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Abstract

We consider biased random walks in a one-dimensional percolation model. This model
goes back to Axelson-Fisk and Häggström and exhibits the same phase transition as
biased random walk on the infinite cluster of supercritical Bernoulli bond percolation
on Zd, namely, for some critical value λc > 0 of the bias, it holds that the asymptotic
linear speed v of the walk is strictly positive if the bias λ is strictly smaller than λc,
whereas v = 0 if λ ≥ λc.

We show that at the critical bias λ = λc, the displacement of the random walk
from the origin is of order n/ logn. This is in accordance with simulation results by
Dhar and Stauffer for biased random walk on the infinite cluster of supercritical bond
percolation on Zd.

Our result is based on fine estimates for the tails of suitable regeneration times. As
a by-product of these estimates we also obtain the order of fluctuations of the walk in
the sub-ballistic and in the ballistic, nondiffusive phase.
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1 Introduction and main results

1.1 Introduction

In the physics literature, biased random walk on a percolation cluster is considered
as a model for transport in an inhomogeneous medium. The first rigorous study of biased
random walk on the infinite cluster of supercritical Bernoulli bond percolation on Zd

was initiated in two parallel papers by Berger, Gantert and Peres [6], and Sznitman [22].
Both papers establish an interesting phenomenon, namely, if the strength of the bias
is positive but small, then the linear speed of the walk is positive, whereas it is zero
if the strength of the bias is sufficiently large. The sharpness of the phase transition,
which had been conjectured in the physics literature by Barma and Dhar [3], remained
open. An indication for the validity of the conjecture was provided by work of Lyons,
Pemantle and Peres [20], who had shown that there is an analogous phase transition
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Random walk on 1D percolation cluster at critical bias

for the simpler model of biased random walk on a Galton–Watson tree with leaves, and
that the phase transition in this model is indeed sharp. Moreover, the result of Lyons,
Pemantle and Peres includes the statement that the speed at the critical bias equals zero.
A rigorous proof of the sharpness of the phase transition for biased random walk on the
infinite cluster of supercritical Bernoulli bond percolation on Zd was eventually given by
Fribergh and Hammond [12]. In this paper, the authors conjecture that the speed at the
critical bias equals zero. What is more, in the physics literature, it was conjectured by
Dhar and Stauffer [9] that the displacement of the critically biased random walk from
the origin at time n (in the direction of the bias) is of the order n/ log n.

In the present paper, we shall prove this conjecture for biased random walk on
a one-dimensional percolation cluster. This model was created by Axelson-Fisk and
Häggström in [1, 2] to be simpler than biased random walk on the infinite cluster
of supercritical Bernoulli bond percolation on Zd, but to display qualitatively similar
phenomena. Moreover, the initial hope might have been to construct a model that is even
amenable to explicit calculations. And indeed, Axelson-Fisk and Häggström [1] were
able to express the critical bias as an elementary function of a percolation parameter of
the model. However, more complicated quantities such as the asymptotic linear speed
as a function of the percolation parameter and the strength of the bias withstood explicit
calculation so far.

Our proof of the fact that the displacement of the critically biased random walk
at time n is of the order n/ log n is based on refined estimates for the tails of suitable
regeneration times that were introduced and studied in a joint paper of the second
author with Gantert and Müller [14]. Our bounds on the tails of the regeneration times
do not only hold for the critical bias but for a large range of biases including the whole
sub-ballistic and the ballistic, nondiffusive phase. This allows us to deduce the order of
the fluctuations of the walk in these phases. Our result on the fluctuations of the biased
random walk in the sub-ballistic phase parallels the corresponding results for biased
random walk on a Galton–Watson tree with leaves due to Ben Arous et al. [5] and is
more precise than the corresponding result for random walk on the infinite cluster of
supercritical Bernoulli bond percolation on Zd obtained in [12]. We further mention that
a limit law for the suitably scaled position of biased random walk among positive random
conductances on Zd in the sub-ballistic case, a model related to biased random walk on
the infinite cluster of supercritical Bernoulli bond percolation on Zd but without ‘hard
traps’, has recently been proved in [13].

Our work may also be seen in the wider context of biased random walks on random
graphs. We refer to Ben Arous and Fribergh [4] for an excellent recent survey of the field.
In particular, the model studied in the paper at hand bears similarities to one-dimensional
models related to trapping such as Bouchaud’s trap model (see [4] for background and
references) and one-dimensional random walk in random environment. We refer to the
lecture notes of Zeitouni [23] for an introduction to the latter model. For one-dimensional
random walk in random environment, the limit laws for the displacement have been
derived by Kesten, Kozlov and Spitzer [18] using a relation to branching processes, and
in the non-critical sub-ballistic case, but with greater precision, by Enriquez, Sabot
and Zindy in [10]. The more general case of random walk in a stationary Markovian
environment was solved in [21]. The latter setup is closer to our model as the percolation
cluster studied in the paper at hand can be generated from left to right in a stationary
Markovian way.

1.2 Model description

In this section, we give a brief introduction to the model and review some results that
are required for the formulation of our main results.
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Random walk on 1D percolation cluster at critical bias

Consider the ladder graph G = (V,E) with vertex set V = Z × {0, 1} and edge set
E = {〈u, v〉 ∈ V 2 : |u − v| = 1} where | · | denotes the usual Euclidean norm on R2. If
v = (x, y) ∈ V , we write x(v) = x and y(v) = y, and call x and y the x- and y-coordinate of
v, respectively.

In a first step, we consider i.i.d. bond percolation with retention parameter p ∈ (0, 1)

on G, i.e., each edge e ∈ E is retained independently of all other edges with probability
p, and deleted with probability 1 − p. As usual, we call an edge e ∈ E open if it
is retained and closed if it is deleted. The state space of the percolation process is
Ω = {0, 1}E , which we endow with the product σ-algebra F . The elements ω ∈ Ω are
called configurations. We interpret ω(e) = 1 for ω ∈ Ω and e ∈ E as the edge e being
open in the configuration ω. A path between u, v ∈ V is a finite sequence P = (e1, . . . , en)

of edges e1 = 〈u0, u1〉, . . . , en = 〈un−1, un〉 ∈ E with u0 = u and un = v. The path P

is called open if ω(ek) = 1 for k = 1, . . . , n. Let ΩN1,N2 be the event that there exists
an open path connecting a vertex with x-coordinate −N1 to a vertex with x-coordinate
N2, and let Pp,N1,N2 be the probability measure on (Ω,F) arising from conditioning i.i.d.
bond percolation with parameter p on the event ΩN1,N2

. Then Pp,N1,N2
converges weakly

as N1, N2 →∞ to a probability measure P∗p on (Ω,F).

Proposition 1.1 (Theorem 2.1 and Corollary 2.2 in [2]). For any p ∈ (0, 1), asN1, N2 →∞,
the probability measures Pp,N1,N2 converge weakly to a translation invariant probability
measure P∗p on (Ω,F) satisfying P∗p (Ω∗) = 1 where Ω∗ =

⋂
N1,N2∈NΩN1,N2 is the event

that a bi-infinite open path exists.

It is easily seen that P∗p -almost surely (a. s.), there is a unique infinite open cluster
C ⊆ V consisting of all vertices v ∈ V which are connected via open paths to vertices
with arbitrary x-coordinate. We define Pp(·) := P∗p (·|0 ∈ C) where 0 := (0, 0).

Henceforth, we fix a parameter p ∈ (0, 1). Most of the constants and objects defined
below will depend on p, but this will usually not figure in the notation.

After choosing an environment ω ∈ {0, 1}E according to Pp, we define a random walk
on G with bias λ ∈ R as follows. Let the conductances (c(e))e∈E be defined via

c(〈u, v〉) := eλ(x(u)+x(v)), 〈u, v〉 ∈ E.

Then (Yn)n∈N0
is defined as the lazy random walk with conductances (c(e))e∈E on C

starting at Y0 := 0. More precisely, when at u ∈ V , the walk attempts to move to
a neighbor v ∈ V in G with probability proportional to c(〈u, v〉). The step is actually
performed if ω(〈u, v〉) = 1, otherwise, the walk stays put. We denote the law of (Yn)n∈N0

on (V N0 ,G) by Pω,λ, where G is the product σ-algebra on V N0 . Further, we write P vω,λ
for the law of the Markov chain with the same transition probabilities but with start at
v ∈ V . By the symmetry of the law of ω it suffices to consider the case λ > 0.

The distribution Pω,λ is the quenched law of (Yn)n∈N0 (given ω). The corresponding
annealed law is obtained by averaging the quenched laws over ω ∈ Ω using Pp. Formally,
we define the probability measure P on {0, 1}E × V N0 as follows. For A ∈ F , B ∈ G set

P(A×B) :=

∫
A

Pω,λ(B) Pp(dω). (1.1)

Notice that P depends on λ and p even though both parameters do not figure in the
notation. For λ > 0, under P, the walk (Yn)n∈N0

is transient and there exists a critical
value λc for the bias such that Xn := x(Yn) has positive linear speed if λ < λc, and zero
linear speed if λ ≥ λc. This comes from the fact that the larger the bias, the more time
the walk needs to leave dead-ends in the direction of the bias.

Proposition 1.2 (Proposition 3.1 and Theorem 3.2 in [1]). Fix λ > 0. The walk (Yn)n∈N0
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is P-a. s. transient, and limn→∞
Xn
n = v(λ) P-a. s. with

v(λ) =

{
> 0 for λ ∈ (0, λc),

= 0 for λ ≥ λc

where λc = 1
2 log

(
2/
(
1 + 2p− 2p2 −

√
1 + 4p2 − 8p3 + 4p4

))
.

Existence of a critical value for the bias has been proven in similar models, e. g. in
[20] for biased random walks on Galton-Watson trees and in [12] for biased random walk
on the supercritical percolation cluster in Zd. In the present setting, λc is given as an
elementary function of p.

1.3 Main results

The main results of this paper concern the speed of biased random walk in the sub-
ballistic regime. If the bias is critical (λ = λc), Xn is of order n/ log n. This is in alignment
with simulation results for biased random walk on the infinite cluster of supercritical
bond percolation in Zd in [9].

Theorem 1.3. In the case λ = λc, there exist constants 0 < a < b <∞ such that

lim
n→∞

P
(

Xn
n/ logn ∈ [a, b]

)
= 1.

We believe that this result cannot be improved to convergence in probability towards
a constant c ∈ [a, b].1 We prove the theorem from fine estimates for the tails of suitable
regeneration times to be introduced below. Less accurate estimates for the tails of
these regeneration times derived in [14] revealed a second phase transition at λ = λc/2,
namely, a central limit theorem for (Xn)n∈N0 with square-root scaling holds if and only if
λ < λc/2, see [14, Theorem 2.6]. Our tail estimates also give control over the fluctuations
of (Xn)n∈N0

in the remaining parameter range λ ∈ [λc/2,∞).
Throughout the paper, we write

α := λc/λ.

Theorem 1.4. Suppose that λ ≥ λc/2, λ 6= λc.

(a) Let λ = λc/2, i.e., α = 2. Then the laws of
(
Xn−nv√
n logn

)
n≥2 under P are tight.

(b) Let λ ∈ (λc

2 , λc), i.e., α ∈ (1, 2). Then the laws of
(
Xn−nv
n1/α

)
n∈N under P are tight.

(c) Let λ > λc, i.e., α ∈ (0, 1). Then the laws of
(
Xn
nα

)
n∈N under P are tight.

In all three cases covered by Theorem 1.4, we do not expect that tightness can
be strengthened to convergence in distribution due to a lack of regular variation of
the tails of the regeneration times, see Lemma 4.8 and the proof thereof. Instead, we
expect only convergence along certain subsequences as found for biased random walk
on Galton-Watson trees, cf. [5]. We refrain from further investigating this phenomenon,
as our main goal in this paper is to derive the order of displacement of biased random
walk at the critical bias.

We continue with an overview of the organization of the paper. In Section 2, we
introduce regeneration points and times that go back to [14]. We review known results
about the regeneration points and times and state our main technical result, Proposition
2.5, which provides the precise order of the tails of the regeneration times. Based on
these tail bounds, we prove the main results in Section 3. Section 4 is devoted to the
proof of Proposition 2.5. Finally, in Appendix A, we provide an auxiliary result from
renewal theory.

1 However, it may be possible that convergence in probability towards a constant c(x) ∈ [a, b] holds along
subsequences of the form xβn, x ∈ [1, β) for some β > 1.
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2 Regeneration points and times

We use the decomposition of the percolation cluster at regeneration points from [14].
Regeneration points are defined in two steps. Given a configuration ω ∈ Ω, a vertex
v = (x(v), 0) ∈ V is called a pre-regeneration point if v ∈ C and (x(v), 1) is an isolated
vertex in ω, that is, all three edges adjacent to (x(v), 1) are closed in ω.

Lemma 2.1 (Lemma 5.1 and Corollary 5.2 in [1]). With Pp-probability one, there exist
infinitely many pre-regeneration points both left and right of the origin.

We enumerate the pre-regeneration points in ω by . . . , Rpre
−1 , R

pre
0 , Rpre

1 , . . . such that
x(Rpre

−1 ) < 0 ≤ x(Rpre
0 ) and x(Rpre

n ) < x(Rpre
n+1) for all n ∈ Z.

0 Rpre
0 Rpre

1Rpre
−1

Figure 1: Pre-regeneration points close to the origin

The pre-regeneration points can be used to decompose the percolation cluster into
independent pieces. For a, b ∈ Z, we denote the subgraph of ω with vertex set V[a,b) :=

{v ∈ V : a ≤ x(v) ≤ b} and edge set E[a,b) := {e = 〈u, v〉 ∈ E : u, v ∈ V[a,b), x(u) ∧ x(v) <

b, ω(e) = 1} by [a, b) and call [a, b) a piece or block (of ω). We then define

ωn := [x(Rpre
n−1), x(Rpre

n )), n ∈ Z.

Using this definition, we may introduce the cycle-stationary percolation law P◦p .

Definition 2.2. The cycle-stationary percolation law P◦p is defined to be the unique
probability measure on (Ω,F) such that the cycles ωn, n ∈ Z are i.i.d. under P◦p with
each ωn having the same law under P◦p as ω1 under P∗p , and such that Rpre

0 = 0.

We write P◦ for the annealed law of the biased random walk and the percolation
configuration when the latter is drawn using P◦p instead of Pp. To be more precise, P◦ is
defined as P in (1.1), but with Pp replaced by P◦p .

Definition 2.3. We call a v ∈ V with x(v) ≥ 0 regeneration point if

1. it is a pre-regeneration point and

2. the random walk (Yn)n∈N0
visits v exactly once.

It follows from the discussion in Section 4 of [14] that there are infinitely many
regeneration points to the right of 0. We set R0 := 0 and, for n ∈ N, define Rn to be
the first regeneration point to the right of Rn−1. Thus, ρn−1 < ρn for all n ∈ N where
ρn := x(Rn), n ∈ N0. Furthermore, let τ0 := 0 and

τn := inf{k ∈ N0 : Yk = Rn}, n ∈ N.

For n ≥ 1, τn is the unique time at which the nth regeneration point Rn is visited by the
walk (Yk)k∈N0 . In particular, 0 = τ0 < τ1 < . . . . We call τn the nth regeneration time. The
following assertions are known from [14] about the regeneration times and points.

Lemma 2.4 (Lemmas 4.1 and 4.2, Proposition 4.3 in [14]). Fix λ > 0.

(a) Under P, the pairs (τn+1−τn, ρn+1−ρn), n ∈ N are i.i.d. and independent of (τ1, ρ1),
and

P((τ2−τ1, ρ2−ρ1) ∈ ·) = P◦((τ1, ρ1) ∈ ·|Yn 6= 0 for all n ≥ 1).
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(b) There exists some δ > 0 such that E[eδ(ρ2−ρ1)] <∞.

(c) It holds that E[(τ2 − τ1)κ] <∞ if and only if κ < α = λc/λ.

(d) The ballistic speed satisfies v(λ) = E[ρ2 − ρ1]/E[τ2 − τ1].

Lemma 2.4(c) indicates that P(τ2 − τ1 ≥ n) is roughly of the order n−α as n→∞. We
give a more precise statement in the following proposition.

Proposition 2.5. For any λ > log(2)/2, in particular for λ ≥ λc/2, there exist constants
0 < c ≤ d <∞ (depending on p and λ) such that, for all n ∈ N,

cn−α ≤ P(τ2 − τ1 ≥ n) ≤ dn−α.

and
cn−α ≤ P(τ1 ≥ n) ≤ dn−α log n.

0 p 1

log(2)
2

1

1.5

2

λc

λc

2

Figure 2: The figure shows λc and λc/2 as functions of p. Our Proposition 2.5 giving
precise tail asymptotics for the regeneration times applies for λ > log(2)/2, which is
strictly smaller than λc/2 for any p ∈ (0, 1).

The bulk of the work in this paper is required to prove this proposition. Before we
turn to its proof, we first demonstrate in the subsequent section how the main results of
the paper, Theorems 1.3 and 1.4, can be derived from it. The proofs of these theorems
are generic in the sense that they do not use the particular definition of Xn, but will apply
to any random walk Xn for which there are regeneration points and times satisfying the
conclusions of Lemma 2.4 and Proposition 2.5.

3 Proofs of the main results

3.1 Preliminaries and notation

For random variables X and Y with distribution functions F and G, respectively, we
say that X is stochastically dominated by Y , and write X 4 Y , if F (t) ≥ G(t) for all
t ∈ R.

Convergence in distribution of a sequence (Xn)n∈N of random variables towards a
random variable X is denoted Xn

d→ X. Analogously, convergence in probability of Xn

to X under P is denoted by Xn
P→ X.

As usual, for sequences a, b : N→ [0,∞), we write a = on(b) or an = o(bn) as n→∞
if for every ε > 0 there is an n0 ∈ N with an ≤ εbn for all n ≥ n0. We say that a and b

are asymptotically equivalent and write a ∼ b or an ∼ bn as n → ∞ if an, bn > 0 for all
sufficiently large n and limn→∞ an/bn = 1. Finally, we write a = On(b) or an = O(bn) as
n→∞ if there exists some C > 0 such that an ≤ Cbn for all sufficiently large n.
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From Lemma 2.4, we infer that the τn, n ∈ N are the points of a delayed renewal
process on the integers. The corresponding renewal counting process and first passage
times, we denote by

k(n) := max
{
k ∈ N0 : τk ≤ n

}
and ν(n) := k(n) + 1,

respectively, where n ∈ N0. Notice that k(n) = max{k ∈ N0 : ρk ≤ Xn}, n ∈ N0.
To infer Theorems 1.3 and 1.4 from Proposition 2.5, we shall choose a sequence

(ξk)k∈N of independent random variables the ξk, k ≥ 2 are i.i.d., τ2− τ1 4 ξ2 and
P(ξ2 > n) ∼ dn−α as n → ∞ (where d is chosen as in Proposition 2.5). Then the
law of ξ2 is in the (normal) domain of attraction of an α-stable law. From general
theory it then follows that, after a suitable renormalisation, the first passage times
νξ(t) := inf

{
k ∈ N :

∑k
i=1 ξi > t} converge in distribution as t → ∞. This will imply

tightness of the first passage times ν(n) with the same renormalisation. From this, we
shall derive the dual results for Xn which translate into the statements of Theorems 1.3
and 1.4.

3.2 Proofs of Theorems 1.3 and 1.4

We begin with the proof of the results in the sub-ballistic regimes.

Proof of Theorem 1.3 and Theorem 1.4(c). Suppose that λ ≥ λc so that α ∈ (0, 1]. Let
an := nα if α ∈ (0, 1) and an := n/ log n if α = 1. For n ∈ N, we have

ρk(n)

an
≤ Xn

an
≤
ρν(n)

an
=
ρν(n)

ν(n)

ν(n)

an
. (3.1)

Since ν(n)→∞ P-a. s. as n→∞, Lemma 2.4 and the strong law of large numbers imply

ρν(n)

ν(n)
=

1

ν(n)

ν(n)∑
k=1

(ρk−ρk−1)→ E[ρ2−ρ1] P-a. s.

Using Proposition 2.5, we can find independent random variables ηk, k ∈ N and ξk, k ∈ N
such that η1, η2, . . . are i.i.d. and ξ2, ξ3, . . . are i.i.d. and such that ηk 4 τk−τk−1 4 ξk for
all k ∈ N and

P(η1 > n) ∼ cn−α and P(ξ2 > n) ∼ dn−α as n→∞.

Further, we may choose ξ1 independent of ξ2, ξ3, . . . such that P(ξ1 > n) ∼ dn−α log n as
n→∞. We set νη(n) := inf{k ∈ N :

∑k
i=1 ηi > n} and νξ(n) := inf{k ∈ N :

∑k
i=1 ξi > n}.

Then it holds that νξ(n) 4 ν(n) 4 νη(n) for all n ∈ N0. Furthermore, Theorem 3a
in [7] says that there is an α-stable subordinator (Yα(t))t≥0 with Laplace exponent
logE[exp(−sYα(t))] = −tsα for s, t ≥ 0 such that

a−1n νη(n) d→ cηXα and a−1n νξ(n) d→ cξXα (3.2)

where Xα = sup{t ≥ 0 : Yα(t) ≤ 1} and 0 < cξ ≤ cη < ∞. (Unlike in [7], here we allow
ξ1 to have a distribution different than that of ξ2, ξ3, . . ., but the contribution of the first
step vanishes as n→∞.) The difference of upper and lower bound in (3.1) satisfies

ρν(n)

an
−
ρk(n)

an
=
ρν(n) − ρν(n)−1

ν(n)

ν(n)

an

P→ 0 as n→∞. (3.3)

Indeed, the first factor on the right-hand side converges to 0 P-a. s. as n → ∞ due to
Lemma 2.4(b) and [15, Theorem 1.2.3(i)] while the family of laws corresponding to the
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second factor are tight by (3.2). Consequently, the difference in (3.3) converges to 0 in
distribution and thus in P-probability.

Now suppose α = 1. Then Y1(t) = t P-a. s. and hence X1 = 1 P-a. s. The convergence
in (3.2) thus is in fact convergence in probability. This completes the proof of Theorem
1.3.

Finally, if 0 < α < 1, then (3.2) and νξ(n) 4 ν(n) 4 νη(n) for all n ∈ N0 imply that
the family of laws of (ν(n)/nα)n∈N is tight. From (3.1) and (3.3) we conclude that this
carries over to the family of laws of (Xn/n

α)n∈N.

We now turn to the proof of the main results for ballistic, nondiffusive biases.

Proof of Theorem 1.4(a) and (b). We prove (a) and (b) simultaneously. Let an := n1/α in
the case α ∈ (1, 2) and an :=

√
n log n if α = 2. For n ∈ N, we have

ρk(n) − nv

an
≤ Xn − nv

an
≤
ρν(n) − nv

an
.

By the strong law of large numbers, ν(n)/n→ 1/E[τ2 − τ1] ∈ (0,∞) P-a. s. This together
with Lemma 2.4 and [15, Theorem 1.2.3(i)] implies (ρν(n)−ρk(n))/an → 0 P-a. s. On the
other hand,

ρν(n) − nv

an
=
ρν(n) − ν(n)E[ρ2−ρ1]

an
+
ν(n)E[ρ2−ρ1]− nv

an
.

The first summand converges to 0 P-a. s. by [15, Theorem 1.2.3(ii)] if α ∈ (1, 2) and it
converges to 0 in P-probability by [15, Theorem 1.3.1] if α = 2. It thus remains to check
tightness of the family of laws of

ν(n)E[ρ2−ρ1]− nv

an
= E[ρ2−ρ1]

ν(n)− n/E[τ2−τ1]

an
, n ∈ N.

For this, uniform integrability of the sequence (a−1n (ν(n)− n/E[τ2 − τ1]))n∈N is sufficient.
It thus remains to refer to Proposition 2.5 and Proposition A.1 in the Appendix.

4 Proof of the tail estimate for regeneration times

It remains to prove the tail estimate for regeneration times, Proposition 2.5. This
will be done in this section. We begin with the analysis of traps, which will almost
immediately result in a proof of the lower bound in Proposition 2.5.

4.1 Traps and biased random walk on a line segment

As for biased random walk on the supercritical percolation cluster, the slowdown in
the model considered here is due to traps. These are dead-end regions stretching in the
direction of the bias. For (conditional) percolation on the ladder graph, this boils down
to parallel finite open horizontal line segments with no vertical connections.

To give a formal definition of a trap, we introduce some notation. For a vertex u ∈ V ,
we write u′ for (x(u), 1− y(u)). Further, if e = 〈u, v〉 ∈ E, we let e′ := 〈u′, v′〉. In particular,
e = e′ if e is a vertical edge, and e′ is the horizontal edge parallel to e if e is a horizontal
edge. Now we define a trap (in ω) to be an open path P = (e1, . . . , em) of length m ∈ N
with edges e1 = 〈u0, u1〉, . . . , em = 〈um−1, um〉 ∈ E such that

1. x(uk) = x(uk−1) + 1 and y(uk) = y(uk−1) for k = 1, . . . ,m;

2. the edges 〈u0, u′0〉 and e′k, k = 1, . . . ,m are open (in ω);
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Random walk on 1D percolation cluster at critical bias

3. the edge 〈um, um+1〉 is closed (in ω) where um+1 = (x(um) + 1, y(um));

4. all vertical edges 〈uk, u′k〉 for k = 1, . . . ,m are closed (in ω).

Here, m is called the length of the trap, u0 is called the trap entrance and um is called
the bottom of the trap.

trap end

trap entrance bottom of the trap

The piece [x(u0), x(um+1)) is called (the corresponding) trap piece.

We define the backbone B to be the subgraph of the infinite cluster C obtained by
deleting from C all edges and all vertices in traps except the trap entrance vertices.
Clearly, B is connected and contains all pre-regeneration points.

Rpre
−1 0 Rpre

0

Rpre
−1 0 Rpre

0

Figure 3: The original percolation configuration and the backbone

Due to the Markovian structure of the percolation process under Pp, there are
infinitely many traps both to the left and to the right of the origin 0. Let Tn, n ∈ Z be an
enumeration of all trap pieces such that Tn is strictly to the left of Tn+1 for each n ∈ Z
and that T1 is the trap piece with minimal nonnegative x-coordinate of the trap entrance.
Denoting the length of the trap in the trap piece Tn by `n, the following result holds.

Lemma 4.1 (Lemma 3.5 in [14]). (a) Under Pp, (`n)n 6=0 is a family of i.i.d. positive ran-
dom variables independent of `0 with Pp(`1 = m) = (e2λc − 1)e−2λcm, m ∈ N.

(b) There is a constant χ(p) such that Pp(`0 = m) ≤ χ(p)me−2λcm, m ∈ N.

An excursion of the random walk (Yn)n∈N0
into a fixed trap of length m can be identi-

fied with an excursion of a biased random walk (Sn)n∈N0
on the line graph {0, 1, . . . ,m}

where m is the length of the trap. In order to use the classical Gambler’s ruin formula,
we first ignore lazy (i.e. attempted vertical) steps in the trap and study agile biased
random walk on {0, 1, . . . ,m}, with probabilities for transitions to the right and left given
by

pλ := eλ

eλ+e−λ
and qλ := 1− pλ,

respectively. We further set γ := qλ/pλ = e−2λ. We write P km,λ for the law of a biased
random walk (Sn)n∈N0

on {0, . . . ,m} starting at k ∈ {0, . . . ,m}, moving to the right with
probability pλ and moving left with probability qλ from any vertex other than 0,m. The
origin 0 is supposed to be absorbing and at m the walk stays put with probability pλ and
moves left with probability qλ. We write Ekm,λ for the corresponding expectation. We

drop the superscript k, both in P km,λ as well as Ekm,λ, if k = 1.
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Random walk on 1D percolation cluster at critical bias

For k, l ∈ {0, ...,m} we write σk := inf{j ∈ N0 : Sj = k}, σ+
k := inf{j ∈ N : Sj = k},

and σk→l = inf{j ≥ 0 : Sj = l} on {S0 = k}. Let em := Pmm,λ(σ+
0 < σ+

m) be the escape
probability from the rightmost node in the trap to the trap entrance without a rebound
to the rightmost node in the trap. By the well-known Gambler’s ruin formula, this is

em = Pmm,λ(σ+
0 < σ+

m) = qλ
γm−1 − γm

1− γm
= γmpλ

1− γ
1− γm

. (4.1)

4.2 The proof of the lower bound

We are ready to prove the lower bound.

Lemma 4.2. There exists some c > 0 such that, for all n ∈ N,

P(τ2 − τ1 ≥ n) ≥ cn−α and P(τ1 ≥ n) ≥ cn−α

In the next proof and throughout the paper, for a random variable Z and p̂ ∈ (0, 1), we
write Z ∼ geom(p̂) if Z is geometric with success parameter p̂, i.e., P(Z = k) = p̂(1− p̂)k,
k ∈ N0.

Proof. According to Lemma 2.4, we find

P(τ2 − τ1 ≥ n) = P◦(τ1 ≥ n|Yk 6= 0 for all k ≥ 1) ≥ P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1).

On the other hand, as P(Rpre
0 = 0) > 0, we can safely write

P(τ1 ≥ n) ≥ P(Rpre
0 = 0)P(τ1 ≥ n, Yk 6= 0 for all k ≥ 1|Rpre

0 = 0).

= P(Rpre
0 = 0)P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1).

We therefore provide a lower bound for P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1). Under P◦p , there
is a pre-regeneration point at 0 as depicted in the figure below.

0

Given there is a pre-regeneration point at 0 (as is always the case under P◦p ), the law
of the percolation cluster to the right of the origin under Pp and P◦p coincides since the
ωn, n ∈ N have the same law under Pp and P◦p . We may thus argue as on p. 3404 of [1] to
conclude that the probability that directly to the right of the origin, there is a trap of
length m as in the picture above is γ(p)e−2λcm for some constant γ(p) ∈ (0, 1).

We write T for the time spent on the first excursion of (Yn)n∈N0
into the trap right of

the origin. We have

P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1)

≥ P◦(T ≥ n, there is a trap directly to the right of the origin).

Typically, after entering the trap the walk drifts towards the bottom of the trap and then
requires a geometric number of trials to leave again. It follows from the Gambler’s ruin
formula that for all m, hitting the bottom before leaving the trap has positive probability
bounded from below:

P 1
m,λ(σm < σ0) =

1− γ1

1− γm
> 1− γ > 0.
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Random walk on 1D percolation cluster at critical bias

The probability of leaving the trap from the bottom without rebound to the bottom is em.
In order to visit the trap in the situation as depicted above, two steps to the right at the
start suffice. Thus we get

P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1) ≥
( eλ

eλ + 1 + e−λ

)2 ∞∑
m=2

γ(p)e−2λcmP 1
m,λ(T ≥ n, σm < σ0)

≥ (1− γ)e2λγ(p)

(eλ + 1 + e−λ)2

∞∑
m=2

e−2λcm(1− em)n−1,

Restricting this sum to the term of order x̂ := logn
| log γ| leads to

P◦(τ1 ≥ n, Yk 6= 0 for all k ≥ 1) ≥ (1− γ)e2λγ(p)

(eλ + 1 + e−λ)2
e−2λcbx̂c(1− ebx̂c)

n−1

≥ (e2λ − 1)γ(p)

(eλ + 1 + e−λ)2
e−2λcx̂(1− ex̂−1)n−1

= n−α
(e2λ − 1)γ(p)

(eλ + 1 + e−λ)2
exp(−pλ(e2λ − 1))(1 + on(1)).

Let (S′n)n∈N0 be a biased random walk on Z that mimics the steps of (Sn)n∈N0 without
staying put. More precisely, set S′0 := 0 and for n < σ0, let

S′n+1 = S′n + 1 if Sn+1 = Sn + 1 or Sn+1 = Sn = m,

S′n+1 = S′n − 1 if Sn+1 = Sn − 1.

After (Sn)n∈N0
hits the absorbing state 0, we let (S′n)n∈N0

move along as the usual biased
random walk on Z with probability pλ to jump right. For z ∈ Z, write P zZ,λ and EzZ,λ for
the law of (S′n)n∈N0

starting at S0 = z and the corresponding expectation, respectively.
For k ∈ Z, set

σZk := inf{l ≥ 0 : S′l = k}.

We start with a well-known fact about biased random walk on Z.

Lemma 4.3. For x > 0, it holds that

E0
Z,λ

[
xσ

Z
1
]

=
1−

√
1− 4pλqλx2

2qλx
.

For completeness, we include a brief proof.

Proof. Let x > 0 and f(x) := E0
Z,λ

[
xσ

Z
1

]
. On the one hand, the Markov property gives

f(x) = pλx+ qλxf(x)2. (4.2)

On the other hand, limx↘0 f(x) = 0 due to dominated convergence. Hence, solving (4.2)
for f(x) yields the stated formula.

We divide the time spent between the visits to the first and second regeneration point
τ2 − τ1 as follows.

τ2 − τ1 = (τ2 − τ1)B + (τ2 − τ1)traps

where (τ2 − τ1)B and (τ2 − τ1)traps are the time spent in the backbone and in traps,
respectively, during the time interval [τ1, τ2). The following Lemma holds.

Lemma 4.4 (Lemma 7.5 in [14]). For any κ > 0, we have E[((τ2 − τ1)B)κ] <∞.
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Random walk on 1D percolation cluster at critical bias

This and Markov’s inequality imply the following result.

Lemma 4.5. It holds that P((τ2 − τ1)B ≥ n) = o(n−α) as n→∞.

To obtain an upper bound on P(τ2 − τ1 ≥ n), we thus need to consider the time spent
in traps. We write (τ2 − τ1)traps as

(τ2 − τ1)traps =

T∑
i=1

Vi∑
j=1

Tij ,

where T is the number of traps in [ρ1, ρ2), Vi is the number of visits in the ith trap in
[ρ1, ρ2) and Tij is the time (Yn)n∈N0

spends during the jth excursion into the ith trap in
[ρ1, ρ2).

4.3 Tail estimates for the time spent in a single trap

If we fix a percolation environment ω, the time spent in a single trap of length m can
be split into the time spent on bottom-to-bottom excursions and the time spent to reach
or leave the bottom without a rebound to the left- or rightmost, respectively, node of the
trap. This leads to the following result for a fixed number of excursions into a single
trap.

Lemma 4.6. Let (Sn,j)n∈N0
, j ∈ N be i.i.d. copies of (Sn)n∈N0

starting at 1. Further, let
T qu,a
ij be the absorption time at 0 of the walk (Sn,j)n∈N0

, j ∈ N. LetR := E0
Z,λ[σZ1 ] = 1

1−2qλ .
Then, for any l ∈ N, there exist independent Z1, ..., Zl ∼ geom(em) and m0 ∈ N such that,
for m ≥ m0 and n ∈ N, we have

Pm,λ

( l∑
j=1

T qu,a
ij ≥ n

)
≤ 2Pm,λ

( l∑
j=1

Zj ≥
n

4R

)
+ 3lmax

{
P 1
m,λ

(
σ1→0 ≥ n

6l , σ0 < σm
)
, P 1

m,λ

(
σ1→m ≥ n

6l , σm < σ0
)
,

Pmm,λ
(
σm→0 ≥ n

6l , σ0 < σ+
m

)}
.

Proof. Let Z(j) be the number of returns to m of (Sn,j)n∈N0 before absorption. For
completeness, we define Z(j) := 0 on the event where (Sn,j)n∈N0 visits m at most once.
By the strong Markov property, Pm,λ(Z(j) = k) = P 1

m,λ(σm < σ0)(1 − em)kem for k ∈ N
and Pm,λ(Z(j) = 0) = P 1

m,λ(σ0 < σm)+P 1
m,λ(σm < σ0)em. We write T̃jk, k = 1, . . . , Z(j) for

the durations of consecutive excursions of (Sn,j)n∈N0
from m to m, and let T̃jk, k > Z(j),

be a family of i.i.d. random variables distributed as the duration of an excursion of
(Sn)n∈N0

from m to m conditioned on the event {σ+
m < σ0}. When starting at 1, the

walk (Sn)n∈N0
either hits the absorbing state 0 before reaching the trap bottom, or hits

the bottom, does a geometric number of bottom-to-bottom excursions, and then gets
absorbed. We have

Pm,λ

( l∑
j=1

T qu,a
ij ≥ n

)
= Pm,λ

( l∑
j=1

T qu,a
ij ≥ n,

∣∣∣∣ l∑
j=1

T qu,a
ij −

l∑
j=1

Z(j)∑
k=1

T̃jk

∣∣∣∣ ≤ n

2

)

+ Pm,λ

( l∑
j=1

T qu,a
ij ≥ n,

∣∣∣∣ l∑
j=1

T qu,a
ij −

l∑
j=1

Z(j)∑
k=1

T̃jk

∣∣∣∣ > n

2

)

≤ Pm,λ
( l∑
j=1

Z(j)∑
k=1

T̃jk ≥
n

2

)
+ 3lmax

{
P 1
m,λ

(
σ1→0 ≥ n

6l , σ0 < σm
)
, P 1

m,λ

(
σ1→m ≥ n

6l , σm < σ0
)
,

Pmm,λ
(
σm→0 ≥ n

6l , σ0 < σ+
m

)}
.
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Random walk on 1D percolation cluster at critical bias

The second term in this estimate stems from the fact that the duration of an excursion
into the trap differs from the duration of its bottom-to-bottom excursions either by σ1→0

on the event {σ0 < σm} or by the times required to reach and finally leave the bottom on
the event {σm < σ0}.

We can safely replace Z(j), j = 1, ..., l by an independent family of i.i.d. random
variables Zj with law geom(em) under Pm,λ. As T̃jk, j = 1, ..., l, k ∈ N are nonnegative
and i.i.d., we have

Pm,λ

( l∑
j=1

Zj<n

)
= Pm,λ

( l∑
j=1

Zj<n,

n∑
k=1

T̃1k≥2Rn

)
+ Pm,λ

( l∑
j=1

Zj<n,

n∑
k=1

T̃1k<2Rn

)

≤ Pm,λ
( n∑
k=1

T̃1k≥2Rn

)
+ Pm,λ

( Z1+...+Zl∑
k=1

T̃1k<2Rn

)

= Pm,λ

( n∑
k=1

T̃1k≥2Rn

)
+ Pm,λ

( l∑
j=1

Zj∑
k=1

T̃jk<2Rn

)
.

This implies

Pm,λ

( l∑
j=1

Zj∑
k=1

T̃jk ≥ 2Rn

)
≤ Pm,λ

( l∑
j=1

Zj ≥ n
)

+ Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
. (4.3)

Using Markov’s inequality, the Markov property, stochastic domination and Lemma 4.3,
for µ > 0, we have

Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
≤ e−2µRnEmm,λ

[
eµσ

+
m

∣∣σ+
m < σ0

]n ≤ e−2µRnE0
Z,λ

[
eµσ

Z
1
]n

= e−2µRn
(

1−
√

1− 4pλqλe2µ

2qλeµ

)n
.

The function f :
[
0, 12 log

(
1

4pλqλ

)]
→ R given by

f(µ) := e−2µR
1−

√
1− 4pλqλe2µ

2qλeµ

is differentiable and satisfies

f(0) =
1− (1− 2qλ)

2qλ
= 1, f ′(0) =

−1

1− 2qλ
< 0.

Hence, there exists µ̂ > 0 with f(µ̂) < 1, and

Pm,λ

( n∑
k=1

T̃1k ≥ 2Rn

)
≤
(

f(µ̂)

1− em

)n
· Pm,λ(Z1 ≥ n).

As em → 0 for m→∞, there exists m0 such that f(µ̂)
1−em < 1 for all m ≥ m0. This and (4.3)

lead to

Pm,λ

( l∑
j=1

Zj∑
k=1

T̃jk ≥ 2Rn

)
≤ Pm,λ

( l∑
j=1

Zj ≥ n
)

+

(
f(µ̂)

1− em0

)n
Pm,λ(Z1 ≥ n)

≤ 2Pm,λ

( l∑
j=1

Zj ≥ n
)

for m ≥ m0.
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Lemma 4.6 can be adapted to the case where the random walk is allowed to take
lazy steps. Let (Slazy

n )n∈N0
be the lazy biased random walk on the line graph {0, 1, . . . ,m}

that moves to the right with probability eλ/(eλ + 1 + e−λ), to the left with probability
e−λ/(eλ + 1 + e−λ) and stays put with probability 1/(eλ + 1 + e−λ) from any vertex other
than 0,m. The origin 0 is again supposed to be absorbing and at m, the walk stays put
with probability (eλ+ 1)/(eλ+ 1 + e−λ) and moves left with probability e−λ/(eλ+ 1 + e−λ).
Slightly abusing notation, we again write Pm,λ for the law of (Slazy

n )n∈N0
starting at

Slazy
0 = 1, and Em,λ for the corresponding expectation.

Lemma 4.7. Let (Slazy
n,j )n∈N0

, j ∈ N be i.i.d. copies of (Slazy
n )n∈N0

starting at 1. Further,

let T qu
ij be the absorption time at 0 of the walk (Slazy

n,j )n∈N0
, j ∈ N. Let R := E0

Z,λ[σZ1 ] =
1

1−2qλ and rλ > e2λ + eλ. Then, for any l ∈ N, there exist independent Z1, ..., Zl ∼
geom(em) and m1 ∈ N such that, for m ≥ m0 ∨m1 and n ∈ N, we have

Pm,λ

( l∑
j=1

T qu
ij ≥ n

)
≤ 3Pm,λ

( l∑
j=1

Zj ≥
n

4rλR

)
+ 3lmax

{
P 1
m,λ

(
σ1→0≥ n

6lrλ
, σ0<σm

)
, P 1

m,λ

(
σ1→m≥ n

6lrλ
, σm<σ0

)
,

Pmm,λ
(
σm→0≥ n

6lrλ
, σ0<σ

+
m

)}
.

Proof. We have
l∑

j=1

T qu
ij

law=

l∑
j=1

T qu,a
ij∑
k=1

Z̃k,j ,

where T qu,a
ij , j ∈ N are as in Lemma 4.6, and Z̃k,j , k, j ∈ N are independent random

variables distributed as the number of times the walk (Slazy
n,j )n∈N0 stays put before it

changes its position for the kth time. Since the probability for (Slazy
n,j )n∈N0

to change
its position at any vertex other than the absorbing state 0 is bounded from below
by p̃ := e−λ/(eλ + 1 + e−λ), we have Z̃k,j 4 Zk,j where Zk,j , k, j ∈ N is a family of
i.i.d. geometric random variables with success probability p̃. Notice that Em,λ[Z1,1] =

(1− p̃)/p̃ = e2λ+eλ > 2. Thus, the additional lazy steps essentially slow down the original
walk by a factor (1− p̃)/p̃. The claimed inequality follows by arguments similar to those
used in the proof of Lemma 4.6. Further details are omitted.

In the annealed case, Lemma 4.7 translates into a tail probability of basically order
n−α (given the trap is actually seen).

Lemma 4.8. Let R, rλ,m0,m1 be as in Lemma 4.7 and µ > 0 such that E0
Z,λ[eµσ

Z
1 ] <∞.

Further, let T ann
ij , i ∈ Z, j ∈ N be a family of random variables which are independent

given ω and with T ann
ij given ω being distributed as the hitting time of the entrance of

the trap in Ti by (Yn)n∈N0
under Pω,λ when (Yn)n∈N0

starts at the right neighbor of the
trap entrance. Then

P

( l∑
j=1

T ann
ij ≥ n, `i ≥ m0 ∨m1

)
≤

c1lα+1n−α + c2le
−µ n

6lrλ , for i 6= 0,

c′1l
α+1n−α log n+ c′2le

−µ n
6lrλ for i = 0,

where c1 = c1(p, λ), c2 = c2(p, λ), c′1 = c′1(p, λ), c′2 = c′2(p, λ) are positive, finite constants
neither depending on n nor l.

Proof. Using Lemmas 4.1 and 4.7, we can estimate P
(∑l

j=1 T
ann
ij ≥ n, `i ≥ m0 ∨m1

)
using independent Z1, ..., Zl ∼ geom(em) and T qu

ij , j = 1, . . . , l, rλ and R as defined in
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Lemma 4.7 by

P

( l∑
j=1

T ann
ij ≥n, `i≥m0 ∨m1

)
=

∞∑
m=m0∨m1

Pp(`i=m)Pm,λ

( l∑
j=1

T qu
ij ≥n

)

≤ 3

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ

( l∑
j=1

Zj≥
n

4rλR

)

+ 3l

∞∑
m=m0∨m1

αi(m)e−2λcm max
{
P 1
m,λ(σ1→0≥ n

6lrλ
, σ0<σm), P 1

m,λ(σ1→m≥ n
6lrλ

, σm<σ0),

Pmm,λ(σm→0≥ n
6lrλ

, σ0<σ
+
m)
}
, (4.4)

where αi(m) := (e2λc − 1) for i 6= 0 and α0(m) := χ(p)m. We consider the second series
first. For y ∈ {0, ...,m} we write

h(y) := P ym,λ(σ0 < σm).

Due to the Gambler’s ruin formula we have h(y) = γy−γm
1−γm . The law of an excursion of

(Sn)n∈N0 starting from either 1 or m to the origin 0 conditioned on σ0 < σ+
m is Doob’s

h-transform, i.e., the corresponding transition probabilities are

P ym,λ(S1 = z|σ0 < σ+
m) =

h(z)

h(y)
p(y, z),

where y ∈ {1, ...,m− 1}, z ∈ {0, ...,m} and p(y, z) := P ym,λ(S1 = z). For y ∈ {1, ...,m− 1}
this implies

P ym,λ(S1 = y + 1|σ0 < σ+
m)

P ym,λ(S1 = y − 1|σ0 < σ+
m)

=
h(y + 1)

h(y − 1)

p(y, y + 1)

p(y, y − 1)
< γ,

whereas
Pmm,λ(S1 = m|σ0 < σ+

m)

Pmm,λ(S1 = m− 1|σ0 < σ+
m)

= 0 < γ.

In other words, conditioned on σ0 < σ+
m, the walk (Sn)n∈N0

drifts towards to the left at
least as strong as the unconditioned walk drifts towards the right. Estimating all three
quantities in the max-term by corresponding quantities for (S′n)n∈N0 , the biased random
walk on Z, we get

max
{
P 1
m,λ(σ1→0≥ n

6lrλ
, σ0<σm), P 1

m,λ(σ1→m≥ n
6lrλ

, σm<σ0), Pmm,λ(σm→0≥ n
6lrλ

, σ0<σ
+
m)
}

≤ max
{
P 0
Z,λ(σZ1 ≥ n

6lrλ
), P 1

Z,λ(σZm≥ n
6lrλ

), P 0
Z,λ(σZm≥ n

6lrλ
)
}

= P 0
Z,λ

(
σZm≥ n

6lrλ

)
.

Using Markov’s inequality and Lemma 4.3, we get that for µ > 0 with E0
Z,λ

[
eµσ

Z
1

]
<∞,

3l

∞∑
m=m0∨m1

αi(m)e−2λcmP 0
Z,λ

(
σZm ≥ n

6lrλ

)
≤ 3le

−µ n
6lrλ

∞∑
m=m0∨m1

αi(m)e−2λcmE0
Z,λ

[
eµσ

Z
1
]m

= 3le
−µ n

6lrλ

∞∑
m=m0∨m1

αi(m)e−2λcm

(
1−

√
1− 4pλqλe2µ

2qλeµ

)m
.
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Random walk on 1D percolation cluster at critical bias

The latter series is finite. To see this, notice that if λ < λc, we have e−2λc < e−2λ = qλ
pλ

and thus

e−2λc
1−

√
1− 4pλqλe2µ

2qλeµ
< 1

as 1 −
√

1− 4pλqλe2µ ≤ 1 and 2pλe
µ > 1. If on the other hand λ ≥ λc, we have

E0
Z,λ[eµσ

Z
1 ] ≤ E0

Z,λc
[eµσ

Z
1 ] and the series converges using the same argument.

For the first series on the right-hand side of (4.4), we use the union bound to get

3

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ

( l∑
j=1

Zj ≥
n

4rλR

)

≤ 3l

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ

(
Z1 ≥

n

4rλRl

)
.

We set n0 := d n
4rλRl

e. We have Z1
law= b −1

log(1−em)ε1c where ε1 is an exponential with

expectation 1. Therefore, as −1
log(1−em) ≤

1
em

,

3l
∞∑

m=m0∨m1

αi(m)e−2λcmPm,λ(Z1 ≥ n0) ≤ 3l
∞∑

m=m0∨m1

αi(m)e−2λcmPm,λ(ε1 ≥ emn0).

Using Fubini’s theorem and the fact that em ≥ (pλ − qλ)γm, we get

3l

∞∑
m=m0∨m1

αi(m)e−2λcmPm,λ(ε1 ≥ emn0) = 3l

∞∑
m=m0∨m1

αi(m)e−2λcm

∫ ∞
0

1[emn0,∞)(x)e−xdx

≤ 3l

∫ ∞
0

e−x
∞∑
m=0

αi(m)e−2λcm1
[ 1
2λ log(

(pλ−qλ)n0
x ),∞)

(m)dx .

For i 6= 0, we can estimate this by

3l

∫ ∞
0

e−x
∞∑
m=0

αi(m)e−2λcm1
[ 1
2λ log(

(pλ−qλ)n0
x ),∞)

(m)dx

≤ 3l

∫ ∞
0

e−α log
(

(pλ−qλ)n0
x

)
e2λc − 1

1− e−2λc
e−xdx

≤ 3e2λcEm,λ[εα1 ](4rλR)α

(pλ − qλ)α
lα+1n−α.

The corresponding term for i = 0 can be bounded by c′1l
α+1n−α log n where c′1 ∈ (0,∞)

does not depend on n or l. The derivation of this bound is similar but slightly more
tedious.

4.4 A coupling

As the times spent in different traps are not independent, further work is needed
to transfer the tail estimate for the time spent in a single trap to the time spent in the
possibly several traps inside a block [ρi, ρi+1). Therefore, we introduce a random walk
on a subgraph ωp of the initial environment ω as follows. We take the initial graph ω

sampled according to Pp or P◦p and modify it as follows. For each trap P = (e1, . . . , em)

in ω with trap entrance u0 and edges e1 = 〈u0, u1〉, . . . , em = 〈um−1, um〉, we delete the
edges e1, . . . , em from ω and also the vertices u1, . . . , um. We further delete the opposite
vertices u′1, . . . , u

′
m and replace the parallel edges e′1, . . . , e

′
m, 〈u′m, u′m+(1, 0)〉 with a single
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edge connecting u′0 and u′m + (1, 0) with resistance given by the sum of the resistances
of the single edges. We shall call the vertex u′0 opposite the former trap entrance an
obstacle. Should this procedure lead to the deletion of 0, we assign x-coordinate 0 in ωp

to the obstacle that replaced the trap piece which contained 0 in ω. In this way, we also
obtain new conductances cs on ωp.

0

(3,1)

0

(2,1)

Figure 4: Comparison of ω (left) and the resulting ωp (right). Normal vertices are drawn
as filled circles, the obstacles as filled boxes.

By the series law, the corresponding resistances rs between the first obstacle v to the
right of 0 that replaces a trap piece covering x-level k to k+m+ 1 and its neighbors u to
the left and w to the right satisfy

rs(〈u, v〉) = r(〈u, v〉) = e−λ(x(u)+x(v)) = e−λ(2k−1)

and

rs(〈v, w〉) =

k+m∑
j=k

r(〈j, y(v)〉, 〈j + 1, y(v)〉) =

k+m∑
j=k

e−λ(2j+1) = e−λ(2k+1) 1− e−2λ(m+1)

1− e−2λ
.

Based on this, we define the pruned random walk as the lazy random walk (Y p
n )n∈N0

on
ωp with transition probabilities proportional to the conductances

cp(〈u, v〉) = eλ(x(u)+x(v)) · (1− e−2λ)p(v)

where x(u) ≤ x(v) and p(v) is the number of obstacles with x-coordinate ∈ [0, x(v)).
More precisely, if Y p

n = u, then the walk attempts to step from u to v with probability
proportional to cp(〈u, v〉). If the edge between u and v is present in ωp, then the step is
actually performed, otherwise the walk stays put.

Roughly speaking, (Y p
n )n∈N0 is the lazy random walk on the non-trap pieces of ω

when all traps are set to have infinite length. Intuitively, as the traps in ω have finite
lengths, the embedding of (Y p

n )n∈N0 into ω will lag behind the random walk (Yn)n∈N0 .
Regenerations of (Y p

n )n∈N0 also amount to regenerations of (Yn)n∈N0 without implications
on the lengths of the traps in the underlying piece of ω. Furthermore, (Y p

n )n∈N0 can be
used to bound the number of visits to any trap by a quantity independent of the trap
lengths, thus greatly reducing the difficulties in transforming the estimate of Lemma 4.8
to an estimate for the time spent in the whole block [ρi, ρi+1) in ω. To make this precise,
we give a coupling of (Y p

n )n∈N0
and (Yn)n∈N0

with the described properties. Technically,
the coupling is such that we obtain processes with the same distributions as (Yn)n∈N0

and (Y p
n )n∈N0

and the desired properties, but we shall again refer to them as (Yn)n∈N0

and (Y p
n )n∈N0

, respectively, once equality of the corresponding laws is established.
First, let (Oi)i∈Z be an enumeration of the obstacles in ωp such that . . . < x(O−1) <

0 ≤ x(O0) < x(O2) < . . .. Starting from ωp, take an independent family (Li)i∈Z of random
variables, with (Li)i 6=0 independent of ω. We re-insert at Oi a trap piece with a trap of
length Li. Here, we let Li have the same distribution as `i for i 6= 0. For i = 0, let the
law of L0 given x(O0) > 0 be the law of `1. Further notice that if x(O0) = 0, then, by the
definition of T0 and T1, either 0 is one of the two leftmost vertices in T1 or 0 ∈ int(T0)
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which consists of all vertices from T0 except the two leftmost and the two rightmost
vertices. Thus, we define the law of L0 given x(O0) = 0 by

Pp(0 ∈ T1|0 ∈ T1∪ int(T0))Pp(`1 ∈ ·)+Pp(0 ∈ int(T0)|0 ∈ T1∪ int(T0))Pp(`0 ∈ ·|0 ∈ int(T0)).

In other words, we toss a coin with probability Pp(0 ∈ T1 |0 ∈ T1 ∪ int(T0)) for heads. If
the coin comes up heads, we sample the value of L0 using an independent copy of `1
(under Pp). If the coin comes up tails, we sample the value of L0 using an independent
copy of `0 (under Pp given that 0 ∈ int(T0), this random variable satisfies the bound in
Lemma 4.1(b)). Additionally, if the coin comes up tails, we shift horizontally by a value
k ∈ {1, . . . , L0} according to the distribution under Pp of the position of 0 in T0 given
0 ∈ int(T0). This gives a new configuration ω̃. By construction, ω̃ law= ω.

Slightly abusing notation, we write ωp for both ωp and the subset of ω̃ corresponding
to it. We further write V (ωp) and V (ω̃) for the corresponding vertex sets. Consequently,
we write u = v for vertices u ∈ V (ωp), v ∈ V (ω̃) if v is the node in ω̃ corresponding to u
in ωp. Given ωp and ω̃, we define a random walk (Yn)n∈N0

on V (ωp)× V (ω̃)× {−1, 0, 1},
where the first and second component (up to random waiting times) behave like (Y p

n )n∈N0

and (Yn)n∈N0
, respectively, and the third component exclusively acts as a memory of the

directions taken at certain nodes. This is to ensure that (Yn)n∈N0
is a Markov chain.

At each time n ∈ N0, first a candidate Ycand
n+1 = (Ycand

n+1,1,Ycand
n+1,2,Ycand

n+1,3) for the next
step is chosen and afterwards the chosen step is taken only if the corresponding edges
in ωp or ω̃, respectively, are open:

Yn+1,1 =

{
Ycand
n+1,1 if ωp(〈Yn,1,Ycand

n+1,1〉) = 1,

Yn,1 otherwise,
Yn+1,2 =

{
Ycand
n+1,2 if ω̃(〈Yn,1Ycand

n+1,1〉) = 1,

Yn,2 otherwise

and Yn+1,3 = Ycand
n+1,3.

We start at Y0 = (0,0, 0) and give the transition matrix of (Yn)n∈N0 in a case-by-case
description depending on the position (u, v, w) ∈ V (ωp)× V (ω̃)× {−1, 0, 1} at time n.

(1) If u = v when regarding ωp as a subset of ω̃, and if u 6= Oi for all i ∈ Z, we let
(Yn)n∈N0

attempt to do exactly the same steps in its first two components. In that case

Ycand
n+1 =


(u+ (1, 0), v + (1, 0), 0) with probability eλ

eλ+1+e−λ
,

(u− (1, 0), v − (1, 0), 0) with probability e−λ

eλ+1+e−λ
,

(u′, v′, 0) with probability 1
eλ+1+e−λ

.

Note that if v is a trap entrance in ω̃, a step to the right by (Ycand
n+1,1,Ycand

n+1,2) induces a
lazy step of (Yk,1)k∈N0

whereas (Yk,2)k∈N0
moves into the trap. In that case, as will be

described in detail below, (Yk,2)k∈N0
will make an excursion into the trap afterwards

whereas (Yk,1)k∈N0 will stay put in u until (Yk,2)k∈N0 returns to the trap entrance v.
Similarly, when a step of (Yk,1)k∈N0 to the left means moving to an obstacle, (Yk,2)k∈N0

will then step onto a backbone node in ω̃ \ ωp. In this case (Yk,1)k∈N0 will also stay put
until (Yk,2)k∈N0 reaches a node in ω̃ ∩ ωp.

u1 v1u2 v2

u3 v3

Figure 5: The figure shows possible transitions on non-obstacle backbone-nodes from
(u1, v1), (u2, v2) and (u3, v3), where uj in ωp ‘equals’ vj in ω̃.
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(2) If u = v, but u = Oi for some i ∈ N, then the step in the first component is taken
according to the conductances cp. The second component mimics this, but with the
additional option to move right even if the first component does not. This is to adjust
the transition probabilities of the second component to match those of (Yn)n∈N0

. If the
first component moves right, we demand that the second component leaves the coming
trap piece at the right end, which we encode in the third component. Since we further
want the walk in the second component to have the same law as (Yn)n∈N0

, we have to
make sure that in total, it leaves the trap piece at the right resp. left end with the correct
probability. These restrictions lead to a system of linear equations for the transition
probabilities whose solution is given as follows.

Ycand
n+1 =



(u+ (1, 0), v + (1, 0), 1) with prob. eλ(1−e−2λ)
eλ(1−e−2λ)+1+e−λ

= eλ−e−λ
eλ+1

,

(u− (1, 0), v − (1, 0), 0) with prob. e−λ

eλ+1+e−λ
,

(u′, v′, 0) with prob. 1
eλ+1+e−λ

,

(u− (1, 0), v + (1, 0), 1) with prob. e−λ

1+e−λ

(
e′Li+1 − eλ−e−λ

eλ+1

)
,

(u− (1, 0), v + (1, 0),−1) with prob. e−λ
(

1
1+e−λ

− 1
eλ+1+e−λ

− 1
1+e−λ

e′Li+1

)
,

(u′, v + (1, 0), 1) with prob. 1
1+e−λ

(
e′Li+1 − eλ−e−λ

eλ+1

)
,

(u′, v + (1, 0),−1) with prob. 1
1+e−λ

− 1
eλ+1+e−λ

− 1
1+e−λ

e′Li+1,

where Li is the length of the trap right of v and

e′m :=
eλ

eλ + 1 + e−λ
P 1
m,λ(σm < σ0) =

eλ

eλ + 1 + e−λ
1− e−2λ

1− e−2λm

is the probability that the biased random walk (S′n)n∈N0 on Z starting from 0 first makes
a step to the right and then hits m before 0.

u v v∗

Figure 6: Transitions from obstacles. Depending on the value of Yn+1,3, after a step to
the right it is already determined whether the random walk on ω̃ hits the boundary of
the trap piece at v or v∗.

(3) If v is in the interior of the backbone part of a trap piece in ω̃ (and thus not in
ωp), then we write Lv for the length of the corresponding trap. In this case, the first
component of (Yn)n∈N0 stays put while the second component moves in the trap piece
with transition probabilities according to the biased random walk (Yn)n∈N0 , possibly
conditioned on the event that the boundary of the trap piece is first hit at the left-
or rightmost end, respectively. Let pk,0, pk,−1, pk,1 be the transition matrices of the
lazy biased random walk (Sn)n∈N0 on {0, ..., k} (which steps to the right, steps to the
left or stays put with probability proportional to eλ, e−λ and 1, respectively) and the
lazy biased random walk on {0, ..., k} conditioned on {σ0 < σk} resp. {σ0 > σk}, where
σj := inf{n ∈ N0 : Sn = j}. Then we set

Ycand
n+1 =


(u, v + (1, 0), w) with probability pLv+1,w(xv, xv + 1),

(u, v − (1, 0), w) with probability pLv+1,w(xv, xv − 1),

(u, v′, w) with probability pLv+1,w(xv, xv),

where xv ∈ {1, ..., Lv} is the relative horizontal position of v in the trap piece.
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v1 v2

Figure 7: Transitions in the backbone part of trap pieces. If Yn,3 ∈ {−1, 1}, then it is
predetermined that the walk hits the boundary of the trap piece at v1 or v2, respectively.

(4) If v is a trap node in ω̃, the first component of (Yn)n∈N0
stays put while the second

component moves inside the trap with transition probabilities according to the biased
random walk (Yn)n∈N0 . That is,

Ycand
n+1 =


(u, v + (1, 0), 0) with probability eλ

eλ+1+e−λ

(u, v − (1, 0), 0) with probability e−λ

eλ+1+e−λ

(u, v′, 0) with probability 1
eλ+1+e−λ

.

Figure 8: Transitions in the dead end part of trap pieces

(5) Finally, when v ∈ ω̃ ∩ ωp, but the positions of the two components of (Yn)n∈N0
do

not correspond, the second component stays put, while the first component moves with
transition probabilities given by the conductances cp:

Ycand
n+1 =


(u+ (1, 0), v, 0) with probability proportional to cp(〈u, u+ (1, 0)〉),
(u− (1, 0), v, 0) with probability proportional to cp(〈u, u− (1, 0)〉),
(u′, v, 0) with probability proportional to cp(〈u, u′〉).

Figure 9: Transitions on the backbone when coordinates do not coincide. In this case,
the walk on ω̃ waits at a trap end or a vertex opposite a trap entrance. This vertex must
be passed by the walk on ωp provided that this walk is transient to the right. The walk
on ωp pauses until the walk on ω̃ hits its position.

We write P′p for the distribution of the environment (ωp, ω̃) and P ′ωp,ω̃,λ for the quen-
ched law of (Yn)n∈N0

as described above. With these, we define a measure P′ on
({0, 1}E × {0, 1}E)× (V 2 × {−1, 0, 1})N0 , endowed with the product σ-Algebra, by

P′(A×B) :=

∫
A

P ′ωp,ω̃,λ(B) P′p(d(ωp, ω̃)).

Sometimes, the walks on ωp and ω̃ are at different positions (when ωp is embedded in
ω̃). Then, depending on the particular situation, one of the walks waits while the other
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moves until they meet again. The times at which each of the walks moves without being
forced to hold as described above are collected in the following sets:

N1 := {n ∈ N0 : Yn,2 is at a vertex in ω̃ corresponding to a vertex in ωp},
N2 := {n ∈ N0 : Yn,1 = Yn,2} ∪ {n ∈ N0 : Yn,2 is in the interior of a trap piece}.

Let (s1,k)k∈N resp. (s2,k)k∈N be enumerations of N1 resp. N2 in ascending order. Then
the following processes coincide in law with (Y p

n )n∈N0 and (Yn)n∈N0 , respectively. More
precisely, with

(Yp
n)n∈N0

:= (Ys1,n,1)n∈N0
, (Ỹn)n∈N0

:= (Ys2,n,2)n∈N0

the following lemma holds.

Lemma 4.9. We have

(Yp
n)n∈N0

law= (Y p
n )n∈N0

, (Ỹn)n∈N0

law= (Yn)n∈N0
.

Proof. Since (Yp
n)n∈N0

and (Y p
n )n∈N0

are defined on the same environment, and the
environments of (Ỹn)n∈N0

and (Yn)n∈N0
are identically distributed by construction, it

suffices to check the quenched transition probabilities of (Ỹn)n∈N0
and (Yp

n)n∈N0
, re-

spectively. One can check that the transition probabilities of (Yp
n)n∈N0

coincide with
those of (Y p

n )n∈N0
, thus the equality in law of (Y p

n )n∈N0
and (Yp

n)n∈N0
follows from the

Markov property of (Yn)n∈N0
. For (Ỹn)n∈N0

, at most nodes this is also obvious except for
transitions at obstacles and inside trap pieces. However, it suffices to show that on ob-
stacles, steps into the different directions are taken with the correct probability and that
excursions on the following trap pieces end on the left resp. right end with the correct
probability, i.e., that (Yn,3)n∈N0

takes value −1 or 1 with the correct probability. This
amounts to a system of linear equations which is solved by the transition probabilities
defined under (2). The result now also follows from the Markov property of (Yn)n∈N0

.

From now on, all results concerning (Yn)n∈N0 will be discussed in terms of the process
(Ỹn)n∈N0 under P′. To ease notation, we shall write (Yn)n∈N0 and P for (Ỹn)n∈N0 and P′,
respectively. We shall also write `i though technically referring to Li. Consequently, we
shall not distinguish between (Y p

n )n∈N0 and (Yp
n)n∈N0 nor between ω and ω̃.

Lemma 4.10. For λ > λ∗ := log(2)
2 , especially for λ ≥ λc

2 , it holds that limn→∞ x(Y p
n ) =∞

a. s.

The proof of the lemma is very similar to that of Proposition 3.1 in [1]. We include it
for completeness.

Proof. It is sufficient to show that 0 is a transient state for the biased random walk on
V (ωp). We use electrical network theory. Write Rp(0↔∞) for the effective resistance
between 0 and +∞ in the random conductance model on ωp with conductances cp(e) for
e ∈ E with ωp(e) = 1. Using Thomson’s Principle [19, Theorem 9.10], we infer

Rp(0↔∞) ≤ Ep(θ)

for all unit flows θ from 0 to ∞ where Ep(θ) is the energy of the flow θ. Here a flow θ

from u to∞ is a mapping θ : V (ωp)× V (ωp)→ R satisfying the properties

(i) θ(v, w) = 0 unless there is an open edge connecting v and w in ωp;

(ii) θ(v, w) = −θ(w, v) for all v, w ∈ V (ωp);

(iii)
∑
w∈V (ωp) θ(v, w) = 1{u}(v) for all v ∈ V (ωp).
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The energy of the flow θ is Ep(θ) =
∑
e:ωp(e)=1 θ(e)

2/cp(e) where θ(e)2 = θ(v, w)2 if
e = 〈v, w〉. Since there are no traps in ωp, there exists an infinite open self-avoiding
path P = (e1, e2, . . .) connecting 0 with ∞. This path never backtracks in the sense
that the sequence of x-coordinates of the vertices on this path is nondecreasing. Now
define a flow θ from 0 to ∞ by pushing a unit current through P . More precisely, if
en = 〈un−1, un〉 with u0 := 0, then let θ(un−1, un) = 1 = −θ(un, un−1) for all n ∈ N and
θ(v, w) = 0 whenever 〈v, w〉 is not on the path P . For every x-level n ∈ N0 there is
at most one edge e in P connecting the two vertices with x-value n. The resistance
of this edge is bounded by rp(e) ≤ e−2λn(1 − e−2λ)−p(n) where p(n) is the number of
obstacles with x-value < n. There are at most n such obstacles. Therefore, rp(e) ≤
e−2λn(1 − e−2λ)−n. Further, for every n ∈ N, there is exactly one edge on P leading
from a vertex with x-value n − 1 to x-value n. The resistance of this edge is bounded
by rp(e) ≤ e−λ(2n−1)(1 − e−2λ)−p(n) ≤ e−λ(2n−1)(1 − e−2λ)−n. Consequently, the energy
Ep(θ) is bounded by

Ep(θ) =
∑
e∈P

θ(e)2rp(e)

≤ 1 +

∞∑
n=1

(e−λ(2n−1) + e−2λn)(1− e−2λ)−n ≤ 1 + 2eλ
∞∑
n=1

( e−2λ

1− e−2λ
)n
.

The latter series is finite iff e−2λ

1−e−2λ < 1 or, equivalently, λ > log(2)
2 =: λ∗. Comparing this

with λc/2, for which we have an explicit formula in terms of p given in Proposition 1.2
with unique minimizer p = 1/2, we have

λc

2 ≥
λc(1/2)

2 = 1
4 log

(
4

3−
√
5

)
= 1

2 log
(

2√
3−
√
5

)
> log(2)

2 = λ∗.

It also follows from the proof of Lemma 4.10 that for u ∈ ωp and λ ≥ λc/2, the escape
probability at u, i.e., the probabilty to leave u and never return, is uniformly bounded
from below. For u ∈ ωp, let σp

u := inf{n > 0 : Y p
n = u}. Also let Rp(u↔∞) and cp(u) be

the effective resistance between u and +∞ and the sum of conductances of all incident
edges at u, respectively, in the random conductance model on ωp with conductances
cp(e) for e ∈ E with ωp(e) = 1. Then pushing a unit current from u to +∞ as in the proof
of Lemma 4.10, we get

Puω,λ
(
σp
u =∞

)
=

1

cp(u)Rp(u↔∞)

≥ 1

3e(2x(u)+1)λ(1−e−2λ)p(u)e−2λx(u)(1−e−2λ)−p(u)
(
1+2e2λ

∑∞
n=1

(
e−2λ

1−e−2λ

)n)
=

1

3eλ
(
1 + 2e2λ

∑∞
n=1

(
e−2λ

1−e−2λ

)n) > 0. (4.5)

Let Rp
1 , R

p
2 , . . . be an enumeration from left to right of the pre-regeneration points in

ωp which are visited exactly once by (Y p
n )n∈N0

. Further, let ρp0 = 0 and ρpn := x(Rp
n) for

n ∈ N. Finally, for n ∈ N, let τpn be the unique time k with Xp
k = ρpn. We refer to the Rp

n’s
and τpn ’s as regeneration points and times, respectively, of the pruned walk.

Lemma 4.11. With P-probability 1, there exist infinitely many regeneration points of
(Y p
n )n∈N0 .

Proof. This can be proven along exactly the same lines as for (Yn)n∈N0
in [1, Lemma 5.1],

as the argument there only relies on a uniform lower bound on the escape probability at
any pre-regeneration point u. Here, (4.5) gives this estimate.
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Lemma 4.12. Let λ > λ∗. Then there exists δ > 0 such that

E◦
[
eδ(ρ

p
1−minj∈N x(Y p

j ))
]
<∞.

Furthermore, E◦[(τp1 )κ] <∞ for any κ > 0.

Both statements still hold true when E◦ is replaced by E.

Proof. We shall only give an informal description of the proof as the details of it can be
adapted from the proofs of Lemmas 6.3 through 6.5 in [14].

The basic idea is to consider the walk (Y p
n )n∈N0

at fresh points. The first fresh
point F p

1 is the first pre-regeneration point to the right of the origin visited by the walk
(Y p
n )n∈N0

. If the random walk hits this fresh point only once, then F p
1 = Rp

1 . Otherwise,
the random walk will return to F p

1 . In this case, the second fresh point F p
2 is the first

pre-regeneration point to the right of F p
1 that has not been visited by the random walk

before hitting F p
1 for the second time, and so on (see also Lemma 6.4 in [14]). The

distances between two fresh points are i.i.d. given they are finite.
Using the uniform bound on the resistance to +∞ given in the proof of Lemma 4.10,

valid for λ > λ∗, one infers that the number of fresh points before and including the first
regeneration point is stochastically bounded by a geometric random variable.

If, on the other hand, the distance between two consecutive fresh points, a left and
a right one, is large, say ≥ 2m, then there are two options. Either the walk made an
excursion of length at least m to the right between the first two visits of the walk to the
left fresh point, or there is no pre-regeneration point on the percolation cluster from
distance m to distance 2m to the right of the left fresh point. Both possibilities are
exponentially unlikely in m. The first one because it requires the walk to backtrack at
least m steps to the left, which has probabilty bounded by a constant times (e−2λ/(1−
e−2λ))−m (adapt the proof of Lemma 6.3 in [14]). The second one by [14, Lemma 3.3].

Consequently, ρp1 can be bounded from above by a geometric number of independent
random variables all stochastically bounded by a nonnegative integer-valued random
variable with some finite exponential moment. From this, large deviation estimates imply
that ρp1 has exponentially decaying tails.

The proof of E◦[(τp1 )κ] < ∞ for arbitrary κ > 0 can be adapted from the proof of
Lemma 6.5 in [14], a brute-force estimate which carries over immediately.

4.5 Proof of Proposition 2.5

We are now ready to give the proof of the tail result for the regeneration times.

Proof of Proposition 2.5. For each n ∈ N, we have

P(τ2 − τ1 ≥ n) ≤ P
(
(τ2 − τ1)B ≥ n/2

)
+ P

(
(τ2 − τ1)traps ≥ n/2

)
.

The time spent on the backbone can be neglected due to Lemma 4.5. We now estimate
the time spent in traps. From Lemma 4.1 in [14], we infer

P
(
(τ2 − τ1)traps ≥ n

)
= P◦

(
τ traps1 ≥ n|Xk ≥ 1 for all k ∈ N

)
.

If 0 is a pre-regeneration point (or just connected to +∞ via a path that does not visit
vertices with x-coordinate strictly smaller than 0), the argument that leads to (24) in [1]
gives

Pω,λ(Yn 6= 0 for all n ∈ N) ≥
(
∑∞
k=0 e

−λk)−1

eλ + 1 + e−λ
=

1− e−λ

eλ + 1 + e−λ
=: pesc.

Integration with respect to P◦p gives

pesc ≤ P◦(Yn 6= 0 for all n ≥ 1) ≤ 1.
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Notice that the same bound holds when P◦ is replaced by P. Thus

P◦
(
τ traps1 ≥ n|Xk ≥ 1 for all k ∈ N

)
≤ 1

pesc
P◦
(
τ traps1 ≥ n,Xk ≥ 1 for all k ∈ N

)
.

Analogously, when estimating P(τ1 ≥ n), the time spent on the backbone can be neglected
by Lemma 4.12, so that it suffices to bound P(τ traps1 ≥ n) in this case. We shall only
estimate P◦(τ traps1 ≥ n,Xk ≥ 1 for all k ∈ N) as P(τ traps1 ≥ n) can be estimated similarly.
To this end, we consider (Yn)n∈N0

and (Y p
n )n∈N0

as constructed in Section 4.4. Further,
we use the family T ann

ij , i ∈ Z, j ∈ N of random variables introduced in Lemma 4.8.
By construction, the number of times (Yn)n∈N0 visits any node in ω which is not in the
interior of a trap piece can be bounded by the number of times (Y p

n )n∈N0 visits the
corresponding node in ωp. This holds in particular for all trap entrances. By Lemma
4.11, there exist regeneration points of (Y p

n )n∈N0 . These also are regeneration points for
(Yn)n∈N0 . We have

P◦
(
τ traps1 ≥ n,Xk ≥ 1 for all k ∈ N

)
≤ P◦

( T∑
i=1

Vi∑
j=1

Tij ≥ n
)
≤ P◦

( ρp1∑
i=1

τp
1∑

j=1

T ann
ij ≥ n

)
,

where T is the number of traps in [0, ρ1), Vi is the number of visits to the ith trap, Tij is
the time (Yn)n∈N0 spends during the jth excursion into the ith trap, and (T ann

ij )i,j∈N is a
family of random variables independent of (ωp, (Y p

n )n∈N0
) such that the T ann

ij , i, j ∈ N are
independent given the family (Li)i∈N with T ann

ij being distributed as the duration of one
excursion of (Yn)n∈N0

under Pω,λ into a trap of length Li. Since (ρp1 , τ
p
1 ) and (T ann

ij )i,j∈N
are independent, we can write this as

P◦
( ρp1∑
i=1

τp
1∑

j=1

T ann
ij ≥ n

)
=

∞∑
k=1

∞∑
l=1

P◦
(
ρp1 = k, τp1 = l,

k∑
i=1

l∑
j=1

T ann
ij ≥ n

)

=

∞∑
k=1

∞∑
l=1

P◦
(
ρp1 = k, τp1 = l

)
· P
( k∑
i=1

l∑
j=1

T ann
ij ≥ n

)
. (4.6)

First look at P(
∑l
j=1 T

ann
ij ≥ n) for fixed i and l ∈ N. We write this as

P

( l∑
j=1

T ann
ij ≥ n

)
= P

( l∑
j=1

T ann
ij ≥ n, `i < m0 ∨m1

)
+ P

( l∑
j=1

T ann
ij ≥ n, `i ≥ m0 ∨m1

)
,

with m0,m1 as in Lemma 4.8. With Pm,λ and T qu
ij , i, j ∈ N as in Lemma 4.7, Markov’s

inequality and the convexity of x 7→ xα+1 on [0,∞) give

P

( l∑
j=1

T ann
ij ≥ n, `i < m0 ∨m1

)
=

m0∨m1−1∑
m=1

Pp(`i = m)Pm,λ

( l∑
j=1

T qu
ij ≥ n

)

≤ (m0∨m1) max
m∈{1,...,m0∨m1−1}

Em,λ

[( l∑
j=1

T qu
ij

)α+1]
n−α−1

≤ (m0∨m1) max
m∈{1,...,m0∨m1−1}

Em,λ

[
lα

l∑
j=1

(T qu
ij )α+1

]
n−α−1

= (m0∨m1)lα+1n−α−1 max
m∈{1,...,m0∨m1−1}

Em,λ
[
(T qu
i1 )α+1

]
.
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Let N(k) be the number of times the walk (Sn)n∈N0
visits vertex k ∈ {1, . . . ,m}. Note

that in order to describe T qu
i1 , we also need to take lazy steps into account. This means

that, under Pm,λ, we have the following identity in law,

T qu
i1

law=

m∑
k=1

N(k)∑
l=1

(1 + Zk,l)

where N(k) has distribution geom(ek) and the Zk,l’s are a family of independent random

variables, independent of (N(1), . . . , N(k)), with distribution geom
(

eλ+e−λ

eλ+1+e−λ

)
for k =

1, . . . ,m−1, l ∈ N and geom
(

e−λ

eλ+1+e−λ

)
for k = m, l ∈ N, respectively. Since m < m0∨m1

and the escape probability ek is nonincreasing in k, we can bound ek by em0∨m1 for all
k ∈ {1, . . . ,m}. We use this to stochastically bound N(k). In combination with the
convexity of x 7→ xα+1 on [0,∞) this leads to

Em,λ
[
(T qu
i1 )α+1

]
= Em,λ

[( m∑
k=1

N(k)∑
l=1

(1+Zk,l)

)α+1]

≤ mα
m∑
k=1

Em,λ
[
N(k)α+1

]
Em,λ

[
(1+Zk,m)α+1

]
≤ (m0 ∨m1)α+1Em,λ[Nα+1]Em,λ[(1+Z)α+1]

where N ∼ geom(em0∨m1
) and Z ∼ geom

(
e−λ

eλ+1+e−λ

)
. Thus

max
m∈{1,...,m0∨m1−1}

Em,λ
[
(T qu
i1 )α+1

]
≤ c(m0,m1, λ) = c(λ)

for some constant c(λ). Combining this with the estimate for
∑l
j=1 T

ann
ij in the case of

traps of length larger or equal to m0 ∨m1 from Lemma 4.8, we get that there exists
d′ = d′(p, λ) > 0 such that

P

( l∑
j=1

T ann
ij ≥ n

)
≤ d′

(
lα+1n−(α+1) + lα+1n−α + le

−µ n
6lrλ

)
.

We further conclude

P

( k∑
i=1

l∑
j=1

T ann
ij ≥ n

)
≤ kP

( l∑
j=1

T ann
1j ≥

n

k

)
≤ kd′

(
lα+1

(n
k

)−(α+1)

+ lα+1
(n
k

)−α
+ le

−µ n
6lrλk

)
≤ kα+2lα+1d′

(
o(n−α) + n−α

)
+ kld′e

−µ n
6lrλk . (4.7)

Note that when estimating τ1 under P, all calculations using Lemma 4.8 involve an
additional factor of log n. Combining (4.6) and (4.7), we get

P◦
(
τ traps1 ≥ n

)
≤ d′

∞∑
k,l=1

P◦
(
ρp1 = k, τp1 = l

)
kα+2lα+1n−α(1 + on(1))

+ d′
∞∑

k,l=1

P◦
(
ρp1 = k, τp1 = l

)
kle
−µ n

6lrλk . (4.8)

For k, l ∈ N, we write

P◦
(
ρp1 = k, τp1 = l

)
= P◦

(
τp1 = l

)
· P◦

(
ρp1 = k|τp1 = l

)
.
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As the second factor vanishes for k > l, we get

∞∑
k,l=1

P◦
(
ρp1 = k, τp1 = l

)
kα+2lα+1 =

∞∑
l=1

P◦
(
τp1 = l

)
lα+1

l∑
k=1

P◦
(
ρp1 = k|τp1 = l

)
kα+2

≤
∞∑
l=1

P◦
(
τp1 = l

)
l2α+4.

Hence, it follows from Lemma 4.12 that the first sum on the right-hand side of (4.8)
is bounded by a constant times n−α. For τ1 under P, this becomes a constant times
n−α log n. It also follows from Lemma 4.12 and Markov’s inequality that, for any κ > 0,

∞∑
k,l=1

P◦
(
ρp1 = k, τp1 = l

)
kle
−µ n

6lrλk =

∞∑
l=1

P◦(τp1 = l)l

l∑
k=1

P◦
(
ρp1 = k|τp1 = l

)
ke
−µ n

6lrλk

≤
∞∑
l=1

P◦
(
τp1 = l

)
l3e
−µ n

6l2rλ

≤ E◦
[
(τp1 )κ

] ∞∑
l=1

l−κ+3e
−µ n

6l2rλ .

Setting l∗ :=
√

µ
6rλ(α+1)

n
logn we get

∞∑
l=1

l−κ+3e
−µ n

6l2rλ =
∑
l≤l∗

l−κ+3e
−µ n

6l2rλ +
∑
l>l∗

l−κ+3e
−µ n

6l2rλ

≤ e−µ
n

6rλ(l∗)2
∞∑
l=1

l−κ+3 + (l∗)
−κ+3

2

∞∑
l=1

l
−κ+3

2 = o(n−α)

for sufficiently large κ.

A Uniform integrability of renewal counting processes

In our proof of Theorem 1.4, we use that the suitably renormalised renewal counting
process of a delayed renewal process is uniformly integrable. The following result is
(more than) sufficient for our purposes.

Proposition A.1. Let ξ2, ξ3, . . . be a sequence of i.i.d. random variables independent
of ξ1 such that P(ξk > 0) = 1 for k ∈ N, where P denotes the underlying probability
measure. Suppose there are constants d > 0 and α ∈ (1, 2] such that P(ξ2 > t) ≤ dt−α

for all t ≥ 1. Then, with µ := E[ξ2], Sn :=
∑n
k=1 ξk, ν(t) := inf{n ∈ N : Sn > t} and

a(t) := t1/α if α ∈ (1, 2) and a(t) :=
√
t log t if α = 2, it holds that(

exp
(
θ
ν(t)− t/µ

a(t)

))
t≥2

is uniformly integrable for every θ > 0 (A.1)

and ((ν(t)− t/µ
a(t)

)p
−

)
t≥2

is uniformly integrable for every p ∈ (1, α) (A.2)

for which there exists an r > p with E[ξr1 ] <∞.

The statements (A.1) and (A.2) have been shown in [17] in the case where the ξk,
k ∈ N are i.i.d. and ξ1 is in the domain of attraction of an α-stable law. Unfortunately, we
have not been able to apply a coupling argument in order to deduce uniform integrability
here from the main results in the cited source. However, the proofs given in [17] apply.
We shall provide a sketch of these proofs with the necessary changes needed here.
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Sketch of the proof of Proposition A.1. Let θ > 0, and denote by ψ and ϕ the Laplace
transforms of ξ1 and ξ2, respectively, i.e., ψ(λ) = E[exp(−λξ1)] and ϕ(λ) := E[exp(−λξ2)]

for λ ≥ 0. Arguing as in (2.2) of [17], we infer

E
[

exp
(
θ
ν(t)− t/µ

a(t)

)]
≤ 1 +

ψ(λ)

ϕ(λ)

(
eλµϕ(λ)

) t
µ

∫ ∞
0

exϕ(λ)
xa(t)
θ −1 dx

where the difference to (2.2) in [17] is a factor ψ(λ)/ϕ(λ), which appears here since we
allow the first step to have a different law than the other steps. Equation (2.7) in [11,
XIII.2] and Proposition 2.5 give

ϕ(λ) = 1− µλ+ λ

∫ ∞
0

(1− e−λx)P(ξ2 > x) dx ≤ 1− µλ+

∫ ∞
0

(1− eλx)(1 ∧ dx−α) dx .

The third summand on the right hand side is the second-order term of the Laplace
transform of a random variable with tail probability 1∧dx−α for x > 0. From [8, Theorem
8.1.6], we thus infer that it is O(λα) as λ → 0 if α ∈ (1, 2) and O(λ2| log λ|) if α = 2.
Choosing λ∗ := λ/a(t), this gives

eλ
∗µϕ(λ∗) ≤

(
1+

µλ

a(t)
+O

(
t−

2
α

))(
1− µλ

a(t)
+

λ

a(t)

∫ ∞
0

(1−e−
λx
a(t) )(1 ∧ dx−α) dx

)
= 1 +O(t−1),

thus
sup
t≥2

(
eλ
∗µϕ(λ∗)

)t/µ
<∞.

Further, the proof of (2.3) in [17] applies and gives

sup
t≥t0

∫ ∞
0

exϕ(λ∗)
xa(t)
θ −1 dx <∞

for t0 and λ sufficiently large. Uniform integrability of (exp(θ ν(t)−t/µa(t) ))t≥2 now follows
from the Vallée-Poussin criterion.

Turning to the second assertion, pick 1 < p < α and r ∈ (p, α) such that E[ξr1 ] < ∞.
Following the proof of (2.5) in [17] with mild adaptions, we obtain

E
[
(ν
(
E[Sn]

)
− n)r−

]
≤ r + const · E[|Sn − E[Sn]|r] = O

(
a(n)r

)
as n→∞. Here, the last step follows from

E[|Sn − nµ|r] ≤ 2r−1
(
E[|S1 − µ|r] + E[|Sn − S1 − (n− 1)µ|r]

)
.

By assumption, E[Sr1 ] = E[ξr1 ] < ∞. Further, positive and negative part of ξ2 − µ can
be stochastically dominated by a nonnegative random variable with tails of order x−α.
Hence it follows from [16, Lemma 5.2.2] that

E[|Sn − S1 − (n− 1)µ|r|] = O(a(n)r) as n→∞.

The rest of the proof is as in [17].
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