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Abstract

We obtain the distribution of the maximal average in a sequence of independent
identically distributed exponential random variables. Surprisingly enough, it turns
out that the inverse distribution admits a simple closed form. An application to ruin
probability in a risk-theoretic model is also given.
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1 Introduction

Consider a sequence (Xi)i≥1 of independent identically distributed (i.i.d.) random
variables, each having exponential distribution with mean 1. For each i ∈ N+ define the
sample mean of the first i variables as Xi := (X1 +X2 + · · ·+Xi)/i. The supremum of
this sequence,

Z∞ := sup{X̄i : i ∈ N+},

is finite because the sequence converges to 1 with probability 1.

In this note we compute the distribution function, F∞, of Z∞. In fact, what has nice
form is the inverse of this distribution function. Our main result is the following.

Theorem 1.1. (a) Z∞ has distribution function

F∞(x) = 1−
∞∑
k=1

kk−1

k!
xk−1e−kx

for x > 0, and density which is continuous on R\{1}, positive on (1,∞), and zero on
(−∞, 1).

(b) The restriction of F∞ on (1,∞) is one to one and onto (0, 1) with inverse

F−1∞ (u) =
− log(1− u)

u
for all u ∈ (0, 1). (1.1)
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Maxima of exponential sample means

Remark 1.2. (a) For F∞ we have the alternative expression

F∞(x) = 1 +
1

x
W0(−xe−x)

where W0 is the principal branch of the Lambert W function, that is, the inverse function
of x 7→ xex, x ≥ 1; see [3]. Indeed, the power series

∑∞
k=1

kk−1

k! y
k has interval of

convergence [−1/e, 1/e] and equals −W0(−y).
(b) Clearly, the results of the theorem extend immediately to the case that the Xi’s

are i.i.d. and X1 = aY + b with a > 0, b ∈ R and Y ∼ Exp(1). However, we were not able
to find an explicit formula for the distribution of Z∞ for any other distribution of the
Xi’s.

(c) Although it is intuitively clear that F∞(x) > 0 for x > 1, it is not entirely obvious
how to verify it by direct calculations. However, this fact is evident from Theorem 1.1.

(d) Formula (1.1) enables the explicit calculation of the percentiles of F∞. Therefore,
the result is useful for the following kind of problems: Suppose that a quality control
machine calculates subsequent averages, and alarms if some average X̄n is greater
than c, where c is a predetermined constant such that the probability of false alarm is
small, say α. For α ∈ (0, 1), the upper percentage point of F∞ (that is, the point cα with
F∞(cα) = 1− α) is given by cα = − logα

1−α , and thus the proper value of c is c = cα.

If in the definition of Z∞ we discard the first n− 1 values of X̄i, we obtain the random
variable

Mn := sup{X̄i : i ≥ n}

for which, however, (for n ≥ 2) the distribution function is quite complicated even for the
exponential case. For instance, the distribution of M2 is given by (we omit the details)

FM2(x) = F∞(x) + e−2x
F∞(x)

1− F∞(x)
, x ≥ 0.

What we can compute is the asymptotic distribution of
√
n(Mn − 1) as n → ∞. This

distribution is the same for a large class of distributions of the Xi’s, as the following
theorem shows.

Theorem 1.3. Assume that the (Xi)i≥1 are i.i.d. with mean 0, variance 1, and there is
p > 2 with IE |X1|p <∞. Let Mn := sup{X̄i : i ≥ n} for all n ∈ N+. Then,

√
nMn ⇒ |Z|

where Z ∼ N(0, 1) is a standard normal random variable.

It is easy to see that under the assumptions of Theorem 1.3, by the law of the iterated
logarithm, it holds

lim sup
n→∞

√
n√

2 log log n
Mn = 1.

2 Proofs

Proof of Theorem 1.1. (a) For each n ∈ N+ consider the random variable

Zn := max
{
X̄1, X̄2, . . . , X̄n

}
and call Fn its distribution function. Since the sequence (Zn)n≥1 is increasing and
converges to Z∞, the distribution function of Z∞ at any x ∈ R equals

F∞(x) = Pr(∩∞n=1{Zn ≤ x}) = lim
n→∞

Fn(x). (2.1)
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Maxima of exponential sample means

We will compute Fn recursively. For n ∈ N+ and x ≥ 0 we have

Fn+1(x) = Pr[X1 ≤ x,X1 +X2 ≤ 2x, . . . ,X1 +X2 + · · ·+Xn+1 ≤ (n+ 1)x]

=

∫ x

0

∫ 2x−y1

0

· · ·
∫ (n+1)x−(y1+y2+···+yn)

0

e−(y1+y2+···+yn+1)dyn+1

=

∫ x

0

∫ 2x−y1

0

· · ·
∫ nx−(y1+y2+···+yn−1)

0

{
e−(y1+y2+···+yn) − e−(n+1)x

}
dyn

= Fn(x)− e−(n+1)x Vol(Kn(x))

where dyk = dyk · · · dy2dy1 and

Kn(x) := {(y1, y2, . . . , yn) ∈ Rn+ : 0 ≤ y1 + · · ·+ yi ≤ ix, i = 1, 2, . . . , n}.

Note that F1(x) = 1 − e−x and introduce the convention Vol(K0(x)) = 1. It follows
that Fn(x) = 1−

∑n
k=1 Vol(Kk−1(x))e−kx and from Lemma 2.2, below, we get the explicit

form

Fn(x) = 1−
n∑
k=1

kk−1

k!
xk−1e−kx, for all x ≥ 0, n ∈ N+. (2.2)

This implies the first formula for F∞. By the law of large numbers, we get that F∞(x) = 0

for all x ∈ (−∞, 1), and thus, the derivative of F∞ in R\{1} is

f∞(x) := 1x>1

∞∑
k=1

kk−1

k!

(
k − k − 1

x

)
xk−1e−kx. (2.3)

Since F∞ is continuous in R and differentiable in R\{1} with continuous derivative there,
it follows that f∞ is a density for Z∞. The formula for f∞ shows that it is positive exactly
at (1,∞).

(b) First we rewrite F∞ in a more convenient form. The fact that F∞(x) = 0 for
x ∈ [0, 1) implies the remarkable identity (see Fig. 1)

∞∑
k=1

kk−1

k!
xk−1e−kx = 1 for all x ∈ [0, 1). (2.4)
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Figure 1: The series (2.4) in the interval 0 ≤ x ≤ 4.

Our aim is to compute the value of the series in the left hand side also for x ≥ 1. The
series converges uniformly for x ∈ [0,∞) because

sup
x≥0

kk−1

k!
xk−1e−kx =

(k − 1)k−1

k!
e−(k−1) ∼ 1

k3/2
√

2π
,
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which is summable in k. Thus, by continuity, (2.4) holds also for x = 1. Now we rewrite
(2.4) in the form

∞∑
k=1

kk−1

k!
(xe−x)k = x for all x ∈ [0, 1]. (2.5)

The power series h(y) :=
∑∞
k=1

kk−1

k! y
k is strictly increasing in [0, e−1] and thus (2.5) says

that h is the inverse function of the restriction, gr, on [0, 1] of the function g : [0,∞)→
[0, e−1] with g(x) = xe−x. The function g is continuous, strictly increasing in [0, 1], and
strictly decreasing in [1,∞) with g(0) = 0, g(1) = e−1, g(∞) = 0. Thus, for each x ∈ [1,∞),
there exists a unique t = t(x) ∈ (0, 1] such that gr(t) = xe−x, i.e., te−t = xe−x; hence, we
define

t(x) := g−1r (xe−x) = h(xe−x), x ≥ 0. (2.6)

Since t(x) = x for x ∈ [0, 1], we have

F∞(x) =

{
0, if x ≤ 1,

1− t(x)
x , if x ≥ 1.

(2.7)

Now for any fixed u ∈ (0, 1), the relation F∞(x) = u gives x − t(x) = xu so that
t(x) = (1− u)x. Consequently,

exu =
e−t(x)

e−x
=

x

t(x)
=

1

1− u
.

Thus, x = − log(1− u)/u, and the proof is complete.

Remark 2.1. From the well-known relation IEZαn = α
∫∞
0
xα−1(1 − Fn(x))dx for α > 0

and formula (2.2), we obtain a simple expression for the moments:

IEZαn = α

n∑
k=1

Γ(α+ k − 1)

kαk!
.

In particular,

IEZn =
∑n
k=1

1
k2 , IEZ2

n = 2
∑n
k=1

1
k2 , IEZ3

n = 3
∑n
k=1

1
k2 + 3

∑n
k=1

1
k3 .

Since Zn ↗ Z∞ with probability one, the above relations combined with the monotone
convergence theorem give the moments of Z∞ and in particular that it has mean π2

6 and

variance π2

6 (2− π2

6 ).

The next lemma is a special case of Theorem 1 in [7] (see relation (7) in that paper),
however, to keep the exposition self-contained, we provide a proof.

Lemma 2.2. For x ≥ 0, x+ t ≥ 0, and n ∈ N+, define

Kn(x, t) := {(y1, y2, . . . , yn) ∈ Rn+ : y1 + · · ·+ yi ≤ ix+ t for all i = 1, 2, . . . , n}.

Then,

Vn(x, t) := Vol(Kn(x, t)) =
1

n!
(x+ t)((n+ 1)x+ t)n−1, n = 1, 2, . . . , (2.8)

and, in particular, setting t = 0, Vol(Kn(x)) = 1
n! (n+ 1)n−1xn.

Proof. Clearly V1(x, t) = x+ t and for n ≥ 1

Vn+1(x, t) =

∫ x+t

0

∫ 2x+t−y1

0

· · ·
∫ (n+1)x+t−(y1+y2+···+yn)

0

dyn+1

=

∫ x+t

0

∫ x+(x+t−y1)

0

· · ·
∫ nx+(x+t−y1)−(y2+···+yn)

0

dyn+1

=

∫ x+t

0

Vn(x, x+ t− y1)dy1.

(2.9)

The claim follows by induction on n.
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It is consistent with the recursion (2.9) for Vn and (2.8) to define V0(x, t) := 1 so that
(2.8) holds for all n ∈ N+ ∪{0}. This agrees with the convention Vol(K0(x)) = 1 we made
in the proof of Theorem 1.1(a).

Proof of Theorem 1.3. By Theorem 2.2.4 in [4], we may assume that we can place (Xi)i≥1
on the same probability space with a standard Brownian motion (Ws)s≥0, so that, with
probability 1, we have |nX̄n −Wn|/n1/p(log n)1/2 → 0 as n→∞. This implies that

lim
n→∞

√
n

(
Mn − sup

k∈N,k≥n

Wk

k

)
= 0

with probability 1. On the other hand, with probability one, we have for all large n the
bound sups∈[n,n+1] |Ws −Wn| ≤ 2

√
log n, thus

lim
n→∞

√
n

(
sup

k∈N+,k≥n

Wk

k
− sup
s≥n

Ws

s

)
= 0.

Finally, by scaling and time inversion, we conclude that

√
n sup
s≥n

Ws

s

d
= sup

s≥1

Ws

s

d
= sup
s∈[0,1]

Ws
d
= |W1|,

and the proof is complete.

3 An application to ruin probability

Following the same steps as in the proof of Theorem 1.1(b), one can evaluate the
distribution function, Fn;λ, of the random variable

Zn;λ := max

{
X1

1 + λ
,
X1 +X2

2 + λ
, . . . ,

X1 +X2 + · · ·+Xn

n+ λ

}
for all λ > −1 and n ∈ N+. Indeed, using (2.8) and induction on n it is easily verified
that for all x ≥ 0 we have

Fn;λ(x) = 1− (1 + λ)e−λx
n∑
k=1

k(k + λ)k−2

k!
xk−1e−kx.

Thus, the distribution function of Z∞,λ := limn→∞ Zn;λ equals

F∞;λ(x) = 1− (1 + λ)e−λx
∞∑
k=1

k(k + λ)k−2

k!
xk−1e−kx (3.1)

= 1− t(x)

x
eλ(t(x)−x), (3.2)

where the function t is defined by (2.6). To justify the equality (3.2), we use the same
arguments that lead from (2.4) to (2.7). Similarly as in Theorem 1.1(b), we find that
F∞;λ is zero in (−∞, 1], strictly increasing in [1,∞) with range [0, 1), and its distribution
inverse is given by

F−1∞;λ(u) =
− log(1− u)

1− (1− u)
1

1+λ

× 1

λ+ 1
, 0 < u < 1. (3.3)
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Remark 3.1. By the law of large numbers, the series in the right hand side of (3.1)
equals to one for all x ∈ [0, 1]. Therefore, setting x = α, 1 + λ = θ and k → k + 1, the
function

p(k;α, θ) = θe−α(θ+k)
αk(k + θ)k−1

k!

defines a probability mass function supported on N+ ∪ {0}, known (after a suitable
re-parametrization) as generalized Poisson distribution with parameter (α, θ) ∈ [0, 1]×
(0,∞); see [2] and references therein.

Consider now the following risk model. Assume that the aggregate claim at time
n is described by Sn := X1 + · · · + Xn, where the (Xi)i≥1 are i.i.d. with IEX1 = 1, the
premium rate (per time unit) is c = 1+θ > 0 (θ is the safety loading of the insurance), and
the initial capital is u > −(1 + θ), where negative initial capital is allowed for technical
reasons. The risk process is defined by

Un = u+ cn− Sn, n ∈ N+.

Clearly, the ruin probability

ψ(u) := Pr(Un < 0 for some n ∈ N+) (3.4)

is of fundamental importance. Our explicit formulae are useful in computing the minimum
initial capital needed to ensure that ψ(u) is small. In the following, we exclude the trivial
case where the distribution of X1 is concentrated at 1.

This particular problem (for general claims) has been studied in [6] under the name
discrete-time surplus-process model, while the probability of ruin for more general
models is studied in detail in the standard reference [1].

When c ≤ 1, we have ψ(u) = 1 no matter how large u is. Indeed, when c < 1, the
claim is a consequence of the strong law of large numbers, while when c = 1, since
we have excluded the case Pr(X1 = 1) = 1, it follows from Theorems 4.1.2, 4.2.7 in [5]
(which imply that (n − Sn)n≥1 oscillates between −∞ and ∞). Hence, the problem is
nontrivial only for c > 1, i.e., θ > 0.

Theorem 3.2. Assume that the i.i.d. individual claims (Xi)i≥1 are exponential random
variables with mean 1, fix α ∈ (0, 1) and θ > 0, and set c = 1 + θ. Then,
(a) the ruin probability (3.4) is given by

ψ(u) =

{
t(c)
c exp

(
−u
(

1− t(c)
c

))
, if u > −c,

1 if u ≤ −c,
(3.5)

where the function t is given by (2.6);
(b) the minimum initial capital u = u(α, θ) needed to ensure that ψ(u) ≤ α is given by
the unique root of the equation

(1 + θ + u)
(

1− α
1+θ

1+θ+u

)
= − logα, u > −(1 + θ). (3.6)

Proof. (a) For u > −c, we can use (3.2) to get

ψ(u) = 1− F∞;u/c(c) =
t(c)

c
e(u/c)(t(c)−c),

which is (3.5). Then, the definition of t shows that limu→−c+ ψ(u) = t(c)e−t(c)

ce−c = 1, and the
monotonicity of ψ implies that ψ(u) = 1 for u ≤ −c.

(b) By the formula of part (a), the function ψ is strictly decreasing in the interval
(−c,∞) and maps that interval to (0, 1). Therefore, there is a unique u = u(α, θ) > −c
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such that ψ(u) = α. Let λ := u/c, which is greater than −1. Then, using (3.3), we see
that

ψ(u) = α⇔ F∞;λ(c) = 1− α⇔ c = F−1∞;λ(1− α) =
− logα

(1 + λ)
(

1− α
1

1+λ

) .
We substitute c = 1 + θ, λ = u/(1 + θ), and the above equivalences show that u is the
unique solution of (

1 +
u

1 + θ

)(
1− α

1+θ
1+θ+u

)
=
− logα

1 + θ
.

The exact values of u in (3.6) are in perfect agreement with the numerical approxi-
mations given in the last line of Table 1 in [6]. Notice that the initial capital u can be
negative sometimes, e.g., u(.5, .5) ' −.3107.
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