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Estimates of norms of log-concave random matrices
with dependent entries*
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Abstract

We prove estimates for E}X : `np1 Ñ `mq } for p, q ě 2 and any random matrix X

having the entries of the form aijYij , where Y “ pYijq1ďiďm,1ďjďn has i.i.d. isotropic
log-concave rows and p1 denotes the Hölder conjugate of p. This generalises a result
of Guédon, Hinrichs, Litvak, and Prochno for Gaussian matrices with independent
entries. Our estimate is optimal up to logarithmic factors. As a byproduct we provide
an analogous bound for mˆ n random matrices, whose entries form an unconditional
vector in Rmn. We also prove bounds for norms of matrices whose entries are certain
Gaussian mixtures.
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1 Introduction and main results

By }A}p,q we denote the operator norm of the matrix A from `p to `q. A classical
result regarding spectra of random matrices is Wigner’s Semicircle Law, which describes
the limit of the empirical spectral measure of a random matrix with independent cen-
tred entries with equal variance. Theorems of this type say nothing about the largest
eigenvalue (i.e. the operator norm). However, Seginer proved in [16] that for a random
matrix X with i.i.d. symmetric entries E}X}2,2 is of the same order as the expectation
of the maximum Euclidean norm of rows and columns of X. The same holds true for
structured Gaussian matrices (i.e. when Xij “ aijgij and gij are i.i.d. standard Gaussian
variables), as was shown recently by Latała, van Handel, and Youssef in [14], and up to a
logarithmic factor for any random matrix X with independent centred entries, see [15].
The main novelty of these two results is that they do not require the entries of X to be
equally distributed (nor to have equal variances).
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Estimates of norms of log-concave random matrices with dependent entries

In [9] another upper bound for E}X}2,2 was proved:

E}X}2,2 ď C

„

max
i

´

ÿ

j

EX2
ij

¯1{2

`max
j

´

ÿ

i

EX2
ij

¯1{2

`

´

ÿ

i,j

EX4
ij

¯1{4


,

where C is a universal constant. It also requires the independence of entries, but not
the equality of their distributions. This bound is dimension free, but is in some cases
worse than the one from [15].

Upper bounds for the expectation of other operator norms were investigated in [2]
in the case of independent centred entries bounded by 1. For q ě 2 and mˆ n matrices
the authors proved that E}X}2,q À maxtm1{q,

?
nu. In [6] Guédon, Hinrichs, Litvak, and

Prochno proved that for a structured Gaussian matrix X “ paijXijqiďm,jďn and p, q ě 2,

E}X}p1,q ď Cpp, qq

„

`

logm
˘1{q

max
1ďiďm

´

n
ÿ

j“1

|aij |
p
¯1{p

` max
1ďjďn

´

m
ÿ

i“1

|aij |
q
¯1{q

`
`

logm
˘1{q

E max
1ďiďm
1ďjďn

|Xij |



. (1.1)

This estimate is optimal up to logarithmic factors (see Remark 1.2 below). Estimating
more general norms required a different approach than those used for estimating
the spectral norm. In particular the moment method fails in estimating E}X}p1,q for
pp, qq ‰ p2, 2q as it gives information only about the spectrum of X.

All the results mentioned above require the independence of entries of X. We will
show how to relax the independence assumption. The aim of this article is to generalise
the main result of [6] to a wide class of random matrices with independent uncorrelated
log-concave rows by following the scheme of proof of the original theorem from [6]. We
work with a more general class of random matrices, thus the proof from [6] may not be
rewritten verbatim, but it requires some extra tools: the comparison of weak and strong
moments of `p-norm of X from [11] and a Sudakov minoration-type bound from [10].

Before we state our main results, let us say a few words about log-concave vectors,
which are widely investigated in convex geometry and high dimensional probability. We
call a random vector Z in Rn log-concave, if for any compact nonempty sets K,L Ă Rn

and λ P r0, 1s,

P
`

Z P λK ` p1´ λqL
˘

ě PpZ P KqλPpZ P Lq1´λ.

The class of log-concave vectors is closed under linear transformations, convolutions and
weak limits. By the result of Borell [3] an n-dimensional vector with a full dimensional
support is log-concave if and only if it has a log-concave density, i.e. a density (with
respect to the Lebesgue measure) of the form e´h, where h is a convex function with
values in p´8,8s.

Log-concave vectors are a natural generalisation of vectors distributed uniformly
over convex bodies. The distribution of any log-concave vector can be obtained as a
weak limit of projections of uniform measures over (higher dimensional) convex bodies
(see for example [1]).

We will frequently use a basic property of log-concave vectors: the regularity of fpZq
for log-concave vectors X and seminorms f , which states that

`

EfpZqp
˘1{p

ď C1
p

q

`

EfpZqq
˘1{q

for p ě q ě 1, (1.2)

where C1 is a universal constant (see [4, Theorem 2.4.6]). Other results and conjectures
concerning log-concave vectors are discussed in the monograph [4].
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We say that a vector in Rn is isotropic if its covariance matrix is the identity. If Z is
a log-concave random vector in Rn with a full dimensional support, then there exists a
linear transformation T such that CovpTZq “ Id, so the isotropicity is only a matter of
normalisation.

If A “ pAijqiďm,jďn is an m ˆ n matrix, we denote by Ai P Rn its i-th row and by
Apjq P Rm its j-th column. We are now ready to present the main theorem.

Theorem 1.1. Let m ě 2, let Y1, . . . , Ym be i.i.d. isotropic log-concave vectors in Rn, and
let A “ pAijq be an m ˆ n (deterministic) matrix. Consider a random matrix X with
entries Xij “ AijYij for i ď m, j ď n, where Yij is the j-th coordinate of Yi. Then for
every p, q ě 2 we have

E}X}p1,q ď Cpp, qq
”

`

logm
˘1{q

max
1ďiďm

›

›Ai
›

›

p
` max

1ďjďn

›

›Apjq
›

›

q
`
`

logm
˘1` 1

qE max
1ďiďm
1ďjďn

|Xij |

ı

,

(1.3)

where Cpp, qq depends only on p and q.

Let us stress that the theorem requires the independence only between the rows and
does not require the independence of the entries of X.

Remark 1.2. Note that the bound from Theorem 1.1 is optimal up to a constant depend-
ing on p, q and logarithmically on the dimension. Indeed, since Yij is log-concave we

have by the regularity of Yij (see (1.2)) that E|Yij | ě p2C1q
´1

`

EY 2
ij

˘1{2
“ p2C1q

´1. Hence
for every j ď n,

E}X}p1,q “ E sup
uP`n

p1

}Xu}q ě E}Xej}q “ E}X
pjq}q “ E

›

›

`

|Yij |Aij
˘

i

›

›

q
ě p2C1q

´1}Apjq}q.

Since }X}p1,q “ }XT }q1,p, we also have E}X}p1,q ě p2C1q
´1}Ai}p for all i ď m. Moreover,

for all i ď m and j ď n,

}X}p1,q “ sup
uP`n

p1

sup
vP`n

q1

vTXu ě eTi XpsgnXijejq “ |Xij |.

Therefore

E}X}p1,q ě p4C1 ` 1q´1
”

max
1ďiďm

›

›Ai
›

›

p
` max

1ďjďn

›

›Apjq
›

›

q
` E max

1ďiďm
1ďjďn

|Xij |

ı

,

which yields the claim.

Note that in (1.3) the logarithmic term appears in front of the norm of rows, but not in
front of the norm of columns, so our bound is not symmetric. This is not so strange, since
the assumptions of the theorem are also non-symmetric: we assume that the rows are
weighted i.i.d. random vectors, but no independence between the columns is required.
However, the asymmetry of the bound in Theorem 1.1 is mainly a residue of the proof
and the author does not know if one may skip the logarithmic factor in front of the norm
of rows.

Since }X}p1,q “ }XT }q1,p, one can assume in (1.3) that the columns (instead of the
rows) of Y are i.i.d. isotropic log-concave vectors. Then Theorem 1.1 yields

E}X}p1,q ď Cpp, qq
”

max
1ďiďm

›

›Ai
›

›

p
`
`

log n
˘1{p

max
1ďjďn

›

›Apjq
›

›

q
`
`

log n
˘1` 1

pE max
1ďiďm
1ďjďn

|Xij |

ı

.

We mentioned previously results from [16, 14, 15], which provide the bounds of
the expected value of the operator norm in terms of expected values of norms of rows

EJP 24 (2019), paper 107.
Page 3/15

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP365
http://www.imstat.org/ejp/


Estimates of norms of log-concave random matrices with dependent entries

and columns. Theorem 1.1 easily implies an estimate of the same kind: by (1.2), the
assumption EY 2

ij “ 1, and the Jensen inequality we get

`

logm
˘1{q

max
1ďiďm

›

›Ai
›

›

p
` max

1ďjďn

›

›Apjq
›

›

q
`
`

logm
˘1` 1

qE max
1ďiďm
1ďjďn

|Xij |

ď 2C1

ˆ

`

logm
˘1{q

max
1ďiďm

›

›pAijE|Yij |qj
›

›

p
` max

1ďjďn

›

›pAijE|Yij |qi|
›

›

q

`
`

logm
˘1` 1

qE max
1ďiďm
1ďjďn

|Xij |

˙

ď 2C1

ˆ

`

logm
˘1{q

E max
1ďiďm

}Xi}p ` E max
1ďjďn

}Xpjq}q ` plogmq
1` 1

qE max
1ďiďm

}Xi}p

˙

ď C

ˆ

plogmq1`
1
qE max

1ďiďm
}Xi}p ` E max

1ďjďn
}Xpjq}q

˙

, (1.4)

where C is a universal constant. Therefore (1.3) yields the following corollary.

Corollary 1.3. Under the assumptions of Theorem 1.1 we have

E}X}p1,q ď Cpp, qq

ˆ

plogmq1`
1
qE max

1ďiďm
}Xi}p ` E max

1ďjďn
}Xpjq}q

˙

.

Remark 1.4. If the rows and columns of a random matrix Y are isotropic and log-concave
(we do not require independence), and p, q ě 1, then

E max
1ďiďm

´

n
ÿ

j“1

|AijYij |
p
¯1{p

` E max
1ďjďn

´

m
ÿ

i“1

|AijYij |
q
¯1{q

ď C
´

p2 max
1ďiďm

›

›Ai
›

›

p
` q2 max

1ďjďn

›

›Apjq
›

›

q
` pp` qq logpm_ nqE max

1ďiďm
1ďjďn

|AijYij |
¯

. (1.5)

This means that inequality (1.4) may be reversed up to a logarithmic factor and constants
depending only on p and q in the log-concave setting. Therefore the estimates from
Theorem 1.1 and Corollary 1.3 are equivalent up to a logarithmic factor.

Inequality (1.5) follows directly from the following proposition.

Proposition 1.5. Let Y be an mˆn random matrix, with isotropic and log-concave rows,
let B be a deterministic mˆ n matrix, and let p ě 1. Then

E max
1ďiďm

´

n
ÿ

j“1

|BijYij |
p
¯1{p

ď C

ˆ

p2 max
1ďiďm

´

n
ÿ

j“1

|Bij |
p
¯1{p

` p logpm_ nqE max
1ďiďm
1ďjďn

|BijYij |

˙

,

where C is a universal constant.

Our next result concerns unconditional matrices. Recall that we say that a random
vector Z in Rd is unconditional, if for every choice of signs η P t´1, 1ud the vectors Z
and pηiZiqiďd are equally distributed (or, equivalently, that Z and pεiZiqiďd are equally
distributed, where ε1, . . . , εd are i.i.d. symmetric Bernoulli variables, independent of Z).
The assertion of the next corollary is expressed in the spirit of Corollary 1.3, which is
more natural in the non log-concave setting (without the assumption of log-concavity
inequality (1.5) may no longer be true, even up to additional logarithmic factors).

Corollary 1.6. Assume that X is a random matrix such that the pmnq-dimensional vector
pX1,1, . . . X1,n, X2,1, . . . , X2,n, Xm,1, . . . , Xmnq is unconditional. Then for every p, q ě 2 we
have

E}X}p1,q ď Cpp, qq

ˆ

plogmq
1
2`

1
qE max

1ďiďm

´

n
ÿ

j“1

|Xij |
p
¯1{p

`
a

log nE max
1ďjďn

´

m
ÿ

i“1

|Xij |
q
¯1{q

˙

,

(1.6)
where Cpp, qq depends only on p and q.
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The asymmetry of the bound in (1.6) is just a residue of its proof: the factor plogmq1{q

could be skipped if one could prove (1.1) in the Gaussian case with constants independent
of the dimensions. Such an improved version of (1.1) was conjectured in [6].

Let us compare (1.6) with the following result of Seginer coming from [16]. Let
X “ pAijεijq1ďiďm,1ďjďn where εij are independent random signs. Then

E}X}2Ñ2 ď C 4
a

logminpm,nq

ˆ

max
1ďiďm

}Ai}2 ` max
1ďjďn

}Apjq}2

˙

, (1.7)

where C is a universal constant. Moreover, for every m,n, there exists a matrix
pAijq1ďiďm,1ďjďn, for which (1.7) may be reversed (up to a universal constant). Therefore
one may not skip the dependence on the dimension also in estimate (1.6).

In the case pp, qq “ p2, 2q and X “ pAijεijq Corollary 1.6 provides a bound with worse
dependence of the dimension than in (1.7). However, our result works also in much more
general setting than the result of Seginer does (in particular, our Corollary works also
when the entries of X are dependent).

The rest of this note is organised as follows. Section 2 contains results from other
articles to be used in a sequel. Section 3 contains generalisations of Lemmas 3.1 and 3.2
from [6] to the log-concave setting and the proof of Theorem 1.1. In Section 4 we show
how to deduce an analogue of Theorem 1.1 for Gaussian mixtures (see Corollary 4.2)
and we provide a proof of Proposition 1.5. Section 5 is devoted to the proof of Corollary
1.6.

Notation By C we denote universal constants. If a constant C depends on a parameter
α, we express it as Cpαq. The value of C,Cpαq may differ at each occurrence. Whenever
we want to fix the value of an absolute constant we use letters C1, C2, . . . We may and
do always assume that C,Ci ě 1. For two quantities a, b we write a À b if there exists a
constant C, such that a ď Cb, and a „ b, if a À b and b À a. For two numbers a and b we
write a_ b instead of maxta, bu.

For a random variable Z by }Z}p we denote the p-th integral norm of Z, i.e. the
quantity pE|Z|pq1{p; in the case when Z “ }U} we also call this quantity the p-th strong
moment of a random vector U associated with the norm } ¨ }. For a vector x P Rn (in
particular for a random vector Z) and r ě 1, by }x}r we denote the `r-norm of x, i.e.
}x}r :“ p

řn
i“1 |xi|

rq1{r. For r “ 2 we shall also write | ¨ | instead of } ¨ }2. It will be always
clear from the context, what }Z}q means for a random object Z, so the double meaning
of } ¨ }q will not lead to any misunderstanding. Recall that for an mˆn matrix A by }A}p,q
we denote its norm from `np to `mq . For p P r1,8s we denote by p1 the Hölder conjugate of
p, i.e. the number such that 1 “ 1

p `
1
p1 .

2 Preliminaries

In the proof of the main theorem we will need the comparison of weak and strong
moments for `p-norms of log-concave vectors:

Theorem 2.1 ([11, Theorem 5]). Let Z be a log-concave vector in Rn and let p P r1,8q.
Then

pE}Z}qpq
1{q ď Cp

´

E}Z}p ` σp,Zpqq
¯

for q ě 1,

where

σp,Zpqq :“ sup
tPBn

p1

›

›

›

n
ÿ

i“1

tiZi

›

›

›

q

is the q-th weak moment of X associated with the `p-norm.
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We will use the previous theorem also in the tail-bound version:

Corollary 2.2. Assume Z is a log-concave vector in Rn and p P r1,8q. Then for all u ą 0,

P
´

}Z}p ě C2p
`

u` E}Z}p
˘

¯

ď C3 sup
tPBn

p1

P

ˆ

ˇ

ˇ

ˇ

n
ÿ

i“1

tiZi

ˇ

ˇ

ˇ
ě u

˙

. (2.1)

For the Reader’s convenience we give a proof of this corollary, which goes along the
lines of the proof of Corollary 1.3 in [12].

Proof. Define a random variable S :“ }Z}p. By the Paley–Zygmund inequality and (1.2)
we have for t P Rn, and q ě 1,

P

˜

ˇ

ˇ

ˇ

n
ÿ

i“1

tiZi

ˇ

ˇ

ˇ
ě

1

2

›

›

›

›

n
ÿ

i“1

tiZi

›

›

›

›

q

¸

“ P

ˆ

ˇ

ˇ

ˇ

n
ÿ

i“1

tiZi

ˇ

ˇ

ˇ

q

ě 2´qE
ˇ

ˇ

ˇ

n
ÿ

i“1

tiZi

ˇ

ˇ

ˇ

q
˙

ě p1´ 2´qq2

˜
›

›

řn
i“1 tiZi

›

›

q
›

›

řn
i“1 tiZi

›

›

2q

¸2q

ě e´C4q. (2.2)

In order to show (2.1) we consider 3 cases.

Case 1. 2u ă suptPBn
p1
}
řn
i“1 tiZi}2. Then by (2.2)

sup
tPBn

p1

P

ˆ

ˇ

ˇ

ˇ

n
ÿ

i“1

tiZi

ˇ

ˇ

ˇ
ě u

˙

ě e´2C4

and (2.1) obviously holds if C3 ě expp2C4q.

Case 2. suptPBn
p1
}
řn
i“1 tiZi}2 ď 2u ă suptPBn

p1
}
řn
i“1 tiZi}8. Let us then define

q :“ sup

"

r ě 2C4 : sup
tPBn

p1

›

›

›

n
ÿ

i“1

tiZi

›

›

›

r{C4

ď 2u

*

.

By (2.2) we have

sup
tPBn

p1

P

ˆ

ˇ

ˇ

ˇ

n
ÿ

i“1

tiZi

ˇ

ˇ

ˇ
ě u

˙

ě e´q.

By (1.2), Theorem 2.1, and Chebyshev’s inequality we have

P
`

S ě C5ppES ` uq
˘

ď PpS ě e}S}qq ď e´q

for C5 large enough. Thus (2.1) holds in this case.

Case 3. u ą suptPBn
p1
}
řn
i“1 tiZi}8 “ }S}8. Then PpS ě uq “ 0 and (2.1) holds for

any C2 ě 1.

In the proof of Theorem 1.1 we will use Theorem 2.1 from [6], which is a version
of the results provided by Guédon–Rudelson in [8], and by Guédon–Mendelson–Pajor–
Tomczak-Jaegerman in [7]. Below we give only a particular version of the theorem; the
general result is stated in [6].

Theorem 2.3 ([6, Theorem 2.1]). Let X1, . . . Xm P R
n be independent random vectors,

and let p, q ě 2. Define

u :“ sup
tPBn

p1

´

m
ÿ

i“1

E
ˇ

ˇxXi, ty
ˇ

ˇ

q
¯1{q

(2.3)
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and

v :“
´

p9 logm E max
1ďiďm

}Xi}
q
p

¯1{q

. (2.4)

Then
„

E sup
tPBn

p1

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

´

ˇ

ˇxXi, ty
ˇ

ˇ

q
´ E

ˇ

ˇxXi, ty
ˇ

ˇ

q
¯

ˇ

ˇ

ˇ

ˇ

1{q

ď Cp
?
uv ` vq ď 2Cpu` vq.

3 Proof of Theorem 1.1

The next two lemmas provide estimates of the quantities u and v appearing in
Theorem 2.3.

Lemma 3.1. Assume that p, q,X, and Y are as in Theorem 1.1. Then

´

E max
1ďiďm

}Xi}
q
p

¯1{q

ď Cpp, qq
”

max
1ďiďm

}Ai}p ` logm E max
1ďiďm
1ďjďn

|Xij |

ı

,

where Cpp, qq depends only on p and q.

Lemma 3.2. Assume that p, q,X, and Y are as in Theorem 1.1. Then

sup
tPBn

p1

ˆ m
ÿ

i“1

E
ˇ

ˇxXi, ty
ˇ

ˇ

q
˙1{q

ď C1q max
1ďjďn

›

›Apjq
›

›

q
. (3.1)

In the proof of Lemma 3.1 we will also need the following estimate:

Lemma 3.3. Assume that Z is an isotropic log-concave vector in Rm. Then for all
1 ď k ď m and all a P Rm we have

E max
1ďiďm

|aiZi| ě
1

C6
max
kďm

`

a˚k min
iďm

}Zi}logpk`1q

˘

,

where pa˚i q
m
i“1 denotes the non-increasing rearrangement of p|ai|qmi“1.

In order to prove Theorem 1.1, we repeat the scheme of the proof from [6].

Proof of Theorem 1.1. Let u and v be given by formulas (2.3) and (2.4). The triangle
inequality, Theorem 2.3, Lemma 3.1, and Lemma 3.2 yield

E}X}p1,q ď
`

E}X}qp1,q
˘1{q

“

„

E sup
tPBn

p1

m
ÿ

i“1

ˇ

ˇxt,Xiy
ˇ

ˇ

q
1{q

ď

„

E sup
tPBn

p1

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

´

ˇ

ˇxXi, ty
ˇ

ˇ

q
´ E

ˇ

ˇxXi, ty
ˇ

ˇ

q
¯

ˇ

ˇ

ˇ

ˇ

1{q

` sup
tPBn

p1

ˆ

E

m
ÿ

i“1

ˇ

ˇxt,Xiy
ˇ

ˇ

q
˙1{q

ď C ¨ pu` vq

ď Cpp, qq
”

`

logm
˘1{q

max
1ďiďm

›

›Ai
›

›

p
` max

1ďjďn

›

›Apjq
›

›

q
`
`

logm
˘

1
q`1

E max
1ďiďm
1ďjďn

|Xij |

ı

.

The main contribution of this article lies in the proofs of Lemmas 3.1, 3.2, and 3.3.

Proof of Lemma 3.3. We may and do assume that a1 ě a2 ě . . . ě am ě 0, i.e. a˚i “ ai for
i ď m. By [10, Proposition 3.3] we have for all k ď m,

E max
1ďiďk

|aiZi| ě C´1 min
1ďiďk

}aiZi}logpk`1q ě C´1ak min
1ďiďm

}Zi}logpk`1q.

Thus

E max
1ďiďm

|aiZi| “ max
1ďkďm

E max
1ďiďk

|aiZi| ě C´1 max
1ďkďm

`

ak min
1ďiďm

}Zi}logpk`1q

˘

.
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Estimates of norms of log-concave random matrices with dependent entries

Proof of Lemma 3.1. We may and do assume that m ě 2.

Since we may approximate Aij by nonzero numbers, we may and do assume that
Aij ‰ 0 for all i, j. Let C2, C3 be the constants from (2.1), let C6 be the constant from
Lemma 3.3, and recall that C1 is the constant from (1.2). We may assume that all these
constants are greater than 1.

Note that for any a, b P R we have a “ pa´ bq``a^ b. Thus, by the triangle inequality,

´

E max
1ďiďm

}Xi}
q
p

¯1{q

ď

ˆ

E max
1ďiďm

”

`

}Xi}p ´ C2pE}Xi}p
˘q
1t}Xi}pěC2pE}Xi}pu

ı

˙1{q

` C2p max
1ďiďm

E}Xi}p. (3.2)

Moreover, for every 1 ď i ď m we have by (1.2) and the isotropicity of Yi, that

E}Xi}p ď

´

n
ÿ

j“1

E|Yij |
p|Aij |

p
¯1{p

ď max
jďn

}Yij}p}Ai}p ď C1p}Ai}p

ď C1p max
1ďkďm

}Ak}p. (3.3)

Now it suffices to estimate the first term of (3.2). Let

B :“ C2
1C6 logpm` 1q E max

1ďiďm
1ďjďn

|Xij | and σ :“ p max
1ďiďm

σp,Xip2qq _B.

By (2.1) and the integration by parts we have

E max
1ďiďm

”

`

}Xi}p ´ C2pE}Xi}p
˘q
1t}Xi}pěC2pE}Xi}pu

ı

ď p2C2peσq
q `

ż 8

2C2peσ

qvq´1P
´

max
1ďiďm

`

}Xi}p ´ C2pE}Xi}p
˘

ě v
¯

dv

ď p2C2peσq
q `

m
ÿ

i“1

ż 8

2C2peσ

qvq´1P
`

}Xi}p ´ C2pE}Xi}p ě v
˘

dv

“ p2C2peσq
q ` pC2pq

q
m
ÿ

i“1

ż 8

2eσ

quq´1P
`

}Xi}p ´ C2pE}Xi}p ě C2pu
˘

du

ď p2C2peσq
q ` pC2pq

qC3

m
ÿ

i“1

ż 8

2eσ

quq´1 sup
}t}p1ď1

P

ˆ

ˇ

ˇ

ˇ

n
ÿ

j“1

tjXij

ˇ

ˇ

ˇ
ě u

˙

du. (3.4)

We want to estimate the function we integrate in (3.4). Fix u ě 2eσ. For i such that
u ě sup}t}p1ď1 }

řn
j“1 tjXij}8 the function we integrate vanishes, so from now on we will

consider only i’s for which u ă sup}t}p1ď1 }
řn
j“1 tjXij}8.

Note that if 1 ď i ď m and sup}t}p1ď1 }
řn
j“1 tjXij}8 ą u ě eσ ě eσp,Xip2q, then

r :“ rpiq :“ supts ě 2 : σp,Xipsq ď u{eu P r2,8q

and σ
p,Xiprq “ u{e. Therefore

sup
}t}p1ď1

P

ˆ

ˇ

ˇ

ˇ

n
ÿ

j“1

tjXij

ˇ

ˇ

ˇ
ě u

˙

ď
sup}t}p1ď1 }xt,Xiy}

r
r

ur
“ e´r. (3.5)
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Estimates of norms of log-concave random matrices with dependent entries

Now we will estimate r from below. For t ě 2 let

ϕptq “ t min
1ďjďn

}Yij}t.

Since Y 1i s are identically distributed, ϕ does not depend on i. By (1.2), and the isotropicity
of Y we have

σp,Xiptq ď σ2,Xiptq ď C1tmax
|x|ď1

ˆ

E
´

n
ÿ

j“1

AijYijxj

¯2
˙1{2

“ C1tmax
|x|ď1

ˆ n
ÿ

j“1

A2
ijx

2
j

˙1{2

“ C1t max
1ďjďn

|Aij | ¨ }Yij}2 ď C1ϕptq max
1ďjďn

|Aij |. (3.6)

Since we can permute the rows of A, we may and do assume that

max
1ďjďn

|A1j | ě . . . ě max
1ďjďn

|Amj |.

Let jpiq ď n be such an index that |Aijpiq| “ max1ďjďn |Aij |. Lemma 3.3 applied to
Zi “ Yijpiq and the non-increasing sequence ai “ |Aijpiq| implies

E max
1ďiďm
1ďjďn

|Xij | ě E max
1ďiďm

|AijpiqYijpiq| ě C´1
6

`

logpm` 1q
˘´1

max
1ďiďm

´

ϕ
`

logpi` 1q
˘

|Aijpiq|
¯

,

so for all i ď m we have

B ě C2
1ϕplogpi` 1qq|Aijpiq| “ C2

1ϕplogpi` 1qq max
1ďjďn

|Aij |.

Note that by (1.2) for all r ě λ ě 2 we have σp,Xipr{λq ě σp,Xiprq{pC1λq. Take λ “

σp,Xiprq{B “ u{pBeq ě 2. Then by a calculation similar to the one above we get

u

e
“ σp,Xiprq ď

C1r

2
max
1ďjďn

|Aij | ď C2
1r max

1ďiďm
1ďjďn

|Aij |E|Yij | ď C2
1rE max

1ďiďm
1ďjďn

|Xij | ď Br,

so indeed r ě λ ě 2.
Therefore for all i ď m we have

B

C1
“

1

λC1
σp,Xiprq ď σp,Xipr{λq

(3.6)
ď C1ϕ

´ r

λ

¯

max
1ďjďn

|Aij | ď
Bϕp rλ q

C1ϕplogpi` 1qq
. (3.7)

Since the function ϕ is strictly increasing, the previous inequality yields r ě λ logpi` 1q.
This together with (3.5) implies that (recall that λ “ u

Be ě 2)

m
ÿ

i“1

sup
}t}p1ď1

P
´
ˇ

ˇ

ˇ

n
ÿ

j“1

tjXij

ˇ

ˇ

ˇ
ě u

¯

ď

m
ÿ

i“1

pi ` 1q´
u
eB ď 2´

u
eB `

ż 8

2

x´
u
eB dx ď 3 ¨ 2´

u
eσ . (3.8)

Inequalities (3.4), (3.8), and the Stirling formula yield

ˆ

E
”

max
1ďiďm

`

}Xi}p ´ C2E}Xi}p
˘q
1t}Xi}pěC2E}Xi}pu

ı

˙1{q

ď

ˆ

p2C2peσq
q ` 3pC2pq

qC3

ż 8

0

quq´12´
u
eσ du

˙1{q

ď

ˆ

p2C2peσq
q ` pCC2pσq

qC3

ż 8

0

qvq´1e´vdv

˙1{q

ď CC2C
1{q
3 σpq. (3.9)
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Estimates of norms of log-concave random matrices with dependent entries

If B ě max1ďiďm σp,Xip2q, then σ “ B “ C logpm` 1q Emax1ďiďm
1ďjďn

|Xij | and the assertion

follows by (3.2), (3.3), and (3.9). Otherwise, by (1.2) we get

σ “ max
1ďiďm

σp,Xip2q ď 2C1 max
1ďiďm

σp,Xip1q ď 2C1 max
1ďiďm

E}Xi}p,

where the second inequality holds since the weak first moment is bounded above by the
strong first moment. This together with (3.2), (3.3), and (3.9) gives the assertion.

Proof of Lemma 3.2. Since p ě 2, Bp1 Ă B2. Thus we may and do assume p “ 2. By (1.2),
the isotropicity of Y , and the Jensen inequality we have

sup
tPBn2

ˆ m
ÿ

i“1

E
ˇ

ˇxXi, ty
ˇ

ˇ

q
˙1{q

ď C1q sup
}t}2ď1

ˆ m
ÿ

i“1

´

E
ˇ

ˇxXi, ty
ˇ

ˇ

2
¯q{2

˙1{q

“ C1q sup
}t}2“1

ˆ m
ÿ

i“1

´

n
ÿ

j“1

A2
ijt

2
j

¯q{2
˙1{q

ď C1q sup
}t}2“1

ˆ m
ÿ

i“1

n
ÿ

j“1

|Aij |
qt2j

˙1{q

“ C1q

ˆ

sup
}t}2“1

n
ÿ

j“1

›

›Apjq
›

›

q

q
t2j

˙1{q

“ C1q max
1ďjďn

›

›Apjq
›

›

q
.

Remark 3.4. By the same reasoning as in the log-concave case, we may prove the
following result for matrices with independent heavy tailed entries. Let X be an mˆ n
random matrix with entries Xij “ AijYij , where Yij are independent symmetric random
variables such that EY 2

ij “ 1, and let L ą 0. Assume that for any r ě 2 and any 1 ď i ď m,

1 ď j ď n we have rβ

L ď }Yij}r ď Lrβ with β P r 12 , 1s. Then for every p, q ě 2 we have

E}X}p1,q ď Cpp, q, Lq
”

`

logm
˘1{q

max
1ďiďm

›

›Ai
›

›

p
` max

1ďjďn

›

›Apjq
›

›

q
`
`

logm
˘1{q

E max
1ďiďm
1ďjďn

|Xij |

ı

.

(3.10)

where Cpp, q, Lq depends only on p, q, and L.

At the end of Section 4 we provide another result concerning this type of random
matrices (see Corollary 4.5).

In the proof of (3.10) one uses [12, Corollary 1.3], [13, Theorem 2.1], and (3.11) (see
below) instead of (2.1), Lemma 3.3, and (3.6), respectively. The only non-trivial part is
proving the claim:

›

›

›

›

n
ÿ

j“1

tjYij

›

›

›

›

r

ď CLrβ
›

›

›

›

n
ÿ

j“1

tjYij

›

›

›

›

2

“ CLrβ}t}2, (3.11)

where C is an absolute constant, and repeating the proof of Theorem 1.1. By (3.11) we
get

σp,cYipqq ď CLqβ sup
sPBnp˚

g

f

f

e

n
ÿ

j“1

s2jc
2
j “ CLqβ max

1ďjďn
|cj | ď CL2 min

jďn
}Yij}q max

1ďjďn
|cj |,

which allows us to obtain a version of (3.6) for ϕptq :“ min1ďiďm,
1ďjďn

}Yij}t.
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Estimates of norms of log-concave random matrices with dependent entries

Proof of (3.11). It suffices to consider r “ 2k, where k is an integer. Let G “ pGjqnj“1 be
the standard n-dimensional Gaussian vector. Recall that for any t P Rn and r ě 1 we
have }

řn
j“1 tjGj}r “ }t}2}G1}r „ }t}2

?
r “

?
r}

řn
j“1 tjYij}2.

By the assumptions on Yi and by the fact that β ě 1
2 we get

›

›

›

›

n
ÿ

j“1

tjYij

›

›

›

›

2k

2k

“
ÿ

j1`...`jn“k

ˆ

2k

2j1, . . . , 2jn

˙

EY 2j1
i1 ¨ ¨ ¨EY 2jn

in t2j11 ¨ ¨ ¨ t2jnn

ď L2k
ÿ

j1`...`jn“k

ˆ

2k

2j1, . . . , 2jn

˙

p2j1q
2j1β ¨ ¨ ¨ p2jnq

2jnβt2j11 ¨ ¨ ¨ t2jnn

ď p2kq2kβ´kL2k
ÿ

j1`...`jn“k

ˆ

2k

2j1, . . . , 2jn

˙

p2j1q
j1 ¨ ¨ ¨ p2jnq

jnt2j11 ¨ ¨ ¨ t2jnn

ď p2kq2kβ´kpCLq2k
ÿ

j1`...`jn“k

ˆ

2k

2j1, . . . , 2jn

˙

EG2j1
1 ¨ ¨ ¨EG2jn

n t2j11 ¨ ¨ ¨ t2jnn

“ p2kq2kβ´kpCLq2k
›

›

›

›

n
ÿ

j“1

tjGj

›

›

›

›

2k

2k

ď p2kq2kβpCLq2k
›

›

›

›

n
ÿ

j“1

tjYij

›

›

›

›

2k

2

,

which finishes the proof of (3.11).

4 Estimates of norms of matrices in the case of Gaussian mix-
tures

Let us recall the definition of Gaussian mixtures from [5], where their significance is
also described.

Definition 4.1. A random variable X is called a (centred) Gaussian mixture if there exist
a positive random variable r and a standard Gaussian random variable g, independent of
r, such that X has the same distribution as rg.

We will work with matrices of the form pRijBijGijqiďm,jďn whose entries are Gaussian
mixtures. We additionally assume that Rij “ |Zij |γ , where γ ě 0, and that the matrix
Z is log-concave and isotropic (considered as a random vector in Rmn). It will be
clear from the proof, that the corollary below is true also for another type of matrices:
pRiBijGijqiďm,jďn, where Ri “ |Zi|

γ , and pZ1, . . . , Zmq is an arbitrary isotropic log-
concave random vector.

Corollary 4.2. Let m,n ě 2, let γ ě 0, let B “ pBijq be a deterministic m ˆ n matrix,
and let G “ pGijqiďm,jďn be a random matrix whose entries are i.i.d. standard Gaussian
variables. Let Xij “ |Zij |

γBijGij , where Z “ pZijqiďm,jďn is a log-concave and isotropic
random matrix independent of G. Then for every p, q ě 2_ 1

γ we have

E}X}p1,q ď Cpp, q, γq

„

`

logm
˘

1
q`γ max

1ďiďm

›

›Bi
›

›

p
` plog nqγ max

1ďjďn

›

›Bpjq
›

›

q

` plogmq1{qE max
1ďiďm
1ďjďn

|Xij |



.

Proof. Inequality (1.1) applied to aij “ |Zij |γBij yields

E}X}p1,q ď Cpp, qq
”

`

logm
˘1{q

E max
1ďiďm

›

›pBij |Zij |
γqj

›

›

p
` E max

1ďjďn

›

›pBij |Zij |
γqi

›

›

q

`
`

logm
˘1{q

E max
1ďiďm
1ďjďn

|Xij |

ı

,
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so it suffices to prove that

E max
1ďiďm

›

›pBij |Zij |
γqj

›

›

p
ď Cpp, γqplogmqγ max

1ďiďm

›

›Bi
›

›

p
(4.1)

and
E max

1ďjďn

›

›pBij |Zij |
γqi

›

›

q
ď Cpq, γqplog nqγ max

1ďjďn

›

›Bpjq
›

›

q

for p ě 1_ 1
γ . By the symmetry of assumptions we need only to show (4.1).

If γ ă 1, then

E max
1ďiďm

›

›pBij |Zij |
γqj

›

›

p
“ E max

1ďiďm

›

›p|Bij |
1{γ |Zij |qj

›

›

γ

pγ
ď

´

E max
1ďiďm

›

›p|Bij |
1{γ |Zij |qj

›

›

pγ

¯γ

,

and
›

›|Bi|
1{γ

›

›

γ

pγ
“
›

›Bi
›

›

p
,

so it suffices to consider only γ ě 1 (we used here the assumption that p ě 1
γ ).

Note that for any u ě 1 we have

E max
1ďiďm

›

›pBij |Zij |
γqj

›

›

p
“ E max

1ďiďm

›

›p|Bij |
1{γZijqj

›

›

γ

pγ

ď

´

E max
1ďiďm

›

›p|Bij |
1{γZijqj

›

›

uγ

pγ

¯1{u

ď

´

E

m
ÿ

i“1

›

›p|Bij |
1{γZijqj

›

›

uγ

pγ

¯1{u

ď m1{u max
1ďiďm

´

E
›

›p|Bij |
1{γZijqj

›

›

uγ

pγ

¯1{u

. (4.2)

Fix i ď m. By Theorem 2.1 applied to p “ pγ, q “ uγ (recall that γ ě 1, so uγ ě 1,
pγ ě p ě 2), and Zj “ |Bij |1{γZij we have

pCpγq´γ
´

E
›

›p|Bij |
1{γZijqj

›

›

uγ

pγ

¯1{u

ď

«

E
›

›p|Bij |
1{γZijqj

›

›

pγ
` sup
tPBn

p1

›

›

›

›

n
ÿ

j“1

|Bij |
1{γZijtj

›

›

›

›

uγ

ffγ

ď 2γ´1

«

E
›

›p|Bij |
1{γZijqj

›

›

γ

pγ
` sup
tPBn

p1

›

›

›

›

n
ÿ

j“1

|Bij |
1{γZijtj

›

›

›

›

γ

uγ

ff

. (4.3)

We use (1.2) and the assumption EZ2
ij “ 1 to estimate the first term in (4.3):

E
´

n
ÿ

j“1

|Bij |
p|Zij |

pγ
¯1{p

ď

´

n
ÿ

j“1

|Bij |
pE|Zij |

pγ
¯1{p

ď pC1pγq
γ}Bi}p. (4.4)

Recall that Bnp1 Ă Bn2 . We again use (1.2) and the isotropicity of Zi to estimate the second
term in (4.3):

sup
tPBn

p1

›

›

›

›

n
ÿ

j“1

|Bij |
1{γZijtj

›

›

›

›

γ

uγ

ď pC1uγq
γ sup
tPBn2

›

›

›

›

n
ÿ

j“1

|Bij |
1{γZijtj

›

›

›

›

γ

2

“ pC1uγq
γ sup
tPBn2

ˆ n
ÿ

j“1

|Bij |
2{γt2j

˙γ{2

“ pC1uγq
γ max
1ďjďn

|Bij | ď pC1uγq
γ}Bi}p. (4.5)

We take u “ logm and put together (4.2), (4.3), and (4.4) to get the assertion.
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Remark 4.3. Using Theorem 1.1 instead of (1.1) in the proof above yields a slightly
worse estimate:

E}X}p1,q ď Cpp, qq

„

`

logm
˘

1
q`γ max

1ďiďm

›

›Bi
›

›

p
` plog nqγ max

1ďjďn

›

›Bpjq
›

›

q

` plogmq1`
1
qE max

1ďiďm
1ďjďn

|Xij |



.

Remark 4.4. It is clear from the proof of Corollary 4.2 that in the case Zij “ G1ij , where
G1ij are i.i.d. standard Gaussian variables, inequality (4.1) may be slightly improved:

E max
1ďiďm

›

›pBij |G
1
ij |
γqj

›

›

p
ď Cpp, γqplogmqγ{2 max

1ďiďm

›

›Bi
›

›

p
(4.6)

In order to obtain this improvement one should use }xt, Giy}uγ À
?
uγ}xt, Giy}2 instead

of }xt, Ziy}uγ À uγ}xt, Ziy}2. Thus the assertion of Corollary 4.2 in the case Zij “ G1ij
(where G1 is independent of G) states that

E}X}p1,q ď Cpp, q, γq

„

`

logm
˘

1
q`

γ
2 max

1ďiďm

›

›Bi
›

›

p
` plog nqγ{2 max

1ďjďn

›

›Bpjq
›

›

q

` plogmq1{qE max
1ďiďm
1ďjďn

|Xij |



. (4.7)

Proof of Proposition 1.5. We begin similarly as in the proof of (4.1) (in the case γ “ 1),
but we estimate the second term on the right-hand side of (4.3) in a slightly different
way, using (1.2):

sup
tPBn

p1

›

›

›

›

n
ÿ

j“1

BijYijtj

›

›

›

›

u

ď n1{u sup
tPBn8

`

E max
1ďjďn

|tjBijYij |
u
˘1{u

ď n1{uC1uE max
1ďjďn

|BijYij |.

We take u “ logpm_ nq to get the assertion.

We may use the result concerning Gaussian mixtures to obtain an estimate similar to
the one from Remark 3.4, valid for all β ě 1

2 (not only for β P r 12 , 1s), but with a slightly
worse constants than in Remark 3.4. The proof is based on the fact, that the variables
Yij satisfying the moment assumption from Remark 3.4 are comparable with certain
Gaussian mixtures.

Corollary 4.5. Let m,n ě 2, β ě 1
2 , L ą 0, and let X be an m ˆ n random matrix

with entries Xij “ AijYij , where Yij are independent symmetric random variables such
that EY 2

ij “ 1. Assume that for any r ě 2 and any 1 ď i ď m, 1 ď j ď n we have
rβ

L ď }Yij}r ď Lrβ . Then for all p, q ě 2,

E}X}p1,q ď Cpp, q, L, βq

„

`

logm
˘β` 1

q max
1ďiďm

›

›Ai
›

›

p
` plog nqβ max

1ďjďn

›

›Apjq
›

›

q

` plogmq1{q
a

logpmnqE max
1ďiďm
1ďjďn

|Xij |



.

Proof. Let Gij , G1ij , i ď m, j ď n, be i.i.d. standard Gaussian variables. Let pεijq
be i.i.d. symmetric Bernoulli random variables, independent of G and G1. Note that
Y 1ij :“ |Gij |

2βεij satisfies rβ

L1 ď }Y
1
ij}r ď L1rβ for all r ě 2, with a universal constant L1,
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since }Gij}s „
?
s for s ě 1. Let X 1 “ pXijq be the m ˆ n random matrix with entries

X 1ij “ AijY
1
ij . By [14, Lemma 4.7] we know that

1

CpL,L1, βq
E~X 1~ ď E~X~ ď CpL,L1, βqE~X 1~

for any norm ~ ¨ ~ on mˆ n real matrices. In particular

E}X}p1,q ď CpL, βqE}X 1}p1,q, and E max
1ďiďm
1ďjďn

|X 1ij | ď CpL, βqE max
1ďiďm
1ďjďn

|Xij |.

Moreover, by E|Gij | “
a

2{π, the Jensen inequality, and (4.7) applied with γ “ 2β, we
have

E
›

›pX 1ijq
›

›

p1,q
“ E

›

›pεijAij |G
1
ij |

2βq
›

›

p1,q
“

c

π

2
E
›

›

`

E|Gij |εijAij |G
1
ij |

2β
˘
›

›

p1,q

ď

c

π

2
E
›

›

`

|Gij |εijAij |G
1
ij |

2β
˘
›

›

p1,q
“

c

π

2
EXEG

›

›pAijGij |G
1
ij |

2βq
›

›

p1,q

ď Cpp, qq

ˆ

plogmqβ`
1
q max
1ďiďm

›

›Ai
›

›

p
` plog nqβ max

1ďjďn

›

›Apjq
›

›

q

` plogmq1{qE max
1ďiďm
1ďjďn

|AijGij | ¨ |G
1
ij |

2β

˙

ď Cpp, qq

ˆ

plogmqβ`
1
q max
1ďiďm

›

›Ai
›

›

p
` plog nqβ max

1ďjďn

›

›Apjq
›

›

q

` plogmq1{qE max
1ďiďm
1ďjďn

|Gij |E max
1ďiďm
1ďjďn

|X 1ij |

˙

,

which yields the assertion, since Emax1ďiďm
1ďjďn

|Gij | „
a

logpmnq.

5 The case of unconditional entries

Proof of Corollary 1.6. Proceeding like in the proof of (1.4), we prove using (1.1) that

E}paijGijq}p1,q ď Cpp, qq

ˆ

plogmq1{qE max
1ďiďm

}paijGijqj}p ` E max
1ďjďn

}paijGijqi}q

˙

. (5.1)

where Gij are i.i.d. standard Gaussian variables.

Since X is unconditional, it has the same distribution as the matrix pεijXijqiďm,jďn,
where εij are i.i.d. symmetric Bernoulli variables independent of X. Let Gij be i.i.d.
standard Gaussian variables independent of X and pεijqiďm,jďn. Using E|Gij | “

a

2{π,
the Jensen inequality, and (5.1) (to estimate the mean with respect to G) we get

E
›

›pXijq
›

›

p1,q
“ E

›

›pεijXijq
›

›

p1,q
“

c

π

2
E
›

›

`

εijXijE|Gij |
˘
›

›

p1,q

ď

c

π

2
E
›

›

`

εijXij |Gij |
˘
›

›

p1,q
“

c

π

2
EXEG

›

›pXijGijq
›

›

p1,q

ď Cpp, qq

ˆ

plogmq1{qEXEG max
1ďiďm

}pXijGijqj}p ` EXEG max
1ďjďn

}pXijGijqi}q

˙

,

We use (4.6) with γ “ 1 to get the assertion.
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Remark 5.1. Using Theorem 1.1 instead of (1.1) in the proof above yields a slightly
weaker estimate in Corollary 1.6:

E}X}p1,q ď Cpp, qq

ˆ

plogmq
3
2`

1
qE max

1ďiďm

´

n
ÿ

j“1

|Xij |
p
¯1{p

`
a

log nE max
1ďjďn

´

m
ÿ

i“1

|Xij |
q
¯1{q

˙

. (5.2)
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