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Agnostic tests can control the type I and type II errors
simultaneously
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Abstract. Despite its common practice, statistical hypothesis testing presents
challenges in interpretation. For instance, in the standard frequentist frame-
work there is no control of the type II error. As a result, the non-rejection of
the null hypothesis (H0) cannot reasonably be interpreted as its acceptance.
We propose that this dilemma can be overcome by using agnostic hypothesis
tests, since they can control the type I and II errors simultaneously. In order
to make this idea operational, we show how to obtain agnostic hypothesis
in typical models. For instance, we show how to build (unbiased) uniformly
most powerful agnostic tests and how to obtain agnostic tests from standard
p-values. Also, we present conditions such that the above tests can be made
logically coherent. Finally, we present examples of consistent agnostic hy-
pothesis tests.

1 Introduction

Despite its common practice, statistical hypothesis testing presents challenges in interpreta-
tion. For instance, some understand that an hypothesis test can either accept or reject the null
hypothesis, H0. However, in this paradigm the probability of accepting H0 can be high even
when H0 is false. Therefore, it is possible to obtain the undesirable result of accepting H0
even when this hypothesis is unlikely.

In order to deal with this problem, others propose that an hypothesis test should either
reject or fail to reject H0 (Casella and Berger (2002), p. 374, and DeGroot and Schervish
(2002), p. 545). Such a position can also lead to challenges in interpretation, since the practi-
tioner often wishes to be able to assert H0 (Levine et al. (2008)). For example, in regression
analysis non-significant predictors are often considered to not affect the response variable and
are removed from the model. More generally, scientists often wish to assert a theory (Stern
(2011, 2017)).

Neyman (1976), p. 14, briefly introduces an alternative to the above paradigms to hypothe-
sis testing. In this setting, an hypothesis test can have three outcomes: reject H0, accept H0, or
remain in doubt about H0—the agnostic decision. This third decision allows the hypothesis
test to commit a less severe error (remain in doubt) whenever the data doesn’t provide strong
evidence either in favor or against the null hypothesis. This approach, which was called ag-
nostic hypothesis testing, was further developed in Berg (2004), Esteves et al. (2016), Stern
et al. (2017). This framework allows the acceptance of H0 while simultaneously controlling
the type I and II errors through the agnostic decision. As a result, it is possible to control the
probability that H0 is accepted when H0 is false.

Although agnostic decisions have been used in classification problems with great success
(Lei (2014), Jeske et al. (2017), Jeske and Smith (2017), Sadinle, Lei and Wasserman (2019))
the agnostic hypothesis testing framework has only started to be explored. Here, we gener-
alize to arbitrary hypotheses the setting in Berg (2004), which applies only to hypotheses of
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the form: Hi : θ = θi , for i ∈ {0,1}. This generalization allows the translation of standard
concepts, such as level, size, power, p-value, unbiased tests, and uniformly most powerful
test into the framework of agnostic hypothesis testing. Within this framework, we create new
versions of standard statistical techniques, such as t-tests, regression analysis and analysis of
variance, which simultaneously control type I and type II errors.

Section 1.1 formally defines agnostic tests and concepts that are used for controlling their
error, such as level, size, power and consistency. Sections 2.1 and 2.2 use these definitions to
generalize the framework in Berg (2004); they derive agnostic tests that are uniformly most
powerful tests and unbiased uniformly most powerful tests. Since it can be hard to obtain the
above tests in complex models, Section 3 derives a general approach for controlling the error
of agnostic tests that is based on p-values. Section 4 advances results that were obtained in
Esteves et al. (2016), Stern et al. (2017) and shows that agnostic tests can control type I and
II errors while retaining logical coherence. Section 5 discusses how to control the type I and
II errors while obtaining consistent agnostic tests. All proofs are in the Appendix.

1.1 Definitions and notation for agnostic tests

We consider a setting in which the hypotheses that are tested are propositions about a param-
eter, θ , that assumes values in the parameter space, � ⊂ R

d . Specifically, the null hypotheses,
H0, are of the form, H0 : θ ∈ �0, where �0 ⊂ �. The alternative hypotheses, H1, are of the
form H1 : θ ∈ �c

0. In order to test H0, we use data, X, which assumes values on the sample
space, X . Also, Pθ0 denotes the probability measure over X when θ = θ0 ∈ �.

Notation 1.1. The i-th element of θ is denoted by θ(i). This notation is useful because θi is
often used to denote an element of Hi and not the i-th element of θ .

H0 is tested through an agnostic test. An agnostic test is a function that, for each observable
data point, determines whether H0 should be rejected, accepted or remain undecided. Let
D = {0, 1

2 ,1} denote the set of possible outcomes of the test: accept H0 (0), reject H0 (1), and
remain agnostic (1

2).

Definition 1.2. An agnostic test is a function, φ : X → D.

Definition 1.3. An agnostic test, φ, is a standard test if Im[φ] = {0,1}.
An agnostic test can have 3 types of errors. The type I and type II errors of agnostic tests

are defined in the same way as those of standard tests. That is, a type I error occurs when
the test rejects H0 and H0 is true. Similarly, a type II error occurs when the test accepts H0
and H0 is false. A type III error occurs whenever the test remains agnostic. That is, contrary
to type I and type II errors, one knows when type III errors occur. An agnostic test can be
designed to simultaneously control the errors of type I and II.

Definition 1.4. An agnostic test, φ, has (α,β)-level if the test’s probabilities of committing
errors of type I and II are controlled by, respectively, α and β . That is,

αφ := sup
θ0∈H0

Pθ0(φ = 1) = α

βφ := sup
θ1∈H1

Pθ1(φ = 0) = β

Similarly, φ has size (α,β) if the probabilities of committing errors of type I and II are upper
bounded by α and β . That is, αφ ≤ α and βφ ≤ β .
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Agnostic tests can be compared by means of their power. The power function of a test is
the probability that it doesn’t commit an error. That is, the probability that it accepts H0 when
H0 is true or rejects H0 when H0 is false.

Definition 1.5. The power function of an agnostic test, φ, is denoted by πφ(θ).

πφ(θ) =
{
Pθ (φ = 0), if θ ∈ H0

Pθ (φ = 1), if θ ∈ H1

The power function induces a partial order among hypothesis tests. If two agnostic tests
are such that the power of the first is always at least as large as that of the second, then the
first is at least as desirable as the second.

Definition 1.6. Let φ1 and φ2 be agnostic tests. We say that φ1 is uniformly more powerful
than φ2 for H0 and write φ1 � φ2 if, for every θ ∈ �, πφ1(θ) ≥ πφ2(θ).

In some statistical models, the partial order given by Definition 1.6 is such that there exists
a maximal element among hypothesis tests of a given size. That is, if one considers only tests
that control type I and II errors by fixed values, then there exists a test that is more powerful
than any other. This test is called uniformly most powerful.

Definition 1.7. An unbiased (α,β)-level agnostic test, φ∗, is uniformly most powerful
(UMP) if, for every other (α,β)-size agnostic test, φ, φ∗ � φ.

One way to construct agnostic tests is based on a statistic T of how much the data is
inconsistent with H0. For instance, one could use the likelihood ratio statistic. Next, one
builds a test that rejects H0 when T is large, accepts H0 when T is small and remains agnostic,
otherwise. Such a test is presented in Definition 1.8 and can help to find UMP tests.

Definition 1.8. Let T be a statistic and c0 ≤ c1. The agnostic test, φT,c0,c1 , is

φT,c0,c1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if T (x) ≤ c0

1, if T (x) > c1
1

2
, otherwise.

UMP tests of the form in Definition 1.8 are presented in Section 2.1.
However, there often do not exist UMP tests among all tests of a given size. This often

occurs because it is possible for a test to sacrifice power in a region of � in order to obtain a
high power in another region. Such sacrifices can yield undesirable tests.

In order to define desirable tests, we consider a test that uses no data. If α + β ≤ 1 and
U ∼ Uniform(0,1), then φU := φU,β,1−α is called the trivial test of level (α,β), since it uses
no data. Furthermore, for every θ0 ∈ H0, πφU (θ0) = β and also for every θ1 ∈ H1, πφU (θ1) =
α. One can define that a test is desirable if it is more powerful than a trivial test of the same
level. Such tests are usually called unbiased, as in Definition 1.9.

Definition 1.9. An agnostic test, φ, is unbiased if⎧⎪⎪⎨⎪⎪⎩
inf

θ0∈H0
Pθ0(φ = 0) = πφ(θ0) ≥ sup

θ1∈H1

Pθ1(φ = 0) = βφ

inf
θ1∈H1

Pθ1(φ = 1) = πφ(θ1) ≥ sup
θ0∈H0

Pθ1(φ = 0) = αφ

Note that, if φ is unbiased, then αφ + βφ ≤ 1.
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When there exists no uniformly most powerful test among the tests of a given level, a
common strategy is to restrict the analysis to unbiased tests. In some such cases, there exists
a uniformly most powerful test among unbiased tests of a given level. Such a test is called
uniformly most powerful among unbiased tests (UMPU).

Definition 1.10. An (α,β)-level test is said to be uniformly most powerful among unbiased
tests (UMPU) if, for every unbiased (α,β)-size test, φ, φ∗ � φ.

In order to construct unbiased agnostic hypothesis tests, it is often useful to consider a
statistic, V , which assumes large absolute values when the data disagrees with H0. One con-
struct an agnostic test based on V by rejecting H0 when V assumes extreme values, accepting
H0 when V is close to 0 and remaining agnostic, otherwise. Such a test is presented in Defi-
nition 1.11 and can help to find and describe UMPU tests.

Definition 1.11. Let c0,l , c1,l, c0,r , c1,r ∈ R be such that c1,l ≤ c0,l ≤ c0,r ≤ c1,r .

φV,c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if V < c1,l or V > c1,r

0, if c0,l ≤ V ≤ c0,r

1

2
, otherwise.

UMPU tests of the form in Definition 1.11 are presented in Section 2.2.
However, in some statistical models an UMPU agnostic test might not exist or be hard to

find. In such a situation, one might be satisfied by determining an arbitrary (α,β)-level test.
A wide class of such tests can be obtained through the p-value of standard hypothesis tests.
The definition of p-value is revisited below.

Definition 1.12. A nested family of standard tests for H0, �, is such that

1. For every φ ∈ �, φ is a standard test.
2. The function g : � → [0,1], g(φ) = αφ is bijective.
3. If φ1, φ2 ∈ � and αφ1 ≤ αφ2 , then {x ∈ X : φ1(x) = 1} ⊂ {x ∈ X : φ2(x) = 1}.

Example 1.13. Let λ(x) = − log(
supθ0∈H0

fθ0 (x)

supθ∈� fθ (x)
). The collection of generalized likelihood

ratio tests, � = {φλ,k,k : k ≥ 0}, is a nested family of standard tests for H0.

Definition 1.14. Let � denote a nested family of standard tests for H0. The p-value of �

against H0, pH0,� : X → [0,1] is such that pH0,�(x) = inf{αφ : φ ∈ � ∧ φ(x) = 1}.

If p := pH0,� is a p-value, then one might consider the agnostic test φ1−p,1−α,β . Condi-
tions under which such a test attains level (α,β) are explored in Section 3. The section also
illustrates this result with a general linear hypothesis test in regression analysis and with a
permutation test.

Another way of constructing agnostic tests is based on region estimators. One of the advan-
tages of such tests is that they are logically consistent (Esteves et al. (2016)). The definitions
of region estimator and agnostic tests based on a region estimator are presented below in
Definitions 1.15 to 1.17.

Definition 1.15. A region estimator is a function R : X → P(�).



234 V. Coscrato, R. Izbicki and R. B. Stern

Figure 1 φ(x) is an agnostic test based on the region estimator, R(x), for testing H0.

Definition 1.16 (Agnostic test based on a region estimator). Let R(x) be a region estimator
and H0 ⊆ �. The agnostic test based on R for testing H0, φH0,R is such that

φH0,R(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if R(x) ⊆ H0

1, if R(x) ⊆ Hc
0

1

2
, otherwise.

Figure 1 illustrates this procedure.

Definition 1.17. A collection of tests, (φH0)H0∈H is based on a region estimator if there exists
a region estimator, R(x), such that, for every H0 ∈ H, φH0 is based on R.

Section 4 shows that if a test is based on a region estimator and the region estimator is a
confidence region, then the tests controls type I and type II errors. The section also shows
that the unilateral tests in Section 2.1 are based on confidence regions. However, not every
agnostic test is based on a region estimator. Section 4.2 shows that every agnostic test is
a tested based on two nested region estimators and illustrates this result with the tests in
Section 2.2.

One might wish that agnostic tests satisfy additional properties besides controlling the type
I and II errors. For instance, one might wish that the power of the test goes to 1 as the sample
size increases, that is, the probabilities of type I, type II and type III errors go to 0 as the
sample size goes to infinity. Consistency is formalized in Definition 1.18.

Definition 1.18. A sequence of agnostic tests for H0, (φn)n∈N, is consistent if, for every
θ ∈ �, limn→∞ πφn(θ) = 1.

Section 5 shows that, for a wide class of statistical models, it is impossible to obtain con-
sistent tests while uniformly controlling type I and type II errors. It also shows that, if one
uses a more flexible control of these errors, then it is possible to obtain consistent tests.

2 The power of agnostic tests

2.1 Uniformly most powerful tests

We start by exploring UMP agnostic tests. Assumption 2.1 presents general conditions under
which such tests can be found. These conditions are the same as the ones that are typically
used in the standard frequentist framework (Casella and Berger (2002), p. 391).

Assumption 2.1.

1. For every θ ∈ �, Pθ is absolutely continuous with respect to the Lebesgue measure, λ,
and fθ (x) := dPθ

dλ
(x) > 0.
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2. There exists a sufficient statistic for θ , T , and the likelihood is monotone non-decreasing
over T .

Theorem 2.2 shows that, under Assumption 2.1, agnostic UMP tests for unilateral hypoth-
esis can be created by checking if the statistic T is larger than some threshold, smaller than
another threshold, or if it lies between such values.

Theorem 2.2. Let H0 = {θ ∈ � : θ ≤ θ∗}, c0 ∈R be such that supθ1∈H1
Pθ1(T (X) ≤ c0) = β ,

and c1 ∈ R be such that supθ0∈H0
Pθ0(T (X) > c1) = α. Under Assumption 2.1,

1. If c0 ≤ c1, then φT,c0,c1 (Definition 1.8) is an UMP (α,β)-size agnostic test.
2. If α and β are such that c0 > c1 (and thus φT,c0,c1 is not well defined), then let � =

{φT,c,c : c1 ≤ c ≤ c0}. For every (α,β)-size agnostic test, φ, there exists φ∗ ∈ � such that
φ∗ � φ.

Besides providing a framework for building agnostic UMP tests for unilateral hypothesis,
Theorem 2.2 also generalizes several previous results in the literature. For example, if � =
{θ0, θ1} and T (x) = fθ1 (x)

fθ0 (x)
, then the likelihood is monotone over T . In this setting, Berg

(2004) shows that, if c0 ≤ c1, then φT,c0,c1 is the UMP agnostic test. Also, one can emulate
the standard frequentist framework by not controlling the type II error, that is, by considering
(α,1)-size tests. In this case, � = {φT,c,c : c ≤ c0} is the set of α-size UMP tests in the
standard frequentist framework (Casella and Berger (2002), p. 391).

Similarly to this case in which β = 1, the second condition in Theorem 2.2 occurs when-
ever the control over α and β is sufficiently weak so that there exist standard tests of size
(α,β) and there is no need of using the agnostic decision. In this case, the tests in � cannot
be uniformly more powerful than one another because of a trade-off in the power in each
region of �. If c2 < c3, φ2 = φT,c2,c2 and φ3 = φT,c3,c3 , then the comparison of the critical
regions of φ2 and φ3 reveals that the power of φ2 is higher over H1 and the power of φ3 is
higher over H0. That is, the choice between the elements in � depends on the desired balance
between the power over H0 and over H1.

In the following, Example 2.3 presents an application of Theorem 2.2.

Example 2.3 (Agnostic z-test). Let X1, . . . ,Xn be an i.i.d. sample with Xi ∼ N(μ,σ 2),
where μ ∈ R := � and σ 2 is known. Let H0 = {μ ∈ � : μ ≤ μ0} and T = X̄ be the sample
mean. Note that the conditions in Assumption 2.1 are satisfied. Furthermore, if α + β ≤ 1,
then by taking c0 = μ0 − σn−0.5�−1(0.5(1 − β)) and c1 = μ0 − σn−0.5�−1(0.5α), one
obtains that c0 ≤ c1, supθ∈H0

Pθ (T > c1) = α and supθ∈H1
Pθ (T ≤ c0) = β . Therefore, it

follows from Theorem 2.2 that φT,c0,c1 is an UMP (α,β)-level agnostic test.
Figure 2 illustrates the probability of each decision of this test as well as its power function

when σ = 1, n = 10 and α = β = 0.05.

2.2 Unbiased uniformly most powerful tests

If only unbiased tests are considered, it possible to find uniformly most powerful tests in
statistical models that are more general than the ones considered in the previous section. In
the following, Assumptions 2.4 and 2.6 present general conditions under which there exist
tests that are uniformly most powerful among the unbiased tests. These conditions are the
same as the ones that are typically used in the standard frequentist framework (Lehmann and
Romano (2006), p. 151). Using these conditions, Theorems 2.5 and 2.7 derive UMPU tests
for unilateral and bilateral hypotheses, respectively.
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Figure 2 Probability of each decision for the UMP (0.05,0.05)-level agnostic test for H0 : μ ≤ 0 (left) and
power function for this test (right). The gray dashed horizontal line shows the values α = β = 0.05.

Assumption 2.4.

1. For every θ ∈ �, Pθ is absolutely continuous with respect to the Lebesgue measure, λ,
and fθ (x) := dPθ

dλ
(x) > 0.

2. θ ∈ R
n = � and fθ (x) is in the exponential family, that is, there exists h : R → R

n such
that fθ (x) = c(x) exp(θ · h(x) − d(θ)).

3. Let T (X) = (h2(X), . . . , hn(X)), where hi is the i-th component of h. There exists
V (h(X)) such that V is increasing in h1(X) and T and V are independent when θ(1) = θ∗.

Theorem 2.5. Let H0 = {θ ∈ � : θ(1) ≤ θ∗}, θ̄ ∈ � be such that θ̄ (1) = θ∗, α + β ≤ 1, and
c0, c1 ∈ R be such that Pθ̄ (V ≤ c0) = β and Pθ̄ (V > c1) = α, where V is a statistic. Under
Assumption 2.4, φV,c0,c1 (Definition 1.8) is an UMPU (α,β)-level test.

Theorem 2.5 shows that, under Assumption 2.4, the test that consists in rejecting H0 if V

is large, accepting it if V is small and remaining agnostic otherwise, is an UMPU unilateral
tests on the exponential family. Under the stronger conditions in Assumption 2.6 it is also
possible to derive UMPU bilateral tests, as presented in Theorem 2.7.

Assumption 2.6. Besides the conditions in Assumption 2.4, also assume that there exist
functions a, b :Rn−1 −→ R such that

V
(
h(X)

) = a
(
T (X)

)
h1(X) + b

(
T (X)

)
Theorem 2.7. Let H0 = {θ ∈ � : θ(1) = θ∗}, V be a statistic, θ̄ ∈ � be such that θ̄ (1) = θ∗,
α + β ≤ 1, and for each γ ∈ (0,1), let cγ,l and cγ,r be constants such that

1 − Pθ̄ (cγ,l ≤ V ≤ cγ,r ) = γ

Eθ̄

[
V

(
1 − I(cγ,l ≤ V ≤ cγ,r )

)] = γEθ̄ [V ]
Let c = (c1−β,l, cα,l, cα,r , c1−β,r ). Under Assumption 2.6, φV,c (Definition 1.11) is an UMPU
(α,β)-level test.

The conditions from Theorem 2.7 are quite general, and allow the computation of UMPU
agnostic tests in several standard statistical problems. In what follows, we illustrate how
Theorems 2.5 and 2.7 can be applied to the t-test and linear regression.
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Example 2.8 (Agnostic t-test). Let X1, . . . ,Xn be an i.i.d. sample with Xi ∼ N(μ,σ 2),
where θ = (μ,σ 2) and � = R × R

+. Let H
≤
0 = {(μ,σ 2) ∈ � : μ ≤ μ0} and also H=

0 =
{(μ,σ 2) ∈ � : μ = μ0}. Let V =

√
n(X̄−μ0)√

(n−1)−1 ∑n
i=1 (Xi−μ0)

2
. It follows from Lehmann and Ro-

mano (2006), p. 153, that V satisfies the conditions in Assumptions 2.4 and 2.6 for test-
ing H

≤
0 and H=

0 . Therefore, if α + β ≤ 1, then it follows from Theorems 2.5 and 2.7 that
φV,c0,c1 and φV,c are the UMPU tests for H

≤
0 and H=

0 . Moreover, by defining T (X) =√
n(X̄−μ0)√

(n−1)−1 ∑n
i=1 (Xi−X̄)2

, it follows from Lehmann and Romano (2006), p. 155, that φV,c0,c1

and φV,c are such that

φV,c0,c1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 T (x) ≤ tn−1(β)

1 T (x) > tn−1(1 − α)
1

2
, otherwise.

φV,c(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if

∣∣T (x)
∣∣ ≤ tn−1

(
0.5(1 + β)

)
1, if

∣∣T (x)
∣∣ > tn−1(1 − 0.5α)

1

2
, otherwise.

where tn−1(p) is the p-quantile of a Student’s t-distribution with n − 1 degrees of freedom.
Figure 3 illustrates the probability of each decision for φV,c0,c1 and φV,c when μ0 = 0, σ 2 =
1, n = 10 and α = β = 0.05. The power of both tests at μ0 = 0 is β . Indeed, it follows from
Assumption 2.4 that the power of a (α,β)-size test at the border points of H0 cannot be higher
than min(α,β).

Example 2.9 (Agnostic linear regression). Consider a linear regression setting, that is, Y =
Xβ + ε, where d < n, ε ∼ N(0, σ 2

Id), X is a n × d design matrix of rank d and β is the
d × 1 vector with coefficients. For a fixed k ∈ R

d and c ∈ R, let H
≤
0 : k · β ≤ c and H=

0 :
k · β = c. Let α + β ≤ 1. By taking β̂ = (Xt

X)−1
X

tY , the least squares estimator for β , it

follows from Shao (2003), p. 416, that V = kt β̂−c√
kt (XtX)−1k‖Y‖2

2(n−d)−1
satisfies the conditions in

Figure 3 Probability of each decision for φV,c0,c1 (left) and φV,c (right) when μ0 = 0, σ 2 = 1, n = 10 and
α = β = 0.05.
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Assumptions 2.4 and 2.6. Therefore, the UMPU tests, φV,c0,c1 and φV,c, are such that

φV,c0,c1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 V (x) ≤ tn−d(β)

1 V (x) > tn−d(1 − α)
1

2
, otherwise,

φV,c(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if

∣∣V (x)
∣∣ ≤ tn−d

(
0.5(1 + β)

)
1, if

∣∣V (x)
∣∣ > tn−d(1 − 0.5α)

1

2
, otherwise,

where tn−d(q) denotes the q quantile of Student’s t-distribution with n − d degrees of free-
dom.

3 General agnostic tests of a given level

An intuitive agnostic procedure consists in rejecting H0 if the p-value is small, accepting it if
the p-value is large and remaining agnostic otherwise. If H0 is rejected whenever the p-value
is smaller than α, then the type I error is controlled by α. Similarly, one might expect that if
H0 is accepted whenever the p-value is larger than 1 − β , then the type II error is controlled
by β . Theorem 3.1 provides conditions under which this reasoning is valid, and therefore this
intuitive agnostic procedure leads to an (α,β)-level test for H0.

Theorem 3.1. Let � be a nested family of standard tests for H0 such that, for every φ ∈
�, φ is an unbiased test. Assume that � is a connected space and that, for every x ∈ X ,
Pθ (pH0,�(x) ≤ t) is a continuous function over θ . Let p = pH0,�. Then, the test φ1−p,β,1−α ,
i.e.,

φ1−p,β,1−α(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if p(x) ≥ 1 − β

1, if p(x) < α
1

2
, otherwise

is a (α,β)-level test for H0.

Next, we apply Theorem 3.1 to the problems of testing the general linear hypothesis, as
well as for permutation tests.

Example 3.2 (General Linear Hypothesis in Regression Analysis). Consider the linear
regression setting (Example 2.9) and the general linear hypothesis

H0 :Kβ = γ 0

where K is a q × d matrix and γ 0 ∈ R
q . A particular case of this problem is the ANOVA

test (Neter et al. (1996)). There exists no UMPU test for H0 (Geisser and Johnson (2006)).
However, the F-statistic

F = (Kβ̂ − γ 0)
t (K(Xt

X)−1
K

t )−1(Kβ̂ − γ 0)q
−1

(y −Xβ)t (y −Xβ)(n − p)−1

is such that, for every k ≥ 0, φF,k,k is unbiased for H0 (Monahan (2008)). Furthermore, it
can be shown that pH0,� = Fq,n−1(F ), where Fq,n−1(·) denotes the cumulative distribution
function of a Snedecor’s F-distribution random variable with (q, n − 1) degrees of freedom.
Since all conditions in Theorem 3.1 are satisfied, φ1−Fq,n−1(F ),β,1−α is a (α,β)-level test.
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Example 3.3 (Permutation Test). Let X = (X1, . . . ,Xm) and Y = (Y1, . . . , Yn) be i.i.d.
samples from continuous distributions, FX and FY . Also, consider that H0 : FX = FY and
� = {(FX,FY ) : FX is stocastically larger than FY }. Let pH0(X,Y) be a p-value based on a
permutation test such that, if Y′ = (Y ′

1, . . . , Y
′
n) is such that, for every i = 1, . . . , n, y′

i ≥ yi ,
then pH0(X,Y′) ≥ pH0(X,Y). It follows from Lehmann and Romano (2006), Lemma 5.9.1,
that pH0 is unbiased for H0. Also, under the topology induced by the total variation met-
ric, � is connected and Pθ (pH0 ≤ t) is continuous over θ . Conclude from Theorem 3.1 that
φ1−pH0 ,β,1−α is a (α,β)-level agnostic test.

4 Connections to region estimation

There exist several known equivalences between standard tests and region estimators (Bickel
and Doksum (2015), p. 241). For example, every region estimator is equivalent to a collection
of bilateral standard tests. Also, standard tests for more general hypothesis can be obtained as
the indicator that the hypothesis intercepts a region estimator. These connections are useful
for providing a method of obtaining and interpreting standard hypothesis tests.

The following subsections show that similar results hold for the agnostic tests that were
obtained previously. Section 4.1 presents a general method for obtaining agnostic tests from
confidence regions. Furthermore, it shows how this method relates to logical coherence and
to the unilateral tests in Section 2. Section 4.2 presents an equivalence equivalence between
nested region estimators and collections of bilateral agnostic tests.

4.1 Agnostic tests based on a region estimator

An agnostic test can have other desirable properties besides controlling both the type I and
type II errors. For instance, Esteves et al. (2016), Stern et al. (2017) show that agnostic tests
can be made logically consistent. That is, it is possible to test several hypothesis using ag-
nostic hypothesis tests in such a way that it is impossible to obtain logical contradictions
between their conclusions. This property generally cannot be obtained using standard tests
(Izbicki and Esteves (2015)). Logically consistent agnostic tests are connected to region esti-
mators, as summarized below.

Theorem 4.1 (Esteves et al. (2016)). Let (φH0)H0∈σ(�) be a collection of agnostic tests such
that σ(�) is a σ -field over � and, for every θ ∈ �, {θ} ∈ σ(�). (φH0)H0∈σ(�) is logically
consistent if and only if it is based on a region estimator.

It follows from Theorem 4.1 that the collection of tests based on a region estimator is
logically consistent. Theorem 4.2 shows that, if this region estimator has confidence 1 − α,
then the tests based on it also control both the type I and II errors by α.

Theorem 4.2. If R(x) is a region estimator for θ with confidence 1 − α and φH0,R is an
agnostic test for H0 based on R (Definition 1.16), then φH0,R is a (α,α)-size test.

Theorem 4.2 therefore provides a way of constructing agnostic tests that control types I
and II error probabilities.

The unilateral tests that were developed in Sections 2 and 3 are based on confidence re-
gions. In order to present such regions, Theorem 4.5 uses Assumptions 4.3 and 4.4.

Assumption 4.3. Let H0,θ∗ : θ(1) ≤ θ∗. (φH0,θ∗ )θ∗∈R is a collection of agnostic tests such
that
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(a) If θ1 ≤ θ2 and φH0,θ1
(x) = 0, then φH0,θ2

(x) = 0
(b) If θ1 ≤ θ2 and φH0,θ2

(x) = 1, then φH0,θ1
(x) = 1.

Assumption 4.4. Let H0,θ∗ : θ(1) ≤ θ∗. (φH0,θ∗ )θ∗∈R is a collection of agnostic tests such

that for every θ ∈ � such that θ(1) = θ∗, Pθ (φH0,θ∗ = 1
2) ≥ 1 − 2α.

Assumption 4.3 requires that a collection of unilateral tests satisfy a weak form of logical
coherence. That is, if θ1 ≤ θ2 and the collection of tests accepts that θ ≤ θ1, then it accepts that
θ ≤ θ2. Similarly, if θ1 ≤ θ2 and the collection of tests rejects that θ ≤ θ2, then it also rejects
that θ ≤ θ1. Assumption 4.4 requires that, for every test in the collection, the probability of
the no-decision alternative in the border point of H0 is at least 1−2α. Theorem 4.5 shows that
a collection of unilateral tests that satisfy Assumptions 4.3 and 4.4 is based on a confidence
region of confidence 1 − 2α.

Theorem 4.5. For each, θ∗, let H0,θ∗ : θ(1) ≤ θ∗. If (φH0,θ∗ )θ∗∈R satisfies Assumption 4.3,
then there exists a region estimator, R(x), such that, for every θ∗, φH0,θ∗ is based on R(x).
Furthermore, if Assumption 4.4 holds, then R(x) is a confidence region for θ with confidence
1 − 2α.

It is possible to use Theorems 4.2 and 4.5 in order to extend a collection of unilateral tests
to a larger collection of tests. If the collection of unilateral tests satisfies Assumptions 4.3
and 4.4, then it follows from Theorem 4.5 that these tests are based on a region estimator,
R(X), with confidence 1 − 2α. Therefore, it follows from Theorem 4.2 that, for every H0
of the type θ(1) ∈ �0 ⊆ R, the test for H0 based on R(X) has size (2α,2α). Furthermore, it
follows from Theorem 4.1 that the collection of these tests is logically coherent. Corollary 4.6
summarizes these conclusions.

Corollary 4.6. For each θ∗, let H0 : θ(1) ≤ θ∗. Also, assume that (φH0,θ∗ )θ∗∈R satisfies As-
sumptions 4.3 and 4.4. Let R(X) be such as in Theorem 4.5. Consider the collection of ag-
nostic tests (φH0,�0 ,R)�0⊂R, where H0,�0 : θ(1) ∈ �0 (recall Definition 1.16). Then

(i) this collection is logically coherent,
(ii) each test is this collection has size (2α,2α), and

(iii) this collection is an extension of the collection (φH0,θ∗ )θ∗∈R.

Under weak conditions, the tests that were developed in Theorems 2.2 and 2.5 satisfy As-
sumptions 4.3 and 4.4. As a result, they can be used in Theorem 4.5 and Corollary 4.6. These
results are presented in Corollaries 4.7 and 4.10 and illustrated in Examples 4.8 and 4.11.

Corollary 4.7. Consider the setting of Theorem 2.2, and let H0,θ∗ : θ ≤ θ∗. The collection
φH0,θ∗ of UMP (α,α)-level test presented in Theorem 2.2 is based on a region estimator,
R(X). Furthermore, if T is such that Pθ (T ≤ t) is continuous over θ , then R(X) has confi-
dence 1 − 2α for θ .

Example 4.8 (Agnostic z-test). Consider again Example 2.3. For each μ∗ ∈ R, let H0,μ∗ :
μ ≤ μ∗. Let α ≤ 0.5 and (φH0,μ∗ )μ∗∈R be the collection of UMP (α,α)-level tests in Exam-

ple 2.3. By defining the constants a1 = σn−0.5�−1(1 − α) and a2 = σn−0.5�−1(α), note
that φH0,μ∗ = φX̄,μ∗−a1,μ

∗−a2
. It follows that (φH0,μ∗ )μ∗∈R is based on the region estimator

R(X) = [X̄ − a1, X̄ − a2], which is a 1 − 2α confidence interval for μ.
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Assumption 4.9. For each θ∗ ∈ R, let Vθ∗ be such as in Assumption 2.4 when θ(1) = θ∗.
There exists a function, g(v, θ), which is decreasing over θ and such that g(Vθ , θ) is ancillary.

Corollary 4.10. For each θ∗ ∈ R, let H0,θ∗ : θ(1) ≤ θ∗. Under Assumption 2.4 and α ≤ 0.5,
let φH0,θ∗ be the UMPU (α,α)-level test presented in Theorem 2.5. Under Assumption 4.9, the
collection (φH0,θ∗ )θ∗∈� is based on a region estimator, R(X), which has confidence 1 − 2α

for θ .

Example 4.11 (Agnostic t-test). Consider again Example 2.8. For each μ∗ ∈ R, let H0,μ∗ :
μ ≤ μ∗. Let α ≤ 0.5 and (φH0,μ∗ )μ∗∈R be the collection of UMP (α,α)-level tests in

Example 2.8. By defining S =
√

(n − 1)−1 ∑n
i=1 (Xi − X̄)2, a1 = n−0.5St−1

n−1(1 − α) and

a2 = n−0.5St−1
n−1(α), note that φH0,μ∗ = φX̄,μ∗−a1,μ

∗−a2
. It follows that (φH0,μ∗ )μ∗∈� is based

on the region estimator R(X) = [X̄−a1, X̄−a2], which is a 1−2α confidence interval for μ.

4.2 Agnostic tests based on nested region estimators

Contrary to the unilateral tests, the bilateral tests in Section 2 are not based on region estima-
tors. Indeed, while these bilateral tests can accept a precise hypothesis, this feature cannot be
obtained in tests based on region estimators. However, similarly to the case for standard tests,
there exists an equivalence between collections of bilateral agnostic tests and pairs of nested
region estimators. Indeed, it is possible to obtain from one another a nested pair of 1 − α and
β confidence regions and a collection of bilateral (α,β)-size tests. Definition 4.12 prepares
for this equivalence, which is established in Theorem 4.14.

Definition 4.12 (Agnostic test based on nested region estimators). Let R1(x) and R2(x)

be region estimators such that, R1(x) ⊆ R2(x) and H0 ⊆ �. The agnostic test based on R1
and R2 for testing H0, φH0,R1,R2 , is

φH0,R1,R2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if H0 ⊆ R1

1, if R2 ⊆ Hc
0

1

2
, otherwise.

Figure 4 illustrates φH0,R1,R2 when H0 : θ = θ0.

Example 4.13 (Agnostic t-test). Consider Example 2.8. For each μ∗ ∈ R, let H0,μ∗ : μ =
μ∗. The UMPU agnostic test is based on the region estimators

R1(x) = [
X̄ − tn−1

(
0.5(1 + β)

)√
S2/n, X̄ + tn−1

(
0.5(1 + β)

)√
S2/n

]
, and

R2(x) = [
X̄ − tn−1(1 − 0.5α)

√
S2/n, X̄ + tn−1(1 − 0.5α)

√
S2/n

]
Theorem 4.14. For each θ∗, let H0,θ∗ : θ(1) = θ∗.

1. If R1(x) ⊆ R2(x) are confidence regions for θ with confidence 1 −β and α, then for every
θ∗ ∈ R, φH0,θ∗ ,R1,R2 is a (α,β)-size test.

2. Let (φH0,θ∗ )θ∗∈R be a collection of (α,β)-size tests. If for every θ ∈ � such that θ(1) = θ∗,
Pθ (φH0,θ∗ = 0) = β and Pθ (φH0,θ∗ = 1) = α, then there exist region estimators, R1(x)

and R2(x), such that R1(x) ⊆ R2(x), R1(x) and R2(x) are confidence regions for θ with,
respectively, confidence 1 − β and α and such that φH0,θ∗ is based on R1(x) and R2(x).
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Figure 4 Illustration of the agnostic test based on R1 and R2 (Definition 4.12) when H0 : θ = θ0.

5 Consistency and agnostic tests

Under a wide variety of models, it is impossible to obtain consistent agnostic tests. A class
of such models is described in Assumption 5.1.

Assumption 5.1 (Non-separability between H0 and H1).

1. � is connected.
2. H0 /∈ {∅,�}.
3. (φn)n∈N is a sequence of agnostic tests for H0 such that, for every n ∈ N and i ∈ {0, 1

2 ,1},
Pθ (φn = i) is continuous over θ .

Assumption 5.1 is met in the examples presented in Sections 2 and 3. Theorem 5.2 shows
that, under Assumption 5.1, it is impossible to obtain a consistent sequence of hypothesis
test.

Theorem 5.2. Under Assumption 5.1, if (φn)n∈N is a sequence of (α,β)− size tests such that
max(α,β) < 1, then (φn)n∈N is not consistent. Furthermore, under the same assumption, if
limn→∞ αn = 0, limn→∞ βn = 0 and (φn)n∈N is a sequence of (αn,βn)-size tests, then for
some θ ∈ �, limn→∞ Pθ (φn = 1

2) = 1.

Despite Theorem 5.2, consistency can be obtained by relaxing the control over the test’s
errors. For instance, one might drop the requirement that the type II error probability be
controlled uniformly over all points in the alternative hypothesis. That is, one might require
solely that supθ∈H ′

1
Pθ (φ = 0) ≤ β , where H ′

1 is a subset of H1 which is relevant for the
practitioner. Example 5.3 shows that, by using such a relaxed control of the type II error, it is
possible to obtain a consistent bilateral z-test.

Example 5.3. Let X1, . . . ,Xn be a i.i.d. sample with Xi ∼ N(μ,σ 2), where μ ∈ R and σ 2 is

known. Let H0 : μ = 0, αn = βn = exp(−o(n)), an = −�−1(0.5αn)σ√
n

, bn be such that bn ≤ an

and b−1
n = o(

√
n), cn = (−an,−bn, bn, an), and γn = bn + (

−2 log(
√

2πβn)
n

)0.5. The agnostic
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test φX̄n,cn
controls the type I error by αn, and controls the type II error over H ∗

1 : |μ| > γn by
βn. Furthermore, for every μ ∈ R, limn→∞ πφX̄n,cn

(μ) = 1. That is, (φX̄n,cn
)n∈N is consistent.

Example 5.3 obtains consistency by not controlling the type II error in a neighborhood of
H0. The example evades the conditions of Theorem 5.2 since H0 and H ′

1 are “probabilistically
separated”. Also, although the control of type II error is not uniform, for every θ ∈ H1 and
ε > 0, there exists a sample size such that the type II error over θ is controlled by θ .

In practice, one procedure to choose H ′
1 is to determine a desired effect size through expert

knowledge elicitation. The effect size is often easier to interpret than the value of the param-
eter. This procedure is similar to what is done in power calculations (Neter et al. (1996)). The
procedure is illustrated in Example 5.4.

Example 5.4 (Agnostic linear regression). Consider the linear regression setting in Exam-
ple 2.9. Also, one wishes to test the hypothesis H0 : βk = 0 with the agnostic hypothesis test,

φT,c0,c1 (Definition 1.8), where T = | β̂k√
V̂[β̂k]

|. The constant c1 is chosen so that the test’s

type I error is α. Also, to choose c0 recall that, for every θ ∈ �, the probability that φT,c0,c1

accepts H0 is

Pθ (T ≤ c0) = Pθ

(
−c0 ≤ β̂k√

V̂[β̂k]
≤ c0

)
= Pθ

(
−c0 ≤

β̂k−βk√
V[β̂k]

+ βk√
V[β̂k]√

V̂[β̂k]V[β̂k]−1
≤ c0

)
= P(−c0 ≤ Tn−d−1,δk

≤ c0), (1)

where Tp,δ has a non-central t-distribution with p degrees of freedom and non-centrality
parameters δ, that is, δk = βk√

V[β̂k]
= dk√

ak
, ak is the k-th element of the diagonal of the matrix

(Xt
X)−1, and dk = βk

σ
is the Cohen’s d effect size of the k-th variable on Y (Cohen (1977)).

A practitioner can determine a desired Cohen’s effect size value, d∗
k and a β ∈ (0,1), and

use Equation (1) to choose c0 such that the type II error is β when the effect size is d∗
k . Since,

when δ > δ′, Tp,δ stochastically dominates Tp,δ′ this procedure guarantees that

sup
θ∈H ′

1

Pθ (φ = 0) = β,

where H ′
1 = {θ ∈ � : δk

√
ak ≥ d∗

k }. That is, type II error probabilities are controlled by β

for every parameter value with effect size greater or equal to d∗
k . Note that, when d∗

k = 0,
the test which is obtained is the standard (α,β)-level test for H=

0 in Example 2.9 when
k = (0, . . . ,0,1,0, . . . ,0) and c = 0.

The next section applies the test in Example 5.4 to real data.

6 An application of agnostic tests

The Swiss Fertility and Socioeconomic Indicators (1888) Data (Mosteller and Tukey (1977))
contains socio-economic indicators for 47 French-speaking provinces of Switzerland. In or-
der to test the effect of the available socio-economic indicators over infant mortality rate, we
apply the agnostic test in Example 5.4 using α = 0.05, β = 0.2 and d∗

k = 0.25, for every k.
We also compare the results with Bayes factors (Kass and Raftery (1995)) for the covariate
effects, which were obtained using the package in Morey and Rouder (2018) with standard
arguments. A more extensive analysis of agnostic Bayesian hypothesis tests can be found in
Esteves et al. (2016), Stern et al. (2017).
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Table 1 Standard t-value, p-value and Bayes factors for a regression analysis over the Swiss dataset (Section 6)
and the hypothesis H0 : βk = 0. The “Decision” column is the outcome of the agnostic test in Example 5.4

t-value p-value Bayes factor Decision

Fertility 2.822 0.007 0.12 Reject
Agriculture −0.418 0.678 2.04 Accept
Examination 0.385 0.702 2.07 Agnostic
Education 0.719 0.476 1.78 Agnostic
Catholic 0.005 0.996 2.20 Accept

Figure 5 Probability of type II error as a function the Cohen’s effect size in the Swiss dataset for the test in
Example 5.4 using the cutoff c0 = 1.

Table 1 summarizes the results obtained in this applications. One can observe that standard
measures such as the t-value, p-value and Bayes factor have the same qualitative behavior,
ranking the variables from least associated to most associated to infant mortality rate as: Cha-
tolic, Examination, Agriculture, Education and Fertility. Also, when testing whether each co-
variate is not associated to the response variable, the agnostic test in Example 5.4 accepts the
null hypothesis for the agriculture index of a province and for the percentage of catholics on
it, rejects the null hypothesis for fertility and remains agnostic about the remaining variables.
As a result, with the exception of the Agriculture and Examination variables, the ranking
obtained by standard measures is followed by the decision of the agnostic test.

Figure 5 explains the exception above. For a fixed cutoff c0, the probability of type II error
for Agriculture decreases at a faster rate in function of Cohen’s effect size than Examination.
Therefore, in order to control the type II error by 0.2, the test in Example 5.4 adopts a critical
region for Examination that is more conservative than the one for Agriculture. The differ-
ence in these critical regions lead the test to accept Agriculture and remain agnostic about
Examination, contrary to the ranking of the statistics in Table 1.

7 Final remarks

Since agnostic tests control the type I and II error probabilities, their outcomes are more
interpretable than the ones obtained using standard hypothesis tests. This paper provides sev-
eral procedures to construct agnostic tests. In several statistical models, (unbiased) uniformly
most powerful agnostic tests are obtained. When such tests are unavailable, an alternative
that is based on standard p-values is presented. The paper also provides several links be-
tween region estimators and agnostic tests, which shows in particular that (α,β)-level tests



Agnostic tests can control the type I and type II errors 245

can be fully coherent from a logical perspective. Finally, we have shown that although one
cannot obtain consistency in agnostic tests that control type I and type II error probabilities
uniformly, this goal can be achieved by relaxing the control of the type II error probabilities.

An R package that implements several of the agnostic tests developed here is available at
https://github.com/vcoscrato/agnostic.

Appendix: Demonstrations

Definition A.1. Let g0(x) = I(x = 0) and g1(x) = I(x = 1).

Lemma A.2. For every agnostic test, φ,

1. g0(φ) and g1(φ) are standard tests.
2. for every θ ∈ �, Pθ (g0(φ) = 1) = Pθ (φ = 0) and Pθ (g1(φ) = 1) = Pθ (φ = 1).
3. If φ is unbiased, then g1(φ) is unbiased for H0 and g0(φ) is unbiased for H ∗

0 = H1.

Proof of Lemma A.2. The first two items follow directly from Definition 1.3 and the defini-
tions of g0 and g1. Next, if φ is unbiased, then αφ + βφ ≤ 1. Also,

sup
θ1∈H1

Pθ1

(
g0(φ) = 1

) = sup
θ1∈H1

Pθ1(φ = 0) = βφ

Pθ0

(
g0(φ) = 1

) = Pθ0(φ = 0) ≥ βφ for every θ0 ∈ H0

That is, g0(φ) is unbiased for H ∗
0 . Similarly, g1(φ) is unbiased for H0. �

Lemma A.3. Let c, c0, c1 ∈ R, c0 ≤ c1 and φ be an agnostic test. Also, define H0 : θ0 ≤ θ∗
and H1 : θ > θ∗, and let θ0 ∈ H0 and θ1 ∈ H1. Under Assumption 2.1,

1. If Pθ∗(φT,c0,c1 = 1) ≥ Pθ∗(φ = 1), then Pθ1(φT,c0,c1 = 1) ≥ Pθ1(φ = 1).
2. If βφT,c0,c1

≥ βφ , then Pθ0(φT,c0,c1 = 0) ≥ Pθ0(φ = 0).
3. If Pθ∗(φT,c,c = 1) = Pθ∗(φ = 1), then φT,c,c � φ.

Proof.

1. Let θ1 ∈ H1. Note that g1(φT,c0,c1) = φT,c1,c1 . Furthermore, it follows from Lemma A.2
that Pθ∗(g1(φT,c0,c1) = 1) ≥ Pθ∗(g1(φ) = 1). Therefore, by defining H ∗

0 : θ = θ∗ and
H ∗

1 : θ = θ1, it follows from Assumption 2.1.2 and the Neyman-Pearson lemma that
Pθ1(g1(φT,c0,c1) = 1) ≥ Pθ1(g1(φ) = 1). The inequality Pθ1(φT,c0,c1 = 1) ≥ Pθ1(φ = 1)

follows from Lemma A.2.
2. Let θ0 ∈ H0. Note that g0(φT,c0,c1) = 1 − φT,c0,c0 . Furthermore, it follows from Lem-

ma A.2 that supθ1∈H1
Pθ1(g0(φT,c0,c1) = 1) ≥ supθ1∈H1

Pθ1(g0(φ) = 1) Therefore, by tak-
ing H ∗

0 = H1 and H ∗
1 = H0, it follows from Assumption 2.1.2 and the Karlin-Rubin

theorem that Pθ0(g1(φT,c0,c1) = 1) ≥ Pθ0(g1(φ) = 1). It follows from Lemma A.2 that
Pθ0(φT,c0,c1 = 0) ≥ Pθ0(φ = 0).

3. It follows from Lemma A.3.1 that, for every θ1 ∈ H1, Pθ1(φT,c,c = 1) ≥ Pθ1(φ = 1).
Next, obtain from Pθ∗(φT,c,c = 1) = Pθ∗(φ = 1) and φT,c,c being a standard test, that
Pθ∗(φT,c,c = 0) ≥ Pθ∗(φ = 0). It follows from Lemma A.2 that Pθ∗(g0(φT,c,c) = 1) ≥
Pθ∗(g0(φ) = 1). By taking H0 : θ = θ∗ and H1 : θ = θ0, it follows from Assumption 2.1.2
and the Neyman-Pearson lemma that Pθ0(g1(φT,c,c) = 1) ≥ Pθ0(g1(φ) = 1). Obtain from
Lemma A.2 that Pθ0(φT,c,c = 0) ≥ Pθ1(φ = 0). Conclude that φT,c,c � φ. �

Proof of Theorem 2.2. Let φ be an arbitrary (α,β)-size agnostic test.

https://github.com/vcoscrato/agnostic
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1. Conclude from Assumption 2.1 that

Pθ∗(φT,c0,c1 = 1) = α ≥ αφ ≥ Pθ∗(φ = 1)

βφT,c0,c1
= β ≥ βφ

(A.1)

It follows from eq. (A.1) and Lemma A.3 that φT,c0,c1 � φ. Since φ was arbitrary, con-
clude that φT,c0,c1 is an UMP (α,β)-level agnostic test.

2. Either there exists c ∈ [c1, c0] such that Pθ∗(φT,c,c = 1) = Pθ∗(φ = 1) or there exists no
such c. If there exists such a c, then it follows from Lemma A.3 that φT,c,c � φ. Next,
assume there exists no such c. Note that φ has size (α,β) and, therefore,

Pθ∗(φT,c0,c0 = 1) = α ≥ Pθ∗(φ = 1).

Since Pθ∗(φT,c,c = 1) decreases continuously over c, conclude that

Pθ∗(φT,c1,c1 = 1) ≥ Pθ∗(φ = 1)

βφT,c1,c1
= β ≥ βφ

(A.2)

Conclude from eq. (A.2) and Lemma A.3 that φT,c1,c1 � φ. �

Lemma A.4. Let c, c0, c1 ∈ R, c0 ≤ c1 and φ be an unbiased test. Define H0 : θ(1) ≤ θ∗ and
H1 : θ(1) > θ∗ and let θ̄ ∈ � be such that θ(1) = θ∗. Under Assumption 2.4,

1. If Pθ̄ (φV,c0,c1 = 1) ≥ Pθ̄ (φ = 1), then ∀θ1 ∈ H1, πφV,c0,c1
(θ1) ≥ πφ(θ1).

2. If Pθ̄ (φV,c0,c1 = 0) ≥ βφ , then ∀θ0 ∈ H0, πφV,c0,c1
(θ0) ≥ πφ(θ0).

Proof.

1. Let θ1 ∈ H1. We wish to show that Pθ1(g1(φV,c0,c1) = 1) ≥ Pθ1(g1(φ) = 1), Since
g1(φV,c0,c1) and g1(φ) are standard tests, our strategy is to obtain the inequality from
Lehmann and Romano (2006), p. 151. In order to obtain this result, Assumption 2.4 is
used to show that g1(φV,c0,c1) satisfies the required conditions.

Let �∗ = {θ ∈ � : θ(1) ≥ θ̄}. Note that g1(φV,c0,c1) = φV,c1,c1 . Also, it follows from
Lemma A.2 that g1(φ) is unbiased for H0 under �. Since H0 is more restrictive under
�∗, g1(φ) is also unbiased for H0 under �∗. Moreover, it follows from Lemma A.2
that Pθ̄ (g1(φV,c0,c1) = 1) ≥ Pθ̄ (g1(φ) = 1). It follows from Assumption 2.4 that, un-
der �∗, αg1(φV,c0,c1 ) ≥ αg1(φ). Putting all of the above conditions together, conclude
that Pθ1(g1(φV,c0,c1) = 1) ≥ Pθ1(g1(φ) = 1) by applying Lehmann and Romano (2006),
p. 151, in �∗. It follows directly from Lemma A.2 that Pθ1(φV,c0,c1 = 1) ≥ Pθ1(φ = 1),
which is equivalent to, πφV,c0,c1

(θ1) ≥ πφ(θ1).
2. Let θ0 ∈ {θ ∈ � : θ(1) < θ∗}. Note that g0(φVc0,c1) = 1 − φV,c0,c0 . Also, it follows from

Lemma A.2 that g0(φ) is unbiased for H ∗
0 = H1. Also, obtain from Lemma A.2 and As-

sumption 2.4.2 that Pθ̄ (g0(φV,c0,c1) = 1) ≥ supθ1∈�1∪{θ} Pθ1(g0(φ) = 1). Therefore, by
taking H ∗

0 : θ(1) ≥ θ∗, it follows from from Assumption 2.4 and Lehmann and Romano
(2006), p. 151, that Pθ0(g0(φV,c0,c1) = 1) ≥ Pθ0(g0(φ) = 1). Conclude from Lemma A.2
that Pθ0(φV,c0,c1 = 0) ≥ Pθ0(φ = 0). Since θ0 was arbitrary in H ∗

1 , conclude from As-
sumption 2.4.2 that, for every θ0 ∈ H ∗

1 = H0, Pθ0(φV,c0,c1 = 0) ≥ Pθ0(φ = 0), that is,
πφV,c0,c1

(θ0) ≥ πφ(θ0). �

Proof of Theorem 2.5. Since α + β ≤ 1, obtain c0 ≤ c1. It follows from Assumption 2.4
that φV,c0,c1 is a (α,β)-level test. Let φ be an unbiased (α,β)-size test. Therefore, note that
Pθ̄ (φV,c0,c1 = 1) = α ≥ αφ and Pθ̄ (φV,c0,c1 = 0) = β ≥ βφ . Conclude from Lemma A.4 that
φV,c0,c1 � φ. �
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Proof of Theorem 2.7. Since α + β ≤ 1, obtain c1,l ≤ c0,l ≤ c0,r ≤ c1,r . Let φ be an unbi-
ased (α,β)-size test and θ1 ∈ H1. Since αg1(φV,c) = αφV,c ≥ αφ = αg1(φ), it follows from As-
sumption 2.6 and Lehmann and Romano (2006), p. 151, that one can obtain Pθ1(g1(φV,c) =
1) ≥ Pθ1(g1(φ) = 1). Conclude from Lemma A.2 that Pθ1(φV,c = 1) ≥ Pθ1(φ = 1), which is
equivalent to, πφV,c(θ1) ≥ πφ(θ1). Next, let θ0 ∈ H0. Since φ is an (α,β)-size test, for ev-
ery θ1 ∈ H1, Pθ1(φ = 0) ≤ β . It follows from Assumption 2.6 that Pθ0(φ = 0) ≤ β , that is,
πφ(θ0) ≤ β . Since πφV,c(θ0) = β , obtain πφV,c(θ0) ≥ πφ(θ0). �

Definition A.5. A statistic, T ∈ R, is unbiased for H0 if, for every t ∈ R, θ0 ∈ H0 and θ1 ∈
H1, Pθ0(T ≤ t) ≥ Pθ1(T ≤ t).

Assumption A.6.

1. � is a connected space.
2. T is an unbiased statistic for H0.
3. For every t ∈ R, Pθ (T ≥ t) is a continuous function over θ .

Lemma A.7. Under Assumption A.6, for every t ∈ R,

sup
θ0∈H0

Pθ0(T > t) = 1 − sup
θ1∈H1

Pθ1(T ≤ t)

Proof. Let ∂H0 and ∂H1 denote the boundaries of H0 and H1. Since H1 = Hc
0 , ∂H0 = ∂H1.

Also, since � is connected, ∂H0 �= ∅. Therefore,

sup
θ0∈H0

Pθ0(T > t) = 1 − inf
θ0∈H0

Pθ1(T ≤ t)

≥ 1 − inf
θ0∈∂H0

Pθ0(T ≤ t) Assumption A.6.3

= 1 − inf
θ1∈∂H1

Pθ1(T ≤ t)

≥ 1 − sup
θ1∈H1

Pθ1(T ≤ t) Assumption A.6.3 (A.3)

Furthermore,

sup
θ0∈H0

Pθ0(T > t) = 1 − inf
θ0∈H0

Pθ0(T ≤ t)

≤ 1 − sup
θ1∈H1

Pθ1(T ≤ t) Assumption A.6.2 (A.4)

The proof follows from eqs. (A.3) and (A.4). �

Lemma A.8. If � is a nested family of standard tests for H0 such that, for every φ ∈ �, φ is
unbiased for H0, then 1 − pH0,� is an unbiased statistic for H0.

Proof. For each t ∈ [0,1], let φ∗
t ∈ � be such that αφ∗

t
= t .

Pθ0(1 − pH0 ≤ t) = 1 − Pθ0(pH0 < 1 − t)

= 1 − Pθ0

(
φ∗

1−t = 1
)

≥ 1 − αφ∗
1−t

≥ 1 − Pθ1

(
φ∗

1−t = 1
)

= 1 − Pθ1(pH0 < 1 − t) = Pθ1(1 − pH0 ≤ t) �
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Proof of Theorem 3.1.

αφα,β = sup
θ0∈H0

Pθ0

(
1 − pH0(X) > 1 − α

)
= sup

θ0∈H0

Pθ0

(
pH0(X) < α

) = α

βφα,β = sup
θ1∈H1

Pθ1

(
1 − pH0(X) ≤ β

)
= sup

θ1∈H1

Pθ1

(
pH0(X) ≥ 1 − β

)
= sup

θ0∈H0

1 − Pθ0

(
pH0(X) < 1 − β

) = β Lemmas A.7 and A.8 �

Proof of Theorem 4.2. Since R(x) has confidence 1−α, Pθ (θ /∈ R(x)) ≥ α, for every θ ∈ �.
Therefore,

αφR,H0
= sup

θ0∈H0

Pθ0(φR,H0 = 1) = sup
θ0∈H0

Pθ0

(
R(X) ⊆ Hc

0
)

≤ sup
θ0∈H0

Pθ0

(
θ0 /∈ R(X)

) ≤ α

βφR,H0
= sup

θ1∈H1

Pθ1(φR,H0 = 0) = sup
θ1∈H1

Pθ1

(
R(X) ⊆ H0

)
≤ sup

θ1∈H1

Pθ1

(
θ1 /∈ R(X)

) ≤ α �

Proof of Theorem 4.5. Let θ∗ ∈ R and R1(x) be a set. We write θ∗ < R1(x) if, for every
θ(1) ∈ R1(x), θ∗ < θ(1). Also, θ∗ > R1(x) if, for every θ(1) ∈ R1(x), θ∗ > θ(1).

For each x ∈ X , let R1(x) = {θ(1) : φH0,θ(1)
(x) = 1

2}. If φH0,θ∗ (x) = 1, then conclude
from Assumption 4.3 that for every θ(1) ≤ θ∗, φH0,θ(1)

(x) = 1. Therefore, if φH0,θ∗ (x) = 1,
θ∗ < R1(x). Similarly, if φH0,θ∗ (x) = 0, then it follows from Assumption 4.3 that θ∗ >

R1(x). Since φH0,θ∗ (x) ∈ {0, 1
2 ,1}, conclude that φH0,θ∗ (x) = 1 if and only if θ∗ < R1(x)

and φH0,θ∗ (x) = 0 if and only if θ∗ > R1(x). That is, for every θ∗, φH0,θ∗ is based on
R(x) := R1(x) ×R× · · · ×R for H0,θ∗ .

Finally, if Assumption 4.4 holds, then for every θ ∈ �,

Pθ

(
θ ∈ R(X)

) = Pθ

(
θ(1) ∈ R1(X)

) = Pθ

(
φH0,θ(1)

= 1

2

)
≥ 1 − 2α

That is, R1(X) has confidence 1 − 2α for θ(1) and R(X) has confidence 1 − 2α for θ . �

Proof of Corollary 4.6. Follows directly from Theorems 4.1, 4.2 and 4.5. �

Proof of Corollary 4.7. Let T be such as in Assumption 2.1 and θ1, θ2, θ3 ∈ � be such that
θ1 ≤ θ2 ≤ θ3. It follows from Theorem 2.2 that φH0,θi

= φT,c0,θi
,c0,θi

, where c0,θi
and c1,θi

are
such that supθ1∈H1,θi

Pθ1(T ≤ c0,θi
) = α and supθ0∈H0,θi

Pθ0(T > c1,θi
) = α. Since θ1 ≤ θ2,

H0,θ1 ⊂ H0,θ2 . Therefore, c1,θ1 ≤ c1,θ2 , that is, if φT,c0,θ2 ,c1,θ2
(x) = 1, then φT,c0,θ1 ,c1,θ1

(x) =
1. Similarly, if φT,c0,θ3 ,c1,θ3

(x) = 0, then φT,c0,θ2 ,c1,θ2
(x) = 0. Conclude that, if φH0,θ2

(x) = 0,
then φH0,θ3

(x) = 0 and, if φH0,θ2
(x) = 1 then φH0,θ1

(x) = 1. Also, for every θ∗ ∈ �, it follows

from Theorem 2.2 and the continuity of Pθ (T ≤ t) over θ that P(φH0,θ∗ = 1
2) = 1 − 2α. The

proof follows directly from Theorem 4.5. �
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Proof of Corollary 4.10. Since g(Vθ , θ) is ancillary, there exist vα and v1−α such that, for
every θ ∈ �, Pθ ((Vθ , θ) ≤ vα) = α and Pθ (g(Vθ , θ) > v1−α) = α. Since g(v, θ) is decreas-
ing over θ , for every θ ∈ �, Pθ (Vθ ≤ g−1(vα, θ)) = α and Pθ (Vθ > g−1(v1−α, θ)) = α.
Conclude from Theorem 2.5 that

φH0,θ∗ = φVθ∗ ,g−1(vα,θ∗),g−1(v1−α,θ∗) (A.5)

Let θ1 ≤ θ2 ≤ θ3. Since g−1(v, θ) is increasing over θ , conclude from eq. (A.5) that, if
φH0,θ2

(x) = 1, then φH0,θ1
(x) = 1. Also, if φH0,θ2

(x) = 0, then φH0,θ3
(x) = 0. Also, it fol-

lows from Theorem 2.5 that, for every θ ∈ � such that θ(1) = θ∗, Pθ (φH0,θ∗ = 1
2) = 1 − 2α.

The proof follows directly from Theorem 4.5. �

Proof of Theorem 4.14. Let

R
(1)
1 (x) = {

θ∗ ∈ R : φH0,θ∗ = 0
}

R
(1)
2 (x) =

{
θ∗ ∈ R : φH0,θ∗ ∈

{
0,

1

2

}}
R1(x) = R

(1)
1 (x) ×R× · · · ×R

R2(x) = R
(1)
2 (x) ×R× · · · ×R

By construction R1(x) ⊆ R2(x), φH0,θ∗ (x) = 0 if and only if {θ∗} ⊆ R
(1)
1 (x) (and thus

φH0,θ∗ (x) = 0 if and only if H0,θ∗ ⊆ R1(x)) and φH0,θ∗ (x) = 1 if and only if R
(1)
2 (x) ⊆ {θ∗}c

(and thus φH0,θ∗ (x) = 1 if and only if R2(x) ⊆ Hc
0,θ∗ ). That is, φH0,θ∗ (x) is based on R1(x)

and R2(x). Furthermore, for every θ ∈ �,

Pθ

(
θ ∈ R1(X)

) = Pθ

(
θ(1) ∈ R

(1)
1 (X)

) = Pθ (φH0,θ(1)
= 0) = β

Pθ

(
θ /∈ R2(X)

) = Pθ

(
θ(1) /∈ R

(1)
2 (X)

) = Pθ (φH0,θ(1)
= 1) = α

Conclude that R1(X) and R2(X) are confidence regions with confidence of, respectively, β

and 1 − α. �

Proof of Theorem 5.2. Since � is connected and H0 /∈ {∅,�}, ∂H0 �= ∅. Let θ∗ ∈ ∂H0. If
φn has size (αn,βn), supθ0∈H0

Pθ0(φn = 1) ≤ αn and supθ1∈H1
Pθ1(φn = 0) ≤ βn. It follows

from the continuity of Pθ (φn = i) that Pθ∗(φn = 1) ≤ αn and Pθ∗(φn = 0) ≤ βn. Therefore,
for the first part of the theorem, πφn(θ

∗) ≤ max(α,β) < 1. That is, limn→∞ πφn(θ
∗) �= 1

and (φn)n∈N is not consistent. For the second part of the theorem, Since limn→∞ αn =
limn→∞ βn = 0, one obtains that limn→∞ Pθ∗(φn = 1

2) = 1. �
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