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Gaussian fluctuations of the determinant of Wigner
matrices
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Abstract

We prove that the logarithm of the determinant of a Wigner matrix satisfies a central
limit theorem in the limit of large dimension. Previous results about fluctuations of
such determinants required that the first four moments of the matrix entries match
those of a Gaussian [53]. Our work treats symmetric and Hermitian matrices with
centered entries having the same variance and subgaussian tail. In particular, it
applies to symmetric Bernoulli matrices and answers an open problem raised in [54].
The method relies on (1) the observable introduced in [9] and the stochastic advection
equation it satisfies, (2) strong estimates on the Green function as in [12], (3) fixed
energy universality [10], (4) a moment matching argument [52] using Green’s function
comparison [21].
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1 Introduction

In this paper, we address the universality of the determinant of a class of random
Hermitian matrices. Before discussing results specific to this symmetry assumption,
we give a brief history of results in the non-Hermitian setting. In both settings, a
priori bounds preceded estimates on moments of determinants, and the distribution
of determinants for integrable models of random matrices. The universality of such
determinants has then been the subject of recent active research.
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Gaussian fluctuations of the determinant of Wigner matrices

1.1 Non-Hermitian matrices

Early papers on this topic treat non-Hermitian matrices with independent and identi-
cally distributed entries. More specifically, Szekeres and Turán first studied an extremal
problem on the determinant of ±1 matrices [49]. In the 1950s, a series of papers
[24, 23, 43, 55, 46] calculated moments of the determinant of random matrices of fixed
size (see also [28]). In general, explicit formulae are unavailable for high order moments
of the determinant except when the entries of the matrix have particular distribution
(see, for example, [17] and the references therein). Estimates for the moments and the
Chebyshev inequality give upper bounds on the magnitude of the determinant.

Along a different line of research, for an N × N non-Hermitian random matrix A,
Erdős asked whether detA is non-zero with probability tending to one as N tends to
infinity. In [33, 34], Kolmós proved that for random matrices with Bernoulli entries,
indeed detA 6= 0 with probability converging to 1 with N . In fact, this method works for
more general models, and following [33], [31, 50, 51, 11] give improved, exponentially
small bounds on the probability that detA = 0.

In [50], the authors made the first steps towards quantifying the typical size of |detA|,
proving that for Bernoulli random matrices, with probability tending to 1 as N tends to
infinity, √

N ! exp
(
−c
√
N logN

)
≤ |detA| ≤ ω(N)

√
N !, (1.1)

for any function ω(N) tending to infinity with N . In particular, with overwhelming
probability

log |detA| =
(

1

2
+ o(1)

)
N logN.

In [29], Goodman considered A with independent standard real Gaussian entries.
In this case, he was able to express |detA|2 as the product of independent chi-square
variables. This enables one to identify the asymptotic distribution of log |detA|. Indeed,
one can prove that

log |detA| − 1
2 logN ! + 1

2 logN√
1
2 logN

→ N (0, 1), (1.2)

(see [47]). In the case of A with independent complex Gaussian entries, a similar analysis
yields

log |detA| − 1
2 logN ! + 1

4 logN√
1
4 logN

→ N (0, 1).

In [41], the authors proved (1.2) holds under just an exponential decay hypothesis on
the entries. Their method yields an explicit rate of convergence and extends to handle
the complex case. Then in [5], the authors extended (1.2) to the case where the matrix
entries only require bounded fourth moment.

The analysis of determinants of non-Hermitian random matrices relies crucially on
the assumption that the rows of the random matrix are independent. The fact that this
independence no longer holds for Hermitian random matrices forces one to look for new
methods to prove similar results to those of the non-Hermitian case. Nevertheless, the
history of this problem mirrors the history of the non-Hermitian case.

1.2 Hermitian matrices

In the 1980s, Weiss posed the Hermitian analogs of [33, 34] as an open problem.
This problem was solved, many years later in [15], and then in [52, Theorem 34] the
authors proved the Hermitian analog of (1.1). This left open the question of describing
the limiting distribution of the determinant.
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Gaussian fluctuations of the determinant of Wigner matrices

In [16], Delannay and Le Caër used the explicit formula for the joint distribution of
the eigenvalues to prove that for H an N ×N matrix drawn from the GUE,

log |detH| − 1
2 logN ! + 1

4 logN√
1
2 logN

→ N (0, 1). (1.3)

Analogously, one has

log |detH| − 1
2 logN ! + 1

4 logN
√

logN
→ N (0, 1) (1.4)

when H is drawn from the GOE. Proofs of these central limit theorems also appear in
[53, 13, 7, 18]. For related results concerning other models of random matrices, see [48]
and the references therein.

While the authors of [53] give their own proof of (1.3) and (1.4), their main interest is
to establish such a result in the more general setting of Wigner matrices. Indeed, they
show that in (1.4), we may replace H by W , a Wigner matrix whose entries’ first four
moments match those of N (0, 1). They also prove the analogous result in the complex
case. In this paper, we will relax this four moment matching assumption to a two moment
matching assumption (see Theorem 1.2).

Finally, we mention that new interest in averages of determinants of random (Hermi-
tian) matrices has emerged from the study of complexity of high-dimensional landscapes
[27, 4].

1.3 Statement of results: the determinant

This subsection gives our main result and suggests extensions in connection with the
general class of log-correlated random fields. Our theorems apply to Wigner matrices as
defined below.

Definition 1.1. A complex Wigner matrix, W = (wij), is an N × N Hermitian matrix
with entries

Wii =

√
1

N
xii, i = 1, . . . , N, Wij =

1√
2N

(xij + iyij) , 1 ≤ i < j ≤ N.

Here {xii}1≤i≤N , {xij}1≤i<j≤N , {yij}1≤i<j≤N are independent identically distributed
random variables satisfying E (xij) = 0,E

(
x2
ij

)
= E

(
y2
ij

)
= 1. We assume further that

the common distribution ν of {xii}1≤i≤N , {xij}1≤i<j≤N , {yij}1≤i<j≤N , has subgaussian
decay, i.e. there exists δ0 > 0 such that∫

R

eδ0x
2

dν(x) <∞. (1.5)

In particular, this means that all the moments of the entries of the matrix are bounded. In
the special case ν = N (0, 1), W is said to be drawn from the Gaussian Unitary Ensemble
(GUE).

Similarly, we define a real Wigner matrix to have entries of the form Wii =
√

2
N xii,

Wij =
√

1
N xij , where {xij}1≤i,j≤N are independent identically distributed random vari-

ables satisfying E (xij) = 0,E
(
x2
ij

)
= 1. As in the complex case, we assume the common

distribution ν satisfies (1.5). In the special case ν = N (0, 1), W is said to be drawn from
the Gaussian Orthogonal Ensemble (GOE).

Our main result extends (1.3) and (1.4) to the above class of Wigner matrices. In
particular, this answers a conjecture from [54, Section 8], which asserts that the central
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Gaussian fluctuations of the determinant of Wigner matrices

limit theorem (1.4) holds for Bernoulli (±1) matrices. Note that in the following statement,
our centering differs from (1.3) and (1.4) because we normalize our matrix entries to
have variance of size N−1.

Theorem 1.2. Let W be a real Wigner matrix satisfying (1.5). Then

log |detW |+ N
2√

logN
→ N (0, 1). (1.6)

If W is a complex Wigner matrix satisfying (1.5), then

log |detW |+ N
2√

1
2 logN

→ N (0, 1). (1.7)

Assumption (1.5) may probably be relaxed to a finite moment assumption, but we will
not pursue this direction here. Similarly, it is likely that the matrix entries do not need
to be identically distributed; only the first two moments need to match. However we
consider the case of a unique ν in this paper.

Remark 1.3. Let H be drawn from the GUE normalized so that in the limit as N →∞,
the distribution of its eigenvalues is supported on [−1, 1], and let

DN (x) = − log |det (H − x)| .

In [35], Krasovsky proved that for xk ∈ (−1, 1), k = 1, . . . ,m, xj 6= xk, uniformly in
< (αk) > − 1

2 ,

E
(
e−
∑m
k=1 αkDN (xk)

)
=

m∏
k=1

(
C
(αk

2

) (
1− x2

k

)α2
k
8 N

α2
k
4 e

αkN

2 (2x2
k−1−2 log 2)

)
(1.8)

×
∏

1≤ν<µ≤m

(2 |xν − xµ|)−
αναµ

2

(
1 + O

(
logN

N

))
,

as N →∞. Here C(·) is the Barnes function. Since the above estimate holds uniformly
for < (αk) > − 1

2 , (1.8) shows that letting

D̃N (x) =
DN (x) +N

(
x2 − 1

2 − log 2
)√

1
2 logN

,

the vector
(
D̃N (x1) , . . . , D̃N (xm)

)
converges in distribution to a collection of m inde-

pendent standard Gaussians. Our proof of Theorem 1.2 automatically extends this result
to Hermitian Wigner matrices as defined above. If one were to prove an analogous
convergence for the GOE, our proof of Theorem 1.2 would extend the result to real
symmetric Wigner matrices as well.

Remark 1.4. We note that (1.8) was proved for fixed, distinct xk’s. If (1.8) holds for
collapsing xk’s, this means that fluctuations of the log-characteristic polynomial of the
GUE become log-correlated for large dimension, as in the case of the Circular Unitary
Ensemble [8]. More specifically, let D̃N (·) be as above, and let ∆ denote the distance

between two points x, y in (−1, 1). For ∆ ≥ 1/N , we expect cov
(
D̃N (x), D̃N (y)

)
to

behave like log(1/∆)
logN , and for ∆ ≤ 1/N , we expect it to converge to 1.

Our method automatically establishes the content of Remark 1.4 for Wigner matrices,
conditional on the knowledge of GOE and GUE cases. The exact statement is as follows,
and we omit the proof, strictly similar to Theorem 1.2. Denote

LN (z) = log |det(W − z)| −N
∫ 2

−2

log |x− z|dρsc(x).
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Theorem 1.5. Let W be a real Wigner matrix satisfying (1.5). Let ` ≥ 1, κ > 0 and let
(E

(1)
N )N≥1, . . . , (E

(`)
N )N≥1 be energy levels in [−2 + κ, 2− κ]. Assume that for all i 6= j, for

some constants cij we have

log |E(i)
N − E

(j)
N |

− logN
→ cij ∈ [0,∞]

as N →∞. Then
1√

1
2 logN

(
LN

((
E

(1)
N

))
, . . . , LN

((
E

(`)
N

)))
(1.9)

converges in distribution to a Gaussian vector with covariance (min(1, cij))1≤i,j≤N (with
diagonal 1 by convention), provided the same result holds for GOE.

The same result holds for Hermitian Wigner matrices, assuming it is true in the GUE

case, up to a change in the normalization from
√

1
2 logN to

√
logN in (1.9).

Theorem 1.5 says LN converges to a log-correlated field, provided this result holds
for the Gaussian ensembles. It therefore suggests that the universal limiting behavior
of extrema and convergence to Gaussian multiplicative chaos conjectured for unitary
matrices in [26] extends to the class of Wigner matrices. Towards these conjectures,
[3, 14, 45, 25, 36] proved asymptotics on the maximum of characteristic polynomials
of circular unitary and invariant ensembles, and [6, 42, 56] established convergence to
the Gaussian multiplicative chaos, for the same models. We refer to [2] for a survey on
log-correlated fields and their connections with random matrices, branching processes,
the Gaussian free field, and analytic number theory.

1.4 Statement of results: fluctuations of individual eigenvalues

With minor modifications, the proof of Theorem 1.2 also extends the results of [30]
and [44] which describe the fluctuations of individual eigenvalues in the GUE and GOE
cases, respectively. By adapting the method of [52], [44] proves the following theorem
under the assumption that the first four moments of the matrix entries match those of a
standard Gaussian. In Appendix B, we show that the individual eigenvalue fluctuations
of the GOE (GUE) also hold for real (complex) Wigner matrices in the sense of Definition
1.1. In particular, the fluctuations of eigenvalues of Bernoulli matrices are Gaussian in
the large dimension limit, which answers a question from [54].

To state the following theorem, we follow the notation of Gustavsson [30] and write
k(N) ∼ Nθ to mean that k(N) = h(N)Nθ where h is a function such that for all ε > 0, for
large enough N ,

N−ε ≤ h(N) ≤ Nε. (1.10)

In the following, γk denotes the kth quantile of the semicircle law,

1

2π

∫ γk

−2

√
(4− x2)+dx =

k

N
. (1.11)

Theorem 1.6. Let W be a Wigner matrix satisfying (1.5) with eigenvalues λ1 < λ2 <

· · · < λN . Consider {λki}
m
i=1 such that 0 < ki+1 − ki ∼ Nθi , 0 < θi ≤ 1, and ki/N → ai ∈

(0, 1) as N →∞. Let

Xi =
λki − γki√

4 logN

β
(

4−γ2
ki

)
N2

, i = 1, . . . ,m, (1.12)

with β = 1 for real Wigner matrices, and β = 2 for complex Wigner matrices. Then as
N →∞,

P {X1 ≤ ξ1, . . . , Xm ≤ ξm} → ΦΛ (ξ1, . . . , ξm) ,
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Gaussian fluctuations of the determinant of Wigner matrices

where ΦΛ is the cumulative distribution function for the m-dimensional normal distribu-
tion with covariance matrix Λi,j = 1−max {θk : i ≤ k < j < m} if i < j, and Λi,i = 1.

The above theorem has been known to follow from the homogenization result in
[10] (this technique gives a simple expression for the relative individual positions of
coupled eigenvalues from GOE and Wigner matrices) and fluctuations of mesoscopic
linear statistics; see [37] for a proof of eigenvalue fluctuations for Wigner and invariant
ensembles. However, the technique from [10] is not enough for Theorem 1.2, as the
determinant depends on the positions of all eigenvalues.

1.5 Outline of the proof

In this section, we give the main steps of the proof of Theorem 1.2. Our outline
discusses the real case, but the complex case follows the same scheme.

The main conceptual idea of the proof follows the three step strategy of [19, 20].
With a priori localization of eigenvalues (step one, [22, 12]), one can prove that the
determinant has universal fluctuations after a adding a small Gaussian noise (this second
step relies on a stochastic advection equation from [9]). The third step proves by
a density argument that the Gaussian noise does not change the distribution of the
determinant, thanks to a perturbative moment matching argument as in [52, 21]. We
include Figure 1 below to help summarize the argument.

First step: small regularization. In Section 2, with Theorems 2.2 and 2.4, we reduce
the proof of Theorem 1.2 to showing the convergence

log |det(W + iη0)|+ cN√
logN

→ N (0, 1) (1.13)

with some explicit deterministic cN , and the small regularization parameter

η0 =
e(logN)

1
4

N
. (1.14)

Second step: universality after coupling. Let M be a symmetric matrix which serves
as the initial condition for the matrix Dyson’s Brownian Motion (DBM) given by

dMt =
1√
N

dB(t) − 1

2
Mtdt. (1.15)

Here B(t) is a symmetric N×N matrix such that B(t)
ij (i < j) and B(t)

ii /
√

2 are independent
standard Brownian motions. The above matrix DBM induces a collection of independent
standard Brownian motions (see [1]), B̃(k)

t /
√

2, k = 1, . . . , N such that the eigenvalues of
M satisfy the system of stochastic differential equations

dxk(t) =
dB̃

(k)
t√
N

+

 1

N

∑
l 6=k

1

xk(t)− xl(t)
− 1

2
xk(t)

 dt (1.16)

with initial condition given by the eigenvalues of M . It has been known since [40] that
the system (1.16) has a unique strong solution. With this in mind, we follow [10] and
introduce the following coupling scheme. First, run the matrix DBM taking W̃0, a Wigner
matrix, as the initial condition. Using the induced Brownian motions, run the dynamics
given by (1.16) using the eigenvalues y1 < y2 < · · · < yN of W̃0 as the initial condition.
Call the solution to this system y(τ). Using the very same (induced) Brownian motions,
run the dynamics given by (1.16) again, this time using the eigenvalues of a GOE matrix,
x(0), as the initial condition. Call the solution to this system x(τ).
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W

W̃0 W̃τ
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Figure 1: We show (1.6) holds for W̃τ if and only if it holds for W , and we prove that
(1.6) holds for x(τ) if and only if (1.6) holds for W̃τ . Since x(τ) is distributed as the
eigenvalues of a GOE matrix, it satisfies (1.4) and we conclude the proof. Note that
log |det W̃τ | =

∑
log |yk(τ)| pathwise because B induces B̃.

Now fix ε > 0 and let

τ = N−ε. (1.17)

Using Lemma 3.1, we show that∑N
k=1 log |xk(τ) + iη0| −

∑N
k=1 log |yk(τ) + iη0|√

logN
(1.18)

and ∑N
k=1 log |xk(0) + zτ | −

∑N
k=1 log |yk(0) + zτ |√

logN
(1.19)

are very close. Here zτ is as in (3.5) with z = iη0. The significance of this is that since
zτ ∼ iτ , we can use well-known central limit theorems which apply to nearly macroscopic
scales to show that (1.19) has variance of order ε. Consequently, (1.18) is also small, and
since x(τ) is distributed as the eigenvalues of a GOE matrix, we have proved universality
of the regularized determinant after coupling.

Third step: moment matching. In Section 4, we conclude the proof of Theorem 1.2.
First, we choose W̃0 so that W̃τ and W have entries whose first four moments are close,
as in [21]. With this approximate moment matching, we use a perturbative argument, as
in [53], to prove that (1.13) holds for W if and only if it holds for W̃τ . But as (1.18) is
small, this means (1.13) holds for W if and only if it holds for a GOE matrix. By (1.4),
this concludes the proof.

1.6 Notation

We shall make frequent use of the notations sW and msc in the remainder of this
paper. We state their definitions here for easy reference. Let W be a Wigner matrix with
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Gaussian fluctuations of the determinant of Wigner matrices

eigenvalues λ1 < λ2 < · · · < λN . For =(z) > 0, define

sW (z) =
1

N

N∑
k=1

1

λk − z
, (1.20)

the Stieltjes transform of W . Next, let

msc(z) =
−z +

√
z2 − 4

2
, (1.21)

where the square root
√
z2 − 4 is chosen with the branch cut in [−2, 2] so that

√
z2 − 4 ∼ z

as z →∞. Note that

msc(z) +
1

msc(z)
+ z = 0. (1.22)

Finally, throughout this paper, unless indicated otherwise, C (c) denotes a large (small)
constant independent of all other parameters of the problem. It may vary from line to
line.

2 Initial regularization

Let y1 < y2 < · · · < yN denote the eigenvalues of W , a real Wigner matrix satisfying
(1.5). We first prove we only need to show Theorem 1.2 for a slight regularization of the
logarithm.

Proposition 2.1. Set

g(η) =
∑
k

(log |yk + iη| − log |yk|)−
∫ η

0

N= (msc(is)) ds

and recall η0 = e(logN)
1
4

N as in (1.14). Then we have the convergence in probability

g(η0)√
logN

→ 0.

To prove Proposition 2.1, we will use Theorems 2.2 and 2.4 as input. In [12], Theorem
2.2 is stated for complex Wigner matrices, however, the argument there proves the same
statement for real Wigner matrices.

Theorem 2.2 (Theorem 1 in [12]). Let W be a Wigner matrix and fix η̃ > 0. For any
Ẽ > 0, there exist constants M0, N0, C, c, c0 > 0 such that

P

(
|= (sW (E + iη))−= (msc (E + iη))| ≥ K

Nη

)
≤ (Cq)

cq2

Kq

for all η ≤ η̃, |E| ≤ Ẽ, K > 0, N > N0 such that Nη > M0, and q ∈ N with q ≤ c0 (Nη)
1
8 .

Remark 2.3. In [22], the authors proved that for some positive constant C0, and N large
enough,

|sW (E + iη)−msc (E + iη)| ≤ eC0(log logN)2

Nη

holds with high probability. Though this estimate is weaker than the estimate of Theorem
2.2, it holds for a more general model of Wigner matrix in which the entries of the matrix
need not have identical variances. On the other hand, we require the stronger estimate
in Theorem 2.2 in our proof of Proposition 2.1, and so we restrict ourselves to Wigner
matrices as defined in Definition 1.1. The proof of Lemma A.1 also relies on Definition
1.1.
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Theorem 2.4 (Theorem 2.2 in [10]). Let ρ1 denote the first correlation function for the

eigenvalues of an N × N Wigner matrix, and let ρ(x) = 1
2π

√
(4− v2)+. Then for any

F : R→ R continuous and compactly supported, and for any κ > 0, we have,

lim
N→∞

sup
E∈[−2+κ,2−κ]

∣∣∣∣ 1

ρ(E)

∫
F (v)ρ1

(
E +

v

Nρ(E)

)
dv −

∫
F (v)ρ(v) dv

∣∣∣∣ = 0. (2.1)

Remark 2.5. In fact Theorem 2.2 in [10] makes a much stronger statement, namely it
states the analogous convergence for all correlation functions in the case of generalized
Wigner matrices.

Corollary 2.6. For any small fixed κ, γ > 0 there exists C,N0 > 0 such that for any
N ≥ N0 and any interval I ⊂ [−2 + κ, 2− κ] we have

E (|{yk : yk ∈ I}|) ≤ CN |I|+ γ.

Proof. In Theorem 2.4, choosing F to be an indicator of an interval of length 1 gives an
expected value O(1). Since the statement of Theorem 2.4 holds uniformly in E, we may
divide the interval I into sub-intervals of length order 1/N to conclude.

Corollary 2.7. LetE ∈ [−2+κ, 2−κ] be fixed and Iβ = (E−β/2, E+β/2) with β = o(N−1).
Then

lim
N→∞

P (|{yk ∈ Iβ}| = 0) = 1.

Proof. Let ε be any fixed small constant. Let f be fixed, smooth, positive, equal to 1 on
[−1, 1] and 0 on [−2, 2]c. Then

P (|{yk ∈ Iβ}| ≥ 1) ≤ E (|{yk ∈ Iβ}|) ≤ E

(∑
k

f (N(yk − E)/ε)

)
≤ 10ε,

where the last bound holds for large enough N by Theorem 2.4.

Proof of Proposition 2.1. We first choose η̃ < η0 so that we can use Theorem 2.2 to
estimate

E (|g (η0)− g (η̃)|) ,

and then take care of the remaining error using Corollaries 2.6 and 2.7. Let

η̃ =
dN
N
, with dN = (logN)

1
4 ,

and observe that

E (|g (η0)− g (η̃)|) = E

(∣∣∣∣∫ η0

η̃

N= (sW (it)−msc(it)) dt

∣∣∣∣) ≤ ∫ η0

η̃

E (N∆(t)) dt, (2.2)

where
∆(t) = |= (sW1

(it)−msc(it)| .

For N sufficiently large, by Theorem 2.2 with q = 2, we can write the right hand side of
(2.2) as∫ η0

η̃

(∫ 1

0

P

(
∆ (t) >

K

Nt

)
dK

t
+

∫ ∞
1

P

(
∆ (t) >

K

Nt

)
dK

t

)
dt

≤
∫ η0

η̃

(
1

t
+

∫ ∞
1

C

K2

dK

t

)
dt ≤ (1 + C) log

(
η0

η̃

)
= o

(√
logN

)
. (2.3)
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Gaussian fluctuations of the determinant of Wigner matrices

Next we estimate
∑
k (log |yk + iη̃| − log |yk|), and this will give us a bound for E (|g(η̃)|).

Taylor expansion yields ∑
|yk|>η̃

(log |yk + iη̃| − log |yk|) ≤
∑
|yk|>η̃

η̃2

y2
k

.

Define N1(u) = |{yk : η̃ ≤ |yk| ≤ u}|. Using integration by parts and Corollary 2.6, we
have

E

 ∑
|yk|>η̃

η̃2

y2
k

 = E

(∫ ∞
η̃

η̃2

y2
dN1(y)

)
= 2η̃2

∫ ∞
η̃

E (N1(y))

y3
dy = O (dN ) . (2.4)

We now estimate
∑
|yk|≤η̃ (log |yk + iη̃| − log |yk|). We consider two cases. First, let

AN = bN/N for some very small bN , for example

bN = e−(logN)
1
4 .

For u > 0 we denote N2(u) = |{yk : AN < |yk| ≤ u}|. Then again using integration by
parts and Corollary 2.6 we obtain

E

 ∑
AN<|yk|<η̃

(log |yk + iη̃| − log |yk|)

 = E

(∫ η̃

AN

(log |y + iη̃| − log |y|) dN2(y)

)

≤ log
(√

2
)
E (N2 (η̃)) +

∫ η̃

AN

E (N2(y))

y
dy = O

(
dN + dN log

(
dN
bN

))
= o

(√
logN

)
.

It remains to estimate
∑
|yk|<AN (log |yk + iη̃| − log |yk|). By Corollary 2.7, we have

P

 ∑
|yk|<AN

(log |yk + iη̃| − log |yk|) = 0

 ≥ P (|{yk ∈ [−AN , AN ]}| = 0)→ 1. (2.5)

The estimates (2.3) and (2.4) along with Markov’s inequality, and the bound (2.5),
conclude the proof.

3 Coupling of determinants

In this section, we use the coupled Dyson Brownian Motion introduced in [10] to
compare (1.18) and (1.19). Define W̃τ by running the matrix Dyson Brownian Motion
(1.15) with initial condition W̃0 where W̃0 is a Wigner matrix with eigenvalues y. Recall
that this induces a collection of Brownian motions B̃(k)

t so that the system (1.16) with
initial condition y has a (unique strong) solution y(·), and y(τ) are the eigenvalues of
W̃τ . Using the same (induced) Brownian motions as we used to define y(τ), define
x(τ) by running the dynamics (1.16) with initial condition given by the eigenvalues of
a GOE matrix. We now prove Proposition 3.2 which says that (1.18) and (1.19) are
asymptotically equal in law, with main tool being the following Lemma 3.1.

To study the coupled dynamics of x(t) and y(t), we follow [38, 9]. For ν ∈ [0, 1], let

λνk(0) = νxk + (1− ν) yk (3.1)

where x is the spectrum of a GOE matrix, and y is the spectrum of W̃0. With this
initial condition, we denote the (unique strong) solution to (1.16) by λ(ν)(t). Note that
λ(0)(τ) = y(τ) and λ(1)(τ) = x(τ). Let

f
(ν)
t (z) = e−

t
2

N∑
k=1

uk(t)

λ
(ν)
k (t)− z

, uk(t) =
d

dν
λ

(ν)
k (t), (3.2)
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(see [38] for existence of this derivative). A key observation of [9] is that the time
evolution of f (ν)

t is, at leading order,

∂tf
(ν)
t ≈

√
z2 − 4

2
∂zf

(ν)
t , (3.3)

i.e. it is close to a stochastic advection equation. This equation has explicit characteristics
given by (3.5) below, so that we expect

fτ (z) ≈ f0 (zτ ) .

This approximation was rigorously justified, relying on a cancellation of all singularities
emerging from the calculation of ∂tf

(ν)
t with Itô’s formula. This is the content of the

following Lemma 3.1, from [9, Proposition 2.10]. This is of special interest for the study
of determinants because

d

dν

∑
k

log
∣∣∣λ(ν)
k (t)− z

∣∣∣ = e
t
2<
(
f

(ν)
t (z)

)
. (3.4)

Indeed, (3.3) and (3.4) will give, by integration over 0 ≤ ν ≤ 1, the fact that (1.18) and
(1.19) are very close, as mentioned in the outline of the proof.

Lemma 3.1. There exists C0 > 0 such that with ϕ = eC0(log logN)2

, for any ν ∈ [0, 1], κ > 0

(small) and D > 0 (large), there exists N0(κ,D) so that for any N ≥ N0 we have

P

(∣∣∣f (ν)
t (z)− f (ν)

0 (zt)
∣∣∣ < ϕ

Nη
∀ 0 < t < 1, z = E + iη,

ϕ

N
< η < 1, |E| < 2− κ

)
≥ 1−N−D.

In the above, zt is given by

zt =
1

2

(
e
t
2

(
z +

√
z2 − 4

)
+ e−

t
2

(
z −

√
z2 − 4

))
. (3.5)

For z = iη0 (remember (1.14)), we have

zt = i

(
η0 +

t
√
η2

0 + 4

2

)
+ O

(
t2
)
. (3.6)

For N large enough we have ϕ/N < η0 < 1, so that we can apply Lemma 3.1. Therefore,
integrating both sides of (3.4), we have by Lemma 3.1 that with overwhelming probability,

∑
k

(log |xk(τ) + iη0| − log |yk(τ) + iη0|) =

∫ 1

0

d

dν

∑
k

log
∣∣∣λ(ν)
k (τ)− z

∣∣∣ dν
= e

t
2<
∫ 1

0

f (ν)
τ (z)dν = e

t
2<
∫ 1

0

(
f

(ν)
0 (zτ ) + O

(
ϕ

Nη0

))
dν = e

t
2<
∫ 1

0

f
(ν)
0 (zτ ) dν+o(1).

More precisely, the above estimates hold with probability 1 − N−D for large enough
N , with rigorous justification by Markov’s inequality based on the large moments

E((
∫ 1

0

(
f

(ν)
τ (z0)− f (ν)

0 (zτ )
)

dν)2p), which are bounded by Lemma 3.1. As a consequence,

we have proved the following proposition.

Proposition 3.2. Let ε > 0, τ = N−ε and let zτ be as in (3.5) with z = iη0. Define

g (t, z) =
∑
k

(log |xk(t) + z| − log |yk(t) + z|) .

Then for any δ > 0,
lim
N→∞

P (|g (τ, iη0)− g (0, zτ )| > δ) = 0.
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4 Conclusion of the proof

We will conclude the proof of Theorem 1.2 in the real symmetric case in two steps.
The first step is to prove a Green’s function comparison theorem, and the second is to
establish Theorem 1.2 assuming Lemma A.1, proved in the Appendix.

4.1 Green’s function comparison theorem

In this section, we first use Lemma 4.1 to choose a W̃0 so that W̃τ given by (1.15)
and initial condition W̃0, matches W closely up to fourth moment. We will then prove
Theorem 4.4, which by the result of Section 2, says that log |det W̃τ | and log |detW | have
the same law as N →∞.

Lemma 4.1 (Lemma 6.5 in [21]). Let m3 and m4 be two real numbers such that

m4 −m2
3 − 1 ≥ 0, m4 ≤ C2 (4.1)

for some positive constant C2. Let ξG be a Gaussian random variable with mean 0 and
variance 1. Then for any sufficiently small γ > 0 (depending on C2), there exists a real
random variable ξγ , with subgaussian decay and independent of ξG such that the first
four moments of

ξ′ = (1− γ)
1
2 ξγ + γ

1
2 ξG

are m1 (ξ′) = 0, m2 (ξ′) = 1, m3 (ξ′) = m3, and

|m4 (ξ′)−m4| ≤ Cγ

for some C depending on C2.

Now since W̃τ is defined by independent Ornstein-Uhlenbeck processes in each entry,
it has the same distribution as

e−τ/2W̃0 +
√

1− e−τW

where W is a GOE matrix independent of W̃0. So choosing γ = 1− e−τ , Lemma 4.1 says
we can find W̃0 so that the first three moments of the entries of W̃τ match the first three
moments of the entries of W , and the fourth moments of the entries of each differ by
O(τ). Our next goal is to prove Theorem 4.4 which says that with W̃τ constructed this
way, if Theorem 1.2 holds for W̃τ , then it holds for W . We first introduce stochastic
domination and state Theorem 4.3 which we will use in the proof.

Definition 4.2. Let X =
(
XN (u) : N ∈ N, u ∈ UN

)
, Y =

(
Y N (u) : N ∈ N, u ∈ UN

)
be

two families of nonnegative random variables, where UN is a possibly N -dependent
parameter set. We say that X is stochastically dominated by Y , uniformly in u, if for
every ε > 0 and D > 0, there exists N0(ε,D) such that

sup
u∈UN

P
[
XN (u) > N εY N (u)

]
≤ N−D

for N ≥ N0. Stochastic domination is always uniform in all parameters, such as matrix
indices and spectral parameters, that are not explicitly fixed. We will use the notation
X = O≺(Y ) or X ≺ Y for the above property.

Theorem 4.3 (Theorem 2.1 in [22]). Let W be a Wigner matrix satisfying (1.5). Fix ζ > 0

and define the domain

S = SN (ζ) :=
{
E + iη : |E| ≤ ζ−1, N−1+ζ ≤ η ≤ ζ−1

}
.
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Then uniformly for i, j = 1, . . . , N and z ∈ S, we have

s(z) = m(z) + O≺

(
1

Nη

)
,

Gij(z) = (W − z)−1
ij = m(z)δij + O≺

(√
= (m(z))

Nη
+

1

Nη

)
.

Theorem 4.4. Let F : R→ R be smooth with compact support, and let W and V be two
Wigner matrices satisfying (1.5) such that for 1 ≤ i, j ≤ N ,

E
(
waij
)

=

{
E
(
vaij
)

a ≤ 3 (4.2)

E
(
vaij
)

+ O(τ) a = 4, (4.3)

where τ is as in (1.17). Further, let cN be any deterministic sequence and define

uN (W ) =
log |det (W + iη0) |+ cN√

logN
,

where η0 is as in (1.14). Then

lim
N→∞

E (F (uN (W ))− F (uN (V ))) = 0. (4.4)

Proof. As in [53], where the authors also used the following technique to analyze
fluctuations of determinants, we show that the effect of substituting Wij in place of Vij
in V is negligible enough that making N2 replacements, we conclude the theorem.

Fix (i, j) and let E(ij) be the matrix whose elements are E(ij)
kl = δikδjl. Let W1 and W2

be two adjacent matrices in the swapping process described above. Since W1,W2 differ
in just the (i, j) and (j, i) coordinates, we may write

W1 = Q+
1√
N
U, W2 = Q+

1√
N
Ũ

where Q is a matrix with Qij = Qji = 0, and

U = uijE
(ij) + ujiE

(ji) Ũ = ũijE
(ij) + ũjiE

(ji).

Importantly U, Ũ satisfy the same moment matching conditions we have imposed on W̃τ

and W . Now by the fundamental theorem of calculus, we have for any symmetric matrix
W ,

log |det(W + iη0)| =
N∑
k=1

log |xk + iη0| = log |det(W + i)| −N =
∫ 1

η0

sW (iη) dη. (4.5)

From the central limit theorems for linear statistics of Wigner matrices on macroscopic
scales [39], (log |det(W + i)| −E(log |det(W + i)|))/

√
logN converges to 0 in probability

(the same result holds withW replaced with V ), and from Lemma A.1 (which clearly holds
with 1 in place of τ ), (E(log |det(W + i)|) − E(log |det(V + i)|))/

√
logN → 0. Therefore

(4.4) is equivalent to

lim
N→∞

E

(
F̃

(
N =

∫ 1

η0

sW (iη) dη

)
− F̃

(
N =

∫ 1

η0

sV (iη) dη

))
= 0, (4.6)

where

F̃ (x) = F

(
E(log |det(W + i)|) + cN − x√

logN

)
.
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We now expand sW1
and sW2

around sQ, and then to Taylor expand F̃ . So let

R = R(z) = (Q− z)−1 and S = S(z) = (W1 − z)−1
.

By the resolvent expansion

S = R−N−1/2RUR+ . . .+N−2(RU)4R−N−5/2(RU)5S,

we can write

N

∫ 1

η0

sW1
(iη)dη =

∫ 1

η0

Tr (S(iη)) dη

=

∫ 1

η0

Tr (R(iη)) dη +

(
4∑

m=1

N−m/2R̂(m)(iη)−N−5/2Ω

)
:= R̂+ ξ

where

R̂(m) = (−1)m
∫ 1

η0

Tr ((R(iη)U)mR(iη)) dη and Ω =

∫ 1

η0

Tr
(
(R(iη)U)5S(iη)

)
dη.

This gives us an expansion of sW1
around sQ. Now Taylor expand F̃ (R̂+ ξ) as

F̃
(
R̂+ ξ

)
= F̃

(
R̂
)

+ F̃ ′
(
R̂
)
ξ + . . .+ F̃ (5)

(
R̂+ ξ′

)
ξ5 =

5∑
m=0

N−m/2A(m) (4.7)

where 0 < ξ′ < ξ, and we have introduced the notation A(m) in order to arrange terms
according to powers of N . For example

A(0) = F̃
(
R̂
)
, A(1) = F̃ ′

(
R̂
)
R̂(1), A(2) = F̃ ′

(
R̂
)
R̂(2) + F̃ ′′

(
R̂
)(

R̂(1)
)2

.

Making the same expansion for W2, we record our two expansions as

F̃
(
R̂+ ξi

)
=

5∑
m=0

N−m/2A
(m)
i , i = 1, 2,

with ξi corresponding to Wi. With this notation, we have

E
(
F̃
(
R̂+ ξ1

))
− E

(
F̃
(
R̂+ ξ2

))
= E

(
5∑

m=0

N−m/2
(
A

(m)
1 −A(m)

2

))
.

Now only the first three moments of U, Ũ appear in the terms corresponding tom = 1, 2, 3,
so by the moment matching assumption (4.2), all of these terms are all identically zero.
Next, consider m = 4. Every term with first, second, and third moments of U and Ũ is
again zero, and what remains is

E
(
F̃ ′(R̂)

(
R̂

(4)
1 − R̂

(4)
2

))
.

So we can discard A(4) if∫ 1

η0

∣∣∣E(Tr
(
(RU)4R

)
− Tr

(
(RŨ)4R

))∣∣∣dη (4.8)
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is small. To see that this is in fact the case, we expand the traces, and apply Theorem
4.3 along with our fourth moment matching assumption (4.3). Specifically,

Tr
(
(RU)4R

)
=
∑
j

 ∑
i1,...,i8

Rji1Ui1i2Ri2i3 . . . Ui7i8Ri8j

 .

Writing the corresponding Tr for W2 and applying the moment matching assumption, we
see that we can bound (4.8) by

O(τ)

∫ 1

η0

∑
j

∑
i1,...,i8

E (|Rji1Ri2i3Ri4i5Ri6i7Ri8j |) dη,

where the sums over i1, . . . , i8 (above and below) are just sums over p, q, with p, q are
the indices such that Upq, Ũpq and Uqp, Ũqp are non zero. To bound the terms in the
sum, we need to count the number of diagonal and off-diagonal terms in each product.
When j /∈ {p, q}, Rji1 and Ri8j are certainly off-diagonal entries of R. Applying Cauchy-
Schwartz, we obtain that for any γ > 0,

O(τ)

∫ 1

η0

∑
j /∈{p,q}

∑
i1,...,i8

E (|Rji1Ri2i3Ri4i5Ri6i7Ri8j |) dη = O

(
τN1+2γ

∫ 1

η0

1

Nη
dη

)
.

Similarly,

O(τ)

∫ 1

η0

∑
j∈{p,q}

∑
i1,...,i8

E (|Rji1Ri2i3Ri4i5Ri6i7Ri8j |) dη = O
(
τN ε/2

)
= O

(
N−ε/2

)
.

Since A(4) has a pre-factor of N−2 in (4.7), and the above holds for every choice of
γ > 0, in our entire entry swapping scheme starting from V and ending with W , the
corresponding error is o(1).

Lastly we comment on the error term A(5). All terms in A(5) not involving Ω can be
dealt with as above. The only term involving Ω is F̃ ′(R̂)Ω, and to deal with this, we can
expand the expression for Ω as above. We do not have any moment matching condition
for the fifth moments of U, Ũ , but (1.5) means that their fifth moments are bounded
which is enough for our purpose since A(5) has a pre-factor of N−5/2 above.

4.2 Proof of Theorem 1.2

In this section we first prove Proposition 4.5 and, using Lemma A.1, we conclude the
proof of Theorem 1.2.

Proposition 4.5. Recall τ = N−ε. There exist ε0, C such that for any fixed 0 < ε < ε0,
for large enough N , we have

Var

(∑
k

log |xk(0) + iτ |

)
≤ C(1 + ε logN).

Proof. We outline two proofs, which are trivial extensions of existing linear statistics
asymptotics on global scales, to the case of almost macroscopic scales. The tool for this
extension is the rigidity estimate from [22]: for any c,D > 0, there exists N0 such that
for any N ≥ N0 and k ∈ J1, NK we have

P
(
|xk − γk| > N−

2
3 +c min(k,N + 1− k)−

1
3

)
≤ N−D. (4.9)

For the first proof, we use (4.9) to bound all the error terms in the proof of [39,
Theorem 3.6] (these error terms all depend on [39, Theorem 3.5], which can be improved
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via (4.9) to Var(uN (t)) ≤ N c(1+ |t|) and Var (NN (ϕ)) ≤ N c‖ϕ‖2Lip). What we obtain is that

if ϕ (possibly depending on N ) satisfies
∫
|t|100ϕ̂(t) < N1/100, then

∑
ϕ(xk)−E(

∑
ϕ(xk))

has limiting variance asymptotically equivalent to

VWig[ϕ] =
1

2π2

∫
(−2,2)2

(
∆ϕ

∆λ

)2
4− λ1λ2√

4− λ2
1

√
1− λ2

2

dλ1dλ2 +
κ4

2π2

(∫ 2

−2

ϕ(µ)
2− µ2√
4− µ2

dµ

)2

,

(4.10)

where ∆ϕ = ϕ (λ1)− ϕ (λ2), ∆λ = λ1 − λ2, µ4 = E
(
W 4
jk

)
, and κ4 = µ4 − 3 is the fourth

cumulant of the off-diagonal entries of W . We choose ϕ(x) = ϕN (x) = 1
2 log(x2 + τ2)χ(x)

with χ fixed, smooth, compactly supported, equal to 1 on (−3, 3). Note that for ε0 small
enough, we have

∫
|t|100ϕ̂(t) < N1/100. Then by (4.9) and (4.10),

VWig[log | · −iτ |] ∼ VWig[ϕ] ≤ C
∫∫ (

∆ϕ

∆λ

)2

dλ1dλ2 = C

∫
|ξ| |ϕ̂(ξ)|2 dξ,

and the above right hand side can be bounded as follows. We have

|ϕ̂N (ξ)|

=

∣∣∣∣ 1

2π

∫
R

ϕN (x)e−iξx dx

∣∣∣∣
≤ C

∣∣∣∣∫ 5

−5

x

x2 + τ2

e−iξx

iξ
dx

∣∣∣∣ = C

∣∣∣∣∣1ξ
∫ 5/τ

0

x

x2 + 1
sin(xξτ) dx

∣∣∣∣∣ .
For 0 < ξ < 5, the inequality | sinx| < x shows |ϕ̂N (ξ)| = O(1), and when ξ > 5/τ ,

integration by parts shows |ϕ̂N (ξ)| = O
(

1
ξ2τ

)
. When 5 < ξ < 5/τ , first note

∫ 5
τ

0

sin (ξτx)
x

x2 + 1
dx = C +

∫ 5
τ

1

sin (ξτx)

x
dx = C +

∫ 1

ξτ

sin y

y
dy +

∫ 5ξ

1

sin y

y
dy.

Using | sin y| < |y|, we see that the first term is O(1), and integrating by parts, we see
that the second term is O(1) as well. This means∫

|ξ| |ϕ̂N (ξ)|2 dξ ≤ C + C

∫ 5
τ

5

1

ξ
dξ = O (1 + | log τ |) ,

which concludes the proof.
The second proof is similar but more direct. Theorem 3 in [32] implies that for

z1 = iη1, z2 = iη2 at macroscopic distance from the real axis, and η1 = = (z1) > 0, η2 =

= (z2) < 0, we have∣∣∣∣∣Cov

(∑
k

1

z1 − xk
,
∑
k

1

z2 − xk

)∣∣∣∣∣ ≤ C

(η1 − η2)2
+ f(z1, z2) + O(N−1/2),

where f is a function uniformly bounded on any compact subset of C2. Using (4.9), one
easily obtains that the formula above holds uniformly with |= (z1) |, |= (z2) | > N−1/10,
and the deteriorated error term O(N−1/10), for example. Note that

log |det(W + iη)| = log |det(W + i)| −N =
∫ 1

η

sW (ix) dx,

and log |det(W + i)| has fluctuations of order 1 due to the above macroscopic central
limit theorems. For for η > N−1/10, the variance of the above integral can be bounded
by
∫∫

[η,1]2
1

|η1+η2|2 dη1dη2 ≤ C| log η|, which concludes the proof.
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From (1.4) and Proposition 2.1, for some explicit deterministic cN we have∑N
k=1 log |xk(τ) + iη0|+ cN√

logN
→ N (0, 1), (4.11)

and Proposition 3.2 implies that∑N
k=1 log |yk(τ) + iη0|+ cN√

logN
+

∑N
k=1 log |xk(0) + zτ | −

∑N
k=1 log |yk(0) + zτ |√

logN
→ N (0, 1).

Lemma A.1 and Proposition 4.5 show that the second term above, call it X, satisfies
E(X2) < Cε, for some universal C. Thus for any fixed smooth and compactly supported
function F ,

E

(
F

(∑N
k=1 log |yk(τ) + iη0|+ cN√

logN

))

=E

(
F

(∑N
k=1 log |xk(τ) + iη0|+ cN√

logN
+X

))
+ O

(
‖F‖Lip(E

(
X2
)
)1/2

)
=E (F (N (0, 1))) + o(1) + O

(
ε1/2

)
.

With Theorem 4.4, the above equation implies

E

(
F

(
log |det(W + iη0)|+ cN√

logN

))
= E (F (N (0, 1))) + o(1) + O

(
ε1/2

)
,

and by Proposition 2.1, we obtain

E

(
F

(
log |detW |+ N

2√
logN

))
= E (F (N (0, 1))) + o(1) + O

(
ε1/2

)
. (4.12)

Since ε is arbitrarily small, this concludes the proof.

Appendix A: Expectation of regularized determinants

We prove the following result, which we use both in the proof of Theorem 4.4, and to
conclude the proof of Theorem 1.2.

Lemma A.1. Recall the notation τ = N−ε, and let {xk}Nk=1, {yk}Nk=1 denote the eigenval-
ues of two Wigner matrices, W1 and W2. Then

E

(∑
k

log |xk + iτ | −
∑
k

log |yk + iτ |

)
= O(1).

Proof. By the fundamental theorem of calculus, we can write

∑
k

log |xk + iτ | =
N∑
k=1

log
∣∣xk + iNδ

∣∣+N

∫ Nδ

τ

= (sW1
(iη)) dη (A.1)

with sW as in (1.20), and δ > 0. Writing the same expression for W2 and taking the
difference, we first note that by (4.9), we have that for any γ > 0,

E

(∣∣∣∣∣
N∑
k=1

(
log
∣∣xk + iNδ

∣∣− log
∣∣yk + iNδ

∣∣)∣∣∣∣∣
)
≤ E

(
N−δ

N∑
i=1

|xk − yk|

)
= O

(
Nγ−δ) . (A.2)
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Therefore, we only need to bound

=

(
N

∫ Nδ

τ

E (sW1
(iη)− sW2

(iη)) dη

)
. (A.3)

Let z = E + iη be in S
(

1
100

)
(as defined in Theorem 4.3), and define

f(z) = N (sW1
(z)− sW2

(z)) .

We will first estimate E (f(z)) for τ < η < 5, where we can use Theorem 4.3. Then we
will use complex analysis to extend this estimate to 5 < η < N δ.

Let τ < η < 5. Following the notation of [22], let W be a Wigner matrix and let

vi = Gii −msc, [v] =
1

N

N∑
i=1

vi, G(z) = (W − z)−1.

We will use the notation W (i) to denote the (N − 1) × (N − 1) matrix obtained by
removing the ith row and column from W , and wi to denote the ith column of W (i) after
removing Wii. We will also denote the eigenvalues of W by λ1 < λ2 < . . . λN . Let

G(i) =
(
W (i) − z

)−1
. Applying the Schur complement formula to W (see Lemma 4.1 in

[21]), we have

vi +msc =

−z −msc +Wii − [v] +
1

N

∑
j 6=i

GijGji
Gii

− Zi

−1

= (−z −msc − ([v]− Γi))
−1

(A.4)
where

Zi = (1− Ei)(wi, G(i)wi), Ei(X) = E
(
X|W (i)

)
, Γi =

1

N

∑
j 6=i

GijGji
Gii

− Zi +Wii.

By Theorem 4.3,

|Γi − [v]| = O≺

(
1

N
1
2 η

1
2

)
, (A.5)

so we can expand (A.4) around −z −msc. Using (1.22), we find

vi = m2
sc ([v]− Γi) +m3

sc ([v]− Γi)
2

+ O
(

([v]− Γi)
3
)

= m2
sc

[v]−Wii −
1

N

∑
j 6=i

GijGji
Gii

+ Zi

+m3
sc ([v]− Γi)

2
+ O

(
([v]− Γi)

3
)
,

and summing over i and taking expectation, we have

E

(
(1−m2

sc)
∑
i

vi

)

= E

−m2
sc

N

N∑
i=1

N∑
j 6=i

GijGji
Gii

+m3
sc

∑
i

([v]− Γi)
2

+
∑
i

O
(

([v]− Γi)
3
) , (A.6)

since the expectations of Wii and Zi are both zero. We now use this expansion to estimate
E(f(z)). Since we τ < η < 5, we have by Theorem 4.3 that

m2
sc

N

∑
i

∑
j 6=i

GijGji
Gii

=
msc

N

 N∑
i,j=1

GijGji −
N∑
i=1

(Gii)
2

+O≺

(
1

N
1
2 η

1
2

)
msc

N

∑
i

∑
j 6=i

|GijGji| .

(A.7)
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Now observe that

msc

N

∑
i,j

GijGji =
msc

N
Tr
(
G2
)

=
msc

N

N∑
k=1

1

(λk − z)2 ,

and
1

N

N∑
k=1

1

(xk − z)2 −
1

N

N∑
k=1

1

(yk − z)2 = s′W1
(z)− s′W2

(z).

Choosing C(z) =
{
w : |w − z| = η

2

}
, we have∣∣s′W1

(z)− s′W2
(z)
∣∣ ≤ 1

2π

∫
C(z)

|sW1
(z)− sW2

(z)|
(ζ − z)2

dζ = O≺

(
1

Nη2

)
(A.8)

by Theorem 4.3. Again applying Theorem 4.3, we have

msc

N

N∑
i=1

(Gii)
2

=
msc

N

N∑
i=1

(vi +msc)
2

= m3
sc + O≺

(
1

Nη

)
, and

∑
i 6=j

|GijGji| = O≺

(
1

η

)
.

Putting together these estimates we have

E

∫ 5

τ

N∑
i=1

N∑
j 6=i

m2
sc

N (1−m2
sc)

(
(G1)ij (G1)ji

(G1)ii
−

(G2)ij (G2)ji
(G2)ii

)
dη


= E

(∫ 5

τ

O≺

(
1

N
1
2 η

)
dη

)
,

which is o(1). Next, consider

m3
sc

N∑
i=1

([v]− Γi)
2

= m3
sc

N∑
i=1

(
[v]2 − 2[v]Γi + Γ2

i

)
. (A.9)

By Theorem 4.3, [v] = O≺

(
1
Nη

)
, so summing over i and integrating with respect to η,

we find

E

(∫ 5

τ

∑
i

m3
sc

1−m2
sc

[v]2dη

)
= E

(∫ 5

τ

O≺

(
1

Nη
5
2

))
= O

(
N

3ε
2 +γ

N

)

for any γ > 0. Next, we estimate E
(
m3
sc

∑
i Γ2

i

)
. Expanding Γ2

i , we have

Γ2
i = W 2

ii +

 1

N

∑
j 6=i

GijGji
Gii

2

+ Z2
i + 2

Wii

N

∑
j 6=i

GijGji
Gii

−WiiZi −
Zi
N

∑
j 6=i

GijGji
Gii

 .

(A.10)

By definition, we have E
(
W 2
ii

)
= 1

N . Therefore E
(

(W1)
2
ii − (W2)

2
ii

)
= 0, and by Theorem

4.3, we have
N∑
i=1

m3
sc

 1

N

∑
j 6=i

GijGji
Gii

2

= O≺

(
1

Nη2

)
.

Next, we examine E
(∑N

i=1 Z
2
i

)
. Note that by the independence of wi(l) and wi(k) and

the independence of wi and G(i), we have

Ei

(〈
wi, G

(i)wi

〉)
= Ei

∑
k,l

G
(i)
kl wi(l)wi(k)

 = Ei

(
N∑
k=1

G
(i)
kkw

2
i (k)

)
=

1

N
Tr
(
G(i)

)
.
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Therefore,

E

(
N∑
i=1

Z2
i

)
=

N∑
i=1

EW (i)

(
Ei

((〈
wi, G

(i)wi

〉2
)
−
(

1

N
Tr
(
G(i)

))2
))

. (A.11)

Expanding the first term on the left hand side above, we have

Ei

(〈
wi, G

(i)wi

〉2
)

= Ei

 ∑
k,l,k′,l′

G
(i)
kl wi(l)wi(k)G

(i)
k′l′wi(l

′)wi(k′)

 . (A.12)

The only terms which contribute to this sum are those for which at least two pairs of
the indices amongst k, k′, l, l′ coincide. Consider first the case k = l, k′ = l′, k 6= k′. The
contribution of these terms to the above sum is

Ei

∑
k 6=l

G
(i)
kkG

(i)
ll |wi(k)|2 |wi(l)|2

 =

(
1

N
Tr
(
G(i)

))2

− 1

N2

N∑
k=1

(
G

(i)
kk

)2

.

The first term on the right hand side here cancels the second term on the right hand
side of (A.11). For the second term, by Theorem 4.3, we have

1

N2

N∑
i=1

N∑
k=1

((
G

(i)
1

)2

kk
−
(
G

(i)
2

)2

kk

)
= O≺

(
1

N
1
2 η

1
2

)
. (A.13)

Next consider the case where k = k′, l = l′, k 6= l. We consider separately the case where
W has real entries, and the case where W has complex entries. In the first case, we
can assume that the eigenvectors of W have real entries. Therefore, by the spectral
decomposition of G, we have

N∑
i=1

∑
k 6=l

(
G

(i)
kl

)2

=

N∑
i=1

∑
k,l

(
G

(i)
kl

)2

−
∑
k 6=i

(
G

(i)
kk

)2

 =

N∑
i=1

∑
k 6=i

 1(
λ

(i)
k − z

)2 −
(
G

(i)
kk

)2

 .

Using (A.8) and (A.13), this gives us

1

N2

N∑
i=1

∑
k 6=l

((
G

(i)
1

)2

kl
−
(
G

(i)
2

)2

kl

)
= O≺

(
1

N
1
2 η2

)
.

If instead W has complex entries, this term is identically zero. Indeed the corresponding
expression becomes

N∑
i=1

∑
k 6=l

(
G

(i)
kl

)2

Ei

((
wi(k)

)2

(wi(l))
2

)
,

and because we have assumed that that for i 6= j, Wij is of the form x + iy where
E(x) = E(y) = 0 and E

(
x2
)

= E
(
y2
)
, we have E (Wij)

2
= 0. There remain two cases to

consider. Suppose k′ = l, l′ = k, k 6= l. Then

N∑
i=1

Ei

∑
k 6=l

G
(i)
kl G

(i)
lk |wi(k)|2 |wi(l)|2

 =
∑
i

1

N2

∑
k,l

G
(i)
kl G

(i)
lk −

N∑
k=1

(
G

(i)
kk

)2

 ,

and we may estimate the difference of this expression at G1 and G2 as we did the first
term on the right hand side of (A.7). Lastly, we consider the case k = k′ = l = l′. By
Definition 1.1 and Theorem 4.3, there exists a constant C such that

N∑
i=1

Ei

(
N∑
k=1

(
G

(i)
kk

)2

|wi(k)|4
)

= Cm2
sc(z) + O≺

(
1

N
1
2 η

1
2

)
. (A.14)
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Therefore

N∑
i=1

Ei

(
N∑
k=1

(
G

(i)
1

)2

kk

∣∣∣w(1)
i (k)

∣∣∣4 − (G(i)
2

)2

kk

∣∣∣w(2)
i (k)

∣∣∣4) = Cm2
sc(z) + O≺

(
1

N
1
2 η

1
2

)
.

In summary,

E

(
N∑
i=1

[
(Z1)

2
i − (Z2)

2
i

])
= O (1) . (A.15)

Returning to (A.10), by Theorem 4.3 we have

E

 N∑
i=1

Wii

N

∑
j 6=i

GijGji
Gii

 ≤ N∑
i=1

(E (W 2
ii

)) 1
2

E
 1

N

∑
j 6=i

GijGji
Gii

2


1
2

 = O

(
Nγ

N
1
2 η

)

for any γ > 0. We also have that E (WiiZi) = 0. To bound the remaining term in (A.10),
we first note that using the same argument as we did to prove (A.15), we have

E
(
|Zi|2

)
= O

(
1

Nη

)
. (A.16)

Applying Theorem 4.3, we therefore conclude that

E

∣∣∣∣∣∣
N∑
i=1

Zi
N

∑
j 6=i

GijGji
Gii

∣∣∣∣∣∣
 = O

(
Nγ

Nη2

)
,

for any γ > 0. Putting together all of our estimates concerning (A.10), we have

E

(∫ 5

τ

N∑
k=1

(
m3
sc

1−m2
sc

Γ2
k

)
dη

)
= O(1), (A.17)

where we used m3
sc

1−m2
sc

= O(1). Returning to (A.9), by Cauchy-Schwarz and Theorem 4.3
we have that for any γ > 0

E

(
N∑
i=1

m3
sc[v]Γi

)
= O

(
Nγ

N
1
2 η

3
2

)
.

In total, we have

E

(∫ 5

τ

(
m3
sc

1−m2
sc

) N∑
i=1

(
[v]2 − 2[v]Γi + Γ2

i

)
dη

)
= O (1) . (A.18)

Finally, we have ∫ 5

τ

∑
i

|[v]− Γi|3 dη = o(1)

using (A.5).
In summary, we have proved that for z = (E + iη) ∈ S

(
1

100

)
, and any γ > 0,

E (f(z)) =
Cm5

sc(z)

1−m2
sc(z)

+ O

(
Nγ

N
1
2 η

5
2

)
. (A.19)

In particular, this means that ∫ 5

τ

E (f (iη)) dη = O(1).
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To complete the proof of this lemma, we need to estimate
∫ Nδ

5
E (f (iη)) dη. Let

q(z) = E (f(z)) , q̃(z) = q

(
1

z

)
.

The function q is clearly bounded as |z| → ∞, so q̃ is bounded at 0, which by Riemann’s
theorem is therefore a removable singularity. By (4.9), this means

P

(
q̃(z) is analytic in C\

{(
−∞,−1

3

)
∪
(

1

3
,∞
)})

≥ 1−N−D,

and so with overwhelming probability, we can write

q(z) = q̃(w) =
1

2πi

∫
CΓ

q̃(ξ)

ξ − w
dξ = − 1

2πi

∫
Cγ

q(ξ)

ξ − wξ
dξ (A.20)

where w = 1
z and we choose Cγ = {x+ iy : |x| = 4, |y| = 4} so that w is inside CΓ, and q̃

is analytic there. Now we can estimate the right hand side using (A.19) and (4.9). Since
=(z) > 5, we have supξ∈Cγ

1
|ξ−wξ| = O(1). Furthermore, for z ∈ [4− iτ, 4 + iτ ], by (4.9)

we have

|f(z)| =

∣∣∣∣∣
N∑
k=1

(
1

xk − z
− 1

yk − z

)∣∣∣∣∣ = O≺ (1) .

Therefore, using (A.19), when |=(z)| > 5, for any γ > 0, we have,

|q(z)| ≤ sup
ξ∈Cγ

1

|ξ − wξ|
O

(∫ 4

−4

Nγ

N
1
2

dx+

∫ 4

τ

Nγ

N
1
2 y

5
2

dy +

∫ τ

0

Nγ dy

)
= O

(
Nγ−ε) ,

and so∫ Nδ

5

|E (f(z))|dη =

∫ Nδ

5

(
C ·m5

sc(z)

1−m2
sc(z)

+ O
(
Nγ−ε))dη = O (1) + O

(
Nγ−ε+δ) . (A.21)

This completes the proof of Lemma A.1.

Appendix B: Fluctuations of individual eigenvalues

In this appendix, we prove Theorem 1.6. The main observation is that the determi-
nant corresponds to linear statistics for the function < log, while individual eigenvalue
fluctuations correspond to the central limit theorem for = log. We build on this parallel
below. The main step is Proposition B.1, which considers only the case m = 1, the proof
for the multidimensional central limit theorem being strictly similar.

In analogy with (4.5), for any η ≥ 0, define

= log (E + iη) = = log (E + i∞)−
∫ ∞
η

<
(

1

E − iu

)
du, (B.1)

with the convention that = log (E + i∞) = π
2 . Then we can write

= log (E + iη) =
π

2
− arctan

(
E

η

)
, (B.2)

and as η → 0+, we have

= log(E) =

{
0 E > 0

π E < 0.
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Proposition B.1. LetW be a real Wigner matrix satisfying (1.5). Then with = log det(W−
E) defined as

= log (det(W − E)) =

N∑
k=1

= log (λk − E) ,

we have
1
π= log (det(W − E))−N

∫ E
−∞ ρsc(x) dx

1
π

√
logN

→ N (0, 1). (B.3)

If W is a complex Wigner matrix satisfying (1.5), then

1
π= log (det(W − E))−N

∫ E
−∞ ρsc(x) dx

1
π

√
1
2 logN

→ N (0, 1). (B.4)

Before proving Proposition B.1, we prove Lemma B.2 which establishes Theorem 1.6
with m = 1, assuming Proposition B.1.

Lemma B.2. Proposition B.1 and Theorem 1.6 are equivalent.

Proof. We discuss the real case, the complex case being identical. We use the notation

Xk =
λk − γk√

4 logN

(4−γ2
k)N2

, Yk(ξ) =

∣∣∣∣∣
{
j : λj ≤ γk + ξ

√
4 logN

(4− γ2
k)N2

}∣∣∣∣∣ ,
with Xk as in (1.12). Let

e (Yk(ξ)) = N

∫ γk+ξ
√

4 logN

(4−γ2
k)N2

−2

ρsc(x) dx, v (Yk(ξ)) =
1

π

√
logN.

The main observation is that

P (Xk < ξ) = P (Yk(ξ) ≥ k) = P

(
Yk(ξ)− e (Yk(ξ))

v (Yk(ξ)
≥ k − e (Yk(ξ))

v (Yk(ξ)

)
.

Now observe that by (1.11),

N

∫ γk+ξ
√

4 logN

(4−γ2
k)N2

−2

ρsc(x) dx = k +
ξ

π

√
logN + o (1) .

This proves the claimed equivalence.

The proof of Proposition B.1 closely follows the proof of Theorem 1.2. In particular,
the proof proceeeds by comparison with GOE and GUE. In the following, we first state
what is known in the GOE and GUE cases. Then we indicate the modifications to the
proof of Theorem 1.2 required to establish Proposition B.1.

The GOE and GUE cases

Gustavsson [30] first established the following central limit theorem in the GUE case,
and O’Rourke [44] established the GOE case. Here the notation k(N) ∼ Nθ is as in
(1.10).
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Theorem B.3 (Theorem 1.3 in [30], Theorem 5 in [44]). Let λ1 < λ2 < · · · < λN be the
eigenvalues of a GOE (GUE) matrix. Consider {λki}

m
i=1 such that 0 < ki+1 − ki ∼ Nθi ,

0 < θi ≤ 1, and ki/N → ai ∈ (0, 1) as N →∞. With γk as in (1.11), let

Xi =
λki − γki√

4 logN

β
(

4−γ2
ki

)
N2

, i = 1, . . . ,m,

where β = 1, 2 corresponds to the GOE, GUE cases respectively. Then as N →∞,

P {X1 ≤ ξ1, . . . , Xm ≤ ξm} → ΦΛ (ξ1, . . . , ξm) ,

where ΦΛ is the cumulative distribution function for the m-dimensional normal distribu-
tion with covariance matrix Λi,j = 1−max {θk : i ≤ k < j < m} if i < j, and Λi,i = 1.

By Lemma B.2, the real (complex) case in Proposition B.1 holds for the GOE (GUE)
case. Therefore we can prove Proposition B.1 by comparison, presenting only what
differs from the proof of Theorem 1.2. We only consider the real case, the proof in the
complex case being similar. Each step below corresponds to a section in our proof of
Theorem 1.2.

Step 1: Initial regularization

Proposition B.4. Let y1 < y2 < · · · < yN denote the eigenvalues of a Wigner matrix
satisfying (1.5). Set

g(η) = =
∑
k

(log (yk + iη)− log yk)−
∫ η

0

N< (msc(is)) ds,

and recall η0 = e(logN)
1
4

N . Then g (η0) converges to 0 in probability as N →∞.

Proof. Again, we choose η̃ = cN
N = (logN)

1
4

N . Then

E |g (η0)− g (η̃)| ≤ E
∫ η0

η̃

N |< (s(iu))−< (msc (iu))| du.

Theorem 2.2 holds whether we consider s or = (s), so that exactly the same argument as
previously shows E |g (η0)− g (η̃)| = o

(√
logN

)
.

Next define bN = e−(logN)
1
8

N . As bN is below the microscopic scale, by Corollary 2.7,∑
|xk|≤bN

(= log (xk + iη̃)−= log (xk))

converges to 0 in probability, as the probability it is an empty sum converges to 1.
Consider now ∑

|xk|>bN

(= log (xk + iη̃)−= log (xk)) . (B.5)

Let N1(u) = |{xk ≤ u}| and note that

= log (x)−= log (x+ iη̃) =

∫ η̃

0

<
(

1

x− iu

)
du = arctan

(
η̃

x

)
.

To prove (B.5) is negligible, it is therefore enough to bound E(|X|) where

X =

∫
bN≤|x|≤10

arctan

(
η̃

x

)
dN1(x) =

∫ 10

bN

arctan

(
η̃

x

)
d(N1(x) +N1(−x)− 2N1(0)).
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After integration by parts, the boundary terms are o(1) and

η̃

∫ 10

bN

E(|N1(x) +N1(−x)− 2N1(0)|)
x2 + η̃2

dx

remains. Split the above integral into integrals over [bN , a] and [a, 10] where a =

exp(C(log logN)2)/N for a large enough C. On the first domain, Corollary 2.6 gives
the bound E(|N1(x) +N1(−x)− 2N1(0)|) ≤ CNx+ δ for any small δ > 0. On the second
domain, by rigidity [22] we have |N1(x) +N1(−x)− 2N1(0)| ≤ exp(C(log logN)2), so that
the contribution from this term is also o

(√
logN

)
.

Step 2: Coupling of determinants

With the notation of Section 3 we have,

et/2= (ft (iη0)) =
d

dν

N∑
k=1

(
= log

(
λ

(ν)
k (t) + iη0

))
.

We can therefore proceed in the same way as Proposition 3.2 to prove the following.

Proposition B.5. Let ε > 0, τ = N−ε and let zτ be as in (3.5) with z = iη0. Let

g(t, z) =
∑
k

(= log (xk(t) + z)−= log (yk(t) + z))

Then for any δ > 0, limN→∞P (|g (τ, iη0)− g (0, zτ )| > δ) = 0.

Step 3: Conclusion of the proof

We reproduce the reasonning from (4.11) to (4.12) to prove Proposition B.1 in the
real symmetric case. From [44] and Proposition B.4, for some explicit deterministic cN
we have ∑N

k=1= log (xk(τ) + iη0) + cN√
logN

→ N (0, 1), (B.6)

and Proposition B.5 implies that with

X =

∑N
k=1= log (xk(0) + zτ )−

∑N
k=1= log (yk(0) + zτ )√

logN
,

we have ∑N
k=1= log (yk(τ) + iη0) + cN√

logN
+X → N (0, 1).

Lemmas B.6 and B.7 show that E(X2) < Cε, for some universal C. Thus for any fixed
smooth and compactly supported function F ,

E

(
F

(∑N
k=1= log (yk(τ) + iη0) + cN√

logN

))
= E (F (N (0, 1))) + o(1) + O

(
ε1/2

)
.

With Theorem 4.4 (its proof applies equally to the imaginary part), the above equation
implies

E

(
F

(
= log det(W + iη0) + cN√

logN

))
= E (F (N (0, 1))) + o(1) + O

(
ε1/2

)
,

and by Proposition B.4, we obtain

E

(
F

(
=

log detW + N
2√

logN

))
= E (F (N (0, 1))) + o(1) + O

(
ε1/2

)
. (B.7)

Since ε is arbitrarily small, this concludes the proof.
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Lemma B.6. Recall the notation τ = N−ε and let {xk}Nk=1, {yk}Nk=1 denote the eigenval-
ues of two Wigner matrices, W1 and W2. Then

lim
N→∞

E

(
N∑
k=1

= log (xk + iτ)−
N∑
k=1

= log (yk + iτ)

)
= O(1).

The proof of this lemma requires only trivial adjustments of the proof of Lemma A.1,
details are left to the reader. Finally, we also have the following bound on the variance.

Lemma B.7. Recall the notation τ = N−ε and let {xk}Nk=1, denote the eigenvalues of a
Wigner matrix W . Then there exists ε0 > 0 such that for any 0 < ε < ε0 we have

Var

(
N∑
k=1

= log (xk + iτ)

)
≤ C(1 + ε logN). (B.8)

For the proof, let χ[−5,5] be a smooth indicator of the interval [−5, 5] and ϕN (x) =

χ(x)= log (x+ iτ). Our first proof of Proposition 4.5 shows it is enough to check that∫
|ϕ̂N (ξ)|2 |ξ|dξ = O (1 + log τ). We can verify this bound by integrating by parts as

before. Alternatively, we can use the second proof of Proposition 4.5 based on the
resolvent, which applies without changes.
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