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A Bayesian Hierarchical Model for Criminal
Investigations

F. O. Bunnin®! and J. Q. Smith*#

Abstract. Potential violent criminals will often need to go through a sequence
of preparatory steps before they can execute their plans. During this escalation
process police have the opportunity to evaluate the threat posed by such people
through what they know, observe and learn from intelligence reports about their
activities. In this paper we customise a three-level Bayesian hierarchical model
to describe this process. This is able to propagate both routine and unexpected
evidence in real time. We discuss how to set up such a model so that it calibrates to
domain expert judgments. The model illustrations include a hypothetical example
based on a potential vehicle based terrorist attack.

Keywords: Chain Event Graphs, hierarchical models, Markov processes, Markov
switching models, probabilistic graphical models, decision support systems.

1 Introduction

How to better support police to prevent terrorist attacks continues to be a major polit-
ical concern due to continued violence perpetrated by extremists Europol (2018); Allen
and Dempsey (2018). In contrast to the majority of terrorist incidents in the latter
half of the twentieth century which were executed by known organised terrorist groups
with substantial planning and sophistication, more recent attacks have often involved
individuals or small groups targeting civilians in public places using basic equipment
such as vehicles, guns and knives Europol (2018); Lindekilde et al. (2019). Consequen-
tially this entails less sophistication in materials, planning and execution. In terms of
analysing how to understand and prevent terrorism, criminologist focus has shifted from
“individual qualities (who we think terrorists ‘are’) to ... what lone-actor terrorists do
in the commission of a terrorist attack and how they do it” Gill (2012). Gill, referencing
Horgan (2005), notes “it is useful to view each terrorist offence as comprising of a series
of stages”.

The case studies of lone-actor terrorists have been analysed extensively both qual-
itatively and quantitatively for insight into background and preparatory behaviours,
vulnerability indicators, radicalisation patterns, and modes of attack planning Bouhana
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2 A Bayesian Hierarchical Model for Criminal Investigations

and Wikstrom (2011); Corner et al. (2019); Lindekilde et al. (2019); Bouhana et al.
(2016). These studies emphasize that the small number and heterogeneity of cases make
rigorous scientific examination of associative and causal relationships extremely difficult.
As they indicate it is vital, therefore, to utilise structure from existing domain expertise
on the relationships between observable data, preparatory activities, and attack modes
in any probabilistic analysis of the progression of an individual to an attack.

Probabilistic models, including Bayesian graphical models, have been used for mod-
elling “comprehension and decision making of law enforcement personnel with respect to
terrorism-centric behaviours” Regens et al. (2015), in a terrorist cell actor-event network
analysis Ranciati et al. (2017), for “rapid detection of bio-terrorist attacks” Fienberg
and Shmueli (2005), for spatio-temporal terrorism analyses Clark and Dixon (2019);
Python et al. (2019), and in a “systems analysis approach to setting priorities among
countermeasures” against terrorist threat Pat-Cornell and Guikema (2002). Bartolucci
et al. (2007) apply a multivariate Latent Markov model to the analysis of criminal tra-
jectories: their focus is on identifying the model structure given longitudinal data on
individuals’ criminal convictions and discrete covariates such as gender and age band;
the latent states are an individual’s “tendency to commit” certain types of crime.

It is within this context that we present a new class of Bayesian models to dynam-
ically infer the progression of an individual through discrete stages towards a criminal
attack. These models have been developed through close discussions over several years
with a number of different policing agencies. To our knowledge this approach is novel
and complements the existing research.

Overview of the model

A suspect within a subpopulation of interest to the police, w € €, is believed to be
planning a serious criminal attack against the general public. Typically w will need to
step through various stages of preparation before perpetrating this crime. During this
progression police will have the opportunity to observe and evaluate w’s status through
their record, updated throughout an investigation by sporadic intelligence reports and
routine observations of w’s activities. A dynamic Bayesian model is uniquely placed to
provide decision support for such policing activities. It provides a framework within
which to encode criminological theories, domain knowledge available about w, for ex-
ample his police record and personal modus operandi, and also draw in evidence from
noisy streaming data about w observed by police. All these features are integrated into
a single dynamic probability model. The model we build in this paper tracks the prob-
ability w lies in certain states or makes a transition from one state into another at any
given time. These probabilities help to guide interventions and resource allocations.

To be operational such a Bayesian model must be constructed so that current prior
information in a given suspect w’s record can be quickly updated not only in the light
of routine surveillance but also unexpected sources. So, for example, police may well
be monitoring the phone log of someone suspected of a serious crime. But within an
investigation direct information sporadically comes to light about what w is doing —
unexpected sightings, overheard statements of intent, and so on. It would be unreason-
able to assume that this type of information, often critical to a correct appraisal of w’s
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status, could have been forecast and accommodated into any prior model specification.
Any methodology we design for this domain therefore needs to be open to manual inter-
vention West and Harrison (1997). Police will then be able to input these unpredicted
new sources of information into the system and so improve the probability assessments
of the Bayesian model. A three level hierarchy facilitates this openness property.

At the deepest level lies a Reduced Dynamic Chain Event Graph (RDCEG). This
is a graphically based model drawn from a particular subclass of finite state semi-Markov
processes customised to model transition processes in a subpopulation of the general
public Shenvi and Smith (2018). This deepest level provides a framework for expressing
the probability judgements of police concerning w’s current threat status.

The intermediate level of our hierarchy concerns intelligence police might acquire
concerning w’s enacted intentions. When a suspect is at a particular stage of a criminal
pathway, in order to engage in that step of criminality or alternatively to progress to
the next step, a set of associated tasks needs to be completed. Intermittent intelligence
reports often inform these. Because these are explicit components of the hierarchical
model propagating such information corresponds to simple conditioning. A vector of
tasks whose components form a signature of various states of criminal intent and capa-
bility constitutes the variables that lie on the intermediate layer of the hierarchy.

The surface layer of the model then links these tasks to the intensities of certain
activities that can be routinely observed by the police if they have the necessary resource
and permissions. In the absence of direct information about w’s engagement in tasks,
signals from predesigned filters provide vital information about what w might be doing.
For example suppose the task concerns w’s intent to travel to a region to learn how to
bomb. Then a filter that measures the intensity of the suspect’s engagement in searching
airline websites would give a noisy signal of his booking a flight. Such information is
imperfect: w may book a flight directly from an airport or to have chosen not to fly
to the destination. And of course a high intensity in such activity could be entirely
innocent: w may be booking a vacation, for example. Such measures are nevertheless
obviously informative. Appropriately chosen filters of these data streams provide the
surface level of our Bayesian hierarchy. The usual Bayesian apparatus then provides
a formal and justifiable framework around which police can logically and defensibly
propagate information about w.

Formally describing states by collections of tasks within generic Bayesian models
supporting criminal investigations is, to our knowledge, novel. However it is interesting
that Ferrara et al. (2016) proposed a similar approach albeit less formally expressed
and in a more restricted domain: the discovery of recruiters to radicalisation to extreme
violence from Twitter communications. By performing a number of thought experiments
with domain experts these authors successfully extracted a collection of tasks that a
recruiter would need to engage in to be effective. Although an innocent non-recruiter,
such as an academic or journalist, might happen to engage in some of the tasks in this
collection they would be unlikely to engage in all of these tasks simultaneously. The
authors then related this vector to various easily extracted meta data signals that could
be routinely extracted from an enormous dataset. This provided an analogue of the
types of filter of a routinely applied observation vector we discuss later here.
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In the next section we describe the RDCEG and demonstrate through some simple
examples how it can be used to translate domain experts’ judgements into a latent
probability model at the deepest level of a hierarchy. We also illustrate sets of tasks
that w lying in a particular state or transitioning between states might entail. Our core
methodology is described in Section 3. We propose a collection of assumptions, elicited
from domain experts, about the ways criminal progressions associate to tasks, and how
the intensities synthesise various sources of routine measurements of engagement in each
of these tasks given background circumstances. Given these assumptions we are able to
propagate not only routine indirect but also unexpected direct information about w’s
current activities to obtain posterior probabilities about w’s current position.

The resulting propagation algorithms are straightforward to enact. However the
inputs of the model: both the structural prior information and the prior parameter
distributions embellishing them need to be carefully specified if the methodology is
going to be operationalised. In Section 4 we outline how we do this.

In this setting to explore the methods using known data on given suspects as illus-
trations is clearly unethical. However it is still possible to demonstrate how the system
works in various hypothetical situations whose distributions are informed by publically
available data and elicited judgements. Therefore in Section 5 we illustrate the way the
system is able to update the state probabilities of an individual under suspicion of a
potential attack. We describe the different task sets we have used and the construction
of routine filters and test these against a two scenarios. In the concluding section we
discuss how we are now extending the methodology to model threatening subpopula-
tions of the general public where estimation and model selection algorithms can also be
built to better understand the developing processes.

2 The RDCEG for criminal escalation

2.1 Introduction

Chain event graphs (CEGs) are now an established tool for modelling discrete processes
where there is significant asymmetry in the underlying development see e.g. Barclay
et al. (2013, 2014); Collazo and Smith (2016); Cowell et al. (2014); Gorgen and Smith
(2018); Collazo et al. (2018). Dynamic versions of these processes, using analogous
semantics, first appeared in Barclay et al. (2015). However formal extensions of these
classes to model open populations have only recently been discovered Smith and Shenvi
(2018) and developed Shenvi and Smith (2018); Shenvi and Smith (2019). We briefly
review and illustrate the main properties of this class as they apply to the hierarchical
model developed here. We refer the reader to the references above for more details.

The RDCEG we use in this paper is a particular family of semi-Markov process
that can be expressed by a single graph. Each represented state is called a position. In
our domain there is an absorbing state — called the neutral state that w enters when
presenting no future threat of perpetrating the given crime. The practical challenge is to
find a way to systematically construct the set of positions so that the embedded Markov
assumptions are faithful to expert judgements. In Barclay et al. (2015) and Shenvi and
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Smith (2018) we describe how this can be done. We take a natural language description
from domain experts and re-express this as a potentially infinite tree. We then translate
this tree into an equivalent graph C. For the purposes above we will henceforth assume
this to have a finite number of vertices.

A position w is connected by a directed edge into another w’ in the graph of an
RDCEG iff there is a positive probability that the next transition from w will be into
w’. Typically although the transition probabilities are fairly stable, the time it takes
to make a transition is not. Therefore we need to express this expert judgement as a
semi-Markov rather than Markov process. The graph C is one that on the one hand is
often found to be transparent and natural to our users but on the other has a formal
Bayesian interpretation. So this elicited graph provides a vehicle to move seamlessly
from an expert elicitation into a more formal family of stochastic processes.

The RDCEG developed in Shenvi and Smith (2019) was designed to be applied to
public health processes where C could often be observed directly. For criminal processes
this is not usually possible. Therefore for crime modelling an RDCEG process typically
remains latent and any prior to posterior analysis of the suspect’s positions needs a little
more sophistication. The hierarchical structure we define in the next section provides the
framework for this update. We give some simplified illustrations below of such RDCEGs.

2.2 A criminal RDCEG and its tasks

We describe an RDCEG, Figure 1, for a politically motivated murder plot illustrating
the relationship between its states and tasks: the lowest and intermediate levels in our
hierarchical model.

Example 2.1. Electronic posts directly observed by the police suggest woman S is
plotting to kill a certain political figure by shooting them. At any time S could lie in a
number of positions. In positions w3 and wy she is trained to shoot (T') in wy and ws
not (7°) and will own a gun (G) — position wy and wy or not (G¢) when in positions
wy and ws. Each edge and each vertex in the RDCEG C; below can be associated to

Figure 1: The RDCEG C; for a murder plot.
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States Description / State Tasks Edges Edge Tasks

wg =N plot ends

wy =T° G can’t shoot, no gun w; — we acquire gun 6y
w1 — w3 train to shoot 65

wy =T° G can’t shoot, has gun wg — wy train to shoot O

wg — wy lose gun 03

w3 =T,G¢ trained to shoot, no gun ws — w4 acquire gun 6

wy =T,G  trained to shoot, has gun w4 — w5 locate and approach target 64, 05
wyq — w3 lose gun 63

ws = O attempt murder g ws — wy fail and escape 6

Table 1: States, edges and tasks for example 2.1.

different collections of tasks. For example the vertex ws = O is associated with the
task “attempt murder”; the edges wy; — wy and ws — wy are associated with the task
“acquire gun”. If she cannot shoot she could next choose to learn how next: from a state
where she currently owns a gun (7¢, G) or not (T¢, G¢). Alternatively if she currently
has no gun then she could next try to acquire one, either when trained to shoot or not.
At any point in this process she may enter the neutral state wy = N: for example the
target may die through other natural or unnatural circumstances, S may change her
intention, she may be arrested the police having gained enough evidence to charge her.
Note that only once she has a gun and can shoot — state (T, G) — can she attempt the
murder O by locating and then approaching the target. Implicitly as there is no state
“commit murder”, once in the “attempt murder” state ws she either enters the neutral
state wq or re-enters the “trained to shoot, has gun” state wy: entering w4 implies she
has failed that particular attempt and may try again; entering wg implies that either
she failed and cannot make any further attempts or she succeeded and poses no threat
to any other individual. The relevant RDCEG C; and a table describing the positions,
edges, and tasks are given in Figure 1 and Table 1.

The RDCEG C; does not have any positions such that there exists two or more
edges between them and thus it is simply a subgraph of the state transition graph of a
semi-Markov process defining the dynamic where the absorbing state N and all edges
into it are removed. All states in the process other than wg appear as vertices. The
absorbing state wyg is not depicted for three reasons:

e By definition an RDCEG contains the absorbing or “drop-out” state with edges
from any position leading to it so depicting would be informationally redundant

e Not depicting it and the multiple edges into it reduces visual clutter on the graph

e Also by definition once the individual enters wg they are no longer of interest:
hence we focus attention on the active positions by eliding it from the visual
depiction.

Tasks can be associated to one or more edges or states: here “acquire gun” is associated
with the edges w; — we and w3z — wy4. The structure of the transition matrix, M;
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with states wq, w1, ..., ws of a semi-Markov process with a configuration of zeros given
below. The starred entries represent probabilities that need to be added to complete
the matrix

Wo wWp W2 W3 W4 Ws

wy /1 0 0 0 0 0
wq * 0 * * 0 0
wy | % * 0 0 * 0
wy | * 0 0 0 * 0
Wy * 0 0 * 0 *
Ws * 0 0 0 * 0

Note this RDCEG has translated the verbal police description above into a semi-Markov
process. It can be elaborated into a full semi-Markov model by eliciting or estimating
the probabilities in M; and the holding times. In the above, because of the sum to one
condition, we have eight functionally independent transition probabilities. To complete
the specification of this stochastic process it is necessary to define the holding time
distributions associated with the active states i.e. how long we believe the suspect will
stay in their current state before transitioning into another. These probabilities and the
parameters of the holding time distributions may well themselves be uncertain. However
of course within a Bayesian analysis their distributions can be elicited or estimated in
standard ways O’Hagan et al. (2006).

The implicit Markov hypotheses of a given RDCEG are of course typically substan-
tive. One critical issue is that its positions/states define the only aspects of the history
of the suspect that are asserted relevant to predicting her or his future acts. The art
of the modeler is to elicit positions in such a way that these Markov assumptions are
faithful to the expert judgements being expressed. However because the methodology
is fully Bayesian, experts can be interrogated as to the integrity of these assumptions
just as they can be for other graphical models Smith (2010). In this way we can iterate
towards a model which is requisite Phillips (1984). The process of query, critique, elab-
oration and adjustment is precisely why this bespoke graphical representation is such a
powerful tool. In particular a faithful structural model of the domain information can
be discovered Smith (2010) before numerical probabilities are elicited or estimated: see
e.g. Wilkerson and Smith (2018); Collazo et al. (2018).

2.3 From tasks to routinely observed behaviour

Sometimes solid police intelligence, for example from an informant, will confirm that w
is engaged in a particular task. But at other times only echoes of a task will be seen
by police. Suppose w is suspected of being at a stage where they need to accomplish
the task of selecting a target location for a bombing or vehicle attack. They might
be observed travelling to what the police assess might be a potential target to check
timings, the density of people at the venue and its defences activities. This visitation
by w might have been recorded on closed-circuit television (CCTV). In addition or
instead, w might inspect Google maps of the attack area and the route to it or contact
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like-minded collaborators by phone or electronic media for advice. So indirect evidence
w engages in such a task can come from a variety of media and platforms.

Even such incomplete and disguised signals can be usefully filtered from complex
incoming data about the suspect, albeit with considerable associated uncertainty. The
further a suspect currently is from the main focus of an investigation the more indirect
information will be. However even then the composition of a collection of weak signals
the police are allowed to see may still provide enough information to significantly revise
the evaluation of the threat posed by a particular individual.

The hierarchical structure we describe below enables us to draw together all these
different types of evidence. If direct information about the tasks a suspect is engaging
in is available then, because such tasks are explicitly represented within our model, we
can simply condition on this information and so refine our judgements. The Bayesian
hierarchical model simply discards the weaker indirect information to focus on what is
known. Otherwise the model uses filters of the indirect signals police can see to infer
what tasks w might be engaging in to help inform police of w’s position.

3 The structure of the hierarchical task model

3.1 Introduction

Henceforth assume that the RDCEG C correctly specifies the underlying process con-
cerning w. To build the propagation algorithms we first define our notation.

Let W; be the random variable taking as possible values the states {wq, w1, ws, ...,
Wy, } of w € Q — the subpopulation of interest — at time ¢ > 0 where {wy,ws, ..., Wy}
are the vertices/positions/active states of C and wy the inactive/neutral state. At any
time ¢, w might enact one or more of R tasks associated to one or more of the positions
{wy,wa, ..., wy} or alternatively to a transition from one position w_ into another w, .
So let

{Ot = (et179t27 [N ,(9753) 1t S T}

denote the task vector 6;: a vector of binary random variables where 6, = 1, ¢ €
{1,2,..., R}, indicates that w is enacting task ¢ at time ¢.

Let x; denote an indicator on a subset I C {1,2,..., R}. Then the tasks a suspect
w € Q engages in at a given time ¢t can be represented by events of the form {0; = x; :
0<t<T}

Direct positive evidence that w lies at position w; is provided by tasks whose indices
lie in I = I(w;) and when w is transitioning along the edge e(w_,w;) by tasks whose
indices lie in I = I(w_,w;), where I(w;) are the indices of tasks associated with the
state w; and I(w_,w;) are the indices of tasks associated with edges into state w; and
thus I(w;) and I(w_,w;) are both subsets of index set {1,2, ..., R} of tasks.! Note that
the m 4+ 1 sets {I(w;), I(w—,w;) : w,w_,w; € {wy,wa,...,wWn}}, i =0...m typically

'For example in C; of Section 2.2, I(ws) = {6} where 6 is “attempt murder” and I(w_,ws) is
{4,5} where 64 is “locate target” and 05 is “approach target”.
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do not form a partition of {1,2,..., R}: tasks can be simultaneously suggestive that w
lies in one of a number of different active positions.

Occasionally police may also acquire negative evidence from learning that a suspect
— thought to have just before lain in position w; or be transitioning along e(w_,wy) —
ceases to perform any of the associated tasks. From observing the absence of these tasks
they might then infer that w might have transitioned either to wq or a different active
state adjacent to w; in C. Similar negative inferences might also be made indirectly from
learning that w stops engaging in all tasks associated with an edge emanating from w;.

With these issues in mind therefore, let I*(w;) = I* (w;) U I (w;) where

Li(w) 2 I(w) U U Iw_,w), (1)
e(w_,w;)EE(C)

I* (w;) 2 U I(w_) U U I(w;,wy). (2)

e(w_,w;)EE(C) e(w;,wy)€EE(C)

Thus Ii(u/z) is the set of tasks which can positively discriminate w; from wg when the
corresponding components take the value 1. The set of tasks in I* (w;) can negatively
discriminate: when taking the value 0 they indicate that w has ceased to engage in
tasks associated with preceding positions and is not engaging in any tasks suggestive
of leaving w;. The set I*(w;) is then the set of indices of all tasks in any way relevant
to w;.

For each of the component tasks 6y, at time ¢ we associate a vector of observations
of a set of related actions: Y, € R%. Let Y, € R? be all the routinely observable data
on w so each Y, is a projection from R? to R%, dy, < d,k =1...R. It will usually be
necessary to work with a filter? of these data streams. So let Zy, = 74(Y 1) denote real
functions of these processes and set Z; = (Z41 ... Zir).

Modelling hidden or disguised data

One issue in modelling serious crime is that data concerning a suspect is often hidden,
lost, disguised or even be the result of the use of a decoy. This means that the data
streams are often intentionally corrupted. However, in contrast to models that describe
the data streams directly, our state space model can conceptually accommodate such
disruptions: see West and Harrison (1997). Guided by police expert judgement, we can
explicitly model the processes designed to disguise or deceive through an appropriate
choice of sample distribution of observations given each task.

Informed missingness using CEGs has already been successfully applied in a public
health study Barclay et al. (2014). Binary variables were introduced indicating the
missingness of readings on mental disability and visual ability for each individual in
the Mersey cerebral palsy cohort. The data set including these missingness variables
were used to find the best-fitting structural CEG model and from this context specific
inferences were made on whether the data were MAR, MCAR or MNAR.?

2Filter in the sense of a function attempting to identify a signal from noisy data.
3Missing at Random, Missing Completely at Random, or Missing Not at Random see Rubin (1976).
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In our application we could similarly apply binary variables for the missingness of
any of the routinely observable data in Yy, and moreover, as also discussed in Barclay
et al. (2014), introduce categorical variables for the possible reason for missingness:
such as hidden, lost, disguised. The presence of certain patterns of data along with the
absence of other data could then influence the probability that certain tasks 6; were
being done despite being hidden or disguised which then would inform the latent state
Wy. Alternatively or additionally we could explicitly include deception tasks for the
hiding of or disguising data and use the above mentioned patterns of data and missing
data to perform inference on the probabilities that these deception tasks were being
done. This is all, however, beyond the scope of this paper.

3.2 The hierarchical model
The conditional independence structure defining the hierarchy

Because by definition and through the process defined above we would like perfect task
information to override all such indirect information we will henceforth assume task
sufficiency. This states that for all time ¢

WtJ-I-Yt|0t7]:t7a (3)

where F;_ represents the filtration of the past data until but not including time ¢. This
clearly implies that for all time ¢.

WilLZ |0y, F;—. (4)

Ideally we would prefer the filter {Z;};>0 we use to be sufficient for {6;},;>¢ too i.e.
that for all time ¢
0, 1Y ,|Z,, Fi_. (5)

Then there would be no loss in discarding information in Y; not expressed in Z;. In
what we henceforth present, since we develop recurrences only concerning {Z;}¢>o and
not {Y;}+>0 we implicitly assume condition 5.

Although condition 5 is a heroic one, in our examples a well-chosen one dimensional
time series of intensities Z;, performs well even when these are chosen to be linear in
the records of the component signals Y. One advantage of this simplicity is that the
role of the filter can be explained and if necessary adapted by the user, perhaps even
customising this filter to their own personal modus operandi and judgements.

Again for simplicity we henceforth assume that any filter {Z,},>¢ will be a Markov
task filter i.e. that for all ¢ > 0
AL {Zt'}t/Zt |0t7~7:t*' (6)

This assumption is a familiar one made for dynamic models; see e.g. West and Harrison
(1997). It assumes that once the task is known, no further past information about past
{Z}1>0 will add anything further useful for predicting the future. This assumption
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enables us, for particular choices of sample distributions, to use all the established
recurrences for dynamic state space models — in particular those from dynamic switching
models so excellently summarised in Frithwirth-Schnatter (2008). Here our RDCEG
probability model specifies such a switching mechanism.

Defining tasks to be fit for purpose

Our interpretation of I*(w) requires that if suspect w is known to be either neutral or in
any active state w; then the only components in 8; that helpfully discriminates between
these two possibilities must lie in 61« (,,),;- The assumption Task set integrity demands
I*(w;) is defined so that for all i = 1,2,...,m, 0 <t < T,

WtJ_I_Bt‘Wt S {wo,wi},Ol*(wi)’t. (7)
This is equivalent to requiring that

Dt (wi|0t,]:t_) . bt (wi|01*(wi)t7ef*(wi)taft—>
bt (U)O|9t;-/_'.t7) Dt (wo\ﬂl*(wi)t,Bf*(wi)t,}'t,)

is a function only of @;-(,,); where T*(w) denotes the set of indices not in I*(w). Task
set integrity is always satisfied by setting I*(w) = {1,2,...,R},i = 1,2,...,m but of
course for transparency and computational efficiency ideally I'*(w) is chosen to be a
small subset of {1,2,..., R}. Providing the divisor is not zero, task set integrity holds
whenever

by (01 (wi)e) = logpy (ef*(wi)t|01*(wi)tawia]:tf) — log p: (ef*(wi)t|01*(wi)tawOv}—tf)

is a function of 6 only through 07-(,,);. So by writing the prior and posterior log -odds
as

log pt (w;|Fi—) — log py (wolFi—)
log py (w;|60y, Fy—) — log py (wo |6y, Fi—)

Pit
Pit

> 1>

and the loglikelihood ratio of task vector A\;(01+(uw,)t),

Ai (01 (wi)e) =108 Dt (0 1+ (s ye|wis Fi— ) — log pe (81w, ) |wo, Fi—)

then a little rearrangement gives us an adaptation of the usual Bayesian linear updating
equation linking posterior and prior odds viz:

Prr = pit + Ni (01 (wiye) + Xi (07 (wit) - (8)

Note that (7) holds in particular whenever it is a simple task vector; i.e. has the property
that for any time ¢t >0, w e Qandi=1,2,...,m

Dt (Of*(wi)t|91*(wi)t7wm]:tf) = Pt (07 (4,2 |01 (i)t wo, Fi—).- 9)
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Property 9 holds whenever the other tasks are useless for discriminating any threat
position w; from wy: the probability w engages in these tasks does not depend on these
other tasks. In this case the term )\i(@]*(wi)t) vanishes and

Pir = pit + Ni (01 (wi)t) - (10)

For practical reasons we have often found it convenient to decompose A;(€7+(w,),,;) into
functions of components in I* (w;) and I (w;) respectively. When these are disjoint
and conditionally independent given w; — as in practice we find is often a plausible
assumption then

Ai (O7+(wi)t) = A (in(wi)t) + At (91;(%)0 ) (11)
where
Ai (gli(wi)t) log p: (Olj(wi)t|wi7}—t—) — log p: (elj(wi)t‘w()aft—) ;

Ati (ali(wi)t> £ logp (eli(wi)t‘wiy]:t—) — log py (ali(wi)t|w07]:t—) :

Note here that, by definition, A_; (61 (4,)¢), takes its maximum value when 6+ (,,,); = 0
and /\+i(011(wi)t) takes its maximum value when eli(wi)t =1,i=1,2,...,m.

The equation (10) are now sufficient to calculate the probability that w is in each of
the positions wy,ws, ..., w,, given our evidence, using the familiar invertible function
from log odds to probability: see Smith (2010).

Model assumptions concerning routine observations

For our chosen filtered sequence Z; £ (Zy4, Zat, - - ., Zpi) designed to pick up the differ-
ent tasks associated with a criminal process let

Zﬁt £ (tha Z2ta SERE) Z(kfl)h Z(k+1)t7 BN} ZRt) .

Then a simple but bold type of Naive Bayes assumption is to assume that filter Z; is
pure: i.e. that for any set 044 containing 0y, as a component

Zy WL Z7,0a:, Fi—. (12)

Then Bayes Rule and task set integrity implies that within tasks
Dt <ZI*(wi)t|01*(wi)ta-Ft—> = H Pt (Z1t|Oke, Fi-)
kel*(w;)
whilst across tasks
Pt (wit|Zt7]:t—) = Z Pt (wit|01*(wi)t7]:t—) Dt (01*(wi>t|zl*(wi)taft—) ,

01 (w;)t €O+ (w,)
(13)
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where

P (Z 1+ (wi)t|O 1 (wiye> Fi—) 2 (01 ()| Fi—)

p(al*(wi)tlzf*(wi)t’]:tf) = D (Z[*( Vt,j Fi j)
wy )t,] .

Let the prior and posterior odds be respectively denoted by
7 2108 p1 (0,000 = XalFi- ) — 0g 1 (Or- e = X0l Fi)
¢3itA £ logpy (01*(,wi)t = XA|YI*(wi)t7]:t7) — log py (9,*(%)15 = X@|YI*(w7;)tv]:t7) )
Vit = logpy (Zie|Ope = 1, Fo—) — log e (Z it |0 = 0, Fy—)
and let 7/ £ > ke Vet Then

108 Pt (Z 1+ (w,)t|0 1+ (wi)t = XA, Fi—) —logpy (ZI*(wi)th*(wi)t = X(baftf) =7
and from the above _ _
ot = ot + i (14)

For any set A we can therefore calculate

Pt (01 (wiyt = XAl Z 1+ (wiyt: Fi—) 5 (15)

where the Law of Total Probability implies that for ¢ =0,1,2,...,m

pt(Wt = wi|Zt7]:t—) = Z Dt (wi|97-7:t—)pt (9|ZI*(wi)ta‘Ft—) . (16)
0€O 1+ (w;)

Here the position probabilities over tasks calculated from (14) are averaged over the
different tasks possibly explaining the data, weighting using the posterior probabilities
given in (15). Note that it is easy to check that these indirect observations provide less
discriminatory power than when tasks are observed directly. The assumptions above
therefore provide us with a formally justifiable propagation algorithm for updating
the probabilities of a suspect’s likely criminal status. We next turn to how we might
calibrate the model to the expert judgements we might elicit from criminologists, police
and technicians about the probable relationships between criminal status, what they
might try to accomplish and how this endeavour might be reflected through how they
communicate.

4 The elicitation process

4.1 Introduction

Copying the standard protocols for the elicitation of a Bayesian Network: see e.g. Korb
and Nicholson (2010), as in e.g. Wilkerson and Smith (2018) our process begins with the
elicitation of structure. We perform a sequence of three structural elicitations for each of
the three levels. These can proceed almost entirely using natural language descriptions of
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the process. Because the representation of the structure of each of the levels is formal and
compatible with a probability model the structural elicitation can take place before the
model is quantified. This is extremely helpful because structural information is typically
much easier to elicit faithfully than quantitative judgments. The RDCEG defining this
structure, the list of tasks and how these might interrelate and then the choice of filter
of the routine observations follows:

1. First the decision analyst elicits the positions of the process via the careful con-
version of natural language expressions within the domain experts’ description of
the process into the topology of a RDCEG — often somewhat more nuanced than
the ones we discussed above and in the example below.

2. Second the positions and edges of this RDCEG are then associated to elicited
portfolios of tasks.

3. Finally each task is associated with the way domain experts and police believe w
might behave in order to carry out these tasks, including how they might choose
to disguise these actions and so what signals might be visible when w enacts a
task.

We now briefly outline each of these steps in turn in a little more detail.

4.2 Choosing an appropriate RDCEG

Firstly, when eliciting a RDCEG we aim to keep the number of positions as small as
possible within the constraint that they are sufficient to distinguish relevant states.
The choice of topology should reflect what is known about the development of the
modelled criminal behaviour. Positions may depend on the history, environmental and
personality profile covariates exhibited by a suspect. Relevant population studies of
criminal behaviours are often helpful here. Based on historical cases, criminologists’
analyses Gill (2012) and discussions with practitioners, we have found that the coarsest
type of model — an illustration of such given in the next section — of different types of
attack and concerning different people — are often generic.

Secondly positions need to be well defined enough to pass the Clarity Test Howard
(1988); Smith (2010). This is achieved by demanding that the suspect could, if they were
so minded, place themselves in a particular position. Such categories are often syntheses
of standard scales used by social workers and probation workers across the world. Many
examples of these types of categorisations, based on fusing various publicly available
categorisations — for example those found in the training manuals of social workers in
detecting people threatening to eventually perpetrate acts of severe violence — are given
in Smith and Shenvi (2018).

Thirdly positions must be defined such that for each position there is a collection of
tasks associated with it that jointly informs whether the suspect is in that position or
transitioning from that position to another position. A stylised example of this associ-
ation was given earlier in this paper and we will illustrate the process in more detail in
the next section with a deeper illustration.
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Once the RDCEG has been drawn its embedded assumptions can be queried by
automatically generating logical deductions concerning the implications of the model.
If such deductions appear implausible to relevant domain experts then positions need
to be redefined and graphs redrawn until they are. The ways of iterating until a model
is requisite and the nature of these deductions is beyond the scope of this paper but are
discussed in Collazo et al. (2018).

The final step in the elicitation of the RDCEG will be the prior conditional probabili-
ties associated with the positions and the hyperparameters of the holding times. Suitable
generic methods for this elicitation are now very well established: see e.g. O’Hagan et al.
(2006); Smith (2010) and these need little adaptation to be applied. Note, in particu-
lar, that the methods described for the elicitation of the position probabilities in the
RDCEG are essentially identical to those for the CEG as for example discussed in a
chapter of Collazo et al. (2018).

4.3 Elicitation of portfolios of tasks
Clustering the tasks

The next elicitation process is to take each position in turn and a list of associated
tasks conditional on w being known to lie in that position. The questions we might ask
would be something like “Now suppose that you happen to learn that w lies in position
w;. What behaviours/tasks would you expect them to perform that would be different
from what they would typically do were they neutral?” We try to ensure that either
w’s engagement in such tasks could be learned through intelligence or alternatively be
indicated through certain filters.

Typically in well designed models we specify tasks so that they are as specific to only
a small proportion of w’s active states. This makes them as discriminatory as possible.
Note that each component of 8; must be defined sufficiently precisely — i.e. pass the
clarity test for w to be able to divulge its value if so inclined; see Smith and Shenvi (2018).

We have found it useful to toggle between specifying positions and specifying tasks:
sometimes aggregating positions if they appear associated with the same sets of tasks or
splitting a position into a set of new ones if a finer definition can discriminate between
one position and another. It is also sometimes helpful to readjust the definition of tasks
once we have elicited possible signals.

Once the task sets are requisite Phillips (1984); Smith (2010) we need to specify the
various odds ratios against the neutral state. We illustrate this in the next section.

Simplifying assumptions that can ease task probability elicitation

Although the log score updating formulae ((8), (10)) are simple ones, to evaluate the log
odd scores above can demand a great many probabilities, both of each task given its asso-
ciated position and of seeing that task performed if w were neutral, to be elicited or esti-
mated. This can destabilise the system unless various simplifying assumptions are made.
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Conditional on an active position w; we recommend that the first probability to be
elicited is when w is engaging in all the tasks in the portfolio of tasks associated with
w. We then use this elicitation to benchmark the probability that w is engaging in a
subset of these tasks. To calculate the odds of the portfolio against the neutral suspect,
a default assumption that is sometimes appropriate is simply to assume that people will
engage in these probabilities independently — a naive Bayes Assumption Smith (2010)
for the neutral suspect. In this case for any time ¢ >0, w € Qand i =1,2,...,m

R
pi (Bulwo, Fi) = [ pr (Bixlwo, F)
k=1

It is easy to check that when a portfolio contains more than one task, and when such
an assumption is valid, it can provide the basis of a very powerful discriminatory tool.
This is because the divisor in the relevant odds reduces exponentially with the number
of tasks whilst in the denominator does not: see e.g. Smith and Shenvi (2018) for an
example of this.

Of course in some instances this naive Bayes assumption may not be appropriate.
It will then need to be substituted. When population statistics associated with public
engagement in different task activities are available these can be used to verify this
assumption or form the basis of constructively replacing it.

4.4 Choosing an appropriate filter of routine data streams

Typically we would like the components of {Z,;};>¢ to measure an intensity of activity
related to a position or edge task. In this sense we would therefore like to factor out
all signals that might be considered typical of w’s innocent activities so that we can
focus on the incriminating signals. The full data stream {Y';};>¢ collected on w tends
to be a highly non-stationary multivariate time series. However we strive to construct
the filter {Z;};>0 so that the stochastic dependence it exhibits is explained solely by w’s
engagement in certain tasks (see (6)). This filter is clearly dependent both on population
level signals and what we know about w’s personality. We therefore usually need expert
judgments to choose {Z;},>¢ so that it is fit for purpose.

There are some generic features that are worth introducing at this stage. First in
the case of edge tasks we typically observe something different than before as w begins
to enact a new task in order to make a transition. So some components of Z; will be
defined as first differences of derived series. Secondly indicative observations may also
need to be smoothed from the past — either because what we see may forewarn a task is
about to be enacted, or simply because short term averages — for example any measure
of intensity of communication — will often be better represented by an average over the
recent past rather than by an instantaneous measure.

To construct our hierarchical model we typically loop around the bullets below:

1. Reflect on what functions of the vector of observable data available to the police
might help indicate that a suspect really does lie in a particular task rather than
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other related innocent activities, k = 1,2, ..., R. This choice should be informed
by the ease at which such signals can be filtered but also how easy it might be
for a criminal to disguise that signal were they to learn that the chosen candidate
filter was being used.

2. Using expert judgments and any survey data available, reflect on what the distri-
bution of Zj; might be were the suspect actually engaged in the particular task
and if they were not. Thus specify

p(Zkt|6kt = 1) and p(Zkt\th = 0)

3. Check that these two distributions are not close to one another. If not return to
the first step.

Finally in many instances of such police work routine measurements concerning sus-
pects are typically recorded and reported over fixed periods of time. This means that
the filtered observation sequence is a discrete time filter. For modelling purposes it has
been necessary to define the deep stochastic process as semi-Markov. However the semi-
Markov structure with holding times and transition probabilities specified will retain the
Markov structure over the fixed time points. This means once appropriate transforma-
tions are applied standard updating rules associated with Markov switching models are
then valid Frithwirth-Schnatter (2008): see Appendix B in the supplementary material
Bunnin and Smith (2019).

5 A vehicle attacker example

5.1 States

We now give a more detailed example of a vehicle attacker that illustrates the three level
hierarchical model of latent states, tasks, and routinely observable data. We specify the
states of the RDCEG to be:

W ={N,A,T,P,M}, (17)

where N is “Neutral”, A is “ActiveConvert”, T is “Training”, P is “Preparing”, and
M is “Mobilised”. Based on existing information about the suspect we assign prior
probabilities to each state as shown in Figure 2; implicitly the prior probability for the
elided “Neutral” state is 0.05. Based on knowledge about such attacks we hypothesize
that the suspect may transition from A to T or P, from T to P, from P to M, and from
M back to P. These transitions are indicated by the directed edges between the vertices
on said figure. The weights labelling the transitions are the probabilities of transitions
from the source vertex to the destination vertex conditional on a transition having
occurred (i.e. the entries labelled 7.,,, ., in Table 1 in Appendix B of the supplementary
material). The probability of transition into the “Neutral” state from any represented
state is implied by the sum of all the emanating edges’ probabilities summing to one.
This is in contrast to Shenvi and Smith (2018) where the transition probabilities are
conditional on not moving to the absorbing state. This prior RDCEG is used in all the
examples in this section.
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A=ActiveConvert 0.6

04
T=Training 0.2 0.599
0.999

P=Preparing 0.1

0.999(0.999
M=Mobilised 0.05

Figure 2: RDCEG for Vehicle Attacker.

5.2 Tasks

We hypothesize the tasks relevant for these positions, i.e. the tasks that are related to
which position the suspect is in, are:

_ 10

0= {01 } Jj=01
where:
01 is Engaging with Radicals 02 is Engaging in Public Threats
03 is Making Personal Threats 04 is Fewer Public Engagements in Radicalisation
05 is Fewer Contacts with Family and Friends 0¢ is Securing Monetary Resources
67 is Learning to Drive Large Vehicle 0 is Obtaining Vehicle
09 is Reconnaissance of Target Locations 010 is Moving to Target Location

For each position w;, a particular subset of the above tasks are taken to be indicators
that the suspect is there. I* (w;) is the index set for this subset and we need to specify the
distribution p(0;+ (., |w;) for each position. Appendix A of the supplementary material
details a methodology for this specification that makes the model discriminatory and
Table 4 shows the resulting probabilities used.

5.3 Routinely observable data

The data used to estimate the probabilities that the suspect is engaging in any particular
task or tasks are varied and various and may change as technologies and data gathering
methods change. In addition as new evidence is gained and the threat level of a suspect
increases the authorities may decide to increase monitoring and hence gain more and
new types of data. Therefore having the tasks 8 intermediate between the positions W
and the observed data Y is desirable for both model structural reasons and practical
data abstraction purposes. We denote the observable data as a d-dimensional vector
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process in discrete time Y; = (ifi,t)le. In general we assume Y; € R?. In this example,
however, several of the components are count data, such as the number of times such
events are observed in a given period, so that: Y; ; € Z*. We set here:

Yi: radical website visits Ya: physical meetings with known radicals
Y3: electronic meetings with known radicals Y4: meetings with trained radicals

Ys5: meetings with known cell members Ys: seen at radical demonstrations

Y7: contacts with non-radicals Ys: public threats made

Yy: personal threats made Yi0: increase in known financial resources
Yi1: decrease in known financial resources Yi2: obtaining large vehicle driving licence
Y13: vehicle dealer or rental website visits Y14: vehicle dealer or rental physical visits
Yi5: E-visits to target locations Yie6: physical visits to target locations
Y17: statements of intent Yi1s: legacy statements

As described in Section 3 we assume that for each task 6; we can construct a filter
Z; of the relevant data: Here we define the function 7:

T:RTRE Z, = (),
1
(V) = Ii Z
I

where 7; is a standardisation® of Y; and |Iy,| is the cardinality of the index set of
components of Y dependent on the j** task. We could also set additional components
of Y to be changes over time of other components of Y and thus monitor drops or
spikes in, for example, communication levels with known radicalisers, or with family
and friends. We specify the relationship between the observable data and the tasks in
Table 2 where the (Y,0;) entry indicates whether the ith variable is relevant data for
the jth task.

5.4 Specifications of the distributions of the task set given position
and task set likelihood

For each position we set the probability that all the tasks in that position’s task set are
being done to 0.4. The individual probabilities that each task is being done given the
suspect is in the neutral state are specified in the column labelled “Neutral” in Table 3.
The log odds interpolation methodology detailed in Appendix A in the supplementary
material is then used to construct the probabilities that no tasks or less than all the tasks
were being done. For example, as shown in the Table 3, for the “Mobilised” position,
the tasks “Engaging in public threats”, “Making personal threats”, “Reconnaissance of
target locations”, and “Moving to target location” are relevant. Table 4 has the result-
ing probabilities for each point of f;- € {0, 1}‘911*“1' ‘. For simplicity we used shifted
asymmetric logistic functions to construct the density functions p(Zy«(w,)|0r+(w,)) for
given values of 0« (,,): see (18). The shift parameters x¢ ; and the growth rate param-
eters ko j, k1,; were used to construct functions that were relatively unresponsive when

4We subtract a pre-defined mean and divide by a pre-defined standard deviation estimated by
investigators’ judgement, experience and historical data.
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Observable 91 92 (93 (94 (95 96 (97 98 99 910
RadWebVisits 1 00 1 1 0 00 O0 O
PhysicalMeetsWithRadicals 1 00 01 0 0 0 O0 O
E-MeetsWithradicals 1 00 1 1 00 O0O0 O
MeetTrainedRadicals 1 00 01 0 0 O0O0 O
MeetCellMembers 1 00 01 0 00 O0 O
SeenAtRadicalDemonstrations 1 0 0 0 1 0 0 0 0 O
ContactsWithNonRadicals 0 001 0 O0O0OO0O0 O
PublicThreatsMade 0O 1 00 0 O0OO0OO0OTO0O O
Personal ThreatMade 0O 01 0 0 O0OO0OTO0OTO0O O
IncreaselnFinances 0O 0 00O T1T 1T 1 0 O
DecreaselnFinances 0O 0 00 O0O0OT1TT1O0 O
ObtainLGVLicence 0O 000 0O T1TTO0TO0 O
CarDealerWebHits 0O 00 O0OOTO0OT1TO0O O
CarDealerPhysical Visits 0 00 O0OO0OOOT1TTO0O O
E-VisitsToTargetLocations 0O 0000 O0OO0OO0OT1 O
VisitsToTargetLocations 0O 000 O0O0OO0OO0OT1 O
LegacyStatements 0O 00 O0O0OO0OO0OTO0OT O 1
StatementOfIntent 0O 11 0 0 0 O0O0O0 1

Table 2: Routine Observation versus Task dependency structure.

ActiveConvert Training Preparing Mobilised Neutral
State_Task_Index_Sets

EngageWithRadicalisers 1 0 0 0  0.020
EngagelnPublicThreats 0 0 1 1 0.001
MakePersonal Threats 0 0 1 1 0.001
RedPubEngInRad 1 1 0 0 0.600
RedCntctWthFmlyFrnds 1 0 0 0 0.300
ObtainResources 1 1 0 0 0.300
LearnToDrive 0 1 0 0  0.300
ObtainVehicle 0 1 1 0 0.200
ReconnoitreTargets 0 0 1 1 0.100
MoveToTarget 0 0 0 1 0.200
Cardinality 4 4 4 4

p+ 0.400 0.400 0.400 0.400

p0 0.001 0.011 0.00000002 0.00000002

13 1.051 2.076 0.332 0.331

Table 3: Task/position dependencies; probability of task given Neutral state; p+ is
probability of all tasks being done, p0 that of none being done; &; is solved for to make
the probabilities sum to one for each position.

Z; < xo,; but sharply responsive when Z; > x¢ ;. An illustration of the form of these
functions is provided in Figure 3 for the one and two-dimensional cases i.e. when there
are one or two tasks in the task set I*(w;); this is purely for ease of plotting: as shown
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ActiveConvert Training Preparing Mobilised
State_Task_Index_Sets

np_0 0.00108 0.01080 0.00000002 0.00000002
np-0001 0.00475 0.01341 0.00112 0.00112
np-_0010 0.00475 0.01341 0.00112 0.00112
np_0011 0.02319 0.02742 0.01860 0.01860
np-0100 0.00475 0.01341 0.00112 0.00112
np_0101 0.02319 0.02742 0.01860 0.01860
np-0110 0.02319 0.02742 0.01860 0.01860
np_0111 0.11019 0.09277 0.12098 0.12098
np-1000 0.00475 0.01341 0.00112 0.00112
np_1001 0.02319 0.02742 0.01860 0.01860
np_1010 0.02319 0.02742 0.01860 0.01860
np-1011 0.11019 0.09277 0.12098 0.12098
np-1100 0.02319 0.02742 0.01860 0.01860
np_1101 0.11019 0.09277 0.12098 0.12098
np_1110 0.11019 0.09277 0.12098 0.12098
np_1111 0.40000 0.40000 0.40000 0.40000
ntp 1.00000 1.00000 1.00000 1.00000

Table 4: Probabilities of task sets given each position using method in Appendix A.

in Table 3 four dimensional task sets were used in the example scenarios

P(Zrwp|0rew) = 0rnl™ D 9(Zil05, 20,5, ko j: k1),

JEI* (w;)
1
0 ko, k1) = ; 18
9($| » L0, R0, 1) l+exp(—k0(x—xo)) X{£<xo} + ( )
1
1+ exp(—ki(x — xp)) X{zzao}-

5.5 Scenarios

We illustrate the propagation of probabilities through the model based on scenarios
of simulated data. We use the same framework as above and manually set the rou-
tinely observed data Y; through 24 weekly time steps to examine how the currently
parameterised model behaves under each scenario.

Scenario 5.1. In this scenario the suspect increases their web visits to target locations
from week 8 and their physical visits to target locations from the week 21; they are in
constant communication with known radicals and there is an increase in their finances
followed by a decrease in first few weeks, during which time they are seen to be visiting
car dealers electronically and physically. They make public and personal threats and in
the last weeks of the period the threatening data increases with a legacy statement and
a statement of intent. Figures 4a, 5a, 5c show the increase in threat level resulting from
this scenario.
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(a) Orange line shows p(Zr+(w)|01*(w;) = 1); (b) Two dimensional. Each coloured surface is for
; 2
Blue line shows p(Zr=(w;) |01+ (w;) = 0) a different value of 01:% € {0,1}%; Zlfvi

(c) b, = (0,0) (d) 0y, =(1,1)

Figure 3: Illustrative task likelihood functional forms for one and two dimensional task
sets.

Scenario 5.2. The suspect’s communications and possible training/preparing type data
linearly decreases from initial levels similar to scenario 5.1 to zero over the 24 weeks.
Moreover there are no threats made during the whole period. Figures 4b, 5b, 5d show
the decreasing threat level resulting from this scenario.

5.6 Eventual probability of mobilisation

For any individual suspect or group of suspects the medium to long-term probabili-
ties of mobilisation is of key interest and can aid as a model diagnostic tool. We can
estimate this by using the semi-Markov transition matrix to evolve the current proba-
bilities. The RDCEG in this section has the neutral state as the single absorbing state
hence asymptotically the probability of this state will go to one; However in the prac-
tical medium term we can examine the behaviour of the active positions including the
mobilised state. Under the configuration of the priors and the edge probabilities as in
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(a) Scenario 5.1: a suspect pursuing activities con- (b) Scenario 5.2: a suspect reducing activities con-

sistent with preparing for an attack sistent with no evidence of threat

Figure 4: Posterior state probabilities over time under scenario 5.1 and 5.2.

Figure 2 and with the holding time distribution (;(¢,¢') set to a constant 0.01 for the
set time period of ¢’ — t equal to one week (as used in the examples above), the quali-
tative behaviour of the RDCEG's state probabilities can be seen in Figures 6a and 6b.
Figures 6¢ and 6d show the long term behaviour under alternative specifications where
the mobilised position is another absorbing state: the suspect once having mobilised
and executed the attack cannot transition to any of the other states including the neu-
tral state. The reasoning behind this latter configuration is an assumption that once
the individual has mobilised this entails an attack and the end of this particular police
case.

6 Model diagnostics

6.1 Robustness to RDCEG structure specification

The graph representation of the RDCEG, that is the set of states and the directed edges
between them, form the structure of the RDCEG that is meant to faithfully represent
the possible pathways of individuals towards, in this application, acts of terrorism. The
actual structure chosen is based on historical cases, existing research by criminologists
and discussions with practioners and is predicated on the assumption that the states are
“self-identifiable” that is that the actual individual would be able to place themselves
in one of these states at any given time.

Assuming such an approach is valid, without being able to actually look into an
individual’s mind, we are liable to mis-specify the structure: for example construct states
that could meaningfully and usefully be split into finer sub-states, or have a set of states
that should be collapsed into one state; or have edges where they should not exist or
have edges missing. Whether the set of states are “correct to the individual’s mind”
is arguably less relevant for our purposes than whether the set of states are a useful
discretisation of the individual’s potential pathway from the investigators’ perspective;
and for this we can be directly guided.
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(a) Position Score over time based on Scenario 5.1 (b) Position Score over time based on Scenario 5.2

ActiveConvert 0.02
Training 0.0139

Preparing 0.3378

ActiveConvert 0.1083
Training 0.3019

Preparing 0.1208

Mobilised 0.6255 Mobilised 0.07
(¢) RDCEG with final posterior probabili- (d) RDCEG with final posterior probabili-
ties based on Scenario 5.1 ties based on Scenario 5.2

Figure 5: Position Score and RDCEG for 5.1 and 5.2.

It is still of use to analyse the sensitivity of behaviour and results to changes in the
structure chosen. To this end we examine the effect of using different sets of states and
different edges by using the same data sets with different RDCEG structures. We coursen
the RDCEG used in Section 5 by collapsing the “Training” state into the “Preparing”
state, and then separately refine the RDCEG by splitting the “Preparing” state in two
states: “Preparing for a Vehicle Attack” and “Preparing for a Bomb Attack”, so that we
have two new alternative RDCEG structures to compare with the original. We expand
the task sets and data (see supplementary material) and run two new data scenarios in-
volving a potential joint vehicle and bomb attack on these two new structures along with
the original structure giving in total six sets of results. Results for this analysis along
with details of the scenarios are given in Appendix D and Appendix C in the supplemen-
tary material. The impacts on the posterior probabilities are as expected: the “Neutral”
state’s probability is relatively unchanged and the probability mass of the coarsened
state is roughly the sum of the finer states in each example under both scenarios.
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Figure 6: Figures for long-term probability of mobilisation.

In contrast to our elicited RDCEG structure, Shenvi and Smith (2019) construct an
RDCEG structure explicitly from data on individuals within an open population using a
hierarchical clustering algorithm and Bayes Factor based model selection in health care
settings: recurrent falls in the elderly in the context of care services and drug effects on
early epilepsy cases.

6.2 Sensitivity analysis

To improve our understanding of the behaviour and robustness of the model to sub-
jective inputs, and to identify key parameters that merit extra analysis to determine
their optimal value, we perform sensitivity analysis against a base scenario. The model
is high dimensional in the sense that the number of configurable parameters is large:
so for the time being this analysis has focussed on the state prior probabilities and the
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holding distributions the latter of which are key to determining the speed of transi-
tion.

We tested the sensitivity of the evolution of the state probabilities applying both
moderate and large shifts to the state priors. We performed a similar analysis shifting the
holding time distribution parameter ¢; ; which represents the probability of a transition
from state w; to w; in a given time period (here one week) given that an edge exists
from w; to w;.

For moderate changes in priors, increasing the prior for a less threatening state has
an initial effect but is outweighed by any data that indicates threat; whilst an increase
in prior for a threat state accelerates the effect of threat data. For extreme increases in
prior for the active states the prior does dominate the evolution; but for the “Neutral”
state the initial very high prior is subsequently outweighed by data. See Appendix E in
the supplementary material for Figures.

7 Discussion

In this paper we have described a novel three level hierarchical model that utilises at its
deepest level an RDCEG modelling the state of a suspect within the stages of a potential
attack. We illustrated how such an analysis can synthesise information concerning that
suspect, through sets of tasks to produce snap shot summaries of the likely position of
this person and the current threat they might present.

Currently, working with various domain experts, we are in the process of constructing
a suite of RDCEG templates and their associated tasks Smith and Shenvi (2018). These
describe different criminal processes associated with assaults or violence against the
general public, indexed by type of crime, that build on existing criminological models.
This type of technology has already been well developed for Bayesian Networks (BNs)
within the context of forensic science Aitken and Teroni (2004); Mortera and Dawid
(2017) and has established frameworks of processes linking activities with evidence.
The structure we use here helps in this development because only the top layer of the
hierarchy usually needs regular refreshing: the possible positions and associated tasks
are fairly stable over time. We hope that within this paper we have illustrated that,
just as in forensic science, such methods are both promising and feasible. Indeed the
harmonisation of this class of models to forensic analogues means that evidence applied
within an investigation can be coherently integrated into case reports associated with
criminal proceedings if the suspect does attempt to perpetrate a crime.

In the next phase of this programme, building on these models of individual suspects,
we are developing a network model for the stochastic evolution of open populations of
violent criminals. This issue is complicated by the fact that many suspects are working in
teams and often coordinated. This dependence structure and communications between
individuals therefore have to be carefully modelled for such models to be realistic.
However this more challenging domain is also a potentially very fertile one — where
standard estimation of hyperparameters associated with different units and the Bayesian
selection of the most promising models can begin to be applied. The challenge is that
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series are frequently disrupted so the systematic estimation of their hyperparameters is
hard and needs strong prior information to be effective.

The eventual objective is for the hierarchical model for individuals described in this
paper and the network model described in the paragraph above, to be incorporated into
a decision theoretic framework that also models the action space and objectives of the
authorities. This would aim to aid investigators decide which actions to take; such as
which cases to prioritise, or to deprioritise to free up resources, which cases to increase
surveillance on, and which cases to make which kind of interventions on; all in order
to minimise the expectation of a multi-attribute loss function over incidents, casual-
ties, public terror etc., given the constraints of resources, personal freedom, democratic
legitimacy and proportionality.

Moreover the actions of the authorities in terms of preventative measures, defence
of targets and pursuit methods will influence the actual decisions and trajectories of the
suspects as is documented in case reports (see for example Gill (2012)). These recursive
aspects introduce game-theoretic ideas into the models which complicate the inferential
process and probability propagation. This work has to be done in conjunction with the
authorities in order to properly represent a realistic, constrained action space, to elicit a
realistic loss function, and to gain insight on the dynamic interplay between investigator
and investigated.

Thus the work we present in this paper is the first phase of a longer programme
working with practioners that eventually aims to provide a theoretically valid, practi-
cally useful, and legally defensible system to support the prevention of acts of extreme
radical violence.

Supplementary Material

Supplementary material for: A Bayesian Hierarchical Model for Criminal Investigations
(DOI: 10.1214/19-BA1192SUPP; .pdf).
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