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Estimates of norms of log-concave random matrices
with dependent entries”
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Abstract

We prove estimates for E|X : £, — £3'| for p,q¢ > 2 and any random matrix X
having the entries of the form a;;Y;;, where Y = (Y;;)1<i<m,1<j<n has i.i.d. isotropic
log-concave rows and p’ denotes the Holder conjugate of p. This generalises a result
of Guédon, Hinrichs, Litvak, and Prochno for Gaussian matrices with independent
entries. Our estimate is optimal up to logarithmic factors. As a byproduct we provide
an analogous bound for m x n random matrices, whose entries form an unconditional
vector in R™". We also prove bounds for norms of matrices whose entries are certain
Gaussian mixtures.
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1 Introduction and main results

By |Al|,,; we denote the operator norm of the matrix A from ¢, to ¢,. A classical
result regarding spectra of random matrices is Wigner’s Semicircle Law, which describes
the limit of the empirical spectral measure of a random matrix with independent cen-
tred entries with equal variance. Theorems of this type say nothing about the largest
eigenvalue (i.e. the operator norm). However, Seginer proved in [16] that for a random
matrix X with i.i.d. symmetric entries E||X||2 » is of the same order as the expectation
of the maximum Euclidean norm of rows and columns of X. The same holds true for
structured Gaussian matrices (i.e. when X;; = a;;g;; and g;; are i.i.d. standard Gaussian
variables), as was shown recently by Latata, van Handel, and Youssef in [14], and up to a
logarithmic factor for any random matrix X with independent centred entries, see [15].
The main novelty of these two results is that they do not require the entries of X to be
equally distributed (nor to have equal variances).
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Estimates of norms of log-concave random matrices with dependent entries

In [9] another upper bound for E|X |22 was proved:
L\ /2 L\ /2 L\ /4
B X5 < C[m?x(z IEXZ-]) + mjax(z EXZ.j) + (2 ]EXij) ]
J g 2,7

where C is a universal constant. It also requires the independence of entries, but not
the equality of their distributions. This bound is dimension free, but is in some cases
worse than the one from [15].

Upper bounds for the expectation of other operator norms were investigated in [2]
in the case of independent centred entries bounded by 1. For ¢ > 2 and m x n matrices
the authors proved that E| X |2, < max{m!/?,\/n}. In [6] Guédon, Hinrichs, Litvak, and
Prochno proved that for a structured Gaussian matrix X = (a;; X;;)i<m,j<n and p,q = 2,

m

n
1/q 1/p 1/q
E|Xlyq < Cp.)| (logm) " max (3 loul”) ™+ max (3 1au?)
ji= =

1<is<m
1<j<n

+ (logm) "B max |X¢j|]. (1.1)

This estimate is optimal up to logarithmic factors (see Remark 1.2 below). Estimating
more general norms required a different approach than those used for estimating
the spectral norm. In particular the moment method fails in estimating E|X|, , for
(p,q) # (2,2) as it gives information only about the spectrum of X.

All the results mentioned above require the independence of entries of X. We will
show how to relax the independence assumption. The aim of this article is to generalise
the main result of [6] to a wide class of random matrices with independent uncorrelated
log-concave rows by following the scheme of proof of the original theorem from [6]. We
work with a more general class of random matrices, thus the proof from [6] may not be
rewritten verbatim, but it requires some extra tools: the comparison of weak and strong
moments of {,-norm of X from [11] and a Sudakov minoration-type bound from [10].

Before we state our main results, let us say a few words about log-concave vectors,
which are widely investigated in convex geometry and high dimensional probability. We
call a random vector Z in R" log-concave, if for any compact nonempty sets K, L < R"
and A € [0,1],

P(Ze K+ (1-MNL)=>P(Ze K)*P(Ze L)'

The class of log-concave vectors is closed under linear transformations, convolutions and
weak limits. By the result of Borell [3] an n-dimensional vector with a full dimensional
support is log-concave if and only if it has a log-concave density, i.e. a density (with
respect to the Lebesgue measure) of the form e~ ", where h is a convex function with
values in (—o0, 0].

Log-concave vectors are a natural generalisation of vectors distributed uniformly
over convex bodies. The distribution of any log-concave vector can be obtained as a
weak limit of projections of uniform measures over (higher dimensional) convex bodies
(see for example [1]).

We will frequently use a basic property of log-concave vectors: the regularity of f(Z)
for log-concave vectors X and seminorms f, which states that

(Bf(2)n)"" < Clg(Ef(Z)q)l/q forp=>gq> 1, (1.2)

where (] is a universal constant (see [4, Theorem 2.4.6]). Other results and conjectures
concerning log-concave vectors are discussed in the monograph [4].
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We say that a vector in R" is isotropic if its covariance matrix is the identity. If 7 is
a log-concave random vector in R" with a full dimensional support, then there exists a
linear transformation 7" such that Cov(TZ) = 1d, so the isotropicity is only a matter of
normalisation.

If A = (Aij)i<m,j<n IS @an m x n matrix, we denote by A; € R” its i-th row and by
AU) € R™ its j-th column. We are now ready to present the main theorem.

Theorem 1.1. Letm > 2, let Y1,...,Y,, be ii.d. isotropic log-concave vectors in R", and
let A = (Aij) be an m x n (deterministic) matrix. Consider a random matrix X with
entries X;; = A;;Y;; fori < m,j < n, whereYj; is the j-th coordinate of Y;. Then for
every p,q = 2 we have

: 1
E|X|y,q < C(p, q)[(log m) Y4 max HAin + max ||A(J)Hq + (logm)HquLni;gn |Xij|],

1<i<m 1<j<n

1<j<n

(1.3)

where C(p, q) depends only on p and q.

Let us stress that the theorem requires the independence only between the rows and
does not require the independence of the entries of X.

Remark 1.2. Note that the bound from Theorem 1.1 is optimal up to a constant depend-
ing on p,q and logarithmically on the dimension. Indeed, since Yj; is log-concave we
have by the regularity of Y;; (see (1.2)) that E|Y;;| > (2Cy)~! (]E)Yi?»)l/2 = (2C1)~'. Hence
for every j <n,

ElXlp.q = B sup | Xuly > B| Xej], = E|X W], = BJ(IYi145),], = (2C1) AP,
uel™,

Since | X, 4 = | X7, .p, we also have E|| X||,s, = (2C1)"!|A;|, for all i < m. Moreover,
foralli <mand j < n,

| X lpr.q = sup sup v" Xu > el X(sgn Xyje;) = [ Xyj.

)
uef;,veé;
Therefore

E|X |y, = (40 +1)71 [lgliaénHAin + lréljaécn”A(j)Hq + Eﬁgﬁ{cm \Xz-jl],
I )N

which yields the claim.

Note that in (1.3) the logarithmic term appears in front of the norm of rows, but not in
front of the norm of columns, so our bound is not symmetric. This is not so strange, since
the assumptions of the theorem are also non-symmetric: we assume that the rows are
weighted i.i.d. random vectors, but no independence between the columns is required.
However, the asymmetry of the bound in Theorem 1.1 is mainly a residue of the proof
and the author does not know if one may skip the logarithmic factor in front of the norm
of rows.

Since | X|, .4 = | X%|y », one can assume in (1.3) that the columns (instead of the
rows) of Y are i.i.d. isotropic log-concave vectors. Then Theorem 1.1 yields

1/p
|4:l, + (logn)

E[X |y q < C(PK])L ||A(j)Hq + (logn)HEElrgnZ_zgn |XU\]

1<j<n

max max
<is<m 1<j<n

We mentioned previously results from [16, 14, 15], which provide the bounds of
the expected value of the operator norm in terms of expected values of norms of rows
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and columns. Theorem 1.1 easily implies an estimate of the same kind: by (1.2), the
assumption IEYZ-?- = 1, and the Jensen inequality we get

1/q ; 1+1
(logm) max HAZ'Hp + max ||A(J)Hq + (logm) ]Elmax | X5

<is<m 1<j<n <ism
1<j<sn

<20, ((log m) " max (A EIY;)),], + max [ (A B[y )il

<ism
1<j<n

1+1
+ (lOg m) ]E 1max |X1'j |)

1 i 1
<20 (g ) "B s, 151, + E g X0, + Qog) 1B ma 1],

1+g _ ©))
< 0 ((tom)* 4B max 1], + B s [, ), (L.4)

where C' is a universal constant. Therefore (1.3) yields the following corollary.

Corollary 1.3. Under the assumptions of Theorem 1.1 we have
) 1+1 ) (4)
E1X |y < Clpva) (08 m) "B max 101+ B pmax [X0, ).

Remark 1.4. If the rows and columns of a random matrix Y are isotropic and log-concave
(we do not require independence), and p,q > 1, then

n

1/p = 1/q
YL |P Y|4
Emax (3 146Y0) 7+ B (3)145%,1)

< O(07 s | A4dl, + 0 s[4+ (0 + @) log(m v W) max |45). (1.9)
1<j<n

This means that inequality (1.4) may be reversed up to a logarithmic factor and constants
depending only on p and ¢ in the log-concave setting. Therefore the estimates from
Theorem 1.1 and Corollary 1.3 are equivalent up to a logarithmic factor.

Inequality (1.5) follows directly from the following proposition.

Proposition 1.5. Let Y be an m x n random matrix, with isotropic and log-concave rows,
let B be a deterministic m x n matrix, and let p > 1. Then

n n

1p 1/p
Elgliagjn(zl \Biniﬂp) < C(p2 121’;(2 |Bij\p) + plog(m v n)E max Binij|),
iz

Jj=1 1<j<n
where C' is a universal constant.

Our next result concerns unconditional matrices. Recall that we say that a random
vector Z in R is unconditional, if for every choice of signs € {—1,1}¢ the vectors Z
and (1;Z;):<aq are equally distributed (or, equivalently, that Z and (¢;Z;);<q are equally
distributed, where €1, ...,e4 are i.i.d. symmetric Bernoulli variables, independent of 7).
The assertion of the next corollary is expressed in the spirit of Corollary 1.3, which is
more natural in the non log-concave setting (without the assumption of log-concavity
inequality (1.5) may no longer be true, even up to additional logarithmic factors).

Corollary 1.6. Assume that X is a random matrix such that the (mn)-dimensional vector
(X11,--- X1, X21,---, Xon, X1, ..., Ximn) Is unconditional. Then for every p,q > 2 we
have

n

1/p = 1/q
B[ X]yq < c<p,q>(<logm>%+ilE max (Y 1X;07)  + /logn max (31X,[7) )
1<j<n -1

1<i<m \ 4
Jj=1

(1.6)
where C(p, q) depends only on p and q.
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The asymmetry of the bound in (1.6) is just a residue of its proof: the factor (log m)l/ q
could be skipped if one could prove (1.1) in the Gaussian case with constants independent
of the dimensions. Such an improved version of (1.1) was conjectured in [6].

Let us compare (1.6) with the following result of Seginer coming from [16]. Let
X = (Aij€ij)1<i<m,1<j<n Where g;; are independent random signs. Then

E|X|2-2 < C4/log min(m,n) (max [ Aill2 + max |A(3)|2) (1.7)
<j<

where C' is a universal constant. Moreover, for every m,n, there exists a matrix
(Aij)lgigm’lgjgn, for which (1.7) may be reversed (up to a universal constant). Therefore
one may not skip the dependence on the dimension also in estimate (1.6).

In the case (p,q) = (2,2) and X = (4,;¢;;) Corollary 1.6 provides a bound with worse
dependence of the dimension than in (1.7). However, our result works also in much more
general setting than the result of Seginer does (in particular, our Corollary works also
when the entries of X are dependent).

The rest of this note is organised as follows. Section 2 contains results from other
articles to be used in a sequel. Section 3 contains generalisations of Lemmas 3.1 and 3.2
from [6] to the log-concave setting and the proof of Theorem 1.1. In Section 4 we show
how to deduce an analogue of Theorem 1.1 for Gaussian mixtures (see Corollary 4.2)
and we provide a proof of Proposition 1.5. Section 5 is devoted to the proof of Corollary
1.6.

Notation By C we denote universal constants. If a constant C' depends on a parameter
a, we express it as C'(«). The value of C, C(«) may differ at each occurrence. Whenever
we want to fix the value of an absolute constant we use letters Cy, Cs, ... We may and
do always assume that C, C; > 1. For two quantities a, b we write a < b if there exists a
constant C, such that a < Cb, and a ~ b, if a < b and b < a. For two numbers a and b we
write a v b instead of max{a, b}.

For a random variable Z by |Z|, we denote the p-th integral norm of Z, i.e. the
quantity (IE|Z|?)"/?; in the case when Z = ||U| we also call this quantity the p-th strong
moment of a random vector U associated with the norm || - |. For a vector x € R"™ (in
particular for a random vector Z) and r > 1, by |z|, we denote the ¢,.-norm of z, i.e.
||, := (3, |#:]")"/". For r = 2 we shall also write | - | instead of | - ||o. It will be always
clear from the context, what | Z|, means for a random object Z, so the double meaning
of || - | will not lead to any misunderstanding. Recall that for an m x n matrix A by || 4|4
we denote its norm from ¢} to 7. For p € [1, 0] we denote by p’ the Hélder conjugate of
p, i.e. the number such that 1 = 1 +

2 Preliminaries
In the proof of the main theorem we will need the comparison of weak and strong
moments for £,-norms of log-concave vectors:

Theorem 2.1 ([11, Theorem 5]). Let Z be a log-concave vector in R™ and let p € [1, ).
Then
(B|Z2) < Cp(BIZl, + 0p2(a)) fora>1,

where

is the g-th weak moment of X associated with the {,-norm.
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We will use the previous theorem also in the tail-bound version:

Corollary 2.2. Assume Z is a log-concave vector in R™ and p € [1, ). Then for all u > 0,

u) (2.1)

For the Reader’s convenience we give a proof of this corollary, which goes along the
lines of the proof of Corollary 1.3 in [12].

1P(|\Z\|,, > Cop(u+ EHZ||p)) < Cs s%p IP<
te I’)L, i=1

Proof. Define a random variable S := | Z||,. By the Paley-Zygmund inequality and (1.2)
we have fort e R"”, and ¢ > 1
n q
)-r(E )
i=1

< ’Z t:Z;
"6zl \
> (1 _ 2—q)2 (Z:Z_lq> > e~ Caa (2.2)

HZ?;I tlZl H2q
In order to show (2.1) we consider 3 cases.

=

q —
i =2

Case 1. 2u < sup;cpn | D" tiZ]|2. Then by (2.2)
P

sup P (’
teB”,

and (2.1) obviously holds if C3 > exp(2Cy).

U) > 6_204

Case 2. sup;cpn,
p

Y1 tiZill2 < 2u < supyepn | 27 tiZi]w. Let us then define
P

n
q:= sup{r > 2C4: sup Z tiZ; < 2u}.
teBT, 112 r/Cs

By (2.2) we have

sup ]P( > u> >e 1
teB’I’:, i=1
By (1.2), Theorem 2.1, and Chebyshev’s inequality we have
P(S > Csp(ES +u)) <P(S = e|S],) <e?

for C5 large enough. Thus (2.1) holds in this case.

Case 3. u > sup;cpn | i tiZif o = |S]lc. Then P(S > u) = 0 and (2.1) holds for
any Cs > 1. O

In the proof of Theorem 1.1 we will use Theorem 2.1 from [6], which is a version
of the results provided by Guédon-Rudelson in [8], and by Guédon-Mendelson-Pajor-
Tomczak-Jaegerman in [7]. Below we give only a particular version of the theorem; the
general result is stated in [6].

Theorem 2.3 ([6, Theorem 2.1]). Let X1,...X,, € R" be independent random vectors,
and let p,q > 2. Define

u:= sup (Z B[(X;, t)|” ) 2.3)

B", izl
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and y
q
— (9 la
v (p 1ongB1r<nia<>§n HXsz) . (2.4)

Then

m

([l — B B])

i=1

1/q
[E sup ] < C(vuv +v) < 2C(u + v).

p’

3 Proof of Theorem 1.1

The next two lemmas provide estimates of the quantities v and v appearing in
Theorem 2.3.

Lemma 3.1. Assume that p,q, X, and Y are as in Theorem 1.1. Then

(B max 1x,08) " < €l a)| max 1Ay +1ogm B ma 1X,],
1<j<n

where C(p, q) depends only on p and q.
Lemma 3.2. Assume that p,q, X, and Y are as in Theorem 1.1. Then

m 1/q ,
s%% (Z IE|<X¢7 t>|q) < Ciq lréljagn”A(J)Hq. (3.1)

1=1
In the proof of Lemma 3.1 we will also need the following estimate:

Lemma 3.3. Assume that Z is an isotropic log-concave vector in R™. Then for all
1 <k <m and all a € R™ we have

1 .
B max laiZil > Gomax(ad min | Zihosrn):

« . .
where (a})7, denotes the non-increasing rearrangement of (|a;|)} .

In order to prove Theorem 1.1, we repeat the scheme of the proof from [6].

Proof of Theorem 1.1. Let u and v be given by formulas (2.3) and (2.4). The triangle
inequality, Theorem 2.3, Lemma 3.1, and Lemma 3.2 yield

1/q
E|X |y, < (E|X]S,,)"7 = WWZWXM

p’z 1

m 1/q m 1/q
[IE) sup ’(Xi,t>|q — E}(Xi,t>‘q) ] + sup (EZ|<t,Xi>|q>
= teBn, \ 23
(u+ v)
11
po)| (logm)"" max [Ai[, + max [AD] + (logm) B max Xy .0

1<j<n
The main contribution of this article lies in the proofs of Lemmas 3.1, 3.2, and 3.3.
Proof of Lemma 3.3. We may and do assume thata; > as > ... > a,, >0, i.e. af = g, for
1 < m. By [10, Proposition 3.3] we have for all k < m

71

E max |a;Z;| > 11;111_12]c lai Zilogr+1) = C 'ay 1g}ignm 1 Zil1og (re+1)-

1<i<k
Thus
E max a;Z;| = max IE max |a;Z; C™! max (a; min |Z; . O
| i | 1<hem  i<ich | 7 | 1<k<m( klgigm ” zHlog(k-H))
EJP 24 (2019), paper 107. http://www.imstat.org/ejp/
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Proof of Lemma 3.1. We may and do assume that m > 2.

Since we may approximate A;; by nonzero numbers, we may and do assume that
A;j # 0for all 4, j. Let (5, C3 be the constants from (2.1), let Cs be the constant from
Lemma 3.3, and recall that C; is the constant from (1.2). We may assume that all these
constants are greater than 1.

Note that for any a,b € R we have a = (a —b)+ +a A b. Thus, by the triangle inequality,

1/q
(]E max HXZ-||§,)
1<i<m

1<is<m

1/a
< (E max |:(||X1HP - C2pEXi||p)q1{|Xipzczp]EXi|p}:|> + Cgp 1I<IIZEL}§nE”X1Hp (3.2)

Moreover, for every 1 < i < m we have by (1.2) and the isotropicity of Y;, that

1/p
B[ X, < (Z BIY; 17 Ayl7) " < max Vi, Aill, < Crpl Al
Js<n
< Cip max | Akllp- (3.3)

Now it suffices to estimate the first term of (3.2). Let

2 3 .:
B := C{Cglog(m + 1) ]Elranzgn |X;;] and o: (121%); op.x,(2)) v B.
1<j<n

By (2.1) and the integration by parts we have

E max | (1Xill, = CapBI Xillp) "Ly x.1, 2000810,

1<ism

0
< (2C3pec)? + J qv‘l—IIP( max (HXal — CQpEHXZ-Hp) > v)dv
QCgpeo Isism
< (2Cspec)? + Z f vqfllP(HXin — CopE|| X, |, = v)dv
2Cspec

m

_ (2Copea)? + (Cop)" Z f qui P (| X, — CopB| X[, > Copu)du

2e0

< (2C3pec)? + (Cap)iCs Z quit sup IP(’Z t; Xi5| = u) du. (3.4)
=1

2eo Hth/SI

We want to estimate the function we integrate in (3.4). Fix u > 2ec. For i such that
u = Supjy <1 | 2351t Xij] oo the function we integrate vanishes, so from now on we will

consider only i’s for which u < supy, < | i1t X oo
Note that if 1 < i < m and supy,| <, [ ZJ 1t Xijlo > u = €0 = eoy, x,(2), then

r:=r(i) :=sup{s = 2: 0, x,(s) < ufe} € [2,0)

and o, x,(r) = u/e. Therefore

n supyy <1 <6 X7
sup IP(’Z i Xij| = U) < 1“1y - =e . (3.5)
ll£l,r <1 j=1 u
EJP 24 (2019), paper 107. http://www.imstat.org/ejp/
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Now we will estimate r from below. For ¢ > 2 let

plt) =t min [V,

Since Y/s are identically distributed, ¢ does not depend on i. By (1.2), and the isotropicity
of Y we have

n o 1/2 n 1/2
2 2
op.x, (1) < o2,x,(t) < Cltlgllz (E(Z Ainijxj) ) = Cltlﬁi}i(Z;Aiij

=1

J
= C1t max [Ay] - [Yijl2 < Cip(t) max [Ay]. (3.6)
1<j<n

1<j<n

Since we can permute the rows of A, we may and do assume that

max |Ai;| = ... > max |[An,|
1<j<n 1<j<n
t j(i) < n be such an index that [A;;;| = max;<j<n|4i;|. Lemma 3.3 applied to
Z Y;;) and the non-increasing sequence a; = |4;;(;)| implies

_ -1 .
E max | Xyl > E max |AyYie| > G5t (log(m + 1)) max (p(logli +1)|4i] ).
1<j<sn

so for all < m we have

B = CYep(log(i + 1)) Ajjn)| = Cie(log(i + 1)) max [Ay].

<j<n

Note that by (1.2) for all » > A > 2 we have o0, x,(r/X) = op x,(r)/(C1A). Take A =

op.x,;(r)/B = u/(Be) = 2. Then by a calculation similar to the one above we get

U Cir 2 R 2. X B
= 0. m 4 max .. < <
e p.x: () 2 1<]aX [4is| < Cir 1<1’i7’,| i |[E[Y:;] < Cir 1<z’1}§n| ij| < Br

N

1<j<n 1<j<n

soindeed r > A = 2.
Therefore for all : < m we have

B 1 By(%)

B ) <ol D (5 Bl
o~ o o) < opx(r/ )< O M el < ey @7
Since the function ¢ is strictly increasing, the prev10us inequality yields r = Alog(i + 1).

This together with (3.5) implies that (recall that A = X > 2)

i u u :D u u

sup P(‘Et Xyl = ) <M(i+1)F <2 +f o~ Fdr < 3-27%. (3.8)

—1 Ity <1 j i=1 2

Inequalities (3.4), (3.8), and the Stirling formula yield

1/q
(E[ max ([|X:, - CzEXilp)ql{Xip@Exip}D

1<i<m

© . 1/q
< ((202pea)q + 3(C’2p)qC'3J quq12wdu>
0

© 1/q
< ((2Cgpea)q + (CCQ])O’)chf qvq_le_”dv>
0

< CCLCH 0pq. (3.9)
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If B > maxi<i<m 0p,x; (2), then 0 = B = Clog(m + 1) Emaxi<i<m |X;;| and the assertion
1<j<n

follows by (3.2), (3.3), and (3.9). Otherwise, by (1.2) we get

0= max opx,(2) <20, max opx,(1) < 2C; max E|Xif,,
where the second inequality holds since the weak first moment is bounded above by the
strong first moment. This together with (3.2), (3.3), and (3.9) gives the assertion. O

Proof of Lemma 3.2. Since p > 2, By < By. Thus we may and do assume p = 2. By (1.2),
the isotropicity of Y, and the Jensen inequality we have

m 1/q m o\ g
ts%g(z ]E|<Xi,t>|q) < Ciq sup (Z (E|<X¢,t>|2)q )

3 \i=1 [tl2<1 \;Z1

i=1j

n 1
- Cua s 149018

ltl2=1 ;=1

= ('1q¢ max ‘|A(j)“ . O

1<j<n q

Remark 3.4. By the same reasoning as in the log-concave case, we may prove the
following result for matrices with independent heavy tailed entries. Let X be an m x n
random matrix with entries X;; = A;;Y;;, where Y;; are independent symmetric random

variables such that ]EYl-? =1, and let L > 0. Assume that forany r > 2and any 1 <i < m,
B

1 < j <nwehave o < |Yj;|, < Lr® with 3 € [%,1]. Then for every p,q > 2 we have

E|X]p.q < Cp.q, L)[(log m) v 121)571”14’:”1) * 1I£gaanHA(j)Hq + (log m) 1/qE 1?1‘2% |X”|]
1<j<n

(3.10)

where C(p, q, L) depends only on p, ¢, and L.

At the end of Section 4 we provide another result concerning this type of random
matrices (see Corollary 4.5).

In the proof of (3.10) one uses [12, Corollary 1.3], [13, Theorem 2.1], and (3.11) (see
below) instead of (2.1), Lemma 3.3, and (3.6), respectively. The only non-trivial part is

proving the claim:
n n
Dt DY
j=1

j=1
where C'is an absolute constant, and repeating the proof of Theorem 1.1. By (3.11) we
get

< CLP = CLrP|ts, (3.11)

2

r

2.2 _ B ) 2 i . .
D, st = CLg” max |e| < COL? min |V, max |ej]

which allows us to obtain a version of (3.6) for ¢(t) := mini<i<m, Yijle.

1<j<sn
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Proof of (3.11). It suffices to consider r = 2k, where k is an integer. Let G = (Gj)?=1 be
the standard n-dimensional Gaussian vector. Recall that for any ¢ € R” and » > 1 we

have | 37 £;Gjlr = [tl2 Gl ~ [tl2v/r = V| 251t YmHz

By the assumptions on Y; and by the fact that § > we get

3 * 2% , o 4
Z thij = Z (2 ] 0 >EYZ_21J1 . .Ey;ijnt%h . t?z]n
J=1 2k J1i+--+in=k J1s -y 4]n

2% . . ) .
SR < Jioe o2 )(%)W (24P g
1y--+s4)n

Ji+...+in=Ek
2k , Y .
< (2R)POTELE Y ( ‘ )%)ﬁ S (2t
1t eetin=k Jla"'72jn

< (2k)*ReD* ) < S )Ea?l S BGH 2

G14tin=k 2J1a" 72.71'7,

n 2k n 2k

= (2K)PPROL| Y 4G, < (2R)PP(CLY| Y 4y

j=1 2k j=1 2

which finishes the proof of (3.11). O

4 Estimates of norms of matrices in the case of Gaussian mix-
tures

Let us recall the definition of Gaussian mixtures from [5], where their significance is
also described.

Definition 4.1. A random variable X is called a (centred) Gaussian mixture if there exist
a positive random variable r and a standard Gaussian random variable g, independent of
r, such that X has the same distribution as rg.

We will work with matrices of the form (R;; B;; GU)Km j<n Whose entries are Gaussian
mixtures. We additionally assume that R;; = |Z;;|”, where v > 0, and that the matrix
Z is log-concave and isotropic (considered as a random vector in R™"). It will be
clear from the proof, that the corollary below is true also for another type of matrices:
(RiBijGij)i<m,j<n, Where R; = |Z;|7, and (Zi,...,Z,,) is an arbitrary isotropic log-
concave random vector.

Corollary 4.2. Let m,n > 2, lety > 0, let B = (B;;) be a deterministic m x n matrix,
and let G = (Gij)i<m,j<n be a random matrix whose entries are i.i.d. standard Gaussian
variables. Let X;; = |Z;;|"B;;Gi;, where Z = (Z;;);<m,;j<n iS a log-concave and isotropic
random matrix independent of G. Then for every p,q = 2 v % we have

+ max. | Bs H (logn)” 1m]a<XnHB Hq

E| X[, < Clpra, w[(logm)q

+ (logm) 1 mx 1.

1<j<n

Proof. Inequality (1.1) applied to a;; = |Z;;|” B;; yields

E[X|py.q < Clp, )[(logm) 1/qElg%u(BijIZijlme +E max (B Zi[")i],

+ (logm) Y5 max |X”|]
1555n
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so it suffices to prove that

E max [(By|Zi;|");], < C(p,v)(logm)” max |Bi, 4.1)
and
E max [[(Bi;|Zi5")il, < C(g,7)(logn)” max [ BV,
forp>1v % By the symmetry of assumptions we need only to show (4.1).
If vy <1, then

8
ElgliiﬁH(BiﬂZim)ij = E1211,355”“(|Bu‘\1/7|Zij|)j||;W < (E lglifgilHﬂBz‘j|1/V\Zij\)me) ,
and

[18:"1 = |Bil,

).

so it suffices to consider only v > 1 (we used here the assumption that p >
Note that for any v > 1 we have

1
~

E max |(B;j|Zi;|"),], = E max H(|Bij‘1/’yzij)j”;7

1<is<m 1<is<m

w\ L/
< (IE max H(|Bij|1/’YZij)j||p:yy)

1<is<m

m 1/u
< (X081 2, ])
i=1

1/u

<m'* max (EH(|BU|1/VZZ’J’)J'HZ3) 2

1<ism

Fix ¢ < m. By Theorem 2.1 applied to p = pvy, ¢ = wy (recall that v > 1, so uy > 1,
py=p=2),and Z; = |B;;|'/7Z;; we have
-

wy\ L/u n
(Cpy)™7 (E‘|(|Bij|1/'yzij)ij::) < lE‘(|Bij|1/WZij)j|P7 * tzljlgg Z |By; " Zijt;

p'j=1
n ol
< 2771 lE(|BlJ|1/WZL])]|’ZV + sup Z |Bij|1/’YZijtj ] (43)
teB” Il 2 uy
']
We use (1.2) and the assumption ]Eij = 1 to estimate the first term in (4.3):
n 1/p n 1/p
B(Y 1B12Z7) < (X IBuPEIZy) T < (Cop) Bl (44)
Jj=1 j=1

Recall that BZ’}, < BZ. We again use (1.2) and the isotropicity of Z; to estimate the second
term in (4.3):

n o n ¥
sup Z |Bij|1/’YZijtj < (Cw*y)“’ sup 2 |Bij|1/’YZijtj
teB =1 uy teBy ;=1 2
S 2/v,42 i
= () sup (33 15712
te By j=1
= (Cruy)” max [Bj| < (Cruy)”| Billp- (4.5)
<Jsn

We take u = logm and put together (4.2), (4.3), and (4.4) to get the assertion. O
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Remark 4.3. Using Theorem 1.1 instead of (1.1) in the proof above yields a slightly
worse estimate:

E|X|y.q <C(p,q) (logm)%+7 max HBZ'Hp + (logn)” max |}B(j)Hq

1<is<m 1<j<n

1+3 y
+ (logm) qugli?;JX”].
1<j<n

Remark 4.4. It is clear from the proof of Corollary 4.2 that in the case Z;; = G;j, where

ng are i.i.d. standard Gaussian variables, inequality (4.1) may be slightly improved:

2
B max [ (Bi;|G51");, < C(p,v)(logm)?* max [ B, (4.6)
In order to obtain this improvement one should use |{t, G;)|uy < +/uY|<{t, G;)|2 instead
of [{t, Zi)|luy < uy|<t,Zi)|2. Thus the assertion of Corollary 4.2 in the case Z;; = G,
(where G’ is independent of () states that

1, .
E|X]pq < C(pg,7) [(log m) " max By, + (logn)/? max | BO,
+(10gm)1/qE1rgnii)§n|Xij| . 47)

1<j<n

Proof of Proposition 1.5. We begin similarly as in the proof of (4.1) (in the case v = 1),
but we estimate the second term on the right-hand side of (4.3) in a slightly different
way, using (1.2):

n
sup Z Bijifijtj < Tll/u sup (E max |t]B7]1/U|u)1/u < nl/ucluIE max |BUY;J|
tEB;‘, =1 ” te By 1<j<n 1<j<n
We take u = log(m v n) to get the assertion. O

We may use the result concerning Gaussian mixtures to obtain an estimate similar to
the one from Remark 3.4, valid for all 8 > $ (not only for 3 € [, 1]), but with a slightly
worse constants than in Remark 3.4. The proof is based on the fact, that the variables
Y;; satisfying the moment assumption from Remark 3.4 are comparable with certain
Gaussian mixtures.

Corollary 4.5. Let m,n > 2, 8 > §, L > 0, and let X be an m x n random matrix
with entries X,;; = A;;Y;;, where Y;; are independent symmetric random variables such
that EY;; = 1. Assume that for any r > 2 and any 1 < i < m, 1 < j < n we have

22 < |Yll» < Lr®. Then forall p,q > 2,

E|X|yq < C(p.g.L. B) | (logm)” 7 max |4 + (logn)® max |40

1<is<m 1<j<n

+ (log m) Y4 /log(mn)E max |Xij].

1<j<n

Proof. Let Gij,G;j, i < m, j < n, be ii.d. standard Gaussian variables. Let (g;;)
be i.i.d. symmetric Bernoglli random variables, independent of G and G’. Note that
Y/, = |Gi;|*Pei; satisfies % < ||Y};|l, < L'rP for all » > 2, with a universal constant L/,
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since |G;j|s ~ +/s for s = 1. Let X’ = (X;;) be the m x n random matrix with entries
X{j = Aini’j. By [14, Lemma 4.7] we know that

1

—_— _E|X'|| <E|X]|| < C(L,L,BE|X’
ST EIX I <EIXI < O, HE|IX|

for any norm || - || on m x n real matrices. In particular

E|X|[, 4 < C(L, B)E|X||p 4, and E [hax |ng| C(L, 5)Elglla)fn|Xm‘
1<J<n 1<j<n

Moreover, by E|G;;| = 1/2/n, the Jensen inequality, and (4.7) applied with v = 23, we
have

T
E|(Xi)l, . = Bl(eiAsl Gy, , = \EE(EGijlﬁm‘AmGéﬂw) v
< A= B (IGiles A G|, = 1| = ExEBa|(AiGij |Gyl %)
= 2 1g1=1g 4R 1G5 pq 9 xiLG ijTig |G .
+
< C(p,q) ((log m)Pta max |A; H (logn)? T;E{HHA(J Hq
+ (logm) /"B max | Ai;Gijl - |G2j2ﬁ>
1<j<n
B+3
< 00, (o)™ e 1], + (log? s 49,
1
+ (logm)Y9E max |G| B max |X; >
1<j<n 1<j<n
which yields the assertion, since Emaxi<i<m |Gij| ~ 4/log(mn). O

<j<n

5 The case of unconditional entries

Proof of Corollary 1.6. Proceeding like in the proof of (1.4), we prove using (1.1) that

E|(ai;Gij)lp.q < C(p, )<(10gm)1/qur<niX [(aijGij);lp + E max |(a¢jGij)i|q)- 5.1
<i<m <j<n

where G;; are i.i.d. standard Gaussian variables.

Since X is unconditional, it has the same distribution as the matrix (Einij)igm)jsn,
where ¢;; are i.i.d. symmetric Bernoulli variables independent of X. Let G;; be i.i.d.
standard Gaussian variables independent of X and (g;;)i<m,j<n- Using E|G;;| = 1/2/7,
the Jensen inequality, and (5.1) (to estimate the mean with respect to G) we get

™

P Pa \/;EK%XMEGMD v
™ P

s \ﬁE”(&inj'G”') Pa \EEXEG}(XMGM) P

<C(pq) <(10g m)1ExBe max [(Xi;Gi);l, + ExEe max | (XijGij),»|q),

E[(Xi;)

= | (e4; Xi5)

We use (4.6) with v = 1 to get the assertion. O
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Remark 5.1. Using Theorem 1.1 instead of (1.1) in the proof above yields a slightly
weaker estimate in Corollary 1.6:

n 1/p
BIX ]y < Ol (Gogm) 4B max (3 15,1)
=1

1<ism

J
m

1/q
g
—I—«/lognIElrélJann(i; | X551 ) ) (5.2)
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