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Spatiotemporal point processes: regression, model
specifications and future directions
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Abstract. Point processes are one of the most commonly encountered ob-
servation processes in Spatial Statistics. Model-based inference for them de-
pends on the likelihood function. In the most standard setting of Poisson pro-
cesses, the likelihood depends on the intensity function, and can not be com-
puted analytically. A number of approximating techniques have been pro-
posed to handle this difficulty. In this paper, we review recent work on exact
solutions that solve this problem without resorting to approximations. The
presentation concentrates more heavily on discrete time but also considers
continuous time. The solutions are based on model specifications that impose
smoothness constraints on the intensity function. We also review approaches
to include a regression component and different ways to accommodate it
while accounting for additional heterogeneity. Applications are provided to
illustrate the results. Finally, we discuss possible extensions to account for
discontinuities and/or jumps in the intensity function.

1 Introduction

Point pattern data or point process is an observation framework where events occur
at random locations in a given region of interest S. This region is usually associated
with space. The response of such process is denoted by Y , that can be also be
identified with {s1, . . . , sN }, the locations of the observed events. Examples include
location of occurrences of a disease in a city, of a plant in a forest or of fires in a
state or province. Figure 1 illustrates one of these situations.

One of the most common models for point pattern is the Poisson process. The
model is specified by an intensity function λ. The likelihood is given by

l(λ;y) =
N∏

i=1

λ(si) exp
{
−

∫
S
λ(s) ds

}
.

Note that the likelihood function for λ depends on the entire function and its
evaluation depends on the ability to integrate λ. When this function is entirely
unknown, the integration can not be performed. Solutions involve numerical ap-
proximation of the integral (Liang et al., 2008) or to approximate the intensity
function by some representation (Dias et al., 2008).
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Figure 1 Deaths from cerebrovascular disease in the city of Rio de Janeiro, 2002–2007. Each red
dot is the location of the residence of a deceased (Pinto Jr., 2014).

In the case of a spatiotemporal point pattern, continuous time may be identified
with the spatial case with an added dimension. The response Y for discrete times
{t1, . . . , tT } = T may be denoted Y = (Y1, Y2, . . . , YT ), and each Yt can be iden-
tified with {st,1, . . . , st,Nt } and has intensity λt , for t = 1, . . . , T . The likelihood
function is given by

l(λ;y) =
T∏

t=1

Nt∏
i=1

λt (si,t ) exp

{
−

T∑
t=1

∫
S
λt (s) ds

}
.

Poisson processes are very useful models but rely on independence across space
(and time). Thus, that may not be the most useful representation of situations where
aversion or attraction of events take place. Other components must be added to
the model to mitigate this deficiency. One such framework is provided by Cox
processes (Cox, 1955). Cox processes assume that the intensity function is random
and its distribution might induce dependence features in the marginal specification
of the process.

A very frequently used Cox process assumes an isotropic Gaussian process
(GP) for the log intensity. It was proposed by Moller et al. (1998) and is called
log Gaussian Cox Process (LGCP). Letting η = logλ, the LGCP specifies that
η ∼ GP(μ,σ,ρθ ), which means that for any r > 1, and any set of locations
{s1, . . . , sr} ∈ S, the joint distribution of (η(s1), . . . , η(sr)) is multivariate normal
with mean μ1r and covariance matrix R with elements σρθ (|si − sj |), for all (i, j).
The LGCP is implemented in a few statistical packages (see, for example, Brown
(2015) and Taylor et al. (2013)). Isotropy is not required for model specification
but is frequently imposed for computational tractability.

The logarithmic transformation of the intensity function is basically used for
convenience but any other monotonic transformation could be equally used. These
ideas have been explored in recent years and will be extensively used in the sequel.
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The remainder of this paper is organized as follows. Section 2 addresses the
incorporation of regression components. Section 3 provides the model definition
with regression and revisits the inference difficulties above in this context. Sec-
tion 4 presents one solution based on discretization. Section 5 presents another
solution based on data augmentation. The paper is concluded in Section 6 with
directions for future work. The structure of the paper follows closely my presenta-
tion at the Opening Address of the 14th Brazilian Meeting on Bayesian Statistics
(EBEB XIV).

2 Regression

Point processes may be subject to the effect of explanatory variables like in any
other area of Statistics. The standard approach in these settings is to add a linear
predictor W ′β to the existing model. In the more general case of a spatiotemporal
point processes this would imply

λt (s) = g
[
β0,t (s) + W ′β

]
, for (s, t) ∈ S × T .

where W is a p-dimensional vector of explanatory variables and g is some link
function. In the case of LGCP, g = exp.

Some applications show excess spatiotemporal heterogeneity making the sepa-
ration between the intercept and the regression component not reasonable. One
simple and flexible strategy to accommodate added variation is to allow for
space/space-time varying regression coefficients. This idea was applied with suc-
cess to other branches of Spatial Statistics. See, for example, the work of Gelfand,
Banerjee and Gamerman (2005) on continuous spatial data or the work of Gamer-
man, Moreira and Rue (2003) on areal data.

This would translate in point pattern data as λt (s) = g[β0,t (s) + W ′β∗
t (s)], for

(s, t) ∈ S×T . The model becomes assumedly more complex but note that the extra
complexity is mostly due to the spatiotemporal variability of β0, now extended to
all the other regression coefficients. Given the similarity between the nature of
β0,t and β∗

t , they will be hereafter merged into βt = (β0,t , β
∗
t ) and an additional

component 1 is concatenated into W so that the model becomes

λt (s) = g
[
W ′βt(s)

]
, for (s, t) ∈ S × T .

The above model accommodates for local variation of effects that is sometimes
encountered in such settings. This variation may provide insight into the nature of
phenomenon under study. Note that it includes standard, fixed effects as the special
case when there is no spatiotemporal variation of the effects. Other special cases
are models where effects vary only in space but not in time and models where
effects vary only in time but not in space.

There is an important distinction to be clarified among regressors. In the case
these vary only over space/time (Benes et al., 2005), the above extension is
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straightforward. Care must be exercised to avoid identification issues associated
with the concurrent spatiotemporal variation of both regressors and their coeffi-
cients as these only appear in the intensity function via their product.

In the case they vary also over external configurations (Liang et al., 2008; Diggle
et al., 2010), then (conditionally independent) point processes Yv must be consid-
ered, each with its own intensity λv , for all possible values of the external con-
figuration v. This is exactly what is done in any other regression context. Thus,
W becomes Wv and λt (s) becomes λt,v(s), for all (s, t) ∈ S × T . This setting is
particularly useful in epidemiological applications where individual characteristics
such as age and gender are likely to affect the intensity function.

In the space-only context, the model for the random component process β is
a multivariate GP, in a direct extension of the model without covariates. All that
remains for model completion is the specification of the temporal variation of pro-
cess βt . A simple solution if a product of independent GP’s. This route is not
recommended for a number of reasons. Just like one expects spatial similarity be-
tween its values, one would expect temporal similarity between its values. This
implies some form of relation between values of βt . This relation would also help
in borrowing information across time, making the inference more reliable.

One possible solution is provided by dynamic GP reviewed in Gamerman
(2010). The link across time is provided by

βt ′ = Gt,t ′βt + wt, where wt ∼ GP

with β1 ∼ GP,

where Gt,t ′ is the transition matrix describing the deterministic part of the evolu-
tion across time and the process disturbances wt accommodate for possible devia-
tions from this specification. This process is denoted by β ∼ DGP. Note that if the
process disturbances wt vanish and G = I then βt = β1, for all t , then the static
process is recovered.

DGP are quite flexible and accommodate for stochastic space-varying trends
and seasonality. They also induce sparcity over temporal components due to the
use of first order Markovian evolution, thus helping to improve computations is
such richly parametrized setting.

Continuous-time version of this model was proposed in Diggle and Brix (2001).
More convolved forms of temporal evolution were proposed in Wikle and Cressie
(1999). Both extensions require approximations to work. We would like solutions
to be as exact as possible and thus retain our DGP specification in the sequel.

3 Model and inference

3.1 Model

The observation process in the spatiotemporal setting is given by Y = (Y1, Y2, . . . ,

YT ) with Yt ∼ PP(λt ), for t ∈ T , where PP stands for Poisson process. The link
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with the regressors is established via the transformation λt (s) = g[W ′βt (s)], for
some g. If data varies over individual configurations v then Yt = {Yt,v} with
Yt,v ∼ PP(λt,v) and λt,v(s) = g[W ′

vβt (s)], for v ∈ V , the space of all possible con-
figurations. The model is completed with β ∼ DGP and a prior distribution for θ ,
the collection of all other unknowns.

The above formulation includes many other models previously considered. Ex-
amples are:

• λ(s) = g[β0(s) + W ′β] (Benes et al., 2005);
• λv(s) = g[β0(s) + W ′

vβ] (Liang et al., 2008; Diggle et al., 2010);
• λt (s) = g[β0,t (s)] (Reis et al., 2013).

In the current setting, θ is given by the DGP hyperparameters but more gen-
eral model forms may require additional hyperparameters. One example is pro-
vided by evolutions with temporal transition Gt,t ′ depending on unknown con-
stants (Gamerman, 2010). In any case, inference for these higher levels parameters
is difficult due to scarcity of information unless substantial amount of data is avail-
able. In these scenarios, ad-hoc procedures are frequently applied.

Frequentist inference is also possible for these models. Diggle and Brix (2001)
suggest the use of empirical Bayes procedures to estimate θ . They used plug-in
estimation for θ based on the method of moments. This approach has the advantage
of by-passing the difficulties associated with lack of information in likelihood-
based methods.

3.2 Inference (problem)

There are a few important issues to solve in order to perform inference for these
models. The first issue is that there is no explicit form for the (joint) density of
GPs due to its infinite dimensionality. However, it is useful to know that finite
dimension versions do exist. This point will be explored in our approaches. The
most serious issue however is the fact that the integral in the likelihood prevents
its exact calculation. Thus posterior distributions can not be computed as well.

Some solutions to the above issues involve:

• parametric forms for the IF and/or β;
• approximation of the integral in the likelihood.

Both solutions above impose approximations and we would like our approach
to be as exact as possible. Also, our desiderata list includes:

• having a fully model-based approach so that our assumptions can be readily
checked and changed if necessary;

• retain the intensity function exactly as specified, without any representation.

The next two sections present different solutions that respect the above list,
while presenting inference exactly for the model considered, instead of a represen-
tation and/or an approximation of it.
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4 Discretization

Even tough the model is specified at the point-wise level, some situations require
regional rather than a point-wise approach. These include the cases where all rel-
evant inference to be drawn from the model is made at the regional level. In these
scenarios, little is lost by assuming piece-wise constancy of the intensity function
or the components that make it up. Once again, important and heavily used exam-
ples come from epidemiological studies where health decisions are not made at
the point level but at the regional level where countries, states and provinces are
organized at.

Therefore, this section follows Pinto Jr. et al. (2015) by assuming that λt (s) =
λi,t , for s ∈ Ri ⊂ S and for all i, t . The sets {Ri} form a partition of S, with ai =
vol(Ri), for all i. Shape, size and cardinality of {Ri} depends on the phenomenon
under study.

The likelihood function then becomes l(λ;y) = ∏
t

∏
i λ

Ni,t

i,t exp{−∑
t

∑
i aiλi,t }.

This is basically equivalent to observing data Ni,t ∼ Poisson(aiλi,t ), ∀(i, t).

The only difference being the inclusion of the multiplicative term [∏t

∏
i a

Ni,t

i ]/∏
t

∏
i Ni,t ! to the likelihood from observing the {Ni,t }. This extra term is irrele-

vant for making inference about model parameters but is required for predictive
quantities, used in some model comparison tools.

Since our framework was specified from a regression perspective with regres-
sion coefficients β , these must also be simplified to βt(s) = βi,t , for s ∈ Ri ⊂ S.
the link between the discretized intensity and regression coefficients is provided
by λi,t = g(W ′βi,t ), ∀(i, t). The most common link is the exponential but other
monotonically increasing links could be used just as well.

The extension towards individual configurations is easily accommodated by not-
ing the likelihood is l(λ;y) = ∏

v l(λv;y), which is basically equivalent to observ-
ing data Ni,t,v ∼ Poisson(aiλi,t,v), ∀(i, t, v) and the observation part of the model
is completed with the link λi,t,v = g(W ′

vβi,t ), ∀(i, t, v), with the regression pro-
cess β .

The latter process becomes finite-dimensional with values β = (β1, β2, . . . , βT )

where βt = {βi,t ,∀i}. The joint specification of this finite process becomes βt ′ =
Gt,t ′βt + wt , the finitely-dimensional disturbances wt and the initial process state
β1 are given multivariate normal distributions. These distributions may be induced
by the underlying GP with covariance specification between pairs of units based
on the some location of the units. The most common location choice to represent
unit i is the centroid of Ri but other summarizers could be used.

The framework becomes similar to the Poisson version of the dynamic areal
models of Vivar and Ferreira (2009). Inference for these models follow closely
the time series literature. Examples of MCMC methods for these models include
Gamerman (1998) and Fruhwirth-Schnatter and Wagner (2006). Standard, general-
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purpose software for Bayesian inference can also be used here. They may require
substantial computational overhead for large T since most of them do not make
use of blocks and/or reparametrization. As a result, the typically strong temporal
dependence present in the β process slows MCMC convergence down. In any case,
the computational cost depend on the cardinality of the partition {Ri}).

4.1 Application

The Superintendência de Seguros Privados (SUSEP, in short) is a government en-
tity concerned with regulation of insurance in Brazil. They contain a database of
many sources of information. This illustration is concentrated on a specific dataset
about vehicle policies in the city of Rio de Janeiro and the time span consist of
the years 2009, 2010 and 2011. The dataset contains information on all insurance
policies contracted in this period along with details about the insured vehicle. Our
focus is on the assessment of the spatiotemporal variation of loss (theft and rob-
bery) occurrence rate and of the possible effect that vehicle characteristics may
have over this rate.

The nature of the problem is imposed by the need of insurance companies to
have workable tables to formulate their policies and premiums. Thus, the study
was discretized by regions {Ri} defined according to the first 3 digits of the postal
code. Figure 2 shows this result of this operation to the area of interest.

In this application, time is treated as discrete with time units given by semester,
thus rendering a total of 6 time units. This unit is chosen because the database
recorded the total exposure for each region with a half-yearly resolution, even
though the losses are temporally registered in the database with monthly reso-
lution. The explanatory variables chosen are x1, the manufacturing year of the

Figure 2 City of Rio de Janero, colored according to discretization provided by the first 3 digits of
the postal code of the location of the loss (Pinto Jr., 2014).
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vehicle (in years), and x2, an indicator of the nature of the vehicle usage (per-
sonal/commercial). The total exposure rv,i,s per covariate configuration v, region
Ri and semester t is used as an offset. It plays the crucial role of standardiza-
tion thus allowing for valid comparisons across space-time-covariate configura-
tion. The model for the point processes of occurrences {Yv,∀v} can be written
as

Yv ∼ PP
(
�v(s, t)

)
, ∀v

�v(s, t) = rv,i,tλv,i,t , for s ∈ Ri,∀(v, i, t)

logλv,i,t = α0,i,t + α1,i,t x1,v + α2,i,t x2,v, ∀(v, i, t)

αl,t = αl,t−1 + wl,t , where wl,t ∼ N(0,Rl), for l = 0,1,2 and ∀t > 1,

where αl,t = {αl,i,t ,∀i} is the set of regression coefficients at time t and the dis-
turbances wl,t have their normal distribution drawn from the GP’s that drive the
evolution of DGP, for l = 0,1,2.

Figure 3 presents the temporal evolution of a subset of regions for the intercept
α0. The figure seem to indicate a general decreasing trend in losses over the period

Figure 3 Estimation summary of the temporal evolution of the intercept α0 for some selected re-
gions: median (full line) and 95% credibility intervals (shaded area). Extracted from Pinto Jr. (2014).
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Figure 4 Estimation summary of the temporal evolution of the coefficient α1 of the vehicle man-
ufacturing year for some selected regions: median (full line) and 95% credibility intervals (shaded
area). Extracted from Pinto Jr. (2014).

studied. This decrease is significant for most regions despite the small temporal
length of the study window. This pattern exhibit substantial variation across space,
with some regions presenting steeper declines and a few regions not providing
evidence of any decrease. This spatial variation of the intercept only emphasize
the importance of allowing them to vary over space, as expected.

Figures 4 and 5 present the temporal evolution of a subset of regions for the
regression coefficients α1 and α2. They also show spatial variation for both re-
gression coefficients for many regions. This variation is not contemplated in most
regression models and therefore is typically not expected in such applications.
They also show significant temporal variation for a number of regions. The ef-
fect of the manufacturing year is mostly positive indicating a higher loss inten-
sity for newer vehicles. But the most striking feature of Figure 4 is the upward
trend exhibited by many regions, indicating a temporal increase in the loss in-
tensity for newer cars. Once again, the pattern is far from similar across regions,
indicating the need for spatial variation of effects. The temporal variation of the
effect of the nature of the vehicle usage seems to have a U-shaped form over the
time span of the study, but the uncertainty of the estimates prevents further elab-
oration. It seems safer to assume a constant temporal trend of this effect overall.
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Figure 5 Estimation summary of the temporal evolution of the coefficient α2 of the nature of the
vehicle usage for some selected regions: median (full line) and 95% credibility intervals (shaded
area). Extracted from Pinto Jr. (2014).

Nevertheless, many regions exhibit significantly positive and negative effects at
some time periods. As before, the plots of Figure 5 exhibits a variety of shapes of
temporal variation and uncertainty bounds highlighting the need for spatial varia-
tion.

5 Data augmentation

The material of the previous section is useful when one is prepared to assume
local constancy of the intensity. More general scenarios require estimation of an
intensity function varying over a continuous domain in space. However this sce-
nario leads to an intractable situation due to the evaluation of the integral in the
likelihood.

The solution comes from an augmentation approach, whose origin can be traced
back to the Poisson thinning algorithm by Lewis and Shedler (1979), described in
Algorithm 1.

This algorithm provides a computational description of an augmentation process
X to the underlying process Y . The complication brought by the non-homogeneity
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Algorithm 1 Simulation from Y | λ ∼ PP(λ) (space only)
(1) set λ∗ = sups λ(s);
(2) sample X ∼ PP(λ∗), where X is an augmented data process. This is performed

in two steps:
(2a) sample K ∼ Poisson(λ∗ vol(S));
(2b) distribute K points {sk}Kk=1 uniformly over S;

(3) retain each point sk with probability λ(sk)/λ
∗, ∀k;

(4) {si}Ni=1 retained points are a sample from Y .

Figure 6 Graphical representation of Algorithm 1 for a unidimensional spatial domain S. The
K sampled points are presented at the top left corner in Step 2a and distributed to locations over
the spatial domain in Step 2b. Two locations have their intensities values presented in Step 3 and
compared to the intensity of the augmented process. The location to the left (right) has a much
higher (lower) acceptance rate and ends up accepted (rejected), as shown in Step 4.

of the intensity function λ of Y is basically solved by the homogeneity of the inten-
sity function of X. It augments the data process Y because its intensity is uniformly
larger than (and blankets) the intensity of Y . The points generated from X are se-
lected in a rejection procedure. This procedure is facilitated by the independence
of Poisson processes and can thus be performed point by point independently. The
steps of the algorithm are illustrated in Figure 6 for a unidimensional spatial do-
main, merely for ease of exposition.
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The analytic version of Algorithm 1 is described by

π(K,x, y | λ) = π
(
K | λ∗) × π(x | K) × π(y | x,λ)

= e−λ∗ vol(S)
[vol(S)λ∗]K

K! ×
[

1

vol(S)

]K

×
N∏

i=1

λ(si)

λ∗ ×
K−N∏
j=1

[
1 − λ(sj )

λ∗
]
. (1)

The rejected points {si}Ki=N+1 are sample from Ỹ , the complement of Y with re-

spect to X. It is useful to note that Ỹ = X\Y ∼ PP(λ∗ − λ) and that Y and Ỹ

are independent conditionally on the intensity λ. Thus, the augmented data X is
obtained as a result of the augmentation of real data Y by latent data Ỹ .

The extension to the general space-time case is straightforward. The algorithm
to simulate from Y = (Y1, . . . , YT ) | λ ∼ PP(λ) can be obtained after recalling that
Yt | λt ∼ PP(λt ),∀t , are conditionally independent point processes given λ. So,
a sample from Y is obtained by repeating Algorithm 1 for all t , with augmented
process X = (X1, . . . ,XT ), with intensities λ∗

t = sups λt (s),∀t . The sample from
Y is given by {{si,t }Nt

i=1,∀t}. {{si,t }Kt

i=Nt+1,∀t} is the set of rejected points and con-

sist on a sample from Ỹ = (Ỹ1, Ỹ2, . . .), where Xt\Yt = Ỹt ∼ PP(λ∗
t − λt ),∀t . The

analytic version of the algorithm now is simply a product of the version above for
the space-only case.

In either case, the integral disappeared from the augmented likelihood and it
depends on a finite subset of λ. These features will be crucial for exact evaluation
of the likelihood and for easy sampling of model parameter processes, respectively.

The requirement of a bounding constant λ∗ forces changes in the model speci-
fication. In order to benefit from the advantages of Algorithm 1 the link function g

relating the covariates to the intensity function must be bounded. This seems like
a small price to pay in many applications as typically there is no physical need for
unlimited values of the intensity.

Thus, the intensity function is now given by λ(s) = λ∗g[W ′β(s)], where the
link function g must be a monotonically increasing, taking values in the unit in-
terval. So, any distribution function can be used. Adams et al. (2009) proposed
the use of Algorithm 1 for inference of Poisson process intensities, in conjunc-
tion with a logistic or sigmoidal link. Gonçalves and Gamerman (2018) chose the
probit link where g = �, the distribution function of the standard normal distribu-
tion. It is basically undistinguishable from the sigmoidal link but presents useful
computational advantages.

The model is completed with independent prior distributions for the regression
coefficient processes β and the maximum intensity λ∗. The former is given by a
multivariate GP, possibly depending on hyperparameters θ , and the latter can be
given any distribution over the positive semi-line. An obvious choice is the Gamma
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distribution, that is conditionally conjugate. Details about these specifications are
provided in Gonçalves and Gamerman (2018).

In the sequel, we will use the notation βN and WK to represent the values of β

at the N accepted locations and W at all K locations. Similar reasoning is valid to
define βK , βK−N , WN and βK−N .

5.1 Inference

The presentation here will be restricted to the space-only case with only spatial
covariates. The other cases will be briefly addressed in the sequel. Inference must
be performed on all unknown quantities. These are the model parameters β and
λ∗, the hyperparameters θ and the latent data ỹ.

The Bayesian inference for these unknowns is based on their posterior distribu-
tion. Bayes theorem informs that the posterior distribution is based on the product
of prior distribution and the (augmented) likelihood. Thus,

π
(
ỹ, β, λ∗, θ | y) ∝ l

(
ỹ, βK,λ∗;y) × π

(
βK,β−K,λ∗, θ

)
,

where β = (βK,β−K), the (augmented) likelihood is given by

l
(
ỹ, β, λ∗;y) = π

(
y, ỹ|βK,λ∗)

= e−λ∗ vol(S) [λ∗]K
K! ×

N∏
i=1

�
[
W ′

i β(si)
]K−N∏

j=1

�
[−W ′

jβ(sj )
]
,

and the prior distribution is represented by

π
(
βK,β−K,λ∗, θ

) = πGP(β−K | βK, θ)πGP(βK | θ)πλ

(
λ∗)

π(θ).

The above results show that the likelihood depends on β only through βK . Thus,
inference about β can be split into two steps: inference for βK based on the data,
followed by inference on β−K conditional only on βK and θ . The inference proce-
dure for β is basically reduced to finitely many values of β , like in the discretiza-
tion approach of the previous section.

The complicated nature of the posterior distribution precludes exact posterior
calculations. One of the attractive option for inference is MCMC (Gamerman and
Lopes, 2006). This can be implemented to the current setting by block sampling
from full conditional distribution of components of the array of unknowns as fol-
lows:

ỹ: sample from Poisson(λ∗ − λ), using Algorithm 1;
βK : sample directly from full conditional distribution that is multivariate skew

normal;
λ∗: sample directly from full conditional distribution that is Gamma, if prior for

λ∗ is Gamma;
θ : sample with a Metropolis–Hastings proposal;
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β−K : sample required finite components of β−K via kriging using the GP prior.

Sampling ỹ requires retrospective sampling of components of β−K at the new
chosen locations. The multivariate skew normal distribution of βK stems from the
combination of the multivariate normal prior distribution with the product of probit
functions from the augmented likelihood. Details of the above sampling operations
are provided in Gonçalves and Gamerman (2018).

Extension of these results to the dynamic setting is not difficult but depend on
specification of dynamic extensions of λ∗ and β . Appropriate temporal evolutions
for these quantities must be specified. DGPs seem a natural choice for β . A compu-
tationally convenient evolution for the dynamic λ∗

t ’s was provided by Gamerman
et al. (2013).

These results allow for inference for any computable function of parameters.
Among these, stand out the integrated intensity

∫
C λ(s) ds, for any subset C of

the region of interest. It is the mean of the Poisson distribution of the number of
occurrences in C and is a useful tool for the assessment of model fit and also for
prediction.

5.2 Comments

This line of work is an extension of the work done by Adams et al. (2009). There
are a few important differences however. Adams et al. (2009) did not consider
the temporal extension, even tough it can be trivially adapted in the continuous
time setting. They did not consider covariates and therefore they obviously did not
consider space(-time) variation of regression coefficient. Also, their choice of the
sigmoidal link makes it difficult to provide easy sampling of β . They resorted to
Hamiltonian MCMC which rendered a more convolved coding and more costly
mixing in terms of time and convergence speed. Figure 7 illustrates the relative
mixing merits of both proposals.

Figure 7 Autocorrelation function of −2 log posterior density for the two approaches in a simulated
example (from Gonçalves and Gamerman (2018)).
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Figure 8 Introduction of an upper bound λ† (in red) larger than the maximum λ∗ (in blue) to the
intensity.

Extra care must be exercised when setting priors for the maximum intensity
λ∗. Any λ† > λ∗ is a valid constant for the intensity of the augmented data X of
Algorithm 1. The larger the value of λ†, the less efficient the computation becomes.
Figure 8 illustrates this issue as the expected value of the number K of drawn
locations is proportional to the maximum intensity used and the value of K governs
the computational cost.

The augmentation procedure may also be inefficient if the intensity function
exhibit substantial variation in magnitude even if λ∗ is used. In the example of
Figure 8, only around 20% of the K drawn points using λ∗ are accepted. The
acceptance rate would reduce to around 14% if point were drawn using λ†.

5.3 Application

Fires in forest land are a major source of concern for the society. As an exam-
ple recent fires throughout the globe caused a sizeable number for fatal casualties
among neighboring citizens and visitors to these areas. The study of their occur-
rence may indicate spatial and/or temporal trends and thus provide directions for
the authorities to help prevent future events.

This application comes from a dataset available in spatstat (Baddeley and
Turner, 2005). It concerns location of fires in the province of New Brunswick,
Canada, from 1987 to 2003, with the year 1988 missing, comprising a total of
16 years of data. The analysis below uses the same dataset from Gonçalves and
Gamerman (2018), shown in Figure 9, over a large rectangular area contained in
the province. The model follows the description of Section 5 with a single latent
process βt undergoing a random walk βt = βt−1 + wt , with wt ∼ GP, ∀t and
β1 ∼ GP, with a slightly different configuration to that used in Gonçalves and
Gamerman (2018).

Inference is performed via MCMC, sampling each βt one at a time. This strategy
is known to be less efficient than sampling β in a single block (Gamerman, 1998).
But this strategy is far simpler to implement. Block sampling of β would require
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Figure 9 Maps of the data (dots) and IF posterior mean in the New Brunswick fires example: years
are ordered from the top row to the bottom row, and then from left to right in each row in the sequence
1987, 1989, 1990, . . . , 2003.

Figure 10 Implementation of regional maxima (in blue) over the intensity of Figure 2.

FFBS-like strategy or alternatively handling a joint multivariate skew normal dis-
tribution of much larger dimension. Also, the relative gains of block sampling are
modest for such small time spans (16 time units in this case). Improvement over
MCMC sampling in such dynamic settings is still subject of current research and
report on other attractive alternatives is hoped to be released in the near future.

Results of the inference for the intensity function are also presented in Fig-
ure 10. It shows a nice balance between the information of the point pattern ob-
served at each time with the estimated intensity function at neighboring times.
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6 Discussion

Two approaches to handle inference for point processes were presented and dis-
cussed. Discretization is useful when regional effects are more useful than point-
wise effects. The computational cost depends on number of regions specified. Aug-
mentation also leads to discretization but the computational cost in this case de-
pends on number of locations both real and augmented.

Either way, the computation depends crucially on GP’s. These processes make
use of multivariate normal distributions, that require matrix inversion. These oper-
ations may be extremely costly, specially if dimensions are large. This is a well-
known problem in Geostatistics and a variety of approximation solutions has been
proposed. Shirota and Banerjee (2018) applied some of these solutions to the mod-
els presented in this paper.

The need for an additional parameter λ∗ in the augmentation approach opens up
an additional possibility for introducing the effect of non-spatial covariates. Their
effect was incorporated into the probit link but it may well affect the maximum.
The latter option is not unreasonable. Intensities are affected by values of the ex-
planatory variables and therefore it is expected that non-spatial covariates affect
the maximum intensity. In this case, λ∗ may depend on the individual configura-
tion v, for example, via λ∗(v) = λ∗

0h(v), for some positive transformation h.
The last section discussed the inefficiency of the augmentation route due to the

use of the unique maximum intensity over the entire spatial domain. This approach
could be made more efficient by varying λ∗ over regions in space. Figure 10 illus-
trates the substantial gain of efficiency that could be obtained. The regional varia-
tion of λ∗ in the example improved the acceptance of points from 20% to around
60%.

This variation of λ∗ will induce jumps in the intensity function unless the GP
assumption for β is replaced by another specification that would compensate the
discontinuities. Such specification is far from trivial and it will likely introduce
additional computational burden even if it were found.

The above point brings in a discussion of the very nature of the model. The GP
assumption was a useful prior representation for smooth intensity functions. This
smoothness is expected in many applications but may also be unreasonable for
other situations. Pockets of violence in the illustration of Section 4.1 may cause
an abrupt, substantial increase in the loss intensity. These hot spots provide a vivid
example of discontinuities frequently encountered in applications. Also, the degree
of smoothness may experience substantial variation across space. In these cases,
changes in space of the GP characteristics could be beneficial.

This remark calls for a modeling variation of a single GP set-up into more gen-
eral frameworks. There is a long list of alternatives available in the Geostatistics
literature. Many of them can be written as some form of mixtures of GPs but very
few of them are dedicated to specific case of point patterns. Liang et al. (2014) is
a notable exception.
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A simple, promising generalization to nonstationarity is provided by partition
into local GPs (Kim et al., 2005; Gramacy and Lee, 2008). The partition approach
is particularly attractive from a computational perspective. It may be applied to the
regression coefficient process β from both discretization and augmentation routes.
In the latter route, these ideas can also be applied to λ∗. This remark connects
with the comments above about varying λ∗, that were seemingly concerned only
with computation. This approach induces loss of information by not borrowing
information across the entire spatial domain but Kim et al. (2005) provided some
empirical evidence that this loss may not greatly affect inference.

The above discussion is just a sample of the wealth of possibilities that are open
for use in the context of point pattern analysis. They are the subject of current
research and we hope to report on them shortly. We hope that our paper will foster
further development to the growing literature in the area and will increase our
knowledge about the possible reach of this type of analysis.
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