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1 Introduction

Starting with the seminal works of Erdős, Schlein, and Yau [15, 16], a large portion
of recent progress in random matrix theory rests on strong concentration of measure
phenomena for the resolvent on almost microscopic scales. Such estimates are an
important model-dependent step in proving Wigner-Dyson universality of the local
eigenvalue statistics and uniform delocalization bounds for the eigenvectors. The mean-
field setting is especially well-understood: the methods in [12, 18, 17] give strong results
and the central ideas are robust enough to cover a wide range of models (see, for
example, [2, 3, 5, 6, 7, 9, 14, 13] and references therein). The most basic example
consists of the N × N Wigner matrices, whose entries Hij are drawn, independently
up to symmetry, from some density with mean zero and variance N−1. A typical result
proves that the resolvent G(z) = (H − z)−1 has essentially deterministic entries

Gij(z) ≈ msc(z)δij , (1.1)

the approximation being valid on the smallest possible scale Im z � N−1. The function

msc(z) =
−z +

√
z2 − 4

2
=

∫ 2

−2

1

λ− z

√
4− λ2

2π
dλ

is the Stieltjes transform of the semicircle law.
The approximations (1.1) are usually proved by deriving an approximate self-consis-

tent equation
1 + (z + 〈G(z)〉)G(z) ≈ 0, (1.2)

where we used the notation 〈A〉 = N−1 TrA that we retain throughout this paper. The
stability of the self-consistent equation is then used to show that the approximate solution
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Random characteristics for Wigner matrices

G(z) is close to the solutionmsc(z) of the exact equation. Because it is usually not possible
to prove the validity of the self-consistent equation on local scales Im z � N−1 directly,
the analysis uses the stability of (1.2) again to show that rough estimates on the validity
of (1.2) self-improve at finer scales. This idea enables a careful bootstrapping scheme,
which allows one to successively improve the scale of the approximation (1.1).

It was noted by Pastur [22], that the self-consistent equation (1.2) can also be viewed
as the terminal constraint at t = 1 of the deterministic advection equation

∂tG(t, z) = 〈G(t, z)〉∂zG(t, z), G(0, z) = −z−1, (1.3)

which can be easily solved by considering a suitable set of deterministic characteristic
curves. In fact, if one generates a Gaussian Wigner matrix dynamically by evolving the
entries with Brownian motion [11], one can derive a stochastic version of (1.3)

dG(t, z) = 〈G(t, z)〉∂zG(t, z) dt+ dM(t, z) (1.4)

with some explicit matrix-valued martingale M(t, z) (see, for example, [24]). This ap-
proach can be used to derive the validity of the semicircle law on global scales Im z = O(1)

in the infinite-volume limit [4]. Deterministic characteristic curves have also featured in
the analysis on local scales in more recent random matrix literature such as [1, 8, 19, 20].

The works [25, 26] showed that the SDE (1.4) can also be analyzed on local scales by
considering the evolution along the random characteristic

ż(t) = −〈G(t, z(t))〉, (1.5)

yielding a simple dynamical mechanism for directly proving concentration of measure
for the resolvent. The method thus allows one to completely separate any stability
arguments from local concentration of measure estimates, thereby circumventing the
need for a bootstrap argument.

The purpose of this paper is to show that this approach to local resolvent estimates is
not limited to Wigner matrices with Gaussian entries. The basis of this is the construction
of a matrix martingale H(t) whose rescaled entries follow a given density % at time t = 1.
This will be possible for densities % satisfying the following assumption.

Assumption 1.1. The density % > 0 is strictly positive, has zero mean and unit variance,
and the function

a(h) =
1

%(h)

∫ ∞
h

k%(k) dk, (1.6)

is bounded and Lipschitz continuous on R.

The integral equation (1.6) is equivalent to

%(h) =
C

a(h)
exp

(
−
∫ h

0

k

a(k)
dk

)
,

so the condition that a be bounded essentially amounts to % being sub-Gaussian, whereas
the Lipschitz continuity of a is linked to the regularity of %. Madan and Yor [21] used the
Lipschitz continuity of a to construct a scalar martingale h(t) satisfying

dh(t) = a

(
h(t)√
t

)1/2

db(t), h(0) = 0,

where b is a standard Brownian motion. Inspired by an idea of Dupire [10], they then
showed that Kolmogorov’s forward equation implies

P(h(t) ∈ dx) = t−1/2%(t−1/2x) dx. (1.7)
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Random characteristics for Wigner matrices

Hence, to construct the matrix process H(t), we take an array (Bij) of standard Brownian
motions that are independent up to the constraint Bij = Bji and define Hij(t) as the
solution of the SDE

dHij(t) =
1√
N
a

(√
N

t
Hij(t)

)1/2

dBij(t), Hij(0) = 0.

Then H(t) =
√
tH in distribution, where H is a Wigner matrix whose rescaled entries√

NHij have distribution %. It will be important in the sequel that the quadratic variation
of Hij(t) satisfies

d[Hij ](t) = σij(t) dt, σij(t) =
1

N
a

(√
N

t
Hij(t)

)
.

Combining Itô’s lemma with the Neumann expansion of the resolvent yields the
matrix-valued SDE

dG(t, z) = −G(t, z) dH(t)G(t, z) +G(t, z) dH(t)G(t, z) dH(t)G(t, z)

for the resolvent process G(t, z) = (H(t) − z)−1 with z ∈ C+. Multiplying out the drift
gives an expression of the form

dG(t, z) = −G(t, z) (dH(t)− T [t, G(t, z)] dt)G(t, z) +G(t, z)S[t, G(t, z)]G(t, z) dt. (1.8)

The matrix-valued operator S[t, ·], which acts on an N ×N matrix A as

S[t, A]ij = δij
∑
k

σik(t)Akk,

is a dominant term whose presence in (1.8) provides the self-energy corrections in the
resolvent. On the other hand, the operator

T [t, A]ij = (1− δij)σij(t)Aji

should be thought of as a finite-volume error reflecting the lack of Hermitian symmetry
in our model. Therefore, the self-energy correction coincides with the Itô correction.
This is similar in spirit (and identical in the Gaussian case) to the cumulant expansion
of He, Knowles, and Rosenthal [18]. However, the technical details are simpler here
because the quadratic variation process naturally encodes the fluctuations around the
Gaussian noise driving the dynamics.

We will illustrate our method by giving a new proof of the weak bulk local semicircle
law for the normalized resolvent trace of Wigner matrices whose entries are drawn
from densities satisfying Assumption 1.1. To state this result, we will make use of
the stochastic domination language of [12]. Let {X(u)}u∈U and {Y (u)}u∈U be two
non-negative N -dependent families of random variables. We will say that X(u) is
stochastically dominated by Y (u) uniformly in u ∈ U , if, given any ε, p > 0, the inequality

sup
u∈U

P (X(u) > NεY (u)) ≤ N−p

is satisfied for all sufficiently large N ≥ N0(ε, p). We express this relationship by writing
X ≺ Y uniformly in u ∈ U . Although most of the probabilities in this paper can be
controlled with an explicit exponential tail, we have refrained from doing so for the sake
of brevity. Our proof of the local semicircle law will be valid in a bulk spectral domain

D = W + i(η, 1)
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Random characteristics for Wigner matrices

where W = [W1,W2] ⊂ [−2 + κ, 2− κ] for some κ > 0. For simplicity, we will assume that
the minimal spectral scale is given by

η = N−1+θ

where θ > 0 is fixed, but arbitrarily small.

Theorem 1.2. We have

sup
z∈D
|〈G(1, z)〉 −msc(z)| ≺

1√
Nη

.

We stress that this theorem first appeared in [15]. It has been extended both to
Wigner matrices with minimal assumption on the distribution of the entries [2] and to
random matrices with a more general spread-out variance profile [12].

Theorem 1.2 implies that 〈ImG(1, z)〉 is bounded both above and away from zero
when z ∈ D. The Schur complement formula and classical concentration of measure
results show that

sup
z∈D

(
1 +msc(z)

Nη

)−1/2 ∣∣∣∣ 1

Gkk(1, z)
+ z +msc(z)

∣∣∣∣ ≺ 1

so Taylor expansion yields

sup
z∈D
|G(1, z)kk −msc(z)| ≺

1√
Nη

. (1.9)

Similar considerations apply to the off-diagonal entries

sup
z∈D
|G(1, z)jk| ≺

1√
Nη

, j 6= k. (1.10)

These calculations have become standard and are explained in great detail in [17].
However, given Theorem 1.2, no further bootstrapping is required to conclude (1.9)
and (1.10).

The organization of this paper is as follows. In Section 2, we show in which sense
the evolution (1.8) approximates (1.4). Then, in Section 3, we prove that (1.5) defines
an approximate characteristic flow, which we use to derive the local semicircle law in
Section 4.

2 The self-energy correction

In comparison the Gaussian case, the main complication in the random characteristic
approach for more general Wigner matrices is that the self-energy operator S[t, ·] remains
random and time-dependent. Nevertheless, we will prove in Theorem 2.1 that

S[t, G(t, z)] = 〈G(t, z)〉+O

(√
1 + Im 〈G(t, z)〉

N Im z

)

with very high probability so that the characteristic curve (1.5) still counteracts a large
part of the term

G(t, z)S[t, G(t, z)]G(t, z) dt

in (1.8). The resulting error term is not small a-priori, but retains a specific structure
that enables the Grönwall scheme of Lemma 3.3.

For technical reasons, we will prove Theorem 2.1 for spectral parameters z in a very
large domain

D′ = (W1 − 3η−1,W2 + 3η−1) + i(η/4, 1 + 3η−1) (2.1)
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and for times t that are greater than a cutoff

t0 = N−K (2.2)

with some fixed K ∈ N to be specified later in the proof of Lemma 3.3. In the statement
of Theorem 2.1, and throughout this paper, ‖ · ‖ denotes the operator norm.

Theorem 2.1. For any choice of K ∈ N in (2.2) we have

sup
t∈[t0,1],z∈D′

(
1 + Im 〈G(t, z)〉

N Im z

)−1/2

‖S[t, G(t, z)]− 〈G(t, z)〉‖ ≺ 1.

Proof. We first show that

|S[t, G(t, z)]kk − 〈G(t, z)〉| ≺
√

1 + Im 〈G(t, z)〉
N Im z

(2.3)

uniformly in t ∈ [t0, 1], z ∈ D′, and k ∈ {1, . . . , N}. Let Hk(t) denote the matrix obtained
by replacing the k-th row and column of H(t) by zeros. Denoting by Gk(t, z) the resolvent
of Hk(t), the resolvent identity implies

Gjj(t, z) = Gkjj(t, z) +
Gkj(t, z)Gjk(t, z)

Gkk(t, z)
(2.4)

when j 6= k. Since σjk(t) ≤ CN−1 by Assumption 1.1, we conclude the uniform determin-
istic estimate∣∣∣∣∣∣

∑
j

σkj(t)(G
k
jj(t, z)−Gjj(t, z))

∣∣∣∣∣∣ ≤ C

N Im z
+

1

|Gkk(t, z)|
∑
j

σkj(t)|Gkj(t, z)|2

≤ C

N Im z

(
1 +

ImGkk(t, z)

|Gkk(t, z)|

)
≤ C

N Im z

using (2.4) and the trivial resolvent bound for the summand with j = k. Similarly, we
have ∣∣〈Gk(t, z)〉 − 〈G(t, z)〉

∣∣ ≤ C

N Im z
.

To prove (2.3) it thus suffices to show that∣∣∣∣∣∣
∑
j

σkj(t)G
k
jj(t, z)− 〈Gk(t, z)〉

∣∣∣∣∣∣ ≺
√

1 + Im 〈Gk(t, z)〉
N Im z

(2.5)

uniformly in t ∈ [t0, 1], z ∈ D′, and k ∈ {1, . . . , N}. After conditioning on Hk(t), the
random variables σkj(t)Gkjj(t, z) are independent and bounded by C N−1|Gkjj(t, z)|. Using
Hoeffding’s inequality with respect to the conditional probability Pk we get

Pk

∣∣∣∣∣∣
∑
j

σkj(t)G
k
jj(t, z)− µ

∣∣∣∣∣∣ > υα

 ≤ 2 exp
(
−cα2

)
with

µ = E k

∑
j

σkj(t)G
k
jj(t, z)

 = 〈Gk(t, z)〉

and

υ2 =
1

N2

∑
j

|Gkjj(t, z)|2 ≤
1

N2

∑
i,j

|Gkij(t, z)|2 =
〈ImGk(t, z)〉
N Im z

,
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Random characteristics for Wigner matrices

which proves (2.5).

The extension of (2.3) to the maximum over k is by the union bound, whereas the
extension to the supremum over all z ∈ D′ and t ∈ [t0, 1] beyond the cutoff t0 = N−K

is by a stochastic continuity bound that we turn to in the next step. We fix r > 0 and
consider the neighborhood

Br(t, z) = {(s, w) ∈ [t0, 1]×D′ : |t− s|2 + |z − w|2 ≤ r2}

around some point (t, z) ∈ [t0, 1]×D′. The theorem then follows from (2.3) and

sup
(s,w)∈Br(t,z)

‖S[s,G(s, w)]− S[t, G(t, z)]‖ ≺ NKr1/2. (2.6)

Indeed, for every L ∈ N and r = N−L, there exists an L′ ∈ N and a finite grid Λ ⊂
[t0, 1] × D′ of cardinality |Λ| ≤ NL′

such that dist(Λ, [t0, 1] × D) ≤ r. Let ε, p > 0 be
arbitrary. Applying the union bound to (2.3) and (2.6) shows that the events

‖S[t, G(t, z)]− 〈G(t, z)〉‖ ≤ Nε

(
1 + Im 〈G(t, z)〉

N Im z

)1/2

and

sup
(s,w)∈Br(t,z)

‖S[s,G(s, w)]− S[t, G(t, z)]‖ ≤ Nε+Kr1/2

hold simultaneously for all (t, z) ∈ Λ with probability 1−N−p, when N is large enough.
The claim of Theorem 2.1 follows since L can be chosen arbitrarily large.

Finally, to prove (2.6), we note first that ‖H(t + s) − H(t)‖ is a submartingale in
s ≥ 0. Doob’s inequality and classical norm bounds [23] for the rescaled Wigner matrix
H(t+ r)−H(t) show that

(
E

∣∣∣∣∣ sup
s∈[t,t+r]

‖H(s)−H(t)‖

∣∣∣∣∣
p)1/p

≤ p

p− 1
(E ‖H(t+ r)−H(t)‖p)1/p ≤ Cp r1/2

for all p > 1 with some p-dependent constant Cp <∞. Since the resolvent is Lipschitz
continuous with constant η−2 in both H and z, this implies

sup
|t−s|2+|z−w|2≤r2

‖G(s, w)−G(t, z)‖ ≺ η−2r1/2.

Doob’s inequality also implies that

(
E

∣∣∣∣∣ sup
s∈[t,t+r]

|Hkj(s)−Hkj(t)

∣∣∣∣∣
p)1/p

≤ Cp
√

r

N

for any pair of indices j, k. In combination with the Lipschitz continuity of a, this implies

sup
s∈[t,t+r]

|σkj(s)− σkj(t)| ≤ sup
s∈[t,t+r]

C√
N

∣∣∣∣Hkj(s)√
s
− Hkj(t)√

t

∣∣∣∣ ≺ r1/2

Nt0
= NK−1r1/2

for any t ≥ t0. Since S[t, G(t, z)] is a polynomial combination of the σkj(t) and G(t, z),
which are bounded by N−1 and η−1 ≤ N respectively, the bound (2.6) follows.
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3 Fluctuations along characteristic curves

We will show that, for fixed realizations of the randomness, the unique solutions of

γ̇(t, z) = −〈G(t, γ(t, z))〉, γ(0, z) = z

serve as approximate characteristic curves of the resolvent SDE (1.8). We start these
curves at spectral parameters z in an initial spectral domain

D0 = (W1 − 2η−1,W2 + 2η−1) + i(η/2, 1 + 2η−1) \Bδ(0),

where δ > 0 is any constant satisfying

1

2δ
− 2δ ≥ 1 + sup{|z| : z ∈ D}. (3.1)

Thus G(0, z) = −z−1 is uniformly bounded and Lipschitz continuous in D0. Given an
initial point z ∈ D0, we consider the process

R(t, z) = G(t ∧ τz, ξ(t, z))

where
ξ(t, z) = γ(t ∧ τz, z)

is the characteristic flow stopped at

τz = inf{t > 0 : Im ξ(t, z) ≤ η/4}.

The main observation is that 〈R(t, z)〉 is approximately constant.

Theorem 3.1. The process R(t, z) satisfies

sup
t≤1
|〈R(t, z)〉 − 〈R(0, z)〉| ≺ 1√

Nη

uniformly in z ∈ D0.

Proof. Since ξ defines a piecewise C1-process, an application of Itô’s lemma shows that
R(t, z) satisfies the same SDE as G(t, z) but with an additional counter-term in the drift.
More precisely, while t ≤ τz, the evolution consists of two terms

dR(t, z) = dF (t, z) + dA(t, z)

with

dF (t, z) = −R(t, z) (dH(t)− T [t, R(t, z)] dt)R(t, z),

dA(t, z) = R(t, z) (S[t, R(t, z)]− 〈R(t, z)〉)R(t, z) dt.

When dealing with the integrated versions of these processes, we will choose the initial
conditions F (0, z) = A(0, z) = 0 so that 〈R(t, z)〉 − 〈R(0, z)〉 = 〈F (t, z)〉 + 〈A(t, z)〉. The
proof of Theorem 3.1 is then a direct consequence of the estimates on F (t, z) and A(t, z)

provided in Lemma 3.2 and Lemma 3.3, respectively.

The proofs of the subsequent results will repeatedly use the crucial fact that any
continuously differentiable function f satisfies the identity∫ b

a

f ′(Im ξ(s, z)) 〈ImR(s, z)〉 ds = −
∫ b

a

f ′(Im ξ(s, z)) d (Im ξ(s, z))

= f(Im ξ(a, z))− f(Im ξ(b, z))

provided that a, b ≤ τz. The term f(Im ξ(a, z)) − f(Im ξ(b, z)) is then usually estimated
by a trivial bound in terms of η. We refer to these two steps simply as the “integration
trick”.
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Lemma 3.2. The process F (t, z) satisfies

sup
t≤1
|〈F (t, z)〉| ≺ 1

Nη

uniformly in z ∈ D0.

Proof. The martingale part of F (t, z) is

dM(t) = −R(t, z) dH(t)R(t, z)

and the quadratic variation of its unit trace 〈M〉 is given by

d [〈M〉] (t) = 〈R∗(t, z) dH(t)R∗(t, z)〉 〈R(t, z) dH(t)R(t, z)〉 ≤ C

N2
‖
√
σ(t)�R2(t, z)‖22 dt,

where ‖ · ‖2 =
√

Tr | · |2 denotes the Hilbert-Schmidt norm, � denotes the entrywise
product, and

√
σ(t) is the matrix with entries

√
σjk(t). If t ≤ τz, we conclude that

[〈M〉](t) ≤ C

N2

∫ t

0

‖
√
σ(s)�R2(s, z)‖22 ds

≤ C

N3

∫ t

0

Tr |R|2(s, z)

(Im ξ(s, z))2
ds

≤ C

N2

∫ t

0

〈ImR(s, z)〉
(Im ξ(s, z))3

ds =
C

N2

(
1

(Im ξ(t, z))2
− 1

(Im ξ(0, z))2

)
by the integration trick. Thus

sup
t≤τz
|〈M(t)〉| ≺ (Nη)−1

by the Burkholder-Davis-Gundy inequality and Markov’s inequality. The other term in
F (t, z),

sup
t≤τz

∣∣∣∣∫ t

0

〈R(s, z)T [s,R(s, z)]R(s, z)〉 ds
∣∣∣∣ ≤ C

N

∫ τz

0

〈|R(s, z)|2〉
Im ξ(s, z)

ds =
C

N

∫ τz

0

〈ImR(s)〉
(Im ξ(s, z))2

ds,

is also stochastically dominated by (Nη)−1 uniformly in z ∈ D0 because of the integration
trick.

Lemma 3.3. The process A(t, z) satisfies

sup
t≤1
|〈A(t, z)〉| ≺ 1√

Nη

uniformly in z ∈ D0.

Proof. We will split the integral

|〈A(t, z)〉| ≤
(∫ t0

0

+

∫ t

t0

)
|〈R(s, z) (S[s,R(s, z)]− 〈R(s, z)〉)R(s, z)〉| ds (3.2)

at the point t0 from (2.2). By the trivial bound on the resolvent, the characteristic ξ(t, z)
started at z ∈ D0 remains in the domain D′ from (2.1) for all t ≤ 1. Setting

u(t) = 1 + Im 〈R(t, z)〉,
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Theorem 2.1 shows that the second part of the integral in (3.2) is bounded by

Nθ/2

∫ t

t0

〈|R(s, z)|2〉√
N Im ξ(s, z)

√
u(s) ds ≤ Nθ/2

√
N

∫ t

0

Im 〈R(s, z)〉
(Im ξ(s, z))3/2

u(s) ds (3.3)

with probability 1−N−p for arbitrary p > 0 and large enough N . The first part of the
integral in (3.2) can be bounded by Ct0η−3 using the trivial bound on the operator norm
of the resolvent. So choosing the cutoff exponent K in (2.2) large enough and using
Lemma 3.2 yields

u(t) ≤ 1 + u(0) +N
θ
2

∫ t

0

Im 〈R(s, z)〉
(Im ξ(s, z))3/2

u(s) ds

on an event that also has probability 1 −N−p for arbitrary p > 0 and large enough N .
On this event, Grönwall’s inequality implies

u(t) ≤ (1 + u(0)) exp

(
N

θ
2

∫ t

0

Im 〈R(s, z)〉
N1/2 (Im ξ(s, z))3/2

ds

)
and the integral inside the exponential is bounded by 4(Nη)−1/2 = 4N−θ/2 because of
the integration trick. Since 〈R(0, z)〉 ≤ δ−1 for z ∈ D0, we have shown that

sup
t≤1

u(t) ≺ 1.

We now insert this bound on u back into the integral in (3.3). Choosing the cutoff
exponent K in (2.2) large enough yields

sup
t≤1
|〈A(t, z)〉| ≺ 1

Nη
+

1√
N

∫ 1

0

Im 〈R(s, z)〉
(Im ξ(s, z))3/2

ds ≺ 1√
Nη

via the integration trick.

Having established Theorem 3.1, we now argue that the stochastic domination holds
simultaneously for a continuum of points using a discretization argument.

Theorem 3.4. Let τ ′z = inf{t > 0 : Im γ(t, z) ≤ η/2}. Then

sup
z∈D0

sup
t≤1∧τ ′

z

|〈R(t, z)〉 − 〈R(0, z)〉| ≺ 1√
Nη

. (3.4)

Proof. We begin by proving a Lipschitz bound for the characteristic flow γ(t, ·). Fix
z, w ∈ C+ and let

u(t) = γ(t, z)− γ(t, w).

As long as Im γ(t, z), Im γ(t, w) > η/4, we have

|u(t)| ≤ |u(0)|+
∫ t

0

|〈R(s, z)−R(s, w)〉| ds

≤ |u(0)|+ 1

N

∫ t

0

|u(s)|‖R(s, z)‖2‖R(s, w)‖2 ds

≤ |u(0)|+
∫ t

0

|u(s)|
2

(
〈ImR(s, z)〉
Im γ(s, z)

+
〈ImR(s, w)〉
Im γ(s, w)

)
ds

so Grönwall’s inequality and the integration trick yield

log
|u(t)|
|u(0)|

≤ 1

2

∫ t

0

(
〈ImR(s, z)〉
Im γ(s, z)

+
〈ImR(s, w)〉
Im γ(s, w)

)
ds =

1

2
log

(
Im z Imw

Im γ(t, z) Im γ(t, w)

)
.
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Rearranging, we get

|γ(t, z)− γ(t, w)| ≤

√
Im z Imw

Im γ(t, z) Im γ(t, w)
|z − w|. (3.5)

To prove the theorem, we choose a finite grid Λ ⊂ D0 such that its cardinality is
bounded by |Λ| ≤ NL for some L ∈ N and

dist(D0,Λ) ≤ η4

√
Nη

.

From Theorem 3.1 and the union bound, we have

sup
z∈Λ

sup
t≤1
|〈R(t, z)〉 − 〈R(0, z)〉| ≺ 1√

Nη
, (3.6)

so it suffices to show that the left side of (3.6) controls the left side of (3.4). Given z ∈ D0,
we pick w ∈ Λ such that |z−w| ≤ η3√

Nη
. Then τ ′w ≤ τw and τ ′z ≤ τw since (3.5) guarantees

that

|γ(t, z)− γ(t, w)| ≤ C η2

√
Nη

as long as Im γ(t, z) ≥ η/4 and Im γ(t, w) ≥ η/4. The trivial Cη−2-Lipschitz continuity of
the resolvent in D0 then shows that the process 〈R(t, z)〉 stays within an error C/

√
Nη

of 〈R(t, w)〉 for all times t ≤ τ ′z.

4 Proof of the local semicircle law

To prove Theorem 1.2 we choose an arbitrarily small ε > 0 and prove that the local
semicircle law is valid on the event

Aε =

{
sup
z∈D0

sup
t≤1∧τ ′

z

|〈R(t, z)〉 − 〈R(0, z)〉| ≤ Nε

√
Nη

}

with an error that is also of order Nε/
√
Nη. By Theorem 3.4 the event Aε has probability

1 − N−p for arbitrary p > 0 when N is large enough. We begin by noting that the
characteristic flow may be computed explicitly on Aε.
Lemma 4.1. Let ε > 0 and suppose Aε occurs. Then for every z ∈ D, there exists w ∈ D0

such that z = γ(1, w) and ∣∣∣∣w +
1

w
− z
∣∣∣∣ ≤ CNε

√
Nη

.

Proof. Let λ be the time-reversal of γ defined by

λ̇(t, ζ) = 〈G(1− t, λ(t, ζ))〉, λ(0, ζ) = ζ

so that γ(1, λ(1, ζ)) = ζ. Whenever ζ ∈ D and λ(1, ζ) ∈ D0, we necessarily have τζ > 1, so

γ(1, ζ) = ζ − 〈R(0, ζ)〉 −
∫ 1

0

(〈R(s, ζ)〉 − 〈R(0, ζ)〉) ds = ζ + ζ−1 +O
(

Nε

√
Nη

)
(4.1)

by the definition of Aε. The desired w in the conclusion of the lemma will be

w = λ(1, z),

which satisfies w ∈ D0 ∪Bδ(0) by the trivial resolvent bound. It thus remains to prove
that w /∈ Bδ(0). For this, we note that λ(1, D) is simply connected since λ(1, ·) is a
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homeomorphism. If there were any point ζ ∈ λ(1, D) ∩Bδ(0), there would also be some
point ζ ′ ∈ λ(1, D) ∩D0 with |ζ ′| = 2δ. Since ζ ′ ∈ D0, the relation (4.1) implies

|γ(1, ζ ′)|+O
(

Nε

√
Nη

)
≥
∣∣∣∣ζ ′ + 1

ζ ′

∣∣∣∣ ≥ 1

2δ
− 2δ,

which leads to the contradiction γ(1, ζ ′) /∈ D by (3.1).

Before proving Theorem 1.2, we mention that the relation

w′ +
1

w′
= z, w′ ∈ C+ (4.2)

is equivalent to −1/w′ = msc(z). Since the semicircle law is analytic in the bulk interval
W , its Stieltjes transform msc is Lipschitz continuous in D with a constant independent
of N .

Proof of Theorem 1.2. It suffices to prove that

sup
z∈D
|〈G(1, z)〉 −msc(z)| ≤ O

(
Nε

√
Nη

)
on the event Aε for all ε < θ/2. Let z ∈ D, let w = w(z) ∈ D0 be the point furnished
by Lemma 4.1, and let w′ = −msc(z)

−1 be the solution of (4.2). By Lemma 4.1 we have
w + w−1 ∈ D for all sufficiently large N , so the Lipschitz continuous dependence of 1/w′

on z ∈ D implies ∣∣∣∣ 1

w
− 1

w′

∣∣∣∣ = O
(

Nε

√
Nη

)
.

On the event Aε the bound

|〈G(1, z)〉 −msc(z)| ≤ |〈G(1, z)〉 − 〈G(0, w)〉|+
∣∣∣∣ 1

w
− 1

w′

∣∣∣∣
≤ sup
t≤1∧τ ′

w

|〈R(t, w)〉 − 〈R(0, w)〉|+O
(

Nε

√
Nη

)
≤ O

(
Nε

√
Nη

)
is valid with a uniform constant for all z ∈ D.
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