,.(Tc) > b — ¢.

Proof. Let us prove that there exists a constant pg > 0 such that, forany e € F,

PleeTe|N{o <t} =P ol N {7 <lol ™}

g<e g<e g<e

(5.13)
= Po-

Indeed, the conditioning in the above expression is equivalent to picking a sequence of
independent conductances (C}),>1 under a measure P such that C; is picked under the
conditioned law P(-[C} 1< j%), and looking at the events corresponding to the second
event on the right hand side of (5.11), that is

A= Yot < v
1<y
By Corollary 5.2 (applied with ¢t = 2 for instance) and Borel-Cantelli Lemma, there

exists k¥ € IN (deterministic) such that ~f’ (Nn>kAn) > 0. Now, if one replaces C; by
C; = max(Cj,1) for 1 < j < k, and let A,, be the the same event as A,, but where C;

is replaced by C*j, then fll, e flk always happen and P <ﬂn21/~1n) > P (Nn>KAn) > 0.
Finally, we can choose

Po = f) (mn21An) = f) (mn21fin) X f) (mlﬁjgk {C] > 1}) > 07

which proves the claim (5.13).
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Let us prove that the percolation is quasi-independent. Let e;,e; € F and let e be
their common ancestor with highest generation. We have that

P(€1,€2 S TC)
P(e IS Tc)

_ ) P(€1,€2€T0|ﬂg<el 62{
e<g§611;'[e<g§eg g ( e ) (e S Tc‘ ﬂg<e {

< x [T Pot <)

e<g<e; ore<g<es

1 H9S€1 p ( 9_
X

P (61,62 € Tc’e € ’TC) =

“)
S

(5.14)

P (e € Tc’ ﬂgge{
:]%P (e1 € ’Tc‘e € Tc) x P (62 € Tc‘e € TC) )
0

where the first equality simply uses the definition of conditional probability, the second
uses (5.13) and bounds the probability in the numerator by 1, the third is a simple
re-writing, the fourth uses again (5.13) and bounds the probability in the denomina-
tor by 1 and, finally, the fifth one is just using the definition of conditional probabil-
ity.

This proves that the percolation is quasi-independent.

Let e be a generic edge with |e] > 1, and denote by ey its parent. Using
(5.13), (5.11) and again Corollary 5.2, we have that, there exists ¢ > 0 such
that

P (e ¢ To,Cot < |e|%,eo € TC)

e _
(e¢TC \”‘,6067'0)— (C <o eOETC>
B <¢Tc,c <le| ™ BOETc>
Pl eTo)P (et < el )

P (ed T 07 < el e € To)
Pl eTo)P (N {Ci' < g|%ff})P ﬂ G <lol”
P(eg 70,0 < el N,e, {O.;lswgﬁf})f’(ﬂggeﬁ {cr <l })
P (N,<.{ 1) P (eo € T0)
P (e ¢ ’Tc’ Ny<e {C”l < gl })
P (e € To|Nyee {C < 1ol }) - el”a
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Thus, we obtain that

1—9c(e) =P (e ¢ Tcleo € Tc)
<P(C > el ) +P (e g Tc‘Cgl < e 0 € T0)

14e
)

< G0+ L(lel ™
— |€|1+€

(5.16)

Therefore, there exists ng > 1 such that, for any e € E with |e] > ng, we have
that

vele) 21— Sle .

By Proposition 4.4, as the percolation defined by (5.11) is quasi-independent and ¢ < b,
we have that br.(7¢) > b — € with positive probability. W

We are now ready to prove Proposition 3.1, which is implied by the next two state-
ments, where we consider different cases and prove that RT(T,v¥rc) > 1, where we
refer to (5.1) for a definition of this quantity.

Proposition 5.4.If m € (0,1) and bm > 1 then RT(T,vYrc) > 1 with positive P-
probability.

Proof. Recall the percolation 7 defined in (5.11). Let us denote Il the set of all the

cutsets in T¢. By Proposition 5.3, we have that br,.(7¢) > b— e with positive P-probability.
On this event, we have that

1 1+e 1 1+e
inf —_—— > inf —-_——
mell ecT (Zife Cil) - mello ecT <Zg§€ Cgl>

m 1+
> nf 3 (Jel 7 ) : (5.17)
welle
ecT
> —(b—2¢)
2 it Sl >,
ecT

where we used (5.9). This implies that RT(7,v¥rc) > 1 with positive P-probability, as
defined in (5.1). N

Proposition 5.5. If m > 1 and if b > 1 then RT(T,v¢rc) > 1 with positive P-probability.
Proof. Recall the percolation 7¢ defined in (5.11). By Proposition 5.3, we have that

br.(Tc) > b — € with positive probability. Let us denote Il the set of all the cutsets in
Tc. On this event, we have that, if b > 1,

1 1+e 1 1+e
inf = > inf =
mell ecm Eiﬁe Ci melle eem ZQSE Cy

> inf Y (e (5.18)
melle ecm

> f —(b—25) > 0
WIEnHC eezﬂ |6|

where we used (5.10). This implies that RT(7,v¥rc) > 1 with positive P-probability, as
defined in (5.1). N
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5.2 Recurrence: proof of the second item of Proposition 3.1

We will again consider different cases and prove this time that RT(7,¢¥rc) < 1,
where we refer to (5.1) for a definition of this quantity.

Proposition 5.6. Ifb > 1 and bm < 1 then RT(T,vrc) < 1, P-almost surely.

Proof. Fix two positive parameters ¢ and ¢ such that (1/m) —J§ > 0 and

(1 _5) (1—e)>b+0. (5.19)
m

The latter is possible as mb < 1.
We have that

P> Crt<lem ) <P ()G < el
i<e i<e

(5.20)

NG
L (‘e|7n )
=|l1-—F*= Sexp{—|e|5mL (|e

|e| (i —0)m

)}

By the definition of branching-ruin number, there exists a sequence of cutsets (m,,n > 1)
such that for any n > 0,

1

EETy

On the other hand, for any n > 0 we have,

Pl U {Scet<in ) < Yot <len

ecm, 1<e eEmy, i<e (522)
<Y exp{—lel™L (Il %) }.
eETmy,

Note that there exists ng such that for any n > ny, we have,

m L_ 1
Z exp {—\e\‘s L (\e\m 5)} < Z [e[po < exp{-n}
eETy

ecTy,

Therefore, we have that

Yopl U {Xa <l )| <.

n>1 ecmy, ile

In virtue of the first Borel Cantelli Lemma, all edges e € |J 7,, with the exception of

n>1
finitely many, satisty
1
> Ct > el (5.23)
i<e
Hence, for n large enough
Y e £ Yt £ O o < epion)
“I(1—g) = T _ o) (1l—g) = b Xp1—ny, 5.24
ecTy, (Ziﬁﬁ Cl 1)(1 E) eCTy, ‘e|(¢]n 6)(1 ) ecTy, |e‘1+‘5 ( )
where we used (5.19). Hence,
. 1
nh—{%o e;: (Zi<e Ci_l)(l_s) =0 (525)
EJP 24 (2019), paper 121. http://www.imstat.org/ejp/
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Therefore, we have that

1 1—¢ 1 1—e
0 < inf - < inf _ =0. (5.26)
mell ecT <Zi§€ Ci 1) nzl ecTy, <Zi§€ Cl 1>

Hence RT(T,Yrc) <1—c. 1

The next result concludes the proof of Theorem 1.1.
Proposition 5.7. Ifb < 1 then RT(T,¢¥rc) < 1, P-almost surely.

Proof. First, fix 6 € (0,1) such that
(1—6)?>b+06. (5.27)

The latter is possible as b < 1. Then, note that, for any ¢ € (0, 1), there exists n > 0 such
that

P(Cy'>n)>1-c (5.28)
In the following, we denote (C;),>0 a sequence conductances distributed like a generic

conductance C.. There exists a constant cs. > 0 such that, for any e € E,

lel/Llel’] kllel’]

Pl U N {7 <n

k=1 j=(k=1)[le|*]+1

IN

P> Crt <nlel?
i<le]
2
<
~—1—¢

I“‘Wdliédew

S;C&e‘

e s
P (¢t < )" (5.29)

IN

e| 700,

Indeed, to prove the first inequality above, note that

c

lel/Llel’] kllel’] lel/Llel’] kllel’]

U APRRCAE U g >n

k=1 j=(k—1)[|e|®]+1 k=1 j=(k—1)[le®|+1
C
CAaY Crl>mle™08 =8> 7t < le]'?
i<l|e| i<le|

(5.30)

By the definition of branching-ruin number, there exists a sequence of cutsets (7,,n > 1)
such that for any n > 0,

1 1
Y s < — exp{—n). 31
P < oo exp{—n} (5.31)

ecT,,

We use (5.29) and (5.31) to obtain

P U {ZC’;I < n|e|176} < cse Z le| 779 < exp(—n). (5.32)

ecm, g<e (SIS

Therefore, by Borel-Cantelli Lemma, as soon as n is large enough, we have that

N{> e >ner}

eEmy, i<e
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holds, which implies that

1 1 1 1 1 exp{—n}
- < == < == < 5 5.33
EEZW e D(I=5) = pl-o e; le]=9)1=8) = pi=s EEZF e[t = gm0 ( )
where we used (5.27). Hence, following a strategy similar to (5.25), (5.26), we have that
RT(T,¢¥rc) <1—46, P-almost surely. N

6 Proof of Theorem 3.3 and Lemma 3.6

We now turn to the proofs of the results about the M-digging random walk, which
will go over the next three sections. In this section, we prove Lemma 3.6. With this in
hand, Theorem 1.2 and Theorem 3.3 will then trivially follow from Theorem 3.5 (proved
in Section 8) by noting that (3.4) is satisfied when m, = M € N forall v € V' \ {p}.

Lemma 3.6 simply determines whether RT(7, s ) is greater or less than 1, depend-
ing on the value of the bias and of the branching-ruin number of the tree. Theorem 3.5 is
more crucial as it allows us to infer about the recurrence/transience of the walk, based
on the value of RT (T, »).

For any e € E, we define

Uara(e) = HZ/JM,/\(Q)- (6.1)

g<e

As we will see in Section 7, U,/ \(e) corresponds again to the probability that X, or )~(,
when restricted to [p, e™] and started from p, hits e* before returning to .

Proof of Lemma 3.6. Here, we assume that (m, ;v € V) such that m, =0and m, = M €
IN for all v € V' \ {p}. Thus, by (3.3) and (6.1), we have that, if A # 1,

A1\ M
Uy a(e) = <)\|e_1> ; (6.2)
and, if A\ =1,
Uarale) = e[ M (6.3)
We will proceed by distinguishing a few cases.
Case I: if A > 1 and br(7) < AM+L,
By (2.1), there exists ¢ € (0,1) such that
—lel
inf ()\(M+1)(1‘5)) —0. (6.4)
mell .
For any 7 € II, we have that
M+1)(1—6
Z Wara(e) =0 = (A — 1)(M+D1-) Z 1 (M+1)(1-5)
ecm 7 ecm )\‘EI - 1
A~ lel(M+1)(1-9)
_ 1\ (M+1)(1-9)
=(-1 Zg: (1= AT (1-5) (6.5)
M+1)(1-6
< (A = 1)M+D(A-9) Z)\—IeI(MH)(l—é)'
= (1= AH(M+D(A-0)
ecm
Therefore, by (6.4),
;ggz Tpra(e)=0 =0, (6.6)
ecm
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which implies that RT(7, ¥ ) < 1.

Case II: if A < 1 or if A > 1 and br(7) > \M+1,
Next, we prove that there exists § > 0 and ¢ > 0 such that

inf ()\(M+1)(1+6))7|e| > €. (6.7)

mell
eclIl

To prove the previous inequality, first note that this holds trivially if A < 1; second, if A > 1,
we use the definition of the branching number and choose § such that A1+ (M+1) < pp(T).
A computation similar to (6.5) yields
inf \IJA{)\ e 1+6 > A—1 (M+1)(1+9) inf )\—|8\(M+1)(1+5)
well ; A “oy =t (6.8)
> €.

Therefore, we have that RT' (7, ¢ar,0) > 1.

Case IIL: br.(T) > M +1and X = 1.
By (2.2), we have that there exists § > 0 and € > 0 such that

: —(148)(M+1)
;Ielgeezﬂ le] > €. (6.9)

Therefore, by (6.3), we have that

f o 45 _ e —(148)(M+1) 1
;relnceﬂ( ma(e)) ;gne;Iel > €, (6.10)

which in turn implies that RT (7, ¢ar,5) > 1.
Case IV: br.(T) <M +1and ) = 1.
We have that there exists § > 0 such that

inf " [e[TTOMED — (6.11)

mell
ecT

Therefore, by (6.3), we have that

i , 170 — —(1=8)(M+1) _
;relfHeeZTr (Tar.a(e)) ;relfne;r le] 0. (6.12)

Therefore, we have that RT (7, ¥a0) < 1.

Case V: br(7) > MM+l and \ = 1.
Let us prove that br(7) > 1 implies that br,.(7) = oo, which gives the conclusion by Case
III. We have that there exists § > 0 and ¢ > 0 such that

inf 5" (1467 > (6.13)

well
eclIl

Therefore, for any v > 0, there exists a constant ¢y > 0 depending only on ~, § and ¢,
such that

Z |€|_’y > co Z(l + 6)_‘6‘ > Cpe€. (6.14)

ecT ecm

Taking the infimum over 7 € II allows to conclude that br,.(7) > ~, for any v > 0, hence
br(T)=00. R
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7 Extensions

In order to prove Theorem 3.5, we will have to unwrap the techniques developped
in [8] and adapt them to the case of the M-digging random walk. The tricky part is to
verify that the quasi-independent property, proved in Section 8, indeed holds for this
model. In the current section, we recall a continuous-time embedding that will allow us
to define a convenient family of coupled processes on subtrees.

We define the same construction as in [7] and [8], which is a particular case of Rubin’s
construction. A large part of this section is a verbatim of Section 5 of [8].

The following construction will allow us to emphasize useful independence properties
of the walk on disjoint subsets of the tree.

Let (92, F,P) denote a probability space on which

Y = (Y(v,11,k) : (v, ) € V2 with v ~ y, and k € IN) (7.1)

is a family of independent random variables, where (v, 1) denotes an ordered pair of
vertices, and such that

e ifv =p~!and k = 0, then Y (v, 1,0) a Gamma random variable with parameters
m, + 1 and 1;
+ otherwise, Y (v, i, k) is an exponential random variable with mean 1.

Remark 7.1. Recall that a Gamma random variable with parameters m, + 1 and 1 has
the same distribution as the sum of m, + 1 i.i.d. exponential random variables with mean
1.

Below, we use these collections of random variables to generate the steps of X. Moreover,
we define a family of coupled walks using the same collection of ‘clocks’ Y.
Define, for any v, u € V with v ~ pu, the quantities

r(v,p) = ATIVIVIEIFL (7.2)

We are now going to define a family of coupled processes on the subtrees of 7. For
any rooted subtree 7’ of T, we define the extension X(7") = (V'  E’) on T as follows.
Let the root ¢’ of 7’ be defined as the vertex of VV/ with smallest distance to p. For a
collection of nonnegative integers k = (k,,) wilvueers let

AT (X7 =vkn () (#1<i<n: (X)L, X)) = (1)} = k)

k,n,v Jj—1>
wv,pl€EE’

Note that the event AQT/) deals with jumps along oriented edges.

k,n,v

Set )23” = ¢’ and, for v, v/ such that [v,v/] € E’ and for n > 0, on the event

S M} (7.3)

AQT/) M ! = i . /{ ’
14 argmln#_[l/HuJGE 2 fr(y, ILL)

k,n,v

we set )?7(17_;1) = v/, where the function r is defined in (7.2) and the clocks Y’s are from
the same collection Y fixed in (7.1).

Thus, this defines X(7) as the extension on the whole tree. It is easy to check, from
properties of independent exponential and Gamma random variables, the memoryless
property and Remark 7.1, that this provides a construction of X on the tree 7.

This continuous-time embedding is classical: it is called Rubin’s construction, after

Herman Rubin (see the Appendix in [9]).
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Now, if we consider proper subtrees 7’ of 7, one can check that, with these definitions,
the steps of X on the subtree 7’ are given by the steps of X(T) (see [7] for details).
As it was noticed in [7], for two subtrees 7’ and 7" whose edge sets are disjoint,
the extensions X(7") and X(7") are independent as they are defined by two disjoint
sub-collections of Y.

Of particular interest will be the case where 7' = [, v] is the unique self-avoiding
path connecting o to v, for some v € 7. In this case, we write X*) instead of f(([g”’]),
and we denote 7*)(-) the return times associated to X(*). For simplicity, we will also
write X(® and 7(°)(-) instead of X(®") and T¢")(-) for e € E. Finally, it should be noted
that, forany e € F and any g <e,

aa(g) =P (TO(g) 0 O gy < T (0) 0 b0 ) ) (7.4)
Tarale) = P (T(e5) < TO(g)), (7.5)

where 6 is the canonical shift on the trajectories.

Remark 7.2. Note that, for any vertex v, only the clocks Y (v, u,0) with u ~ v, v < p,
have a particular law. They follow a Gamma distribution instead of following an Expo-
nential distribution. This resembles what would happen for a once-reinforced random
walk (see [8]). In this case, these clocks would still have an Exponential distribution but
with a different parameter than the other ones (related to the reinforcement).

This means that an M-DRW, is, in nature, very close to a once-reinforced random
walk.

8 Proof of Theorem 3.5

In this section, we want to follow the blueprint of Section 7 of [8]. In order to prove
transience, the idea is to interpret the set of edges crossed before returning to ¢ as the
open edges in a certain correlated percolation.

Unfortunately, the results from [8] do not apply to the M-digging random walk and
we need to unwrap the proof and check some of the crucial steps. A key step is to prove
that this correlated percolation is quasi-independent, see Lemma 8.3, which will allow
us to conclude using Proposition 4.2.

Note that we will prove the transience of X which is equivalent to the transience
of X.

8.1 Link with percolation
Denote by C(p) the set of edges which are crossed by X before returning to o, that is:

Clo)={ec E:T(e") <T(o)}. (8.1)

This set can be seen as the cluster containing p in some correlated percolation. Next,
we consider a different correlated percolation which will be more convenient to us.
Recall Rubin’s construction and the extensions introduced in Section 7. We define:

Cop(o) ={e € E: T (eh) < T (g)}. (8.2)

This defines a correlated percolation in which an edge e € E is open if e € Cop(p).
Lemma 8.1. We have that

P(T (o) = o0) = P(IC(0)| = o0) = P(|Ccr(0)| = o). (8.3)
Proof. We can follow line by line the proof of Lemma 11 in [8], except that one should

replace X by X. 1
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8.2 Recurrence in Theorem 3.5: the case RT(7,vy,) <1
The following result states the recurrence in Theorem 3.5.

Proposition 8.2 (Proof of recurrence in Theorem 3.5: the case RT(7,v¥um,x) < 1). If
RT(T,¢¥wm,\) < 1 then X is recurrent.

Proof. This follows directly from Lemma 8.1 and Proposition 4.2. &

8.3 Transience in Theorem 3.5: the case RT (7, ) > 1

Now, we want to prove the transience in Theorem 3.5. For this purpose, we need to
check that the assumptions in Proposition 4.2 are satisfied.

For simplicity, for a vertex v € V, we write v € Ccp(p) if one of the edges incident to
v isin Ccp(p). Besides, recall that for two edges e; and ey, their common ancestor with
highest generation is the vertex denoted e; A es.

Lemma 8.3. Assume that the condition (3.4) holds with some constant M. Then the
correlated percolation induced by Ccp is quasi-independent, as defined in Definition 4.1.

Proof. Here, we need to adapt the argument from the proof of Lemma 12 in [8].
Recall the construction of Section 7. Note that if e; A e = g, then the extensions on
[0, e1] and [p, e2] are independent, then the conclusion of Lemma holds with C' = 1.
Assume that e; Aeg # p, and note that the extensions on [, e;] and [, e2] are dependent
since they use the same clocks on [, e; A e2]. Denote by e the unique edge of 7 such that
e’ = e; A ea. We define the following quantities

=

=

)
[

{0=n < T€(0) 0 b vy + (X, X)) = (e+,67) )

N(e)-1

(8.4)
Le) = Ejy’;e>ﬁ

where | A| denotes the cardinality of a set A and 6 is the canonical shift on trajectories.
Note that L(e) is the time consumed by the clocks attached to the oriented edge (e*,e™)
before X, X1 or X (2 goes back to p once it has reached e*. Recall that these three
extensions are coupled and thus the time L(e) is the same for the three of them.

For i € {1, 2}, let v; be the vertex which is the offspring of e lying the path from p to
e;. Note that v; could be equal to e;. We define for i € {1,2}:

e*.ef]

.
N(es) = [{0 < n < T () (X, X)) = (et o)}

)

(8.5)

N*(e;)—1 .
Y(et,e™,j)
L* Z — ) ) .
©= X S
7=0
Here, L*(e;), i € {1,2}, is the time consumed by the clocks attached to the oriented edge
(e, v;) before X, or X[e" e, /1, hits el
Notice that the three quantities L(e ), L*(ey1) and L*(ez) are independent, and we also
have:

{e1,e2 € Cep(o)} = {T(e+) < T (o)} N{L(e) > L*(e1)} N{L(e) > L*(e3)}.  (8.6)

Now, conditioned on the event {T(®)(e*) < T(¢)(p)}, the random variable N (e) is sim-
ply a geometric random variable (counting the number of trials) with success probability
Ael=1/57 <. Al9I=1. The random variable N(e) is independent of the family Y (e*,e™, ).

EJP 24 (2019), paper 121. http://www.imstat.org/ejp/
Page 23/29


https://doi.org/10.1214/19-EJP383
http://www.imstat.org/ejp/

The branching-ruin number

As Y(eT,e™,j) are independent exponential random variable for j > 0, we then have
that L(e) is an exponential random variables with parameter

Alel—1 1
A S S
Zgge Agl=1 Zgge Agl—-1

A priori, L*(e1) and L*(e2) are not exponential random variable, but they have a continu-
ous distribution. Denote f; and f, respectively the densities of L*(e;) and L*(e2). Then,
we have that

P (e1,e2 € Cop(o)|er Nex € Copl(o)) =

pi= (8.7)

(L(e) > L*(e1) V L*(e2))

+oo  pt
/ pe_ptf1($1)f2(l'2)dtdl‘1d{)32
0

x1VIo

P
/
+oo +oo
= / / e_p(mlvmz)fl($1>f2(l‘2)d.%‘1dl‘2.
0 0
/

+oo —+oo .
/ 67(11+m2)f1(Il)f2(.’1:2)dfr1dz2.
0
(8.8)
Thus, one can write

P (ei,e2 € Cop(o)|er Nez € Cop(o))

+oo +oo (8.9)
< (/0 €_p£1/2f1($1)d$1> . (/o €_pw2/2f2($2)d$2) -

Note that, fori € {1,2},
+oo -
/ e P72 f () dw; = P (L(e) > L*(ei)> ) (8.10)
0

where L(e) is an exponential variable with parameter p/2. Note that, in view of (8.7),
L(e) has the same law as L(e) when we replace the weight of an edge ¢’ by A~19'1+1/2
for ¢’ < e only, and keep the other weights the same.

For g € F such that e < g, define the function 7:[; in a similar way as 1, except that we
replace the weight of an edge ¢’ by A~19'171/2 for ¢’ < e only, and keep the other weights
the same, thatis, forge E, e < g,

— n_ mg+1
z’/‘; (g) 2]7 ! + Zu:e<g'<g )\lg = ’
M, = 7

: 2]771 + Zu:e<g’§g )\|9 =1

We obtain:

’ mg+1
S - 27+ Syrecy o N\
P(L(e) > L*(e1)) = H Y(g) = H (2p—1+zg = <g)\|g/\—1
g':e<g’'<g

g:e<g<ei g:e<g<ei
1 mg+1
p
=P(Le) > L (e1)) x  [] (1 +— . _1>
ge<acer P ecyi<g A9l

1 mg+1
x [ 1-— P
21+ Zg/:e<g'§g MMo'l-1

=TP(L(e) > L*(e1))

mg—i-l
—1ylgl-1
< I [1+ .
gre<g<e; (p_1 + Zg’:e<g’<g Mg |_1) (2p_1 + Zg/:e<g’§g Mg ‘—1)
(8.11)
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Hence,

P(L(e) > L*(e1))
<P(L(e) > L*(e1))

—1ylgl=1
xexp | (M +1) Z P
ge<g<ei (pil + Zg’:e<g’<g Alg lil) (pil + Zg’:e<g/§g Alg |71)
[ ~1ylgl-1
<P(L(e) > L*(er))exp (M +1) Y £ /
gocages (Zg/:g/@ Mg \71) (Zg,:g,gg Mg \—1)

leql Alg,l_l - !enl Alg,l_l
<TP(L(e) > L*(e1))exp [ (M + 1)p~* Z g% , g <o ;
gie<g<ei (Zg/:g,q g I*1> (Zg/:g/gg PN |*1)

1 1
CP(LE) > e exp (M4 Dpt 3 ( _ _ )
gecates D gra'<g Ag'1-1 > gia<g Ag'1-1
< P(L(e) > L*(e1)) exp -(M F1)pt 1 1
>~ 1 —1 i
L Z:g’:g'Se Alg'1=1 Zg’:g’Sel Algi=t

< exp(M +1) x P(L(e) > L*(e1)),

(8.12)

where we used condition (3.4), the fact that we have a telescopic sum and where we
used the definition (8.7) of p.
We have just proved that

“+o00
/ e_p$1/2f1(:b1)dx1 <exp{M + 1} x P(e; € Ccp(0)|er Aes € Cop(0)). (8.13)
0

By doing a very similar computation, one can prove that

+oo
/ e_p“/Qfl(a:g)da:g <exp{M + 1} x P(ez € Cap(0)|er A ez € Cop(p)). (8.14)
0

The conclusion (4.1) follows by using (8.9) together with (8.13) and (8.14). 1

Proof of transience in Theorem 3.5: The case RT (T, ) > 1. This follows directly
from Lemma 8.1, Lemma 8.3 and Proposition 4.2. &

A Proof of Proposition 4.2

As above, we define a function ¥ on the set of edges such that, fore € F,

U(e) =[] v(e). (A.1)
g<e
By (4.2), we have that
Ple € C(o)] = ¥(e). (A.2)

A.1 Proof of Proposition 4.2 in the case RT(7,v¢) < 1
Proposition A.1. If RT(T,%) < 1, then a percolation such that (4.2) holds is subcritical.

Proof. We use a first moment method. For any cutset 7, we have

Lijc(o)=too} D Liecc(o))

ecm
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and then
P (|C(0)| = +00] = E [L{j¢(g)|=to0}]) < D E [Tieecion] = Y P le € C(o)]
ecT ecm
Therefore

P[IC(0)] = +oc] <) ¥(e).

eem

Taking the infimum over 7 € II allows to conclude that:

P [IC(o)] = +oo] < inf > W(e). (A.3)

ecT

If RT(T,%v) < 1, the definition of RT(T,1) (see (3.1)) implies that

inf S W(e) =0 (A.4)
mell e

We conclude the proof of proposition thanks to (A.3) and (A.4). &

A.2 Proof of Proposition 4.2 in the case RT(7,v¢) > 1

As we are considering a quasi-independent percolation, we are able to lower-bound
the probability of this correlated percolation to be infinite by the probability that some
independent percolation is infinite. We do this by proving that a certain modified
effective conductance is positive.

Definition A.2. For any edge e € E, let c(e) = 1 if |e| = 1 and, if |e| > 1, define the
adapted conductances

ofe) = %M\p(e). (A.5)

Define Cos the effective conductance of T when the conductance c(e) is assigned to every
edge e € E. For a definition of effective conductance, see [21] page 27.

Proposition A.3. Let C(p) be the cluster of the root in a percolation such that (4.2)
holds. If the percolation is quasi-independent, then there exists Cg € (0,00) such that

1 Ceff

<P(|C = 00).

o X Tacs < PlC@l =)

Proof of Proposition A.3. We can use the lower-bound in Theorem 5.19 (page 145) of
[21] to obtain the result. N

Recall that a flow (6.) on a tree is a nonnegative function on F such that, for any
€€E, 0c=3 cpy —e+ by Aflow is said to be a unit flow if moreover . _; 0 = 1.

A usual technique in order to prove that some effective conductance is positive is to
find a unit flow with finite energy. This is the content of the following statement, which
is a simple consequence of classical results.

Lemma A.4. Assume that (3.4) is satisfied. Consider the tree 7 with the conductances
defined in Definition A.2 and assume that there exists a unit flow (0.).cg on T from o to
infinity which has a finite energy, that is

(6)”
Z o(e) < o0

ecE

Then, a quasi-independent percolation such that (4.2) holds is supercritical.
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Proof. Using Proposition A.3, if Ceg > 0 then a quasi-independent percolation such that
(4.2) holds is supercritical. By Theorem 2.11 (page 39) of [21], Ceg > 0 if and only if
there exists a unit flow (6.).cg on T from p to infinity which has a finite energy. 1

The following result, from [8], is inspired by Corollary 4.2 of R. Lyons [19], which is
itself a consequence of the max-flow min-cut Theorem. This result will provide us with a
sufficient condition for the existence of a unit flow with finite energy.

Proposition A.5. For any collection of positive numbers (uc)ccp such that} -, . _; ue =1
and

;rel%eezﬂuec(e) >0, (A.6)

there exists a nonzero flow whose energy is upper-bounded by

lim max gug.
n—00 ec E:|e|=n
g<e

The proof is ended once we have proved the following proposition.

Proposition A.6. If RT(T,v) > 1, then a quasi independent percolation such that (4.2)
holds is supercritical.

Proof. This proof follows line by line the proof of Proposition 18 in [8].
Fix a real number v € (1, RT(T,%)) and, for any edge e € E, let us define u, = 1 if
le] =1 and, if |e] > 1,

ue = (L=w(e) [T (wig) -

g<e

On one hand, we have that, for any e € F,

D ug <G, (A7)

g<e

Indeed, for each e € F, we can apply Proposition 17 of [8] to functions f. defined by
fe(0) =1 and, forn > 1, f.(n) = 1 — 9(g) with g the unique edge such that g < e and
|gl = n A |e|. We emphasize that (A.7) holds with a uniform bound.

On the other hand, using (A.5), we have

U(e)

inf > ueele) = inf 3 (1= () (¥ ) x 7= s

mell well
ect eem

_ ¥
—#Ielg (T(e))’ > 0.
eem
Proposition A.5 and (A.7) imply that there exists a nonzero flow (6.) whose energy is
bounded as

2
(0e) .
< lim ma ug < C,.
Z c(e) T n—oo eEE:|e)\(:nZ g="7
eckE g<e

Therefore, there exists a unit flow with finite energy and Lemma A.4 implies the

result. N0
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