ISSN: 1083-589X

ELECTRONIC COMMUNICATIONS in PROBABILITY

On sequential maxima of exponential sample means, with an application to ruin probability

Dimitris Cheliotis* Nickos Papadatos[†]

Abstract

We obtain the distribution of the maximal average in a sequence of independent identically distributed exponential random variables. Surprisingly enough, it turns out that the inverse distribution admits a simple closed form. An application to ruin probability in a risk-theoretic model is also given.

Keywords: exponential distribution; maximal average; Lambert W function; ruin probability. **AMS MSC 2010:** Primary 60E05, Secondary 60F05.

Submitted to ECP on June 27, 2019, final version accepted on October 28, 2019.

1 Introduction

Consider a sequence $(X_i)_{i\geq 1}$ of independent identically distributed (i.i.d.) random variables, each having exponential distribution with mean 1. For each $i\in\mathbb{N}^+$ define the sample mean of the first i variables as $\overline{X}_i:=(X_1+X_2+\cdots+X_i)/i$. The supremum of this sequence,

$$Z_{\infty} := \sup\{\bar{X}_i : i \in \mathbb{N}^+\},\,$$

is finite because the sequence converges to 1 with probability 1.

In this note we compute the distribution function, F_{∞} , of Z_{∞} . In fact, what has nice form is the inverse of this distribution function. Our main result is the following.

Theorem 1.1. (a) Z_{∞} has distribution function

$$F_{\infty}(x) = 1 - \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} x^{k-1} e^{-kx}$$

for x > 0, and density which is continuous on $\mathbb{R}\setminus\{1\}$, positive on $(1,\infty)$, and zero on $(-\infty,1)$.

(b) The restriction of F_{∞} on $(1,\infty)$ is one to one and onto (0,1) with inverse

$$F_{\infty}^{-1}(u) = \frac{-\log(1-u)}{u}$$
 for all $u \in (0,1)$. (1.1)

^{*}National and Kapodistrian University of Athens, Department of Mathematics, Panepistemiopolis, GR-157 84 Athens, Greece. E-mail: dcheliotis@math.uoa.gr

[†]National and Kapodistrian University of Athens, Department of Mathematics, Panepistemiopolis, GR-157 84 Athens, Greece. E-mail: npapadat@math.uoa.gr

Remark 1.2. (a) For F_{∞} we have the alternative expression

$$F_{\infty}(x) = 1 + \frac{1}{x}W_0(-xe^{-x})$$

where W_0 is the principal branch of the Lambert W function, that is, the inverse function of $x\mapsto xe^x, x\geq 1$; see [3]. Indeed, the power series $\sum_{k=1}^\infty \frac{k^{k-1}}{k!}y^k$ has interval of convergence [-1/e,1/e] and equals $-W_0(-y)$.

- (b) Clearly, the results of the theorem extend immediately to the case that the X_i 's are i.i.d. and $X_1=aY+b$ with a>0, $b\in\mathbb{R}$ and $Y\sim \mathrm{E} xp(1)$. However, we were not able to find an explicit formula for the distribution of Z_∞ for any other distribution of the X_i 's.
- (c) Although it is intuitively clear that $F_{\infty}(x) > 0$ for x > 1, it is not entirely obvious how to verify it by direct calculations. However, this fact is evident from Theorem 1.1.
- (d) Formula (1.1) enables the explicit calculation of the percentiles of F_{∞} . Therefore, the result is useful for the following kind of problems: Suppose that a quality control machine calculates subsequent averages, and alarms if some average \bar{X}_n is greater than c, where c is a predetermined constant such that the probability of false alarm is small, say α . For $\alpha \in (0,1)$, the upper percentage point of F_{∞} (that is, the point c_{α} with $F_{\infty}(c_{\alpha})=1-\alpha$) is given by $c_{\alpha}=\frac{-\log\alpha}{1-\alpha}$, and thus the proper value of c is $c=c_{\alpha}$.

If in the definition of Z_{∞} we discard the first n-1 values of \bar{X}_i , we obtain the random variable

$$M_n := \sup\{\bar{X}_i : i \ge n\}$$

for which, however, (for $n \ge 2$) the distribution function is quite complicated even for the exponential case. For instance, the distribution of M_2 is given by (we omit the details)

$$F_{M_2}(x) = F_{\infty}(x) + e^{-2x} \frac{F_{\infty}(x)}{1 - F_{\infty}(x)}, \quad x \ge 0.$$

What we can compute is the asymptotic distribution of $\sqrt{n}(M_n-1)$ as $n\to\infty$. This distribution is the same for a large class of distributions of the X_i 's, as the following theorem shows.

Theorem 1.3. Assume that the $(X_i)_{i\geq 1}$ are i.i.d. with mean 0, variance 1, and there is p>2 with $\mathbb{E}|X_1|^p<\infty$. Let $M_n:=\sup\{\bar{X}_i:i\geq n\}$ for all $n\in\mathbb{N}^+$. Then,

$$\sqrt{n}M_n \Rightarrow |Z|$$

where $Z \sim N(0,1)$ is a standard normal random variable.

It is easy to see that under the assumptions of Theorem 1.3, by the law of the iterated logarithm, it holds

$$\limsup_{n \to \infty} \frac{\sqrt{n}}{\sqrt{2 \log \log n}} M_n = 1.$$

2 Proofs

Proof of Theorem 1.1. (a) For each $n \in \mathbb{N}^+$ consider the random variable

$$Z_n := \max \left\{ \bar{X}_1, \bar{X}_2, \dots, \bar{X}_n \right\}$$

and call F_n its distribution function. Since the sequence $(Z_n)_{n\geq 1}$ is increasing and converges to Z_∞ , the distribution function of Z_∞ at any $x\in\mathbb{R}$ equals

$$F_{\infty}(x) = \Pr(\bigcap_{n=1}^{\infty} \{Z_n \le x\}) = \lim_{n \to \infty} F_n(x). \tag{2.1}$$

We will compute F_n recursively. For $n \in \mathbb{N}^+$ and $x \ge 0$ we have

$$F_{n+1}(x) = \Pr[X_1 \le x, X_1 + X_2 \le 2x, \dots, X_1 + X_2 + \dots + X_{n+1} \le (n+1)x]$$

$$= \int_0^x \int_0^{2x-y_1} \dots \int_0^{(n+1)x-(y_1+y_2+\dots+y_n)} e^{-(y_1+y_2+\dots+y_{n+1})} d\mathbf{y}_{n+1}$$

$$= \int_0^x \int_0^{2x-y_1} \dots \int_0^{nx-(y_1+y_2+\dots+y_{n-1})} \left\{ e^{-(y_1+y_2+\dots+y_n)} - e^{-(n+1)x} \right\} d\mathbf{y}_n$$

$$= F_n(x) - e^{-(n+1)x} \operatorname{Vol}(K_n(x))$$

where $d\mathbf{y}_k = dy_k \cdots dy_2 dy_1$ and

$$K_n(x) := \{(y_1, y_2, \dots, y_n) \in \mathbb{R}^n_{\perp} : 0 \le y_1 + \dots + y_i \le ix, i = 1, 2, \dots, n\}.$$

Note that $F_1(x) = 1 - e^{-x}$ and introduce the convention $\operatorname{Vol}(K_0(x)) = 1$. It follows that $F_n(x) = 1 - \sum_{k=1}^n \operatorname{Vol}(K_{k-1}(x))e^{-kx}$ and from Lemma 2.2, below, we get the explicit form

$$F_n(x) = 1 - \sum_{k=1}^n \frac{k^{k-1}}{k!} x^{k-1} e^{-kx}, \text{ for all } x \ge 0, \ n \in \mathbb{N}^+.$$
 (2.2)

This implies the first formula for F_{∞} . By the law of large numbers, we get that $F_{\infty}(x) = 0$ for all $x \in (-\infty, 1)$, and thus, the derivative of F_{∞} in $\mathbb{R} \setminus \{1\}$ is

$$f_{\infty}(x) := \mathbf{1}_{x>1} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} \left(k - \frac{k-1}{x} \right) x^{k-1} e^{-kx}. \tag{2.3}$$

Since F_{∞} is continuous in \mathbb{R} and differentiable in $\mathbb{R}\setminus\{1\}$ with continuous derivative there, it follows that f_{∞} is a density for Z_{∞} . The formula for f_{∞} shows that it is positive exactly at $(1,\infty)$.

(b) First we rewrite F_{∞} in a more convenient form. The fact that $F_{\infty}(x)=0$ for $x\in[0,1)$ implies the remarkable identity (see Fig. 1)

$$\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} x^{k-1} e^{-kx} = 1 \quad \text{for all } x \in [0, 1).$$
 (2.4)

Figure 1: The series (2.4) in the interval $0 \le x \le 4$.

Our aim is to compute the value of the series in the left hand side also for $x \ge 1$. The series converges uniformly for $x \in [0, \infty)$ because

$$\sup_{x \geq 0} \frac{k^{k-1}}{k!} x^{k-1} e^{-kx} = \frac{(k-1)^{k-1}}{k!} e^{-(k-1)} \sim \frac{1}{k^{3/2} \sqrt{2\pi}},$$

which is summable in k. Thus, by continuity, (2.4) holds also for x = 1. Now we rewrite (2.4) in the form

$$\sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} (xe^{-x})^k = x \text{ for all } x \in [0,1].$$
 (2.5)

The power series $h(y):=\sum_{k=1}^\infty \frac{k^{k-1}}{k!} y^k$ is strictly increasing in $[0,e^{-1}]$ and thus (2.5) says that h is the inverse function of the restriction, g_r , on [0,1] of the function $g:[0,\infty)\to [0,e^{-1}]$ with $g(x)=xe^{-x}$. The function g is continuous, strictly increasing in [0,1], and strictly decreasing in $[1,\infty)$ with $g(0)=0,g(1)=e^{-1},g(\infty)=0$. Thus, for each $x\in[1,\infty)$, there exists a unique $t=t(x)\in(0,1]$ such that $g_r(t)=xe^{-x}$, i.e., $te^{-t}=xe^{-x}$; hence, we define

$$t(x) := g_r^{-1}(xe^{-x}) = h(xe^{-x}), \quad x \ge 0.$$
(2.6)

Since t(x) = x for $x \in [0, 1]$, we have

$$F_{\infty}(x) = \begin{cases} 0, & \text{if } x \le 1, \\ 1 - \frac{t(x)}{x}, & \text{if } x \ge 1. \end{cases}$$
 (2.7)

Now for any fixed $u\in(0,1)$, the relation $F_\infty(x)=u$ gives x-t(x)=xu so that t(x)=(1-u)x. Consequently,

$$e^{xu} = \frac{e^{-t(x)}}{e^{-x}} = \frac{x}{t(x)} = \frac{1}{1-u}.$$

Thus, $x = -\log(1-u)/u$, and the proof is complete.

Remark 2.1. From the well-known relation $\mathbb{E} Z_n^{\alpha} = \alpha \int_0^{\infty} x^{\alpha-1} (1 - F_n(x)) dx$ for $\alpha > 0$ and formula (2.2), we obtain a simple expression for the moments:

$$\mathbb{E} Z_n^{\alpha} = \alpha \sum_{k=1}^n \frac{\Gamma(\alpha + k - 1)}{k^{\alpha} k!}.$$

In particular,

$$\mathbb{E} Z_n = \sum_{k=1}^n \frac{1}{k^2}$$
, $\mathbb{E} Z_n^2 = 2 \sum_{k=1}^n \frac{1}{k^2}$, $\mathbb{E} Z_n^3 = 3 \sum_{k=1}^n \frac{1}{k^2} + 3 \sum_{k=1}^n \frac{1}{k^3}$.

Since $Z_n \nearrow Z_\infty$ with probability one, the above relations combined with the monotone convergence theorem give the moments of Z_∞ and in particular that it has mean $\frac{\pi^2}{6}$ and variance $\frac{\pi^2}{6}(2-\frac{\pi^2}{6})$.

The next lemma is a special case of Theorem 1 in [7] (see relation (7) in that paper), however, to keep the exposition self-contained, we provide a proof.

Lemma 2.2. For $x \geq 0$, $x + t \geq 0$, and $n \in \mathbb{N}^+$, define

$$K_n(x,t) := \{(y_1, y_2, \dots, y_n) \in \mathbb{R}^n_+ : y_1 + \dots + y_i \le ix + t \text{ for all } i = 1, 2, \dots, n\}.$$

Then,

$$V_n(x,t) := \text{Vol}(K_n(x,t)) = \frac{1}{n!}(x+t)((n+1)x+t)^{n-1}, \quad n = 1, 2, \dots,$$
 (2.8)

and, in particular, setting t = 0, $Vol(K_n(x)) = \frac{1}{n!}(n+1)^{n-1}x^n$.

Proof. Clearly $V_1(x,t) = x + t$ and for $n \ge 1$

$$V_{n+1}(x,t) = \int_{0}^{x+t} \int_{0}^{2x+t-y_{1}} \cdots \int_{0}^{(n+1)x+t-(y_{1}+y_{2}+\cdots+y_{n})} d\mathbf{y}_{n+1}$$

$$= \int_{0}^{x+t} \int_{0}^{x+(x+t-y_{1})} \cdots \int_{0}^{nx+(x+t-y_{1})-(y_{2}+\cdots+y_{n})} d\mathbf{y}_{n+1}$$

$$= \int_{0}^{x+t} V_{n}(x,x+t-y_{1}) dy_{1}.$$
(2.9)

The claim follows by induction on n.

П

It is consistent with the recursion (2.9) for V_n and (2.8) to define $V_0(x,t):=1$ so that (2.8) holds for all $n \in \mathbb{N}^+ \cup \{0\}$. This agrees with the convention $\operatorname{Vol}(K_0(x))=1$ we made in the proof of Theorem 1.1(a).

Proof of Theorem 1.3. By Theorem 2.2.4 in [4], we may assume that we can place $(X_i)_{i\geq 1}$ on the same probability space with a standard Brownian motion $(W_s)_{s\geq 0}$, so that, with probability 1, we have $|n\bar{X}_n - W_n|/n^{1/p}(\log n)^{1/2} \to 0$ as $n\to\infty$. This implies that

$$\lim_{n \to \infty} \sqrt{n} \left(M_n - \sup_{k \in \mathbb{N}, k \ge n} \frac{W_k}{k} \right) = 0$$

with probability 1. On the other hand, with probability one, we have for all large n the bound $\sup_{s \in [n,n+1]} |W_s - W_n| \le 2\sqrt{\log n}$, thus

$$\lim_{n \to \infty} \sqrt{n} \left(\sup_{k \in \mathbb{N}^+, k \ge n} \frac{W_k}{k} - \sup_{s \ge n} \frac{W_s}{s} \right) = 0.$$

Finally, by scaling and time inversion, we conclude that

$$\sqrt{n}\sup_{s\geq n}\frac{W_s}{s} \stackrel{d}{=} \sup_{s\geq 1}\frac{W_s}{s} \stackrel{d}{=} \sup_{s\in[0,1]}W_s \stackrel{d}{=} |W_1|,$$

and the proof is complete.

3 An application to ruin probability

Following the same steps as in the proof of Theorem 1.1(b), one can evaluate the distribution function, $F_{n:\lambda}$, of the random variable

$$Z_{n;\lambda} := \max \left\{ \frac{X_1}{1+\lambda}, \frac{X_1 + X_2}{2+\lambda}, \dots, \frac{X_1 + X_2 + \dots + X_n}{n+\lambda} \right\}$$

for all $\lambda > -1$ and $n \in \mathbb{N}^+$. Indeed, using (2.8) and induction on n it is easily verified that for all $x \ge 0$ we have

$$F_{n;\lambda}(x) = 1 - (1+\lambda)e^{-\lambda x} \sum_{k=1}^{n} \frac{k(k+\lambda)^{k-2}}{k!} x^{k-1} e^{-kx}.$$

Thus, the distribution function of $Z_{\infty,\lambda} := \lim_{n\to\infty} Z_{n;\lambda}$ equals

$$F_{\infty;\lambda}(x) = 1 - (1+\lambda)e^{-\lambda x} \sum_{k=1}^{\infty} \frac{k(k+\lambda)^{k-2}}{k!} x^{k-1} e^{-kx}$$
(3.1)

$$=1-\frac{t(x)}{x}e^{\lambda(t(x)-x)},$$
(3.2)

where the function t is defined by (2.6). To justify the equality (3.2), we use the same arguments that lead from (2.4) to (2.7). Similarly as in Theorem 1.1(b), we find that $F_{\infty;\lambda}$ is zero in $(-\infty,1]$, strictly increasing in $[1,\infty)$ with range [0,1), and its distribution inverse is given by

$$F_{\infty;\lambda}^{-1}(u) = \frac{-\log(1-u)}{1 - (1-u)^{\frac{1}{1+\lambda}}} \times \frac{1}{\lambda+1}, \quad 0 < u < 1.$$
 (3.3)

Remark 3.1. By the law of large numbers, the series in the right hand side of (3.1) equals to one for all $x \in [0,1]$. Therefore, setting $x = \alpha$, $1 + \lambda = \theta$ and $k \to k + 1$, the function

$$p(k; \alpha, \theta) = \theta e^{-\alpha(\theta+k)} \frac{\alpha^k (k+\theta)^{k-1}}{k!}$$

defines a probability mass function supported on $\mathbb{N}^+ \cup \{0\}$, known (after a suitable re-parametrization) as *generalized Poisson distribution* with parameter $(\alpha, \theta) \in [0, 1] \times (0, \infty)$; see [2] and references therein.

Consider now the following risk model. Assume that the aggregate claim at time n is described by $S_n:=X_1+\cdots+X_n$, where the $(X_i)_{i\geq 1}$ are i.i.d. with $\mathbb{E} X_1=1$, the premium rate (per time unit) is $c=1+\theta>0$ (θ is the safety loading of the insurance), and the initial capital is $u>-(1+\theta)$, where negative initial capital is allowed for technical reasons. The risk process is defined by

$$U_n = u + cn - S_n, \quad n \in \mathbb{N}^+.$$

Clearly, the ruin probability

$$\psi(u) := \Pr(U_n < 0 \text{ for some } n \in \mathbb{N}^+)$$
(3.4)

is of fundamental importance. Our explicit formulae are useful in computing the minimum initial capital needed to ensure that $\psi(u)$ is small. In the following, we exclude the trivial case where the distribution of X_1 is concentrated at 1.

This particular problem (for general claims) has been studied in [6] under the name discrete-time surplus-process model, while the probability of ruin for more general models is studied in detail in the standard reference [1].

When $c \leq 1$, we have $\psi(u) = 1$ no matter how large u is. Indeed, when c < 1, the claim is a consequence of the strong law of large numbers, while when c = 1, since we have excluded the case $\Pr(X_1 = 1) = 1$, it follows from Theorems 4.1.2, 4.2.7 in [5] (which imply that $(n - S_n)_{n \geq 1}$ oscillates between $-\infty$ and ∞). Hence, the problem is nontrivial only for c > 1, i.e., $\theta > 0$.

Theorem 3.2. Assume that the i.i.d. individual claims $(X_i)_{i\geq 1}$ are exponential random variables with mean 1, fix $\alpha\in(0,1)$ and $\theta>0$, and set $c=1+\theta$. Then, (a) the ruin probability (3.4) is given by

$$\psi(u) = \begin{cases} \frac{t(c)}{c} \exp\left(-u\left(1 - \frac{t(c)}{c}\right)\right), & \text{if } u > -c, \\ 1 & \text{if } u \le -c, \end{cases}$$
(3.5)

where the function t is given by (2.6);

(b) the minimum initial capital $u=u(\alpha,\theta)$ needed to ensure that $\psi(u)\leq \alpha$ is given by the unique root of the equation

$$(1 + \theta + u) \left(1 - \alpha^{\frac{1+\theta}{1+\theta+u}} \right) = -\log \alpha, \ u > -(1+\theta).$$
 (3.6)

Proof. (a) For u > -c, we can use (3.2) to get

$$\psi(u) = 1 - F_{\infty;u/c}(c) = \frac{t(c)}{c} e^{(u/c)(t(c)-c)},$$

which is (3.5). Then, the definition of t shows that $\lim_{u\to -c^+} \psi(u) = \frac{t(c)e^{-t(c)}}{ce^{-c}} = 1$, and the monotonicity of ψ implies that $\psi(u) = 1$ for $u \le -c$.

(b) By the formula of part (a), the function ψ is strictly decreasing in the interval $(-c, \infty)$ and maps that interval to (0,1). Therefore, there is a unique $u=u(\alpha,\theta)>-c$

Maxima of exponential sample means

such that $\psi(u) = \alpha$. Let $\lambda := u/c$, which is greater than -1. Then, using (3.3), we see that

$$\psi(u) = \alpha \Leftrightarrow F_{\infty;\lambda}(c) = 1 - \alpha \Leftrightarrow c = F_{\infty;\lambda}^{-1}(1 - \alpha) = \frac{-\log \alpha}{(1 + \lambda)\left(1 - \alpha^{\frac{1}{1 + \lambda}}\right)}.$$

We substitute $c=1+\theta, \lambda=u/(1+\theta)$, and the above equivalences show that u is the unique solution of

$$\left(1 + \frac{u}{1+\theta}\right)\left(1 - \alpha^{\frac{1+\theta}{1+\theta+u}}\right) = \frac{-\log\alpha}{1+\theta}.$$

The exact values of u in (3.6) are in perfect agreement with the numerical approximations given in the last line of Table 1 in [6]. Notice that the initial capital u can be negative sometimes, e.g., $u(.5,.5) \simeq -.3107$.

References

- [1] Asmussen, S. and Albrecher, H.: Ruin probabilities. Vol. 14. Singapore: World Scientific, 2010. MR-2766220
- [2] Charalambides, C.: Abel series distributions with applications to fluctuations of sample functions of stochastic processes. *Communications in Statistics Theory & Methods*, **19**(1), (1990), 317–335. MR-1060414
- [3] Corless, R.M, Gonnet G.H., Hare, D.E.G., Jeffrey D.J., and Knuth D.E.: On the Lambert W function. Advances in Computational Mathematics, $\mathbf{5}(1)$, (1996), 329–359. MR-1414285
- [4] Csörgő, M. and Révész, P.: Strong approximations in probability and statistics. Academic Press, 1981. MR-0666546
- [5] Durrett, R.: Probability: theory and examples. 4th Edition. Cambridge University Press, 2010. MR-2722836
- [6] Sattayatham, P., Sangaroon, K., and Klongdee, W.: Ruin probability-based initial capital of the discrete-time surplus process. *Variance, Advancing the Science of Risk*, 7(1), (2013), 74–81.
- [7] Stanley, R. and Pitman, J.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. *Discrete & Computational Geometry*, 27(4), (2002), 603– 634. MR-1902680

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS¹)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by IMS³, BS⁴ , ProjectEuclid⁵
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund⁶ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

¹LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

²EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html

³IMS: Institute of Mathematical Statistics http://www.imstat.org/

⁴BS: Bernoulli Society http://www.bernoulli-society.org/

⁵Project Euclid: https://projecteuclid.org/

 $^{^6\}mathrm{IMS}$ Open Access Fund: http://www.imstat.org/publications/open.htm