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Abstract

In a fully general setting, we study the relation between martingale spaces under two
locally absolutely continuous probabilities and prove that the martingale represen-
tation property (MRP) is always stable under locally absolutely continuous changes
of probability. Our approach relies on minimal requirements, is constructive and, as
shown by a simple example, enables us to study situations which cannot be covered
by the existing theory.
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1 Introduction

Martingale representation results have fundamental applications in stochastic control,
filtering, backward stochastic differential equations and mathematical finance, notably
in connection with the property of market completeness. In all these fields, absolutely
continuous changes of probability play an equally important role, often leading to a
substantial simplification of the problem under consideration. This motivates the interest
of studying how spaces of martingales under two absolutely continuous probabilities are
connected and, more specifically, the behavior of the martingale representation property
(MRP, see Definition 2.3 below) under absolutely continuous (not necessarily equivalent)
changes of probability. In this paper, we aim at developing a general theory for these
questions under minimal assumptions. This enables us to simplify and extend previous
results to full generality, covering situations that cannot be addressed by the existing
theory.

To the best of our knowledge, the most general result available in the literature on
the behavior of the MRP under absolutely continuous changes of probability can be
found in [7, Theorem 13.12] and can be stated as follows (see also [10, Lemma 2.5] and
[2, Theorem 15.2.8]): Let P and Q be two probability measures on (Ω,F ,F) such that
Q� P , with density process Z, and let X = (Xt)t≥0 be a real-valued P -local martingale
having the MRP under P . Suppose that the process [X,Z] has locally integrable variation
under P . Then, the process X ′ := X − (Z−)−1 · 〈X,Z〉P is a Q-local martingale and
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Martingale representations and absolutely continuous changes of probability

has the MRP under Q. A multi-dimensional version of this result, under the additional
assumption of local boundedness of 1/Z under P , was first obtained in [3].

The crucial assumption in the above result is the requirement that [X,Z] has locally
integrable variation under P (or, equivalently, that X is a special semimartingale under
Q). This leaves open the question of whether, in the absence of such a condition, the
MRP is preserved or not under an absolutely continuous change of probability. We
provide a positive answer in full generality, without any further assumption beyond local
absolute continuity (Theorem 2.4). One of the key steps in our approach consists in
replacing the usual version of Girsanov’s theorem (see, e.g., [9, Theorem III.3.11]) with
its most general version proven in [13]. Besides the greater generality, our proofs are
more elementary and constructive than those in [3, 7] and yield an explicit description
of the stochastic integral representation (Remark 2.5). As shown by means of an explicit
example (Section 3.1), there exist simple situations that are not covered by the existing
theory and for which our results yield an explicit MRP.

From a more abstract standpoint, we obtain a new and general characterization of the
set of Q-martingales as the smallest stable subset generated by suitable transformations
of P -martingales (Theorem 2.2). By relying on our main results, we then address further
issues, including the practically relevant case of locally equivalent probabilities and
the dimension of martingale spaces under locally absolutely continuous probabilities
(Section 2.3). In particular, these results enable us to provide a general solution to
an open problem stated in [16]. We want to point out that, even though the present
paper focuses on theoretical aspects, our results have relevant applications, notably in
mathematical finance in the context of equilibrium models (see, e.g., [12, 16]).1

The paper is structured as follows. Section 1.1 introduces necessary notations and
terminology. Section 2.1 recalls the setting and a crucial preliminary result due to [13].
Section 2.2 contains our main results, while further properties and ramifications are
presented in Section 2.3. In Section 3, we give some examples, including a simple one
which falls beyond the scope of the existing results and to which our theory applies. The
proofs of all results are collected in Section 4.

1.1 Notation

Throughout the paper, we shall make use of the following notation, referring to [9]
for all unexplained notions. Let (Ω,F , P ) be a probability space endowed with a right-
continuous (not necessarily complete) filtration F = (Ft)t≥0. On (Ω,F ,F, P ), we denote
byM(P ) (Mloc(P ), resp.) the set of all real-valued martingales (local martingales, resp.),
tacitly assumed to have a.s. càdlàg paths. We let Aloc(P ) be the set of all real-valued
adapted processes of locally integrable variation and, for A ∈ Aloc(P ), we denote by Ap,P

the dual predictable projection of A under P . The set of H1-martingales on (Ω,F ,F, P )

is defined as H1(P ) := {M ∈ M(P ) : E[supt≥0 |Mt|] < +∞}. Let us also introduce
M0(P ) := {M ∈ M(P ) : M0 = 0} and similarly for M0,loc(P ) and H1

0(P ). We recall
that, for every M ∈ Mloc(P ), there exists a unique decomposition M = M c + Md into
a continuous and a purely discontinuous local martingale. We denote respectively by
Mc

loc(P ) and Md
loc(P ) the set of all real-valued continuous and purely discontinuous

local martingales on (Ω,F ,F, P ). If M = (Mt)t≥0 is an Rd-valued process such that
M i ∈ Mloc(P ), for each i = 1, . . . , d, we denote by Lm(M,P ) the set of all Rd-valued
predictable processes which are integrable with respect to M under the measure P

in the sense of local martingales (see [8, Definition 2.46]). For H ∈ Lm(M,P ), the
stochastic integral of H with respect to M is denoted by (H ·M)t :=

∫
(0,t]

HudMu, for all

1We emphasize that, in equilibrium models (see, e.g., [16]), the probability measure Q is constructed
endogenously. Therefore, it is crucial to have MRP stability results which do not impose a priori conditions on
the density process Z, unlike the existing results on MRP under changes of probability.
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Martingale representations and absolutely continuous changes of probability

t ≥ 0, with (H ·M)0 = 0, similarly as in [9]. Finally, for a set Y ⊆Mloc(P ), we denote by
L1(Y, P ) the stable subspace generated by Y in H1(P ), i.e., the smallest stable subspace
of H1(P ) containing {H · Y : Y ∈ Y, H ∈ Lm(Y, P ) and H · Y ∈ H1(P )} (see [8, Definition
4.4]). The class L1

loc(Y, P ) is defined in the usual way by localization.
A probability measure Q on (Ω,F) is said to be locally absolutely continuous with

respect to P , denoted as Q�loc P , if Q|Ft � P |Ft for all t ≥ 0.

Remark 1.1 (On the completeness of F). In the present paper, we shall be interested in
locally absolutely continuous changes of probability from P to Q. In particular, it may
happen that Q �loc P , while Q � P does not hold on F∞− :=

∨
t∈R+

Ft. This implies
that a Q-complete filtration F is not necessarily P -complete (and viceversa). For this
reason, we shall not assume completeness of the filtration. Most of the standard results
of stochastic calculus can be developed without relying on the completeness assumption,
as long as path properties are required to hold in an a.s. sense. We refer to [8, 9] for
two complete presentations of the theory which avoid the use of complete filtrations as
far as possible (see also [15, Appendix A]). In the following, we shall point out explicitly
where the potential incompleteness of F requires modifications of existing results.

2 Results

2.1 Setting and preliminaries

We consider a probability space (Ω,F , P ) endowed with a right-continuous (not
necessarily P -complete) filtration F = (Ft)t≥0 and a probability measure Q �loc P .
In view of [9, Theorem III.3.4], the density process of Q relative to P is the unique
non-negative process Z ∈M(P ) such that dQ|Ft = Zt dP |Ft , for all t ≥ 0. Let us define
the stopping times

ζ := inf{t ∈ R+ : Zt− = 0 or Zt = 0},
η := ζ1Λ +∞1Ω\Λ, with Λ := {ζ < +∞, Zζ− > 0}.

(2.1)

Note that Q(ζ < +∞) = 0, while Q|Ft ∼ P |Ft holds if and only if P (Zt > 0) = 1.
The behavior of local martingales under locally absolutely continuous, but not neces-

sarily equivalent, changes of probability has been studied in [13], from which we recall
the following fundamental result (compare also with [7, Theorems 12.12 and 12.20]).2

Proposition 2.1. For an adapted process X, the following hold:

(i) X ∈M(Q) if and only if ZX ∈M(P );

(ii) X ∈ Mloc(Q) if and only if there exists a sequence of stopping times (τn)n∈N
increasing Q-a.s. to infinity such that (ZX)τn ∈Mloc(P ), for each n ∈ N;

(iii) if X ∈Mloc(P ), then

X̂ := X − 1

Z
· [X,Z] +

(
∆Xη1[[η,+∞[[

)p,P ∈Mloc(Q). (2.2)

As mentioned in the introduction, part (iii) of the above proposition represents the
most general formulation of Girsanov’s theorem. In particular, unlike the usual version of
Girsanov’s theorem (see [9, Theorem III.3.11]), it does not rely on the assumption [X,Z] ∈
Aloc(P ). For a generic element M ∈ Mloc(P ), we denote by M̂ the element ofMloc(Q)

2A careful examination of the proof of [13, Theorem 3] shows that it still holds true for non-complete
filtrations, since it is based on standard operations in stochastic calculus which are valid in general filtrations
by [8, 9]. In the statement of Proposition 2.1, we consider without loss of generality a version of X that is
measurable with respect to the optional σ-field on the P -completion of the filtration F, where P := (P +Q)/2.
Note that, as a consequence of Lemma 4.1, all processes have a.s. càdlàg paths under the respective probability
measures (recall that we tacitly assume that all local martingales have a.s. càdlàg paths).
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defined via the right-hand side of (2.2), to which we refer as the Lenglart transformation
of M . We use an analogous notation in the case of vector-valued processes. Similarly, for
a set Y ⊆Mloc(P ), we let Ŷ := {Ŷ : Y ∈ Y}.

2.2 Main results

Our first main result provides a characterization of the set of H1-martingales under

Q as the stable subspace generated by M̂(P ) in H1(Q).

Theorem 2.2. H1
0(Q) = L1(M̂(P ), Q). As a consequence, it holds that M0,loc(Q) =

L1
loc(M̂(P ), Q).

The above theorem shows that all Q-local martingales are generated by stochastic
integrals of elements M̂ , with M ∈ M(P ). Loosely speaking, we can say that Q-
martingales correspond to Lenglart transformations of P -martingales. We want to
emphasize that, despite the generality of the statement, the proof relies on rather basic
facts of stochastic calculus, notably integration by parts and Itô’s formula (see Section
4.1).

Theorem 2.2 does not assume any structure on the space (Ω,F ,F, P ). An especially
important case is when all P -local martingales can be represented as stochastic integrals
of some fixed P -local martingale. More precisely, let us formulate the following definition.

Definition 2.3. We say that an Rd-valued P -local martingale X has the martingale
representation property (MRP) under P ifM0,loc(P ) = {H ·X : H ∈ Lm(X,P )}.

Our second main result asserts the stability of the MRP under locally absolutely con-
tinuous changes of probability in its most general form, without any further assumption.

Theorem 2.4. Suppose that there exists an Rd-valued local martingale X on (Ω,F ,F, P )

having the MRP under P . Then the process X̂ has the MRP under Q.

Remark 2.5 (Explicit MRP under Q). Theorem 2.4 is proved in Section 4.1 as a direct
consequence of Theorem 2.2. However, Theorem 2.4 also admits a constructive proof,
which provides an explicit description of the integrand appearing in the stochastic
integral representation under Q. To this effect, let X be an Rd-valued local martingale
on (Ω,F ,F, P ) having the MRP under P and let N be an arbitrary element ofM0,loc(Q).
By Proposition 2.1-(ii), there exists a sequence of stopping times (τn)n∈N increasing
Q-a.s. to infinity such that (ZN)τn ∈ M0,loc(P ), for each n ∈ N. Since X has the MRP
under P , there exist H ∈ Lm(X,P ) and Kn ∈ Lm(X,P ), for each n ∈ N, such that

Z = Z0 +H ·X and (ZN)τn = Kn ·X, for every n ∈ N. (2.3)

As shown in Section 4.2, the integrand φ ∈ Lm(X̂,Q) appearing in the stochastic integral
representation N = φ · X̂ can be explicitly described as

φ :=
∑
n∈N

φn1]]τn−1,τn]], where φn := Z−1
− (Kn −N−H)1[[0,τn]], for every n ∈ N,

(2.4)
where τ0 := 0. Note that each process φn is well-defined under Q, since Q(ζ < +∞) = 0.
In particular, (2.4) shows that the integrand appearing in the representation of N under
Q is fully determined by the integrands appearing in the representations of Z and
(ZN)τn , for n ∈ N, under P .

2.3 Further properties and results

In this section, we present some further results and special cases of interest which
can be obtained from the results stated in Section 2.2.
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2.3.1 MRP and strongly orthogonal local martingales

In martingale representation results, it is typically of interest to establish the represen-
tation property with respect to a family of orthogonal local martingales. To this effect,
let us introduce some terminology. Given M,N ∈ Mloc(P ), we say that M and N are
strongly orthogonal if [M,N ] ≡ 0 up to a P -evanescent set (in particular, this implies that
M and N are orthogonal in the usual sense of local martingales, i.e., MN ∈ Mloc(P ),
see [9, Definition I.4.11]). If X is an Rd-valued local martingale on (Ω,F ,F, P ), we say
that it has strongly orthogonal components if Xi and Xj are strongly orthogonal, for
all i, j = 1, . . . , d with i 6= j. Under Q, the notion of strong orthogonality is defined in an
analogous way.

In general, if the MRP holds under P with respect to a family of strongly orthogonal
local martingales, Theorem 2.4 does not ensure that the same holds true under Q (see
Example 3.1 for an explicit counterexample). The following proposition provides a
sufficient condition for this to hold. As a preliminary, let η = ηac ∧ ηin be the unique
decomposition of the stopping time η into an accessible time ηac and a totally inaccessible
time ηin (see [9, Theorem I.2.22]).

Proposition 2.6. Let X be an Rd-valued local martingale on (Ω,F ,F, P ) with strongly
orthogonal components under P . Assume that ∆Xηac = 0 P -a.s. on {ηac < +∞}. Then

the process X̂ has strongly orthogonal components under Q.

In particular, the assumption that ∆Xηac = 0 P -a.s. on {ηac < +∞} always holds in
the following cases:

(i) if the set {∆X 6= 0} ∩ {Z = 0 < Z−} is P -evanescent;

(ii) if Q ∼loc P , in which case P (η = +∞) = 1;

(iii) if the process X = (Xt)t≥0 is P -a.s. quasi-left-continuous.

Remark 2.7 (An open question of [16]). In case (ii), Proposition 2.6 gives a complete
answer to an open question formulated in [16, Remark 2.3], namely whether the MRP
with respect to a local martingale having strongly orthogonal components (finite rep-
resentation property, in the terminology of [16]) is stable under equivalent changes of
probability. Proposition 2.6, together with Theorem 2.4, shows that the answer is always
positive, even for locally equivalent changes of probability and without any further
assumption on the density process Z.

Remark 2.8. In mathematical finance, if X represents the discounted price process of
a set of traded assets, the condition that {∆X 6= 0} ∩ {Z = 0 < Z−} is P -evanescent
appearing in (i) above plays a crucial role in the study of the no-arbitrage properties of
X under Q, see [1, 5].

In the continuous case, there is no distinction between strong orthogonality and or-
thogonality in the usual sense of local martingales. Hence, as an immediate consequence
of Proposition 2.6, we deduce that orthogonality is always preserved under arbitrary
absolutely continuous changes of probability for continuous local martingales. The
distinction between the two notions of orthogonality appears in the case of discontinuous
local martingales. In this case, motivated by Proposition 2.6, one may wonder whether
orthogonality in the usual sense of local martingales is in general preserved under locally
absolutely continuous changes of probability. As shown by Example 3.2, the answer is
negative, even for equivalent changes of probability.

2.3.2 Locally equivalent changes of probability

We now consider the special case where the two probability measures Q and P are
locally equivalent, corresponding to the case P (ζ < +∞) = 0. In this case, it obviously
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holds that P (η < +∞) = 0 and Proposition 2.1-(iii) yields that, for any M ∈ Mloc(P ),
the process M̂ := M − Z−1 · [M,Z] is an element of Mloc(Q). In this context, we can
establish the following proposition, which relies on the symmetric role of Q and P .

Proposition 2.9. Suppose that Q ∼loc P and let X be an Rd-valued local martingale on
(Ω,F ,F, P ). Then X has the MRP under P if and only if X̂ has the MRP under Q.

Under the slightly stronger assumption that Q ∼ P , a version of Proposition 2.9 has
been recently established in [12]. Note also that, in the case Q ∼ P , the decomposition
M̂ = M − (Z)−1 · [M,Z] corresponds to the version of Girsanov’s theorem presented in
[14].

2.3.3 Dimension of H1-martingale spaces

In this subsection, we study how the dimension of the martingale space H1 behaves
under locally absolutely continuous changes of probability. In particular, Proposition 2.9
enables us to prove the invariance of the dimension with respect to locally equivalent
changes of probability. In line with [8, Definition 4.38], let us recall that an Rd-valued
local martingale X on (Ω,F ,F, P ) is said to be a basis for H1(P ) if L1(X,P ) = H1

0(P )

and there exists no Rm-valued local martingale Y on (Ω,F ,F, P ), with m < d, such
that L1(Y, P ) = H1

0(P ). In this case, d is said to be the dimension of H1(P ), denoted as
dimH1(P ). This is also closely related to the notion of martingale multiplicity introduced
in [4]. Under Q, the notions of basis and dimension are defined in an analogous way.3

Proposition 2.10. If Q �loc P , it holds that dimH1(Q) ≤ dimH1(P ). If further-
more Q ∼loc P , then dimH1(P ) = dimH1(Q) and an Rd-valued local martingale X

on (Ω,F ,F, P ) is a basis for H1(P ) if and only if X̂ is a basis for H1(Q).

This last result generalizes [3, Theorem 3.2 and its Corollary] by removing all restric-
tive boundedness assumptions on the density process Z.

3 Examples

3.1 An example of MRP when [X,Z] /∈ Aloc(P )

In this subsection, we present an example of a simple situation where classical results
on the stability of the MRP under absolutely continuous changes of probability cannot be
applied, while on the contrary our Theorem 2.4 yields the explicit existence of a process
having the MRP.

On a probability space (Ω,F , P ), let N = (Nt)t≥0 be a standard Poisson process with
intensity 1 on its natural filtration F = (Ft)t≥0 and denote by M = (Mt)t≥0 the associated
compensated martingale, i.e. Mt := Nt − t, for all t ≥ 0. It is well-known that M has the
MRP under P (see, e.g., [11, Proposition 8.3.5.1]). Let τ1 := inf{t ∈ R+ : Nt > 0} be the
first jump time of N . By [7, Lemma 13.8], the stopped martingale Mτ1 has the MRP on
(Ω,F ,Fτ1 , P ), where Fτ1 denotes the stopped filtration (Ft∧τ1)t≥0. We then define the
process X = (Xt)t≥0 by

Xt :=

∫ t

0

1√
u

dMτ1
u , for all t ≥ 0.

It holds that X ∈ H1
0(P ), as follows from the fact that

E
[
[X]1/2∞

]
= E

[(∫ ∞
0

1

u
d[M ]τ1u

)1/2
]

= E

[
1
√
τ1

]
=

∫ +∞

0

e−u√
u

du =
√
π < +∞.

3We write dimH1(P ) = +∞ if it does not exist a finite-dimensional basis for H1(P ), and similarly under Q.
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Moreover, since the integrand 1/
√
u is strictly positive, it is immediate to verify that the

martingale X inherits the MRP of Mτ1 under P in the filtration Fτ1 .
For a constant T ∈ (0, 1/4], let us define the uniformly integrable martingale Z :=

1 +XT on (Ω,F ,Fτ1 , P ). Note that

Z∞ = 1 +XT = 1 + 1{τ1≤T}

(
1
√
τ1
− 2
√
τ1

)
− 1{τ1>T}2

√
T ≥ 0,

with P (Z∞ = 0) = P (τ1 > 1/4) > 0 holding for T = 1/4. We can therefore define the
probability measure Q � P by dQ := Z∞dP . Note that Q ∼ P holds if and only if
T < 1/4.

In the context of the present example, existing results (such as [3, Theorem 3.2], [7,
Theorem 13.12], [2, Theorem 15.2.8] or [10, Lemma 2.5]) cannot be applied to deduce
the existence of a process having the MRP under Q, since the process [X,Z] fails to be
locally integrable under P . Indeed, for every t ∈ (0, T ], it holds that

E
[
[X,Z]t

]
= E

[
[X]t

]
= E

[∫ t

0

1

u
d[M ]τ1u

]
= E

[
1

τ1
1{τ1≤t}

]
=

∫ t

0

e−u

u
du = +∞,

which in turn implies that E[[X,Z]σ] = +∞ for every stopping time σ with P (σ > 0) > 0.
However, as a consequence of Theorem 2.4, the process X̂ has the MRP under Q

and, in view of Proposition 2.1-(iii), it can be explicitly computed as follows. Note that
η = +∞ for all T ∈ (0, 1/4], so that ∆Xη1{η<+∞} = 0. Therefore, for all t ≥ 0, it holds
that

X̂t = Xt −
∫ t

0

1

Zu
d[X,Z]u = Xt −

1

τ1Zτ1
1{τ1≤t∧T}

= 1{τ1≤t}

(
1
√
τ1
− 2
√
τ1

)
− 1{τ1>t}2

√
t− 1
√
τ1
(
1 +
√
τ1 − 2τ1

)1{τ1≤t∧T}.
3.2 Further examples

In this section, we present two counterexamples related to the notions of strong
orthogonality and orthogonality in the usual sense of local martingales, which appear in
the context of Proposition 2.6.

Example 3.1. On a probability space (Ω,F , P ), consider two random variables ε and ξ
of the form

ε =

{
1, with probability p ∈ (0, 1),

0, with probability 1− p,
and ξ =

{
+1, with probability 1/2,

−1, with probability 1/2,

and such that ε and ξ are independent. Define the processes X and Y by

X := 1 + εξ1[[1,+∞[[ and Y := 1 + (1− ε)ξ1[[1,+∞[[,

and let F be the associated natural filtration. Clearly, X and Y are martingales on
(Ω,F ,F, P ). Moreover, X and Y are strongly orthogonal under P , since

[X,Y ] =
∑

0<s≤·

∆Xs∆Ys = ε(1− ε)1[[1,+∞[[ = 0.

Define the probability measure Q� P by dQ = X1dP , with density process X. In this
case,

η = 1{ε=1,ξ=−1} +∞1{ε=0}∪{ξ=+1},
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which is an accessible time (i.e., η = ηac). Moreover, we have that

AX := (∆Xη1[[η,+∞[[)
p,P = −(1{ε=1,ξ=−1}1[[1,+∞[[)

p,P

= −P (ε = 1, ξ = −1|F1−)1[[1,+∞[[ = −p
2
1[[1,+∞[[.

Therefore, it holds that
∆Y∆AX = −p

2
(1− ε)ξ1[[1]].

In particular, since ∆AY = 0 P -a.s., this implies that [X̂, Ŷ ] 6= 0, thus showing that X̂
and Ŷ are not strongly orthogonal under Q. Observe that, in this example, the condition
∆Xηac = 0 P -a.s. on {ηac < +∞} fails to hold, thus showing its necessity in the statement
of Proposition 2.6.

Example 3.2. In this example, we construct a bi-dimensional local martingale (X,Y ) on
a filtered probability space (Ω,F ,F, P ) such that XY ∈ Mloc(P ), while X̂Ŷ /∈ Mloc(Q)

for some probability measure Q ∼ P . In particular, this shows that one cannot obtain
a version of Proposition 2.6 for the usual notion of orthogonality in the case of general
discontinuous local martingales.

On a filtered probability space (Ω,F ,F, P ), let W = (Wt)t≥0 be a standard Brownian
motion and M = (Mt)t≥0 a compensated Poisson process with intensity 1. Define the
two processes

X := E(W +M) and Y := E(W −M),

which are martingales on (Ω,F ,F, P ) and admit explicit solutions

Xt = eWt− 3
2 t2Nt and Yt = eWt+

t
21{t<τ1}, for all t ≥ 0,

where τ = inf{t ∈ R+ : ∆Mt 6= 0}. Note that ∆Xτ = Xτ− and ∆Yτ = −Yτ−. The
P -martingales X and Y are orthogonal (in the usual sense, but not strongly orthogonal),
indeed:

[X,Y ] = X−Y− · [W +M,W −M ] = −X−Y− ·M ∈Mloc(P ).

Define now the probability measure Q ∼ P by dQ = XτdP , with density process Xτ .
The Q-local martingales X̂ and Ŷ are orthogonal under Q (in the usual sense of local
martingales) if and only if V := [X̂, Ŷ ]Xτ ∈ Mloc(P ). By integration by parts and
Yoeurp’s lemma, denoting by =

loc.mart.
equality up to a P -local martingale term which may

change from line to line, it holds that

V =
loc.mart.

Xτ
− · [X̂, Ŷ ] +

[
X, [X̂, Ŷ ]

]τ
= X · [X̂, Ŷ ]τ

= X ·
[
X − 1

X
· [X], Y − 1

X
· [X,Y ]

]τ
= X · [X,Y ]τ − 2(∆Xτ )2∆Yτ1[[τ,+∞[[ +

1

Xτ
∆Yτ (∆Xτ )31[[τ,+∞[[

=
loc.mart.

(∆Xτ )2∆Yτ

(
∆Xτ

Xτ
− 1

)
1[[τ,+∞[[ =

1

2
(Xτ−)2Yτ−1[[τ,+∞[[.

Since Xτ−Yτ− > 0 a.s., this shows that the process V cannot be a local martingale under
P , so that X̂ and Ŷ are not orthogonal under Q in the usual sense of local martingales.

4 Proofs

In this section, we give the proofs of our results, together with some auxiliary
technical results. As a preliminary, let us define the probability measure P := (P +Q)/2
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on (Ω,F) and denote by FP the P -completion of the filtration F. For R ∈ {P,Q}, if X is

an F-adapted R-a.s. càdlàg process, then X is R-indistinguishable from an FP -optional
process. Therefore, without loss of generality, we shall take FP -optional versions of all
relevant processes. We then recall [8, Lemma 7.21], which ensures that path properties
are preserved under locally absolutely continuous changes of probability.

Lemma 4.1. Let X be an FP -optional process. Then the following are equivalent:

(i) X has P -a.s. càdlàg paths on [[0, ζ[[;
(ii) X has Q-a.s. càdlàg paths.

In particular, in the context of Proposition 2.1, Lemma 4.1 ensures that an adapted
process X has Q-a.s. càdlàg paths if and only if the process ZX has P -a.s. càdlàg paths.

4.1 Proofs of the results stated in Section 2.2

We recall that, for M ∈Mloc(P ), the process M̂ is the Lenglart transformation of M ,
i.e., the element ofMloc(Q) defined via (2.2).

Proof of Theorem 2.2. By [8, Corollary 4.12], in order to prove H1
0(Q) = L1(M̂(P ), Q),

it suffices to show that every bounded N ∈ M0(Q) such that NM̂ ∈ Mloc(Q), for all
M ∈ M(P ), is null. Recalling that Q(ζ < +∞) = 0, we can apply integration by parts
under Q and compute

N =
ZN

Z
=

1

Z−
· (ZN) + (ZN)− ·

1

Z
+

[
ZN,

1

Z

]
=

1

Z−
·
(
ZN − 1

Z
· [ZN,Z]

)
− (ZN)−

Z2
−
·
(
Z − 1

Z
· [Z]

)
, (4.1)

where the last equality makes use of the identities[
ZN,

1

Z

]
= − 1

ZZ−
· [ZN,Z] and

1

Z
=

1

Z0
− 1

Z2
−
·
(
Z − 1

Z
· [Z]

)
, (4.2)

as can be readily verified by applying Itô’s formula (under Q), see also (4.4) below.
Furthermore, on {η < +∞} (under the measure P ) it holds that ∆(ZN)η =

(ZN)η−
Zη−

∆Zη,

which implies that (∆(ZN)η1[[η,+∞[[)
p,P = ((ZN)−/Z−)·(∆Zη1[[η,+∞[[)

p,P . In turn, making
use of representation (2.2), this enables us to rewrite (4.1) under Q as follows:

N =
1

Z−
· ẐN − N−

Z−
· Ẑ.

Since N is bounded, [N ] ∈ Aloc(Q) and therefore the predictable quadratic variation
〈N〉Q of N under Q is well-defined and can be explicitly computed as

〈N〉Q =
1

Z−
· 〈N, ẐN〉Q − N−

Z−
· 〈N, Ẑ〉Q.

By assumption, NM̂ ∈Mloc(Q) for everyM ∈M(P ). Since ZN and Z belong toM(P ), it
follows that 〈N, ẐN〉Q ≡ 0 and 〈N, Ẑ〉Q ≡ 0. Therefore, we have that 〈N〉Q ≡ 0, thus prov-

ing that N is null (up to an evanescent set under Q). Finally,M0,loc(Q) = L1
loc(M̂(P ), Q)

is a direct consequence of the fact thatMloc(Q) = H1
loc(Q), see [8, Proposition 2.38].

We proceed to proving our second main result (Theorem 2.4). This makes use of
the following two technical lemmata, which concern the behavior of continuous and
purely discontinuous local martingales and stochastic integrals under locally absolutely
continuous changes of probability. We recall that, for two semimartingales X and Y

on (Ω,F ,F, P ), the quadratic variation [X,Y ] under P is also a version of the quadratic
variation under Q (see [9, Theorem III.3.13]).
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Lemma 4.2. If M ∈Mc
loc(P ) (Md

loc(P ), resp.), then M̂ ∈Mc
loc(Q) (Md

loc(Q), resp.).

Proof. Consider first the case M ∈ Mc
loc(P ). Proposition 2.1-(iii) implies that M̂ =

M − (1/Z) · [M,Z]. Since [M,Z] = [M,Z]c, it immediately follows that M̂ ∈ Mc
loc(Q).

Consider then M ∈ Md
loc(P ). In this case, setting A := (∆Mη1[[η,+∞[[)

p,P for brevity of
notation, we compute

[M̂ ] = [M ] +

[
1

Z
· [M,Z]

]
+ [A]− 2

[
M,

1

Z
· [M,Z]

]
+ 2 [M,A]− 2

[
1

Z
· [M,Z], A

]
=
∑
s≤·

(∆Ms)
2 +

∑
s≤·

(∆Ms∆Zs)
2

Z2
s

+
∑
s≤·

(∆As)
2 − 2

∑
s≤·

(∆Ms)
2∆Zs

Zs

+ 2
∑
s≤·

∆Ms∆As − 2
∑
s≤·

∆Ms∆Zs∆As
Zs

=
∑
s≤·

(∆M̂s)
2.

We have thus shown that [M̂ ] =
∑
s≤·(∆M̂s)

2, which means that M̂ ∈Md
loc(Q).

Lemma 4.3. If M is an Rd-valued process such that M i ∈Mloc(P ), for each i = 1, . . . , d,

and H ∈ Lm(M,P ), then H ∈ Lm(M̂,Q) and Ĥ ·M is a version of H · M̂ .

Proof. For simplicity of presentation, we only prove the claim for a real-valued process
M , the multi-dimensional case being analogous. It suffices to consider separately the
cases M ∈ Mc

loc(P ) and M ∈ Md
loc(P ). If M ∈ Mc

loc(P ), then the claim follows from [8,
Proposition 7.26], since in the continuous case the Lenglart transformation coincides
with the usual Girsanov transformation.

Consider then the case M ∈Md
loc(P ). By Lemma 4.2, M̂ and Ĥ ·M belong toMd

loc(Q).

Therefore, in view of [8, Definition 2.46], in order to show that Ĥ ·M is a version of
H · M̂ it suffices to show that ∆(Ĥ ·M) = H∆M̂ . To this end, making use of formula
(2.2), we compute

∆(Ĥ ·M) = ∆(H ·M)− ∆(H ·M)∆Z

Z
+ ∆

(
∆(H ·M)η1[[η,+∞[[

)p,P
. (4.3)

Note that ∆(H ·M) = H∆M and, due to the predictability of H, it holds that(
∆(H ·M)η1[[η,+∞[[

)p,P
=
(
Hη∆Mη1[[η,+∞[[

)p,P
=
(
H · (∆Mη1[[η,+∞[[)

)p,P
= H ·

(
∆Mη1[[η,+∞[[

)p,P
.

This enables us to rewrite (4.3) as follows:

∆(Ĥ ·M) = H∆M − H∆M∆Z

Z
+H∆

(
∆Mη1[[η,+∞[[

)p,P
= H∆M̂,

thus completing the proof.

Proof of Theorem 2.4. Under the present assumptions, it holds that

M̂0(P ) =
{
Ĥ ·X : H ∈ Lm(X,P ) and H ·X ∈M(P )

}
⊆
{
H · X̂ : H ∈ Lm(X̂,Q)

}
,

where the last inclusion follows from Lemma 4.3. By Theorem 2.2 we then have

M0,loc(Q) ⊆ L1
loc

({
H · X̂ : H ∈ Lm(X̂,Q)

}
, Q
)

= L1
loc(X̂,Q) =

{
H · X̂ : H ∈ Lm(X̂,Q)

}
,

where the first equality follows by the associativity of the stochastic integral and the
second from [8, Theorem 4.6]. Since

{
H · X̂ : H ∈ Lm(X̂,Q)

}
⊆M0,loc(Q), the theorem

is proved.
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4.2 Proof of the representation stated in Remark 2.5

In this subsection, we prove the explicit representation given in equation (2.4). We
proceed by adapting to the present setting some of the arguments used in the proof of
[6, Theorem 2.6].

Since Q�loc P , the density process Z is a strictly positive semimartingale under Q
(see [9, Theorem III.3.13]). Therefore, as in (4.2), an application of Itô’s formula yields
that

1

Z
=

1

Z0
− 1

Z2
−
·Z+

1

Z3
−
·[Z]c+

∑
s≤·

(
1

Zs
− 1

Zs−
+

∆Zs
Z2
s−

)
=

1

Z0
− 1

Z2
−
·
(
Z − 1

Z
· [Z]

)
. (4.4)

By MRP under P , there exists a process H ∈ Lm(X,P ) such that Z = Z0 + H ·X (see
equation (2.3)). In view of [9, Proposition III.6.24], the process H is integrable with
respect to X under Q in the semimartingale sense. Hence, by the associativity of the
stochastic integral, we have that

1

Z
=

1

Z0
− H

Z2
−
·
(
X − 1

Z
· [X,Z]

)
. (4.5)

Recall from (2.3) that there exists a sequence of stopping times (τn)n∈N increasing
Q-a.s. to infinity such that (ZN)τn = Kn · X, with Kn ∈ Lm(X,P ), for each n ∈ N.
Similarly as above, Kn · X also makes sense as a semimartingale stochastic integral
under Q. Therefore, using similar arguments as in the proof of Theorem 2.2, we can
apply integration by parts and equation (4.5), thus obtaining

Nτn =
(ZN)τn

Zτn
= (ZN)− ·

1

Zτn
+

1

Z−
· (ZN)τn +

[
1

Z
,ZN

]τn
= − (ZN)−H

Z2
−

·
(
Xτn − 1

Z
· [X,Z]τn

)
+
Kn

Z−
·Xτn − Kn

ZZ−
· [X,Z]τn

= φn ·
(
Xτn − 1

Z
· [X,Z]τn

)
, (4.6)

where, for each n ∈ N,

φn :=
1

Z−

(
Kn − (ZN)−H

Z−

)
1[[0,τn]].

Moreover, on {η ≤ τn} ∩ {η < +∞} (under the measure P ) it holds that(
Kn
η −

(ZN)η−Hη

Zη−

)
∆Xτn

η = ∆(ZN)τnη −
(ZN)η−
Zη−

∆Zτnη = 0.

In turn, this implies that 0 = (φnη∆Xτn
η 1[[η,+∞[[)

p,P = φn1{Z−>0} · (∆Xτn
η 1[[η,+∞[[)

p,P up
to an evanescent set. Therefore, by (4.6) together with (2.2), it follows that, up to a
Q-evanescent set,

Nτn = φn · X̂τn , for each n ∈ N.

Setting φ :=
∑
n∈N φ

n1]]τn−1,τn]], with τ0 := 0, we finally obtain that N = φ · X̂.

4.3 Proof of the results stated in Section 2.3

In this section, we present the proof of the remaining results of the paper, starting
with Proposition 2.6.
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Proof of Proposition 2.6. We have to show that, if ∆Xηac = 0 P -a.s. on {ηac < +∞} and

[Xi, Xj ] ≡ 0, for all i, j = 1, . . . , d with i 6= j, then [X̂i, X̂j ] ≡ 0 (up to a Q-evanescent set),
for all i, j = 1, . . . , d with i 6= j. We first compute[

(X̂i)c, (X̂j)c
]

=
[
(̂Xi)c, (̂Xj)c

]
=
[
(Xi)c, (Xj)c

]
,

where the first equality follows from Lemma 4.2 and the uniqueness of the decomposition
of a local martingale into a continuous part and a purely discontinuous part (see [9,
Theorem I.4.18]). The assumption that [Xi, Xj ] ≡ 0 implies that [(Xi)c, (Xj)c] ≡ 0, so
that [(X̂i)c, (X̂j)c] ≡ 0 up to a Q-evanescent set. It remains to show that ∆X̂i

t ∆X̂j
t = 0

Q-a.s. for all t ≥ 0 and i, j = 1, . . . , d with i 6= j. For brevity of notation, let Ai :=

(∆Xi
η1[[η,+∞[[)

p,P , for i = 1, . . . , d. If ∆Xηac = 0 a.s. on {ηac < +∞}, it holds that
Ai = (∆Xi

ηin1[[ηin,+∞[[)
p,P . Since the process ∆Xi

ηin1[[ηin,+∞[[ is quasi-left-continuous,

[9, Proposition I.2.35] implies that Ai is continuous P -a.s. and, hence, Q-a.s. (see [7,
Theorem 12.9]). In view of equation (2.2), we therefore obtain that

∆X̂i = ∆Xi − ∆Xi∆Z

Z
.

Recall that [Xi, Xj ] ≡ 0 implies that ∆Xi
t ∆Xj

t = 0 P -a.s. for all t ≥ 0. Since by
assumption Q�loc P , we deduce that ∆X̂i

t ∆X̂j
t = 0.

We proceed with the proof of Proposition 2.9, which relies on the symmetric role of
the two probabilities Q and P under the assumption Q ∼loc P .

Proof of Proposition 2.9. By Theorem 2.4, it suffices to show that, if X̂ has the MRP
under Q, then X has the MRP under P . Since Q ∼loc P , the density process of P relative
to Q is given by 1/Z. We can then apply Proposition 2.1-(iii) on (Ω,F ,F, Q) to the process
X̂, yielding

X̂ − Z ·
[
X̂,

1

Z

]
= X − 1

Z
· [X,Z]− Z ·

[
X,

1

Z

]
+ Z ·

[
1

Z
· [X,Z],

1

Z

]
= X − 1

Z
· [X,Z] +

1

Z−
· [X,Z]−

∑
s≤·

∆X(∆Z)2

ZZ−
= X.

As a consequence of Theorem 2.4 applied to the local martingale X̂ on (Ω,F ,F, Q), the
process X has the MRP under P , thus proving the claim.

Finally, we conclude with the short proof of Proposition 2.10.

Proof of Proposition 2.10. It suffices to consider the case dimH1(P ) < +∞. Let X be
an Rd-valued local martingale on (Ω,F ,F, P ) that is a basis for H1(P ) and let X̂ be
defined as in (2.2). By Theorem 2.4, it holds that L1(X̂,Q) = H1

0(Q). This implies
that dimH1(Q) ≤ d = dimH1(P ). If Q ∼loc P , using the result of Proposition 2.9 and
reversing the role of P and Q in the previous argument, we obtain that dimH1(P ) ≤
dimH1(Q), thus proving the claim.
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