
Electron. Commun. Probab. 24 (2019), no. 23, 1–11.
https://doi.org/10.1214/19-ECP226
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Random replacements in Pólya urns with infinitely many

colours*

Svante Janson†

Abstract

We consider the general version of Pólya urns recently studied by Bandyopadhyay and
Thacker (2016+) and Mailler and Marckert (2017), with the space of colours being
any Borel space S and the state of the urn being a finite measure on S. We consider
urns with random replacements, and show that these can be regarded as urns with
deterministic replacements using the colour space S × [0, 1].
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1 Introduction

The original Pólya urn, studied already in 1917 by Markov [14] but later named after
Pólya who studied it in Eggenberger and Pólya [6] (1923) and Pólya [17] (1930), contains
balls of two colours. At discrete time steps, a ball is drawn at random from the urn
(uniformly), and it is replaced together with a balls of the same colour, where a > 1 is
some given constant. The (contents of the) urn is thus a Markov process (Xn)∞0 , with
state space Z2

>0. (The initial state X0 is some arbitrary given non-zero state.)
This urn model has been generalized by various authors in a number of ways, all

keeping the basic idea of a Markov process of sets of balls of different colours (types),
where balls are drawn at random and the drawn balls determine the next step in the
process. (The extensions are all usually called Pólya urns, or perhaps generalized Pólya
urns.) These generalizations have been studied by a large number of authors, and
have found a large number of applications, see for example [12], [8], [3], [13] and the
references given there. The extensions include (but are not limited to) the following, in
arbitrary combinations.

(i) The number of different colours can be any finite integer d > 2. The state space is
thus Zd>0.

(ii) The new balls added to the urn can be of any colours. We have a (fixed) replacement
matrix (Ri,j)

d
i,j=1 of non-negative integers; when a ball of colour i is drawn, it is

replaced together with Ri,j new balls of colour j, for every j = 1, . . . , d.
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Random replacements in Pólya urns

(iii) The replacements can be random. Instead of a fixed replacement matrix as in (ii),
we have for each colour i a random vector (Ri,j)

d
j=1. Each time a ball of colour i is

drawn, replacements are made according to a new copy of this vector, independent
of everything that has happened so far.

(iv) The “numbers of balls” of different colours can be arbitrary non-negative real numbers
(which can be interpreted as the amount or mass of each colour). The state space is
thus Rd>0, and the replacement matrix (Ri,j) in (ii), or its random version in (iii), has
arbitrary entries in R>0.

(v) Balls may also be removed from the urn. This means that Ri,j in (ii) or (iii) may be
negative. (Some conditions are required in order to guarantee that we never remove
balls that do not exist; the state space is still Zd>0 or Rd>0.) The simplest case, which
frequently appears in applications, is drawing without replacement; then Ri,i = −1 is
allowed but Ri,j > 0 when i 6= j, this means that the drawn ball is not replaced (but
balls of other colours are added).

In contrast to the many papers on Pólya urns with a finite number of colours, there
has so far been very few studies of extensions to infinitely many colours. One example is
Bandyopadhyay and Thacker [2, 1] who studied the case when the space of colours is Zd,
and the replacements are translation invariant. A very general version of Pólya urns was
introduced by Blackwell and MacQueen [4] in a special case (with every replacement hav-
ing the colour of the drawn ball, as in the original Pólya urn, see Example 3.2), and much
more generally (with rather arbitrary deterministic replacements) by Bandyopadhyay
and Thacker [3] and Mailler and Marckert [13]; this version can be described by:

(vi) The space S of colours is a measurable space. The state space is now the spaceM(S)

of finite measures on S; if the current state is µ, then the next ball is drawn with the
distribution µ/µ(S).

This version seems very powerful, and can be expected to find many applications in
the future.

Remark 1.1. Note that the case when S is finite in (vi) is equivalent to the version (iv).
Also with an infinite S in (vi), a state µ ∈M(S) of the process can be interpreted as the
amount of different colours in the urn. (The amount is thus now described by a measure;
note that the measure may be diffuse, meaning that each single colour has mass 0).

Remark 1.2. The colour space S is assumed to be a Polish topological space in [4] and
[13], and for the convergence results in [3], while the representation results in [3] are
stated for a general S. We too make our definitions for an arbitrary measurable space S,
but we restrict to Borel spaces in our main result. (This includes the case of a Polish
space, see Lemma 2.1 below. Our results do not use any topology on S.)

The purpose of the present note is to show that this model with a measure-valued
Pólya urn and the results for it by [3] and [13] extend almost automatically to the case
of random replacements, at least in the case with no removals. In fact, we show that
the model is so flexible that a random replacement can be seen as a deterministic
replacement using the larger colour space S × [0, 1], where the extra coordinate is used
to simulate the randomization. Random replacement in this general setting was raised
as an open problem in [13], and our results together with the results of [13] thus answer
this question.

We give a precise definition of the measure-valued version of Pólya urns with random
replacement in Section 3. We include there a detailed treatment of measurability
questions, showing that there are no such problems. (This was omitted in [3] and [13],
where the situation is simpler and straightforward. In our, technically more complex,
situation, there is a need to verify measurability explicitly.)
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The main theorem is the following. The proof is given in Section 4.

Theorem 1.3. Consider a measure-valued Pólya urn process (Xn)∞0 in a Borel space S,
with random replacements. Then there exists a Pólya urn process (X̃n)∞0 in S × [0, 1]

with deterministic replacements such that X̃n = Xn × λ and thus Xn = π](X̃n) for every
n > 0, where λ is the Lebesgue measure, π : X × [0, 1]→ X is the projection, and π] the
corresponding mapping of measures.

Note that Xn is a measure on S; similarly X̃n is a measure on S × [0, 1], and the
theorem says that X̃n is a product measure Xn × λ. (We find it convenient to use both
the notation X̃n and the explicit Xn × λ for this urn process in S × [0, 1], depending on
the context.)

Urns without replacement or with other removals, see (v), are treated in Section 5.
We show that Theorem 1.3 holds in this case too, but the result in this case is less
satisfactory than in the case without removals, and it cannot be directly applied to
extend the results for this case in [13], see Section 5.

In Section 6 we, as an example, apply Theorem 1.3 to show that one of the main
theorems in [13] extends from deterministic to random replacements.

Remark 1.4. Many papers, including [3] and [13], consider only balanced Pólya urns,
i.e., urns where the total number of balls added to the urn each time is deterministic, and
thus the total number of balls in the urn after n steps is a deterministic linear function of
n; in the measure-valued context, this means that the total mass Xn(S) = an+ b, where
b = X0(S). (We may without loss of generality assume a = 1 by rescaling.) We have no
need for this assumption in the present paper.

2 Preliminaries

We state some more or less well-known definitions and facts, adding a few technical
details.

2.1 Measurable spaces

A measurable space (S,S) is a set S equipped with a σ-field S of subsets of S. We
often abbreviate (S,S) to S when the σ-field is evident. When S = [0, 1] or another Polish
topological space (i.e., a complete metric space), we tacitly assume S = B(S), the Borel
σ-field generated by the open subsets.

For a measurable space S = (S,S), letM(S) be the set of finite measures on S, let
M∗(S) := {µ ∈M(S) : µ 6= 0} and P(S) := {µ ∈M(S) : µ(S) = 1}, the set of probability
measures on S; furthermore, letM±(S) be the space of finite signed measures on S. We
regardM±(S),M(S),M∗(S) and P(S) as measurable spaces, equipped with the σ-field
generated by the mappings µ 7→ µ(B), B ∈ S; note thatM∗(S) and P(S) are measurable
subsets of M(S). (See e.g. [10, Chapter 1, p. 19], but note that M(S) there is larger
than ours.)

If f > 0 is a measurable function on a measurable space S and µ is a measure on S, let
µ(f) :=

∫
S
f dµ ∈ [0,∞]. Note that the mapping µ 7→ µ(f) is measurableM(S)→ [0,∞]

for every fixed f > 0.

If S and T are measurable spaces, and ϕ : S → T is a measurable mapping, then, as
in Theorem 1.3 above, ϕ] :M(S)→M(T ) denotes the induced mapping of measures,
defined by ϕ](µ)(B) = µ(ϕ−1(B)) for µ ∈M(S) and B ∈ T .

If X is a random element of S, its distribution is an element of P(S), denoted by
L(X).

A signed measure µ ∈M±(S) has a Jordan decomposition µ = µ+−µ− with µ+, µ− ∈
M(S), and the variation of µ is |µ| = µ+ + µ− ∈M(S); see [5, Chapter 4].
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2.2 Borel spaces

A Borel space is a measurable space that is isomorphic to a Borel subset of [0, 1]. This
can be reformulated by the following standard result.

Lemma 2.1. The following are equivalent for a measurable space (S,S), and thus each
property characterizes Borel spaces.

(i) (S,S) is isomorphic to a Borel subset of a Polish space.

(ii) (S,S) is isomorphic to a Borel subset of [0, 1].

(iii) (S,S) is isomorphic to a Polish space.

(iv) (S,S) is isomorphic to a compact metric space.

(v) (S,S) is either countable (with all subsets measurable), or isomorphic to [0, 1].

For a proof, see e.g. [5, Theorem 8.3.6] or [15, Theorem I.2.12]. An essentially equiv-
alent statement is that any two Borel spaces with the same cardinality are isomorphic.

In Theorem 1.3, we consider only Borel spaces; Lemma 2.1 shows that this is no
great loss of generality for applications.

Lemma 2.2. If S is a Borel space, then the mappings µ 7→ |µ|, µ 7→ µ+ and µ 7→ µ− are
measurableM±(S)→M(S). In particular,M(S) is a measurable subset ofM±(S).

Proof. By Lemma 2.1, we may assume that S is a Borel subset of [0, 1]. Then, for every
B ∈ S and µ ∈M±(S),

|µ|(B) = lim
n→∞

n∑
i=0

∣∣∣µ(B ∩ [ in ,
i+1
n )
)∣∣∣, (2.1)

which shows that µ 7→ |µ|(B) is measurable. Hence µ 7→ |µ| is measurable. Furthermore,
µ± = 1

2 (|µ| ± µ), andM(S) = {µ ∈M±(S) : µ− = 0}.

Lemma 2.3. If S is a Borel space, then M±(S), M(S), M∗(S) and P(S) are Borel
spaces.

Proof. M(S) is Borel as a special case of [11, Theorem 1.5]. Alternatively, by Lemma 2.1,
we may assume that S is a compact metric space with its Borel σ-field. Then, see e.g. [10,
Theorem A2.3],M(S) is a Polish space, and its Borel σ-field equals the σ-field defined
above forM(S); hence,M(S) is a Borel space.

Next,M∗(S) and P(S) are measurable subsets ofM(S) and thus also Borel spaces.
Finally, the Jordan decomposition µ 7→ (µ+, µ−) gives a bijection

ψ :M±(S)↔M′ :=
{

(µ1, µ2) ∈M(S)2 : |µ1 − µ2|(S) = |µ1|(S) + |µ2|(S)
}
. (2.2)

Lemma 2.2 shows that ψ is measurable, and so is trivially its inverse ψ−1 : (µ1, µ2) 7→
µ1 − µ2. Moreover, it follows from Lemma 2.2 that the setM′ is a measurable subset of
M(S)2; henceM′ is a Borel space, and thus so isM±(S).

Remark 2.4. Lemma 2.2 may fail if S is not a Borel space. For a counter-example,
let S = {0, 1}R, define for A ⊆ R the σ-field SA on S consisting of all sets π−1(B)

where π : S → SA := {0, 1}A is the projection and B is a Borel set in {0, 1}A, and
let S :=

⋃{
SA : A countable

}
. (This is the Baire σ-field on S.) Then any measurable

function F (µ) on M±(S) is a function of (µ(Bi))
∞
0 for some sequence Bi ∈ S, which

means that Bi ∈ SAi for some countable Ai. Choose some x ∈ R \
⋃
iAi, and define

s0, s1 ∈ S = {0, 1}R by sj(x) = j and sj(y) = 0 when y 6= x. Let ν := δs0 − δs1 . Then
ν(Bi) = 0 for every i, and thus F (ν) = F (0). Hence, F (µ) cannot equal |µ|(S) for every
µ ∈M±(S). Consequently, µ 7→ |µ|(S) is not measurable onM±(S). Similarly,M(S) is
not a measurable subset ofM±(S).
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2.3 Kernels

(See e.g. [10, pp. 20–21, 106–107, 116 and 141–142].) Given two measurable spaces
S = (S,S) and T = (T, T ), a kernel from S to T is a measurable mapping µ : S →M(T ).
We write the mapping as s 7→ µs; thus a kernel is, equivalently, a family {µs}s∈S of finite
measures on T such that s 7→ µs(B) is measurable for every B ∈ T . It follows that if
µ : S →M(T ) is a kernel and f : T → [0,∞) is measurable, then s 7→ µs(f) is measurable
S → [0,∞]. A probability kernel is a kernel that maps S into P(T ), i.e., a kernel µ such
that µs is a probability measure for every s ∈ S.

If µ is a probability kernel from S to T and ν is a probability measure on S, then a
probability measure ν ⊗ µ is defined on S × T by

ν ⊗ µ(B) =

∫
S

dν(s)

∫
T

1B(s, t) dµs(t), B ∈ S × T . (2.3)

Note that if the random element (X,Y ) ∈ S × T has the distribution ν ⊗ µ, then the
marginal distribution of X is ν ∈ P(S); we denote the marginal distribution of Y by
ν · µ ∈ P(T ).

If X and Y are random elements of S and T , respectively, then a regular conditional
distribution of Y given X is a probability kernel µ from S to T such that for each B ∈ T ,
P
(
Y ∈ B | X

)
= µX(B) a.s. (I.e., µX(B) is a version of the conditional expectation

P
(
Y ∈ B | X

)
.) This is easily seen to be equivalent to: µ is a probability kernel such that

(X,Y ) has the distribution L(X)⊗ µ given by (2.3).
If µ is a probability kernel from a measurable space S to itself, and µ0 ∈ P(S) is

any distribution, we can iterate (2.3) and define, for any N > 1, a probability measure
µ0 ⊗ µ⊗ · · · ⊗ µ on SN+1 such that if (X0, . . . , XN ) has this distribution, then X0, . . . , XN

is a Markov chain with initial distribution X0 ∼ µ0 and transitions given by the kernel
µ, i.e., P

(
Xn ∈ B | X0, . . . , Xn−1

)
= P

(
Xn ∈ B | Xn−1

)
= µXn−1(B) for any B ∈ S and

1 6 n 6 N . Moreover, these finite Markov chains extend to an infinite Markov chain
X0, X1, . . . with the transition kernel µ.

Remark 2.5. The existence of an infinite Markov chain follows without any condition on
S by a theorem by Ionescu Tulcea [10, Theorem 6.17]. (If S is a Borel space, we may
also, as an alternative, use Kolmogorov’s theorem [10, Theorem 6.16].)

The construction of an infinite Markov chain extends to any sequence of different
measurable spaces S0, S1, . . . and probability kernels µi from Si−1 to Si, i > 1, but we
need here only the homogeneous case.

2.4 Two lemmas

Lemma 2.6. Let S = (S,S) and T = (T, T ) be measurable spaces. A map µ : S →
M(M(T )) is a kernel from S to M(T ) if and only if, for every bounded measurable
function h : T → [0,∞),

s 7→
∫
M(T )

e−ν(h) dµs(ν) (2.4)

is measurable on S.

Proof. If h : T → [0,∞) is measurable, then ν → e−ν(h) is measurable M(T ) → [0, 1].
Hence, if µ is a kernel, then (2.4) is measurable.

Conversely, let B+(T ) be the set of all bounded measurable h : T → [0,∞) and
assume that (2.4) is measurable for every h ∈ B+(T ). Let A be the set of bounded
measurable functions F : M(T ) → R such that s 7→

∫
M(T )

F (ν) dµs(ν) is measurable

S → R. Furthermore, if h ∈ B+(T ), let Ψh :M(T )→ [0, 1] be the function Ψh(ν) = e−ν(h),
and let C :=

{
Ψh : h ∈ B+(T )

}
. The assumption says that C ⊂ A. Furthermore, C is
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closed under multiplication, since Ψh1
Ψh2

= Ψh1+h2
. It follows by the monotone class

theorem, in e.g. the version given in [7, Theorem A.1], that A contains every bounded
function that is measurable with respect to the σ-field F(C) generated by C.

Let again h ∈ B+(T ). Then, for every ν ∈M(T ),

n
(
Ψ0(ν)−Ψh/n(ν)

)
= n

(
1− e−ν(h)/n

)
→ ν(h) as n→∞. (2.5)

Hence the mapping ν 7→ h(ν) is F(C)-measurable. In particular, taking h = 1B, it follows
that ν 7→ ν(B) is F(C)-measurable for every B ∈ T . Since these maps generate the
σ-field ofM(T ), it follows that if D ⊆M(T ) is measurable, then 1D is F(C)-measurable,
and thus 1D ∈ A. This means that

s 7→
∫
M(T )

1D(ν) dµs(ν) = µs(D) (2.6)

is measurable for all such D, which means that s 7→ µs is measurable.

We shall also use the following lemma from [10].

Lemma 2.7 ([10, Lemma 3.22]). Let (µs)s∈S be a probability kernel from a measurable
space S to a Borel space T . Then there exists a measurable function f : S × [0, 1]→ T

such that if U ∼ U(0, 1), then f(s, U) has the distribution µs for every s ∈ S.

3 Pólya urns

In this section, we give formal definitions of the Pólya urn model with an arbitrary
colour space S. The state space of the urn process isM(S), or more preciselyM∗(S),
since the process gets stuck and stops when there is no ball left in the urn.

In this section we consider for simplicity only urns with replacement and no removals,
i.e., all replacements are positive. See Section 5 for the more general case.

We treat first the deterministic case defined and studied by [3] and [13]; our model
is the same as theirs and we add only some technical details as a preparation for the
random replacement case.

3.1 Deterministic replacements

The replacements are described by a replacement kernel, which is a kernel R =

(Rs)s∈S from S to itself, i.e., a measurable map S →M(S); the interpretation is that if
we draw a ball of colour s, then it is returned together with an additional measure Rs.
More formally, we define, for µ ∈M∗(S), a function φµ : S →M∗(S) by

φµ(s) := µ+Rs; (3.1)

thus if the composition of the urn is described by the measure µ, and we draw a ball of
colour s, then the new composition of the urn is φµ(s). Moreover, the ball is drawn with
distribution µ′ := µ/µ(S). Hence, letting φ]µ : P(S)→ P(M∗(S)) denote the mapping of
probability measures induced by φµ, the composition after the draw has the distribution

R̂µ := φ]µ
(
µ′
)

= φ]µ
(
µ/µ(S)

)
∈ P(M∗(S)). (3.2)

Lemma 3.1. The mapping µ 7→ R̂µ defined by (3.1)–(3.2) is a measurable mapM∗(S)→
P(M∗(S)), i.e., a probability kernel fromM∗(S) to itself.

Proof. We use Lemma 2.6. Let h : S → [0,∞) be measurable. Then, by (3.2),∫
M(S)

e−ν(h) dR̂µ(ν) =

∫
S

e−φµ(s)(h) dµ′(s) =

∫
S

e−(µ(h)+Rs(h)) dµ′(s)
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=
e−µ(h)

µ(S)

∫
S

e−Rs(h) dµ(s). (3.3)

Since R is a kernel, s 7→ Rs(h) is measurable, and thus µ 7→
∫
S
e−Rs(h) dµ(s) is a measur-

able function onM(S). Hence, (3.3) shows that the left-hand side
∫
M(S)

e−ν(h) dR̂µ(ν)

is a measurable function of µ ∈ M∗(S), and thus Lemma 2.6 shows that R̂ :M∗(S) →
M(M(S)) is a kernel fromM∗(S) toM(S).

Since µ ∈ M∗(S) implies φµ(s) ∈ M∗(S) by (3.1), R̂ is also a kernel fromM∗(S) to

itself. Finally, R̂ is a probability kernel, since R̂µ is a probability measure by (3.2).

The Pólya urn process (Xn)∞0 is the Markov process with values inM∗(S) defined as
in Section 2.3 by the probability kernel R̂ and an arbitrary initial state X0 ∈M∗(S). (In
general X0 may be random, but we assume for simplicity that X0 is deterministic; this is
also the case in most applications.)

Example 3.2. We illustrate the definition with a classical example.
Let S be any measurable space and let the replacement kernel be Rs = δs, i.e.,

Rs(B) = 1B(s) for s ∈ S and B ∈ S. This means that the drawn ball is returned together
with another ball of the same colour. (Note that δs is well defined even if {s} /∈ S.)

With S = {0, 1} and X0 an integer-valued measure, this is the urn studied by Markov
[14], Eggenberger and Pólya [6] and Pólya [17].

The case when S is an arbitrary Polish space and X0 ∈ M(S) is arbitrary was
studied by Blackwell and MacQueen [4]; they showed that Xn/Xn(S) a.s. converges (in
total variation) to a random discrete probability measure, with a so called Ferguson
distribution. See also Pitman [16, Exercises 2.2.6 and 0.3.2, and Section 3.2] (the case
S = [0, 1], which is no loss of generality by Lemma 2.1), which imply that the limit can
be represented as

∑
i Piδξi with ξi i.i.d. with distribution X0/X0(S) and (Pi)

∞
1 with the

Poisson–Dirichlet distribution PD(0, X0(S)). By Lemma 2.1, the result of [4] extends to
any Borel space S. In fact, the result holds for an arbitrary measurable space S; this can
for example be seen by considering the same process on S × [0, 1], starting with X0 × λ,
regarding the second coordinate as labels and using the result for [0, 1]; we omit the
details.

3.2 Random replacement

For the more general version with random replacement, the replacement measures
Rs, s ∈ S are random. We let Rs := L(Rs) ∈ P(M(S)) for every s ∈ S; Rs is thus the
distribution of the replacement, and we assume that s 7→ Rs is a given probability kernel
S → P(M(S)). This means that φµ(s) in (3.1) is a random measure in M∗(S), with a
distribution that we denote by Φµ(s) ∈ P(M∗(S)). Note that for a fixed µ ∈M∗(S), the
map ψµ : ν 7→ µ+ ν is measurableM(S)→M∗(S), and thus induces a measurable map
ψ]µ : P(M(S))→ P(M∗(S)); furthermore,

Φµ(s) = ψ]µ(Rs). (3.4)

Hence, s 7→ Φµ(s) is a probability kernel from S toM∗(S).
If we draw from an urn with composition µ ∈M∗(S), then the drawn colour s has as

above distribution µ′ := µ/µ(S), and the resulting urn has thus a distribution R̂µ that is
the corresponding mixture of the distributions Φµ(s), i.e., in the notation of Section 2.3,
see (2.3) and the comments after it,

R̂µ = µ′ · Φµ. (3.5)

Lemma 3.3. The mapping µ 7→ R̂µ defined by (3.4)–(3.5) is a measurable mapM∗(S)→
P(M∗(S)), i.e., a probability kernel fromM∗(S) to itself.
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Proof. Let h : S → [0,∞) be measurable. Then, extending (3.3) in the deterministic case,
by (3.5) and (3.4),∫

M(S)

e−ν(h) dR̂µ(ν) =

∫
S

∫
M(S)

e−ν(h) dΦµ(s)(ν) dµ′(s)

=

∫
S

∫
M(S)

e−ψµ(ν)(h) dRs(ν) dµ′(s)

=
e−µ(h)

µ(S)

∫
S

∫
M(S)

e−ν(h) dRs(ν) dµ(s).

(3.6)

Here ν 7→e−ν(h) is a measurable functionM(S)→ [0,∞), and thus s 7→
∫
M(S)

e−ν(h) dRs(ν)

is a measurable function S → [0,∞]. Consequently, the right-hand side of (3.6) is a
measurable function of µ, and Lemma 2.6 shows that R̂ is a kernel. The proof is
completed as the proof of Lemma 2.7.

The Pólya urn process (Xn)∞0 is, as in the deterministic case above, the Markov
process with values inM∗(S) defined by the probability kernel R̂.

4 Proof of Theorem 1.3

Let U ∼ U(0, 1). By Lemma 2.7, there exists a measurable function f : S × [0, 1] →
M(S) such that f(s, U) ∼ Rs for every s; i.e., f(s, U)

d
= Rs. In other words, we can use

f(s, U) as the replacement measure Rs for the urn (Xn)∞0 .
Let S̃ := S × [0, 1] and define

R̃s,u := f(s, u)× λ ∈M(S̃). (4.1)

The mapping µ 7→ µ × λ is measurableM(S) →M(S̃); hence R̃s,u is measurable, and
thus a kernel from S̃ to itself.

We now let (X̃n)∞0 be the Pólya urn process in M(S̃) defined by the replacement
kernel R̃, with initial value X̃0 = X0 × λ. We claim that we can couple the processes
such that X̃n = Xn × λ for every n > 0. We prove this by induction. Given X̃n = µ× λ,
we draw a ball (s, u) with the distribution (µ × λ)′ = µ′ × λ, which means that s has
distribution µ′ and u is uniform and independent of s; hence, given s, R̃s,u = f(s, u)× λ
has the same distribution as f(s, U)× λ d

= Rs × λ. We may thus assume (formally by the
transfer theorem [10, Theorem 6.10]) that R̃s,u = Rs × λ, and thus X̃n+1 = X̃n + R̃s,u =

(Xn +Rs)× λ = Xn+1 × λ.

5 Urns without replacement or with other subtractions

The models in Section 3 can easily be extended to urns without replacement or with
removals (subtractions) of other balls.

5.1 Deterministic replacements

In the deterministic case, we let the replacements Rs be given by a measurable map
S →M±(S). We assume that we are given some measurable subsetM0 ofM∗(S) such
that for every µ ∈M0,

Rs + µ ∈M0 for µ-a.e. s. (5.1)

I.e., by (3.1), φµ(s) ∈M0 µ-a.e., which means that R̂µ in (3.2) is a probability measure

onM0 ⊆M∗(S). Lemma 3.1 is modified to say that R̂ is a probability kernel fromM0

to itself; the proof is the same. Then, assuming also X0 ∈M0, the Pólya urn process is
defined by the kernel R̂ as before; we have Xn ∈M0 for every n.
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Example 5.1 (Drawing without replacement). Let S be a Borel space and letM0 be the
set N∗(S) of non-zero finite integer-valued measures on S; these are the measures of the
type

∑m
1 δsi for some finite sequence s1, . . . , sm in S. (The set N∗(S) is a measurable set

inM(S), e.g. as a consequence of [11, Theorem 1.6].) Assume that

Rs + δs ∈ N∗(S) for every s ∈ S. (5.2)

The interpretation is that the drawn ball is discarded, and instead we add a set of balls
described by the (positive, integer-valued) measure Rs + δs; this is thus the classical
case of drawing without replacement, see (v) in Section 1. The (5.1) holds, and thus a
Pólya urn process is defined for any initial X0 ∈ N∗(S). If the urn is balanced, this is
essentially the same as “κ-discrete MVPPs” in [13].

Example 5.2. Let S be a Borel space and consider an urn process with colour space
S × [0, 1]. Let M0 := {µ × λ : µ ∈ N∗(S)} ⊂ M∗(S × [0, 1]), amd assume that the
replacements Rs,u are such that

Rs,u + δs × λ ∈M0 for every s ∈ S and u ∈ [0, 1]. (5.3)

Then (5.1) holds (in S × [0, 1]), and thus any X0 ∈M0 defines a Pólya urn process.

Remark 5.3. We may relax the conditionM0 ⊆ M∗(S) toM0 ⊆ M(S); thus allowing
0 ∈M0 and consequently Rs = −µ in (5.1), which means that we remove all balls from
the urn, leaving the urn empty, i.e., Xn+1 = 0. In this case, we stop the process, and
define Xm = 0 for all m > n. Formally, R̂ as defined in (3.2) then is a probability kernel
fromM0 \ {0} toM0; we extend it to a kernel fromM0 toM0 by defining R̂0 = δ0. We
leave further details for this case to the reader.

5.2 Random replacements

In the random case, we similarly assume that (5.1) holds a.s., for some measurable
M0 ⊆ M∗(S), every µ ∈ M0 and µ-a.e. s. We assume that S is a Borel space; then
Lemma 2.2 implies thatM0 is a measurable subset ofM±(S), and thus so is, for every
µ,

Mµ :=
{
ν ∈M±(S) : ν + µ ∈M0

}
. (5.4)

Hence the condition is that R is a probability kernel from S to M±(S) such that for
every µ ∈M0, Rs(Mµ) = 1 for µ-a.e. s. Then the argument in Section 3.2 shows that R̂
is a probability kernel fromM0 to itself, and thus defines a Pólya urn process for any
initial X0 ∈M0.

Theorem 1.3 holds in this setting too, with the same proof given in Section 4; the
deterministic urn X̃n in S × [0, 1] is defined as in Section 5.1 using M̃0 := {µ× λ : µ ∈
M0} ⊆ M∗(S × [0, 1]).

Example 5.4 (Random drawing without replacement). Let N∗(S) be as in Example 5.1
and assume that Rs is a random replacement such that (5.2) holds a.s. for every s ∈ S;
as always we assume also that s 7→ Rs := L(Rs) ∈ M±(S) is measurable. Then (5.1)
holds a.s. for every µ ∈ N∗(S) and µ-a.e. s, and thus Rs defines a Pólya urn process for
any initial X0 ∈ N∗(S).

Theorem 1.3 gives an equivalent urn in S × [0, 1] with deterministic replacements.
Note, however, that this deterministic urn is of the type in Example 5.2, and not of the
simpler type in Example 5.1, as the random urn. Hence, Theorem 1.3 may be less useful
in this setting.

6 An application

As an application, we show how Theorem 1.3 can be used to extend one of the main
results in Mailler and Marckert [13] to random replacements.
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Mailler and Marckert [13, Theorem 1.4] consider the case when S is a Polish space,
and the replacement measures Rs are deterministic with total mass Rs(S) = 1, i.e.,
Rs ∈ P(S). Let (Wn)∞0 be the Markov chain with values in S, some initial distribution
µ0 ∈ P(S) and transitions given by the kernel Rs. Assume that there exist sequences
a(n) > 0 and b(n) ∈ S such that for any initial distribution µ0,

a(n)−1(Wn − b(n))
d−→ γ, (6.1)

for some distribution γ ∈ P(S) not depending on µ0.
In order for (6.1) to make sense, we assume, as in [13], that either S is a vector space,

or that we are given some other definitions (satisfying standard axioms) of subtraction
s− b(n) and scalar multiplication a(n)−1s for s ∈ S (for example the trivial definition if
b(n) = 0 and a(n) = 1, for any space S).

Assume also that f : R → S and g : R → R are two functions such that, for every
x ∈ R and every sequence xn → x,

b(bn+ xn
√
nc)− b(n)

a(n)
→ f(x), (6.2)

a(bn+ xn
√
nc)

a(n)
→ g(x). (6.3)

(This implies that f and g are continuous, see [9, Lemma 3.3 and Remark 3.4].) Then
[13, Theorem 1.4] says that

Θa(logn),b(logn)

(
n−1Xn

) p−→ ν := L
(
g(Λ)Γ + f(Λ)

)
, (6.4)

where Θa,b : M(S) → M(S) is the mapping induced by the map s 7→ a−1(s − b), Λ ∼
N(0, 1), and Γ is a random variable in S with distribution γ in (6.1). (See [13] for
examples.)

Suppose now that the replacements Rs are random (with all other assumptions the
same). We use Theorem 1.3 and construct an urn process X̃n on S̃ := S × [0, 1] with
deterministic replacements. We may, as above, define a corresponding Markov chain W̃n

in S × [0, 1]. Write W̃n = (Wn, Un). Since (by Theorem 1.3) we have X̃n = Xn × λ, each
replacement measure R(s,u) is also a product measure of the type νs,u × λ. (This is also
seen in (4.1) in the proof.) Since R(s,u) is the conditional distribution of (Wn+1, Un+1)

given (Wn, Un) = (s, u), it follows that Un+1 is uniform on [0, 1] and independent of Wn+1

and of (Wm, Um), m 6 n. It follows that (Wn)∞0 is a Markov chain in S with transition
kernel R̄s := ERs,U . However, by construction, Rs,U equals the random replacement
measure Rs, and thus R̄s = ERs. Hence, (Wn) is the Markov chain with kernel ERs. In
other words, given Wn = s, take first a realization of Rs and then draw Wn+1 from this
distribution. We assume that (6.1) holds for this Markov chain, for any initial distribution.

In order to apply [13, Theorem 1.4] to the urn X̃n, we define subtraction and scalar
multiplication on S × [0, 1] by

(s, x)− b := (s− b, x), b ∈ S, (6.5)

a(s, x) := (as, x); (6.6)

the operations thus acting trivially on the second coordinate. (We may identify S with
S×{0} ⊂ S× [0, 1]. We have no need for subtracing b /∈ S.) Then, since we have assumed
(6.1), it follows that (6.1) holds also for W̃n = (Wn, Un), with the same a(n) and b(n) and
with γ replaced by γ × λ.

Hence [13, Theorem 1.4] applies to the urn X̃n, with X̃n ∈M(S × [0, 1]). Projecting
the measures by the projection π : S × [0, 1]→ [0, 1], we see that the conclusion of the
theorem holds also for Xn.

In other words, [13, Theorem 1.4] holds also for random replacements.
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