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Abstract. In this paper, we study the finite mixtures of autoregressive pro-
cesses assuming that the distribution of innovations (errors) belongs to the
class of scale mixture of skew-normal (SMSN) distributions. The SMSN dis-
tributions allow a simultaneous modeling of the existence of outliers, heavy
tails and asymmetries in the distribution of innovations. Therefore, a sta-
tistical methodology based on the SMSN family allows us to use a robust
modeling on some non-linear time series with great flexibility, to accommo-
date skewness, heavy tails and heterogeneity simultaneously. The existence
of convenient hierarchical representations of the SMSN distributions facili-
tates also the implementation of an ECME-type of algorithm to perform the
likelihood inference in the considered model. Simulation studies and the ap-
plication to a real data set are finally presented to illustrate the usefulness of
the proposed model.

1 Introduction

Finite and infinite mixtures of distributions are very important for developing flexible statis-
tical inferences. Applying such mixture models to the analysis of real data sets covers some
important properties such as multimodality, skewness, kurtosis and unobserved heterogeneity.
Many authors, for example, Lindsay (1995), Böhning (2000), McLachlan and Peel (2000),
Frühwirth-Schnatter (2006) and Mengersen, Robert and Titterington (2011) have pointed to
the importance of mixture distributions. Statistical methodology based on finite mixture mod-
eling has thus been rapidly extended and employed in various fields (see, e.g., Böhning et al.,
2007, 2014).

On the other hand, exogenous events such as financial crises alter the behavior of many
time series over longer durations. In such situations, the use of time series models with con-
stant parameters may not be adequate. There are also situations in which the data can be
regarded as panel time series data. Non-linear time series models, especially those specified
as finite mixture of autoregressive (MAR) models, which Wong and Li (2000) suggested to
catch multimodal phenomena, are flexible enough to be employed in many fields. Exam-
ples include the modeling of financial time series such as market returns and the stock index
(Wong and Chan, 2009), interest rates and bond pricing (Lanne and Saikkonen, 2003), the
Forex rate (Ni and Yin, 2008), as well as in other fields like telecommunications, hydrology,
biology, sociology, medical sciences and many more.

In order to accommodate convenient theoretical and practical implications, the mixing
weights of the MAR components are defined in specific ways, therefore MAR models are also
Markov-Switching autoregressive (MS-AR) models, and MAR models with two-components
are closely related to the threshold autoregressive (TAR) models, and thus to self-exciting
threshold autoregressive (SETAR) models as well. Also, MAR models are a special case
of random coefficients autoregressive (RCA) models, and so in many cases, like GARCH
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models, can be cast into the framework of RCA models as well as generalized hidden Markov
models (HMM) (see Akinyemi, 2013). MAR models can finally be GARCH models with
possible structural breaks in the model parameters or slowly evolving parameters (Wood,
Rosen and Kohn, 2011).

Most researchers have proposed MAR models based on the Gaussian distribution which
are called Gaussian mixture of autoregressive (GMAR) models, and covered by our pro-
posed model. McCulloch and Tsay (1994) obtained inferences on macroeconomic time series
via Markov-Switching models. Wong and Li (2001a) introduced a mixture of autoregressive
conditional heteroscedastic models. Glasbey (2001) discussed on a first order MAR models
based on the multivariate Gaussian distribution and applied it to solar radiation data. Lanne
and Saikkonen (2003) determined non-linear time series modeling on the U.S. short-term
interest rate by mixing autoregressive processes. Jin and Li (2006) studied panel time series
under mixture of autoregressive models. Cervone et al. (2014) suggested location-mixture
autoregressive (LMAR) models for online forecasting of lung tumor motions. The GMAR
models are, however, sensitive to modeling outliers, heavy tailed and/or asymmetric time se-
ries data sets. To overcome this weakness, some authors considered MAR models based on
non-Gaussian, heavy tailed and/or asymmetric distributions. Wong and Li (2001b) introduced
logistic mixture autoregressive models. Wong and Chan (2009) applied a Student-t mixture
autoregressive model for modeling heavy tailed financial data.

Maleki and Arellano-Valle (2017) considered, studied and shown the performance of
an autoregressive process for which innovations belong to the finite mixtures of symmet-
ric/asymmetric and light/heavy tailed scale mixtures of skew-normal (FM-SMSN) family of
distributions (see also Maleki and Nematollahi, 2017b). The SMSN family is flexible class of
distributions which used in celebrated works on the linear mixed models and performances
of this class had shown by Arellano-Valle, Bolfarine and Lachos (2005, 2007). In this paper,
we propose a more general time series model due to Maleki and Arellano-Valle (2017) and
Maleki et al. (2017), that proposes a robust mixture of autoregressive models based on the
SMSN class of distributions (hereafter SMSN-MAR models). The SMSN family general-
izes the famous scale-mixtures of normal (SMN) class, introduced by Andrews and Mallows
(1974), and contains well-known asymmetric distributions such as the skew-t, skew-slash
and skew-contaminated-normal. These asymmetric and heavy-tailed distributions have been
used in many types of statistical models to obtain flexible and robust inferences, for exam-
ple, Arellano-Valle et al. (2008), Maleki and Mahmoudi (2017), Maleki and Nematollahi
(2017a), Moravveji, Khodadai and Maleki (2018), Ghasami, Khodadadi and Maleki (2019),
Hajrajabi and Maleki (2019), Maleki and Wraith (2019) and recently Maleki, Wraith and
Arellano-Valle (2018a, 2018b) studied Bayesian inferences of shape mixtures of skewed dis-
tributions with application to linear mixed models and mixture models. Moreover, each of
these members assigns a specific weight to the contribution of each observation in the likeli-
hood equations, and therefore to the effect of each single observation on the estimation of the
model parameters.

The rest of this paper is organized as follows. Section 2 reviews some main properties of
the scale mixtures of the skew normal (SMSN) family, although more details and properties
of this family can be found in the works of the above authors. The one-dimensional MAR
models with scale mixtures of skew normal noise are also introduced in Section 2. Section 3
is devoted to the application of the ECME algorithm for estimating the MAR model’s pa-
rameters based on SMSN distributions. Section 4 provides numerical studies to evaluate the
performance of the ML estimates of the proposed model parameters. An illustration of how
the proposed methods can be applied in an analysis of real data is also given in Section 4.
Section 5 concludes; and some supplementary results are given in the Appendix.
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2 Preliminaries on scale mixture of skew-normal distributions

The SMSN family was first studied by Branco and Dey (2001) and later revisited by
Basso et al. (2010) and by Azzalini and Capitanio (2014). Let X ∼ SN(0, σ 2, λ) de-
note a skew-normal random variable (Azzalini, 1985) with location parameter μ = 0,
scale parameter σ 2 > 0, skewness parameter λ∈ R, and density function fSN(x;0, σ 2, λ) =
2σ−1φ(σ−1x)�(λσ−1x), x ∈ R where φ(·) and �(·) are the standard normal pdf and cdf,
respectively. In this work, it is said that a random variable Y has an SMSN distribution if

Y = μ + k1/2(U)X, (1)

where U and X are independent, μ∈R is a location parameter, k(U) is a positive random
function of U , which is a random variable with distribution function H(·;ν) indexed by a
scalar or vector parameter ν. This study considers the simple variant k(u) = u−1, because of
its nice mathematical properties. It thus follows from (1) that the conditional distribution of Y

given U = u is given by Y |U = u ∼ SN(μ,u−1σ 2, λ). This means that the marginal density
of Y can be represented as an infinite scale mixture of the skew-normal density as

f
(
y;μ,σ 2, λ, ν

) =
∫ ∞

0
fSN

(
y;μ,u−1σ 2, λ

)
dH(u;ν), y ∈ R, (2)

in which H(·ν) represents the mixing distribution. In this case, it is said that Y has an SMSN
distribution with parameters (μ,σ 2, λ, ν), which is denoted by Y ∼ SMSN(μ,σ 2, λ;H) or
by Y ∼ SMSN(μ,σ 2, λ, ν). In the special case of λ = 0, the skew-normal density becomes
the symmetric normal density with mean μ and variance σ 2, namely fSN(y;μ,u−1σ 2,0) =
φ(y;μ,u−1σ 2). This way, the SMSN family in (2) reduces to the symmetric SMN class stud-
ied by Andrews and Mallows (1974) which has been widely regarded in the literature. Some
famous asymmetric distributions in the SMSN class are the skew-normal, skew-t, contami-
nated skew-normal and skew-slash; the last three are also heavy-tailed distributions. Distri-
butions like this are summarized in Table A.1 in the Appendix.

A very useful property of the SMSN random variable Y ∼ SMSN(μ,σ 2, λ,H) is the
stochastic representation given by

Y = μ + �W + γU−1/2W1, (3)

where, � = σδ, γ 2 = σ 2 − �2, δ = λ√
1+λ2

, and W = U−1/2|W0|, with W0 and W1 being

independent standard normal random variables, and | · | denoting the absolute value. Most of
the main properties of the SMSN family can be derived from (3). For instance, it is clear from
(3) that if k1 = E[U−1/2] < ∞, then μY = E[Y ] = μ − b�, and if k2 = E[U−1] < ∞, then
σ 2

Y = Var[Y ] = σ 2k2 − b2�2, where b = −√
2/πk1.

Further details and properties of distributions in the SMSN family can be found in Branco
and Dey (2001), Azzalini and Capitanio (2014) and Arellano-Valle et al. (2008), among oth-
ers.

3 Mixture of autoregressive SMSN models

3.1 Model specification

Due to the flexibility in the modeling of non-linear time series analysis, in this section mixture
of autoregressive (MAR) models as those studied by Wong and Li (2000) and Wong (1998)
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are considered. They are described by

Xt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1,0 +
p1∑

j=1

ϕ1,jXt−j + ε1,t ; with probability π1,

ϕ2,0 +
p2∑

j=1

ϕ2,jXt−j + ε2,t ; with probability π2,

...

ϕg,0 +
pg∑

j=1

ϕg,jXt−j + εg,t ; with probability πg,

t = 0,±1,±2, . . . , (4)

where pi ≥ 1 is the order of the ith AR component, φi = (ϕi,0, . . . , ϕi,pi
)� are the coeffi-

cients of the ith AR component, πi is the weight for the ith AR component, so that πi > 0,
i = 1, . . . , g, and

∑g
i=1 πi = 1, and εi,t is the innovation of the ith AR component. In this

work, assuming that ki1 = E[U−1/2
i ] exits, it is considered that the innovations are SMSN

distributed as

εi,t ∼ SMSN
(
bi�i, σ

2
i , λi, νi

)
, (5)

where bi = −√
2/πk1, �i = σiδi and δi = λi/

√
1 + λ2

i , i = 1, . . . , g. Also, for each of the
g AR components, the {εi,t } are assumed mutually independent and independent of the past
{Xs; s < t}. As a consequence of (5), it follows that E(εi,t ) = 0 and, when ki2 = E[U−1

i ]
exist, that Var(εi,t ) = σ 2

i ki2 − b2
i �

2
i , i = 1, . . . , g. Under the assumption in (5), this process

is hereafter called the SMSN-MAR(p, g) model.
Model (4) is related to threshold autoregressive (TAR and SETAR) models, but in TAR

models delay parameters, threshold parameter and other parameters must be estimated, while
in MAR models the estimation of the weight vector π = (π1, . . . , πg)

� and other parame-
ters must be considered. As indicated below, we can assume vectors of random coefficients
in MAR models, distributed as Pπ , therefore this model can also be interpreted as random
coefficients autoregressive (RCA) model.

Without loss of generality, it is convenient to set p = maxi=1,...,g pi and ϕi,j = · · · =
ϕi,p = 0 for j > pi . Also, let {Zt } be an i.i.d. sequence of random variables with distribution
Pπ such that P(Zt = i) = πi , i = 1, . . . , g, which determine the AR component mixtures,
and are independent of the innovations {εi,t } and random history {Xs; s < t}. Therefore, if
Zt = i, then Xt comes from the ith component of the MAR model. Equations in (4) can thus
be rewritten as

Xt = ϕZt ,0 +
p∑

j=1

ϕZt ,jXt−j + εZt ,t , and Zt ∼ Pπ . (6)

It can be seen that model (6) is also a Markov switching autoregressive model with hidden
process {Zt }.

Moreover, by considering a sample vector X = (X1, . . . ,Xn)
� and the fact that Xt =

A�
t φZt

+ εZt ,t , where φZt
= (ϕZt ,0, . . . , ϕZt ,p)�, At = (1,Xt−1, . . . ,Xt−p)� and at =

(1, xt−1, . . . , xt−p)� which is the observed sample of At , the following convenient matrix
representation of the MAR(p, g) model in (6) is obtained in the form of

X = AφZt
+ εZt , and Zt ∼ Pπ , (7)

where A is a n × p matrix with rows A�
t , t = 1, . . . , n, and εZt = (εZt ,1, . . . , εZt ,n)

�.
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In addition, by noting that Xt | Xt−1 = xt−1, . . . ,Xt−p = xt−p = Xt |At = at , the assump-
tion (5) implies that

Xt |At = at , Zt = i
ind.∼ SMSN

(
φ�

i at + bi�i, σ
2
i , λi, νi

)
, (8)

with P(Zt = i) = πi , i = 1, . . . , g[(, )]t = 1, . . . , n. Therefore, the conditional distribution of
Xt |At = at corresponds to a finite mixture of SMSN-AR components, with density given by

fXt |At=at (xt ; θ) =
g∑

i=1

πih(xt | at ; θ i ), (9)

where h(xt | at ; θ i ) = ∫ ∞
0 fSN(xt ;φ�

i at + bi�i, u
−1
i σ 2

i , λi)dH(ui;νi ), xt ∈ R, is the den-
sity of the SMSN(φ�

i at + bi�i, σ
2
i , λi, νi ) distribution as defined in (2). Here, θ =

(θ�
1 , . . . , θ�

g )�, with θ i = (πi,φ
�
i , σ 2

i , λi, ν
�
i )�, denotes the whole vector of unknown pa-

rameters that determines the proposed SMSN-MAR(p, g) model.
By using the Markovian property of this MAR(p, g) model, the (conditional) likelihood

function for θ given an observed sample X = x is L(θ | x) = ∏n
t=1 fXt |At=at (xt ; θ). The

corresponding log-likelihood function is thus given by

�(θ | x) =
n∑

t=1

log

(
2

g∑
i=1

πi

∫ ∞
0

φ
(
xt ;φ�

i at + bi�i, u
−1
i σ 2

i

)

× �

(√
uiλi(xt − φ�

i at − bi�i)

σi

)
dH(ui |νi )

)
. (10)

The maximization of log-likelihood function in (10) with respect to θ for obtaining the ML
estimates requires a high dimensional nonlinear optimization procedure. As described in the
next section, the hierarchical formulation of the SMSN distributions given in (3) facilitates
the implementation of an ECME algorithm to find the ML estimates.

3.2 ECME algorithm

This section describes the ECME algorithm extension of the EM algorithm (Dempster,
Laird and Rubin, 1977) to obtain the ML estimates of the unknown parameters of an
SMSN-MAR(p, g) model as that described by equations (4) and (5). The algorithm was
proposed by Liu and Rubin (1994) as a more efficient method for finding the ML estimates.

An auxiliary determiner of components in MAR models like those specified by (5),
can be expressed in terms of a multinomial random vector Zt = (Zt1, . . . ,Ztg)

� ∼
Multinomial(1, π1, . . . , πg), where

Zti =
{

1, if t th observation of MAR process obeys the ith AR-component,

0, otherwise.

Only one element of Zt may be one (while the remaining elements must be zero), and its la-
bel/position determines the component distribution for the t th innovation; for further details,
see, for example, McLachlan and Peel (2000). Also, by assumption Xt is independent of εt ,
and so of Zt , too. Thus, by noting in (8) that Zt = i if and only if Zti = 1, and considering
the stochastic representation of the SMSN family given in (3), the proposed MAR model in
(4)–(5) can be equivalently specified as

Xt |At = at , Wti = wti, Uti = uti,

Zti = 1
ind.∼ N

(
φ�

i at + �iwti, u
−1
t i γ 2

i

)
,
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Wt |Uti = uti, Zti = 1
ind.∼ TN

(
bi, u

−1
t i

)
I(bi ,∞),

Uti |Zti = 1
ind.∼ H(uti;νi ),

Zt = (Zt1, . . . ,Ztg)
� ind.∼ Multinomial(1, π1, . . . , πg),

for i = 1, . . . , g, t = 1, . . . , n, where γ 2
i = σ 2

i − �2
i and TN(ξ,ω2)I(a,b) denotes the trun-

cated normal distribution with mean ξ and variance ω2 to the interval (a, b). As described
below, this hierarchical representation provides a convenient ECME algorithm for fitting the
proposed SMSN-MAR(p, g) model.

Let D = (X�,M�)� be the complete data where, X = (X1, . . . ,Xn)
� is the observ-

able part, and M� = ((Wti,Uti,Zti)
n
t=1)

g
i=1 is the missing part. Hereafter, the vector of un-

known parameters is redefined by convenience as (θ , ν), where θ = (θ�
1 , . . . , θ�

g )�, with

θ i = (πi,φ
�
i ,�i, γ

2
i )�, i = 1, . . . , g, and ν = (ν�

1 , . . . , ν�
g )�. Thus, the conditional likeli-

hood function based on the complete data is

Lc(θ , ν|D)

=
n∏

t=1

g∏
i=1

(
πifXt |At ,Wti ,Uti ,Zti

(Xt ; θ i )fWti |Uti ,Zti
(Wti;νi )fUti |Zti

(Uti;νi )
)Zti ,

where fXt |At ,Wti ,Uti ,Zti
(xt ; θ i ) = φ(xt ;φ�

i at + �iwti, u
−1
t i γ 2

i ), fWti |Uti ,Zti
(wti;νi) =

2φ(wti;bi, u
−1
it ), where φ(·) is the normal probability density function, and fUti |Zti

(uti;νi )

is the density or probability mass function induced by the mixing distribution H(uti;νi ). The
respective log-likelihood function is then given by �c(θ , ν|D) = �c(θ |D) + �c(ν|D), where
(ignoring constants)

�c(θ |D) =
g∑

i=1

n∑
t=1

Zti logπi − 1

2

g∑
i=1

n∑
t=1

Zti logγ 2
i

− 1

2

g∑
i=1

n∑
t=1

ZtiUti

γ 2
i

(
Xt − φ�

i At − �iWti

)2
, (11)

and �c(ν|D) ∝ −1
2

∑g
i=1

∑n
t=1 ZtiUti logW 2

t i −∑g
i=1

∑n
t=1 Zti logfUti |Zti

(uti;νi ). Note this
last part of the complete log-likelihood function is not relevant to the estimation of θ , and
therefore it can be ignored in the implementation of the ECME algorithm described below.

In the E-Step of the ECME algorithm, we should determine the function Q(θ |θ (k)) =
Eθ (k)[�c(θ |D)|X]. Conditional expectations used for the construction of this function follow
below. By considering standard properties of conditional expectation, it follows that

Ẑ
(k)
ti = Eθ (k)[Zti |X] = π

(k)
i h(xt |At ; θ̂ (k)

i )∑g
i=1 π

(k)
i h(xt |At ; θ̂ (k)

i )
,

where h(· | at , θ i ) is defined below Eq. (9). Also, from the results (A.1)–(A.4) in the Ap-
pendix, it follows that

Eθ (k)[Uti |X] = û
(k)
1t i ,

Eθ (k)[UtiWti |X] = Û
(k)
ti

(
m̂

(k)
ti + b

) + M̂
(k)
i η̂

(k)
ti ,

Eθ (k)

[
UtiW

2
t i |X

] = M̂
2(k)
i + (

m̂
(k)
ti + b

)2
Û

(k)
ti + η̂

(k)
ti M̂

(k)
i

(
m̂

(k)
ti + 2b

)
,
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i = 1, . . . , g and t = 1, . . . , n, where û
(k)
1t i and η̂

(k)
ti = η̂

(k)
1t i are obtained via (A.1) and (A.2), re-

spectively, with M̂2
i = γ̂ 2

i

γ̂ 2
i +�̂2

i

and m̂ti = �̂i

γ̂ 2
i +�̂2

i

(xt − φ̂
�
i At − b̂i�̂i). All these quantities must

be evaluated at θ = θ̂
(k)

, where θ̂
(k)

is the estimated value of θ in the kth step of the algorithm.
Conditional expectations û

(k)
1t i and η̂

(k)
1t i and therefore all the above conditional expectations

have a closed-form expression, when working with the Skew-t (ST) and Skew contaminated-
normal (SCN) distributions of the SMSN class; see Zeller, Lachos and Vilca-Labra (2011)
and Basso et al. (2010). In the case of the SSL distribution, the Monte Carlo integration can be
employed in order to approximate its integrals, and the so-called MC-ECME algorithm must
be implemented; see Wei and Tanner (1990), McLachlan and Krishnan (2008) and Zeller,
Lachos and Vilca-Labra (2011). Also, since Zti and (Uit ,Wti) are independent, it follows
that ŝ

(k)
1t i = Ẑ

(k)
ti Eθ (k)[Uti |X], ŝ

(k)
2t i = Ẑ

(k)
ti Eθ (k)[UtiWti |X] and ŝ

(k)
3t i = Ẑ

(k)
ti Eθ (k)[UtiW

2
t i |X]. In

order to facilitate the presentation of updating ML estimates in the future, we set �
(k)
i =

diag(ŝ
(k)
11i , . . . , ŝ

(k)
1ni), α

(k)
i = (ŝ

(k)
21i , . . . , ŝ

(k)
2ni) and β

(k)
i = (ŝ

(k)
31i , . . . , ŝ

(k)
3ni).

Therefore, in the E-step of the algorithm, we have
E-step:

Q
(
θ |θ (k)) =

g∑
i=1

n∑
t=1

Ẑ
(k)
ti logπi − 1

2

g∑
i=1

n∑
t=1

Ẑ
(k)
ti logγ 2

i

− 1

2

g∑
i=1

n∑
t=1

ŝ
(k)
1t i

γ 2
i

(
Xt − φ�

i At

)2 +
g∑

i=1

n∑
t=1

ŝ
(k)
2t i

γ 2
i

(
Xt − φ�

i At

)
�i

− 1

2

g∑
i=1

n∑
t=1

ŝ
(k)
3t i

γ 2
i

�2
i .

By considering the matrix representation in (7) and the vector notations of the conditional
expectations defined above, we have

Q
(
θ |θ (k)) =

g∑
i=1

n∑
t=1

Ẑ
(k)
ti logπi − 1

2

g∑
i=1

n∑
t=1

Ẑ
(k)
ti logγ 2

i

−
{ g∑

i=1

1

2γ 2
i

(
(X − Aφi )

��
(k)
i (X − Aφi ) + �2

i 1�β
(k)
i

− 2�i(X − Aφi )
�α

(k)
i

)}
,

where 1 denotes a vector of ones.
Conditional maximization (CM)-steps:
In all steps for i = 1, . . . , g we have

π̂
(k+1)
i =

∑n
t=p Ẑ

(k)
ti

n
,

φ̂
(k+1)

i = (
A��

(k)
i A

)−1
A�(

�
(k)
i X − �

(k)
i α

(k)
i

)
,

�̂
(k+1)
i = ε

�(k+1)
i α

(k)
i

1�β
(k)
i

, where ε
(k+1)
i = X − Aφ

(k+1)
i ,

γ̂
2(k+1)
i = ε

�(k+1)
i �

(k)
i ε

(k+1)
i − 2�

(k+1)
i ε

�(k+1)
i α

(k)
i + (�2

i )
(k+1)1�β

(k)
i∑n

t=p Ẑ
(k)
ti

.
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Conditional maximization likelihood (CML)-step:

ν̂
(k+1)
i

= argmax
νi

(
n∑

t=1

log

( g∑
i=1

π
(k+1)
i h

(
Xt | At ;φ(k+1)

i ,�
(k+1)
i , γ̂

2(k+1)
i , νi

)))
,

i = 1, . . . , g, (12)

where h(· | At , θ i ) defined below equation (9).
In order to approximate the asymptotic covariance matrix of the ML estimates obtained

from the proposed MAR model, the observed information matrix is considered in the Ap-
pendix.

3.3 Initial values and model selection criteria

Determination of initial values on the ECME algorithm depends first on clustering time se-
ries data and, second, on initial values of the unknown parameters in each partition of the
correspondent components of MAR models. There exist many algorithms for subsequence
time series (STS) clustering. For example, Goldin, Mardales and Nagy (2006) introduced an
algorithm of STS with a new distance measure, Lau and So (2008) used the so-called WCR
(Weighted Chinese Restaurant) process in order to cluster time series data, and Van Wijk and
Van Selow (1999) used clustering time series data with different mean levels. Time series
which appear to obey threshold models can be clustered with the K-means clustering method
or the partitions around medoids (PAM) clustering method; see Xiong and Yeung (2004).
These methods apply to partitions of single time series data, panel time series data, clustered
by ordinary clustering method of time series data into homogeneous groups.

In order to fit the SMSN-MAR(p, g) model on data set, by clustering to g categories,
proportion of data points in each cluster category can be adopted for the weight initial values
π

(0)
i , i = 1, . . . , g. Initial values for the vector of AR coefficients φ

(0)
i in each cluster can

be provided by the ordinary least square method and regression techniques as follows: for
each t in each cluster, determine the p-tuples (Xt−p,Xt−p+1, . . . ,Xt) and regress Xt on
the (Xt−p,Xt−p+1, . . . ,Xt−1) and consider the estimate of the regression coefficients as the
initial values of AR coefficients. In the next stage, by computing preliminary residuals of the
SMSN-MAR model, initial values of σ

2(0)
i , λ

(0)
i and ν

(0)
i can be chosen via a method similar

to that used by Garay, Lachos and Abanto-Valle (2011). Then the ECME algorithm iterates

until a sufficient convergence rule is satisfied, e.g. if |�(θ̂ (k+1)
)/�(θ̂

(k)
) − 1| ≤ ε under the

determined tolerance ε. Usually users employ ε = 10−3, but choice of tolerance may vary
with different users.

Other important issues are the determination of the order (p) of the AR process and se-
lecting the most appropriate model from of all the competing ones (Wong and Li, 2000).
Although we can use the partial auto-correlation function (PACF) to determine a tentative
order p, it seems more desirable to have a systematic order selection criterion for a gen-
eral AR model. Two commonly used methods are the Akaike information criterion (AIC)
(Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978). These criteria are
defined by AIC = 2k − 2�(θ̂) and BIC = k logn − 2�(θ̂), where �(θ̂) is the maximized log-
likelihood function, k is the number of estimated parameters in the proposed AR model and
n is the length (sample size) of the AR sample. In the calculation of AIC and BIC, note that
πg = 1 − π1 − · · · − πg−1, so the number of probability components is g − 1.
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4 Numerical studies

In this section, to compare the ability of the SMSN − MAR(p, g) models to fit data, at first,
by simulating data from a IG-MAR(2,2) process (The innovations from Inverse Gaussian
distribution), we compute the root of the mean squared error of the predictions (RMSEP) for
different members of the SMSN family. Second, by simulating from SN-MAR(2,2) (skew-
normal MAR), ST-MAR(2,2) (skew-t MAR) and SSL-MAR(2,2) (skew-slash MAR), we
find in each case the ML estimates to ensure that the proposed SMSN-MAR models work
satisfactorily. The asymptotic properties of the EM estimates are studied in terms of bias
and root mean squared error (RMSE) of the estimated parameters in the third study. For
computational convenience, we assume ν1 = · · · = νg = ν. The implementation of the ECME
algorithms is based on the R software version 3.2.1 with a core i5 760 processor 2.8 GHz.
A relative tolerance of 10−3 is used for convergence of the ECME algorithms. The proposed
models and methods are then applied on the closing price of the Iran telecommunication
company stock.

4.1 First simulation study

The first simulation study is performed from the following IG-MAR(2,2) model with 1000
samples of different sizes n = 100,200,500,1000:

Xt =
{
φ�

1 At + εt1; w.p. π1 = 0.4,

φ�
2 At + εt2; w.p. π2 = 0.6

where φ1 = (ϕ1,0, ϕ1,1, ϕ1,2)
� = (0.1,0.5,0.3)�, φ2 = (ϕ2,0, ϕ2,1, ϕ2,2)

� = (0.1,0.6,0.2)�,
{εt1} are i.i.d. from IG(3,1) distribution and {εt2} are i.i.d from IG(2, .5) distribution, where
IG(μ,λ) denotes the inverse Gaussian with mean μ and the shape parameter λ. The RMSEP
of models that is calculated by

RMSEP =
√√√√ 1

n − 1

n∑
t=2

(Yt − Ŷt )2,

under Gaussian, Student’s t , skew-normal and skew-t and skew slash that are given in Table 1.
As we see from Table 1, the results show that for different sample sizes, the SMSN families
(SN, ST, SSL distributions) have a better fit based on the RMSE when the data is generated
from the IG-MAR(2,2) distribution.

4.2 Second simulation study

The second simulation study is devoted to an SMSN-MAR(1,2) model with 1000 samples
of length n = 200 obtained from the SN, ST, SSL and SCN distributions for the innova-
tions, using the following parameters: φ1 = (ϕ1,0, ϕ1,1)

� = (0.1,0.4)�, φ2 = (ϕ2,0, ϕ2,1)
� =

(0.1,0.7)�, π1 = 0.4, ν1 = ν2 = ν = 3, α1 = α2 = α = 0.2, σ 2
1 = 1, σ 2

2 = 2, λ1 = 2 and
λ2 = 4.

Table 1 The RMSEP of the different models with data set from IG-MAR(2,2)

Sample size Normal Student’s t SN ST SSL

100 0.9658 0.9381 0.6829 0.6290 0.4901
200 0.9501 0.7881 0.5669 0.5391 0.4721
500 0.8152 0.7206 0.6281 0.5502 0.4706

1000 0.8136 0.7001 0.6291 0.4490 0.4272
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Table 2 The average Mean and SD of proposed estimates for SMSN-MAR(2,2) distributions with ECME algo-
rithm

Parameters (values) SN ST SSL SCN

Mean SD Mean SD Mean SD Mean SD

ϕ1,0(0.1) 0.1012 0.02131 0.1002 0.02273 0.1021 0.02281 0.1006 0.02647
ϕ2,0(0.1) 0.1009 0.02625 0.1006 0.02477 0.1007 0.02152 0.1001 0.02746
ϕ1,1(0.4) 0.4101 0.02536 0.4027 0.11248 0.4301 0.20183 0.4270 0.10383
ϕ2,1(0.7) 0.7101 0.07623 0.7007 0.02901 0.6901 0.06251 0.6903 0.02438
σ 2

1 (1) 1.1023 0.02064 0.9690 0.31741 1.0210 0.27493 0.8972 0.20374
σ 2

2 (2) 1.9782 0.03027 2.0190 0.28950 1.9920 0.31171 2.3847 0.36248
λ1(2) 2.0184 0.81651 2.0025 0.94561 1.9367 0.82846 1.9026 0.47463
λ2(4) 4.0038 1.09817 3.9014 0.95928 3.9930 0.90563 4.0436 0.64762
ν(3) – – 3.8957 0.56842 3.6473 1.14587 3.4524 1.03821
α(0.2) – – – – – – 0.1983 0.02631
π1(0.4) 0.4011 0.04113 0.4008 0.02795 0.3957 0.01758 0.4287 0.12843

Table 2, summarizes the average means and the standard deviations (SD) of the ML es-
timates obtained via the ECME algorithm. In each case the proposed SMSN-MAR models
perform very well.

4.3 Third simulation study

Some asymptotic properties of the estimates obtained by using the suggested ECME al-
gorithm are investigated. Only the ST-MAR(3,2) model and the following sets of true
parameter values φ1 = (ϕ1,0, ϕ1,1, ϕ1,2)

� = (0.2,0.4,0.3)�, φ2 = (ϕ2,0, ϕ2,1, ϕ2,2)
� =

(0.1,0.6,0.2)�, π1 = 0.4, ν = 3, σ 2
1 = 0.1, σ 2

2 = 0.2, λ1 = 2 and λ2 = 4 are considered.
The bias and MSE of the ECME estimates with considering 1000 samples of different sizes
n = 100,200,500 and 1000 are obtained. For example, for ϕ2,0 these criteria are defined as

Bias = 1

1000

1000∑
j=1

(
ϕ̂

j
2,0 − ϕ2,0

)
, MSE = 1

1000

1000∑
j=1

(
ϕ̂

j
2,0 − ϕ2,0

)2

respectively, where ϕ̂
j
2,0 is the ECME estimate of ϕ2,0 when the data is sample j . Definitions

for the other parameters are obtained by analogy. The result are shown in Table 3 that we can
see when the sample size increases the ECME estimates will be precisely based on the bias
and MSE.

4.4 Real data

To illustrate the potential of SMSN-MAR models, we consider the closing price of Iran
telecommunication company stock (I.T.C) from July 2th, 2011, to July 2th, 2013 for 446
observations. This data set is available at Tehran securities exchange technology manage-
ment company site (www.tsetmc.com). Figure 1(a) shows the time series plot of the closing
price (Iranian Rial) for the I.T.C stock. From this figure, we can see that this series is not
stationary, therefore the return series of the closing price is computed as rt = log(pt/pt−1)

where pt is the closing price at time t . Time plot of the stationary return series is shown
in Figure 1(b). Also, the histogram of the closing price of the I.T.C. stock is shown in Fig-
ure 1(c). The histogram shows the bimodal marginal distribution of the closing price series.
We consider one, two and three component of SMSN-MAR models. The order of the AR

http://www.tsetmc.com
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Table 3 Bias and MSE for ECME estimates of ST-MAR(3,2)

Measure Parameters Sample size

100 200 500 1000

Bias ϕ1,0 0.9029 0.8073 0.6072 0.4759
ϕ2,0 −0.8921 −0.8119 −0.9742 −0.3810
ϕ1,1 0.9842 0.8293 0.5703 0.5103
ϕ2,1 0.8091 0.8031 −0.6679 0.4089
ϕ1,2 −0.8341 −0.8220 −0.6011 −0.3220
ϕ2,2 0.7379 0.7834 0.7007 0.4193
σ 2

1 −0.5146 −0.5011 −0.4833 −0.4023
σ 2

2 0.6167 0.5003 0.5281 0.4461
λ1 −5.2981 −3.1193 −3.0081 −0.7828
λ2 1.0800 0.9959 0.7183 0.5030
ν 7.1730 0.6207 0.6081 0.1172
π1 −0.0841 0.0681 0.0558 0.020

MSE ϕ1,0 0.2102 0.2048 0.2001 0.1420
ϕ2,0 0.1078 0.1173 0.1054 0.0991
ϕ1,1 0.3391 0.1841 0.1082 0.1004
ϕ2,1 0.0481 0.1073 0.0982 0.0429
ϕ1,2 0.1082 0.0892 0.0693 0.0294
ϕ2,2 0.6901 0.7082 0.5829 0.1073
σ 2

1 1.2847 1.0011 1.0383 0.0403
σ 2

2 1.4681 1.3003 0.8204 0.4307
λ1 9.3081 9.0029 0.9381 0.4927
λ2 10.0800 9.1619 0.6061 0.3954
ν 13.1730 10.6207 1.1673 0.7379
π1 0.0673 0.0595 0.0393 0.0073

components is chosen by minimum the AIC. For example for the two components, Figure 2
shows the AIC plots of each component versus the different orders and we see that for the
first component, minimum of the AIC is in order 3 (p1 = 3) and for the second compo-
nent, minimum of the AIC is in order 1 (p2 = 1). By considering this data, we fit the mod-
els N-MAR (mixture AR based on the Gaussian model), SN-MAR, ST-MAR, SSL-MAR
and SCN-MAR models with g = 1,2,3 components. The corresponding log-likelihood, AIC
and BIC criteria are shown in Table 4. These criteria show that among the models consid-
ered, the ST-MAR(3,2) model presents the best fit. The ML estimates with standard errors
of the parameters under an ST-MAR(3,2) model for the return series of the I.T.C. stock
are given in Table 5. This two component of ST-MAR for the return series of the I.T.C.
stock, is transformed back to two component of ST-MAR for the closing price of the I.T.C.
stock.

5 Conclusion

In this paper, we have explored the idea of using robust MAR models in which the distri-
bution of the innovations belong to a flexible family called scale mixtures of skew normal
distributions. The proposed models serve for modeling non-linear time series data and in-
clude the family of N-MAR models as special case. In addition, they offer greater flexibility
for modeling skewness and heavy tails, keeping a good degree of tractability in computing.
Numerical studies show the suitability of the ML estimates under the proposed models, which
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Figure 1 Time series plot of (a): the closing price, (b) the return and (c) histogram of the I.T.C stock from
2011–2013.

Figure 2 AIC plot for different orders (a): the first component, (b) the second component preliminary partitioned
annual Canadian Lynx Trappings data.

Table 4 Model selection criteria for SMSN-MAR with p = 3 and g = 1,2,3 under Gaussian, skew-normal and
skew-t. assumption

Model Number of component (g) Log-likelihood AIC BIC

N-MAR 1 −1638.7081 3281.4162 3288.6024
2 −1589.6039 3079.3961 3304.0078
3 −1606.8208 3182.0986 3217.6104

SN-MAR 1 −1629.9906 3261.8760 3270.8840
2 −1607.8500 3040.0568 3166.3749
3 −1610.8062 3178.6792 3170.6933

ST-MAR 1 −1457.8280 2978.9483 2985.8682
2 −1407.9038 2819.2360 2889.7582
3 −1414.0427 2913.7505 2980.7920

SSL-MAR 1 −1549.7902 3174.7835 3110.8493
2 −1538.8931 3001.8462 3104.6580
3 −1538.1921 3149.4836 3160.3711

SCN-MAR 1 −1560.6643 3167.3489 3193.9370
2 −1508.2897 3012.9738 3100.9377
3 −1557.4358 3166.8036 3183.6481
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Table 5 ML estimates with standard errors of the parameters under an ST-MAR(3,2) model for the return series
of the I.T.C. stock

Component Parameters Estimates S.E.

First Comp. π1 0.5617 0.0145
ϕ1,0 0.0043 0.0017
ϕ1,1 0.1498 0.0352
ϕ1,2 −0.0442 0.0016
ϕ1,3 −0.0225 0.0008
σ 2

1 0.0031 0.0021
λ1 1.0290 0.2209
ν 2.0000 0.4763

Second Comp. π2 0.4383 0.0145
ϕ2,0 0.0033 0.0009
ϕ2,1 0.2229 0.0521
σ 2

2 1.0720 0.0103
λ2 0.9474 0.0875
ν 2.0000 0.4763

are found using an EM-type algorithm that can be coded via free open source R software.
Finally, these studies demonstrate that the SMSN-MAR models may be useful tools for mod-
eling non-linear and non-stationary time series. For future works, researchers can apply the
proposed methodology of Mahmoudi, Maleki and Pak (2017) to SMSN-MAR models, or
extend the new flexible symmetric/asymmetric skew reflected Gompertz (SRG) distribution
(Hoseinzadeh et al., 2018) with desirable properties to the MAR models and finally also ex-
tend them to the asymmetrical Autoregressive Moving average (ARMA) model analogy of
Zarrin et al. (2018).

Appendix

A.1 Some members and properties of SMSN distributions

Also, from the hierarchical representation induced by (3) it is easy to compute the following
necessary conditional moments for the application of the ECME algorithm:

ur = E
(
Ur |Y = y

)
= 2

f0(y;μ,σ 2, ν)

f (y;μ,σ 2, λ, ν)
E

(
Ur

y�
(
U1/2

y a
))

, (A.1)

ηr = E
(
Ur/2W�

(
U−1/2a

)|Y = y
)

= 2
f0(y;μ,σ 2, ν)

f (y;μ,σ 2, λ, ν)
E

(
Ur/2

y �
(
U1/2

y a
))

, (A.2)

E(UW |Y = y) = mu1 + Mη1, (A.3)

E
(
UW 2|Y = y

) = M2 + m2u1 + η1Mm, (A.4)

where W�(·) = φ(·)
�(·) , a = λz, z = y−μ

σ
, f0 is the pdf of Y0 ∼ SMN(μ,σ 2;H), Uy =d U |(Y =

y), d = (y − μ)2/σ 2, M2 = γ 2

γ 2+�2 , m = �
γ 2+�2 (y − μ).
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Table A.1 Some members of the SMSN distributions

Distribution Density (z = σ−1(y − μ); y ∈R) Distribution of U

Skew-normal (SN) 2σ−1φ(z)�(λz) U = 1 w.p.1

Skew-t (ST) 2
�( ν+1

2 )

�( ν
2 )

√
πνσ

(1 + z2

ν )− ν+1
2 Gamma( ν

2 , ν
2 )

× T (

√
ν+1
z2+ν

λz;ν + 1)

Skew-slash (SSL) 2σ−1ν
∫ 1
0 uν−1φ(u−1/2z)�(u1/2λz)du Beta(ν,1), ν > 0

Skew contaminated- 2σ−1{να−1/2φ(α1/2z)�(α1/2λz) νI(ut=α) + (1 − ν)I(ut=1),

normal (SCN) + (1 − ν)φ(z)�(λz)} 0 < ν < 1, 0 < γ ≤ 1

A.2 The observed information matrix

To approximate the asymptotic covariance matrix of ML estimates from the proposed AR
model, we use the observed information matrix, I (θ | X) = −∂2�(θ |X)/∂θ∂θ�. Under
some regularity conditions, ML estimates of the inverse of the observed information ma-
trix, Î(θ | X), can be employed as an estimate of the covariance matrix of ML estimates.
The elements of I (θ | X) in blocks can be calculated as Iα,β = −∂2�t (θ |X)/∂α∂β� for
α,β = φr , πr,μr, σ

2
r , λr and νr , r = 1, . . . , g. Hence, by considering the log-likelihood (12),

we have

Iα,β =
g∑

i=1

∂2 logπi

∂α∂β� − 1

2

g∑
i=1

∂2 logσ 2
i

∂α∂β� −
g∑

i=1

1

K2
t i

∂Kti

∂α

∂Kti

∂β� +
g∑

i=1

1

Kti

∂2Kti

∂α∂β� ,

where ∂Kti

∂α = l
φ
ti(1) ∂Ati

∂α − 1
2 l�ti (

5
2) ∂dti

∂α , and ∂2Kti

∂α∂β� = 1
4 l�ti (

5
2) ∂dti

∂α
∂dti

∂β� − 1
2 l�ti (

3
2) ∂2dti

∂α∂β� −
1
2 l

φ
ti(2)( ∂Ati

∂α
∂dti

∂β� + ∂dti

∂α
∂Ati

∂β� ) − l
φ
ti(2)Ati

∂Ati

∂α
∂dti

∂β� + l
φ
ti(1) ∂2Ati

∂α∂β� , with l�ti (ω) = EU(Uω ×
exp(−Udti/2)�(

√
UAti)), l

φ
ti(ω) = EU(Uω exp(−U(dti + A2

t i )/2)), Kti = EU(
√

U ×
exp(−Udti/2)�(

√
UAti)), dti = (Xt − φ�

i At − bi�i)
2/σ 2

i and Ati = λi(Xt − φ�
i At −

bi�i)/σi .
The expressions l�ti (·) and l

φ
ti(·) for some members of the SMSN family are as follows (for

more details see Basso et al., 2010).

• Skew-t:

l�ti (ω) = 2ων
ν
2 �(ω + ν

2 )√
2π�(ν

2 )(ν + dti)
ω+ ν

2
T

(
Ati

√
ν + 2ω

(ν + dti)
1
2

;ν + 2ω

)
,

l
φ
ti(ω) = {∂ν}2ων

ν
2 �(ω + ν

2 )√
2π�(ν

2 )

(
1

ν + A2
t i + dti

)ω+ ν
2
,

and

∂�t (θ | X)

∂ν
= 1√

2πσi

(
1 + log(ν/2) + DG(ν/2)l�ti (1/2) − l�ti (3/2)

+
∫ ∞

0
u1/2 log(u) exp(−udti/2)�(

√
uAti)dH(u | νi )

)
,

where DG denotes the digamma function.
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• Skew-slash:

l�ti (ω) = 22+ν�(ω + ν)

dω+ν
ti

P (ω + ν, dti/2)E
(
�(

√
Gti)Ati

)
,

l
φ
ti(ω) = ν2ω+ν�(ω + ν)√

2π(A2
t i + dti)ω+ν

P
(
ω + ν,

(
A2

t i + dti

)
/2

)
,

where Gti ∼ Gamma(ω + ν, dti/2)I(0,1) and P(a, b) denotes the Gamma(a, b)-distribution
function.

∂�t (θ |X)

∂ν
= 2

∫ 1

0
uν−1(1 + ν logu)φ

(
Xt − φ�

i At ;0, u−1σ 2
i

)
�(

√
uAti) du.

• Skew-contaminated-normal:

l�ti (ω) = √
2π

(
νγ ω−1/2φ

(√
dti;0, γ −1)

�(
√

γAti)

+ (1 − ν)φ(
√

dti;0,1)�(Ati)
)
,

l
φ
ti(ω) = νγ ω−1/2φ

(√
A2

t i + dti;0, γ −1
)

+ (1 − ν)φ
(√

A2
t i + dti;0,1

)
,

∂�t (θ |X)

∂ν
= 2

(
φ

(
Xt − φ�

i At ;0, γ −1σ 2
i

)
�(

√
γAti)

− φ
(
Xt − φ�

i At ;0, σ 2
i

)
�(Ati)

)
,

and

∂�t (θ |X)

∂γ
= ν√

2πσi

γ 1/2 exp(−γ dti/2)

× (
γ −1�(

√
γAti) + φ(Ati/

√
γ )Ati/

√
γ − �(

√
γAti)dti

)
.
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