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Abstract. Longitudinal cohorts are a valuable resource for studying HIV disease
progression; however, dropout is common in these studies. Subjects often fail to re-
turn for visits due to disease progression, loss to follow-up, or death. When dropout
depends on unobserved outcomes, data are missing not at random, and results
from standard longitudinal data analyses can be biased. Several methods have
been proposed to adjust for non-ignorable dropout; however, many of these ap-
proaches rely on parametric assumptions about the distribution of dropout times
and the functional form of the relationship between the outcome and dropout time.
More flexible approaches may be needed when the distribution of dropout times
does not follow a known distribution or violates proportional hazards assump-
tions, or when the relationship between the outcome and dropout times does not
have a simple polynomial form. We propose a Bayesian semi-parametric Dirichlet
process mixture model to flexibly model the relationship between dropout time
and the outcome and show that more accurate inference can be obtained by non-
parametrically modeling the distribution of subject-specific effects as well as the
distribution of dropout times. Results from simulation studies as well as an ap-
plication to a longitudinal HIV cohort study database illustrate the strengths of
our Bayesian semi-parametric approach.
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1 Introduction

Longitudinal studies are critical to understanding disease progression over time; how-
ever, obtaining complete data on all subjects can be challenging. This is particularly true
in longitudinal HIV cohorts. It is well documented that many subjects in these studies
have missing observations due to death or disease progression, leading to concerns of
non-ignorable dropout (Lanoya et al., 2006). In this scenario, standard longitudinal data
analyses can produce biased results. For example, this work was motivated by the chal-
lenges associated with comparing laboratory markers of HIV disease progression between
hard drug users and other subjects in the Women’s Interagency HIV Study (WIHS).
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Since subjects tend to drop out due to declining health, results from traditional longitu-
dinal analysis methods may be overly optimistic, as they are biased towards study com-
pleters, who tend to have more favorable outcomes. In addition, since dropout and miss-
ing data are more common among drug users, differences between drug users and other
subjects may also be underestimated. As similar dropout related problems have been
identified in quality of life data from clinical trials of cancer therapies (Fairclough et al.,
1998), anti-depressant clinical trials (Molenberghs et al., 2004), and studies of smok-
ing cessation programs (Hogan et al., 2004b), addressing the analysis challenges in the
WIHS will be broadly applicable to other longitudinal clinical trials and cohort studies.

It is well known that in the presence of dropout the marginal distribution of the
outcome is not identified and untestable assumptions are necessary to make inferences
(Little, 1993; Daniels and Hogan, 2008). While all methods for dealing with missing data
must make some unavoidable assumptions about the behavior of unobserved outcomes,
most methods rely on additional parametric assumptions. For example, in frailty model
frameworks, it is usual to make a parametric or proportional hazards assumption about
the distribution of dropout times; in mixture model frameworks, an assumption about
the functional form of the relationship between the outcome and the distribution or
hazard of dropout is often made (Daniels and Hogan, 2008). Inferences can be sensitive
to these assumptions (Molenberghs et al., 1997); therefore, having flexible approaches
with minimal assumptions about the patterns or distribution of dropout is useful when
considering how missing data may influence the results of longitudinal data analyses. In
this paper we present how to use a Dirichlet process mixture of simple frailty models to
relax assumptions about the distribution of dropout times and the functional form of the
relationship between dropout time and the outcome. We use this model to analyze data
from the WIHS, a longitudinal HIV cohort study in which the parametric assumptions
of standard models for non-ignorable dropout are violated.

1.1 A Preliminary Investigation of the Women’s Interagency HIV
Study

The WIHS is an ongoing prospective study of the natural and treated histories of HIV
infection in women, with behavioral data and specimens collected at semiannual visits
by multiple sites since 1994 (Barkan et al., 1998). In contrast to male populations, HIV
and AIDS are more prevalent among women of color exposed through heterosexual
partners or intravenous drug use (Bacon et al., 2005; Centers for Disease Control and
Prevention, 2002). Illicit drug use has been hypothesized to accelerate HIV disease
progression by directly enhancing virus replication and by impairing immune responses.
While laboratory in vitro and animal studies suggest that drug and alcohol use impairs
immune function and increases HIV replication, results from epidemiological studies
have been mixed (Moore et al., 2017). These conflicting results may be in part linked to
differential dropout between drug users and other subjects. Considering the potential
impact of non-ignorable dropout on the results of statistical analyses is particularly
important in this context.

The goal of this analysis is to compare declines in CD4+ T cell count, a measure
of immunologic health and HIV disease progression, between untreated hard drug users
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(N=130) and other untreated subjects (N=480) over the first five years of the WIHS
study. While WIHS follow-up visits were intended to occur every 6 months, exact timing
of visits varies greatly between subjects, so that observation times are not aligned. For
example, visit 6 occurred anywhere between 1 and 3 years, with a median of 2.5 years.
Therefore we planned to model ln(CD4+) as a linear function of time while controlling
for baseline ln(CD4+) and its interaction with time. The primary comparison of interest
is the difference in the time effect or slope between hard drug users and other subjects.

In our initial investigation into the data, we found several causes for concern. First,
we noted that a large proportion of subjects dropped out of the study early, with half of
subjects lost by 2.4 years (median of 4 observations, Figure 1a). In addition, drug users
tended to drop out of the study earlier than other subjects. Due to the prevalence and
differential distribution of dropout, missing data could have a large impact on the results
of our analysis. Second, subjects that dropped out of the study had lower mean CD4+

at their last visit compared to subjects that remained on study (Figure 2a), and both
drug users and others that dropped out early tended to have steeper (more negative)
subject-specific ordinary least squares (OLS) slopes than subjects that remained on
study. This suggests that subjects that dropped out may have done so due to more
rapidly deteriorating health, raising concerns of non-ignorable dropout. We also noted
that the distribution of dropout times was irregular (Figure 1b), not taking an obvious
parametric form, and that the Kaplan Meier curves of dropout for drug users and
others cross, potentially violating parametric and proportional hazards assumptions of
common time to event models. Due to the potentially large number of visits for each
subject as well as the mis-alignment of visit times, we chose to model correlation using
a random effects framework; however, subject-specific OLS slopes do not follow the
normal distribution typically assumed for random effects, having long tails off to the
left (Figure 2b). These deviations from normality and typical model assumptions led us
to search for more robust alternatives.

1.2 Accounting for Missing Data in Longitudinal Studies

Dropout is not ignorable and data are missing not at random when missingness depends
on the values of the unobserved outcomes, even after conditioning on the available data
(Little and Rubin, 2002). There is a large body of literature describing selection (Heck-
man, 1979; Diggle et al., 1994; Heckman, 1998), frailty (also called “shared parameter”)
(Follmann and Wu, 1995; Albert and Follmann, 2000; Wu and Bailey, 1989; Schluchter,
1992; Lancaster and Intrator, 1998) and mixture models (Rubin, 1977; Wu and Bailey,
1989, 1988) to account for non-ignorable dropout in longitudinal studies with a Gaussian
response. These methods are based on different factorizations of the joint distribution
of the outcome and dropout time (Daniels and Hogan, 2008). Methods that can ac-
commodate non-normal data are less developed (Ibrahim and Molenberghs, 2009). In a
frequentist setting, parametric selection (Ibrahim et al., 2001; Wu and Wu, 2007), frailty
(Ten Have et al., 1998), and mixture models (Ekholm and Skinner, 1998; Follmann and
Wu, 1995; Fitzmaurice et al., 2001) have been proposed to account for dropout in stud-
ies with binary and other non-normal outcomes; however, semi-parametric methods are
lacking. In a Bayesian framework, methods for binary outcomes have focused largely
on marginalized transition models for population level rather than subject-specific in-
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Figure 1: Dropout in the WIHS: (a) Kaplan-Meier Curves for Study Dropout for Sub-
jects Reporting Hard Drug Use (Dashed) and Others (Solid) and (b) Histogram of
Dropout Times by Drug Use Group.

Figure 2: CD4+ Over Time in the WIHS. (a) Mean CD4+ by Visit for All Subjects
(crosses), Subjects Remaining on Study to the Next Visit (open circles) and Subjects
Dropping Out at the Next Visit (closed triangles) and (b) Histogram of Subject-Specific
Ordinary Least Squares (OLS) Slopes, Representing Change in ln(CD4+) per Year by
Drug Use Group.
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ference (Su and Hogan, 2008, 2010). For subject-specific inference, Kaciroti et al. have
described Bayesian pattern mixture models for binary and count data (Kaciroti et al.,
2008, 2009, 2012), however, these methods may not be feasible for large numbers of
dropout patterns or continuous dropout times.

Related to our model, for studies with a continuous response, aligned observation
times and limited dropout patterns, methods proposed by Linero and Daniels (2015)
model the joint distribution of dropout time and the longitudinal response as a Dirichlet
process mixture of missing at random models in order to relax parametric assumptions
about the distribution of the longitudinal response. Our proposed model differs from
that of Linero and Daniels (2015) by accounting for correlation in the longitudinal re-
sponse using a random effects framework and by accommodating continuous dropout
times, as well as non-normal outcomes in the exponential family. For a continuous lon-
gitudinal response, our model can be represented as a Dirichlet process mixture of the
frailty models proposed by Schluchter (1992). By taking a Dirichlet process mixture
of frailty models, parametric assumptions about the distributions of the random coef-
ficients and the dropout times are relaxed, by modeling them as mixtures of normal
distributions.

1.3 General Approach

Dirichlet process mixture models have been used in semi- and non-parametric Bayesian
approaches to model distributions as a mixtures of unknown and potentially infinite
numbers of normal distributions (Ghosal, 2010; Christensen et al., 2011). We propose
a semi-parametric Dirichlet-process mixture model for dropout in longitudinal studies
with exponential family outcomes (DP-Drop) to relax common parametric assumptions
made in models that account for non-ignorable dropout.

The DP-Drop can be seen as an extension of the frequentist parametric frailty model
proposed by Schluchter et al. (2001). Schluchter considers a two stage model for normally
distributed outcomes. The first stage assumes that each subject’s responses follow a
linear regression with random intercept bi0 and slope bi1, which can be written yi =
Xibi + ei, where ei is a vector of independent, normally distributed error terms for
subject i. In the second stage, the subject-specific random coefficients and the natural
log of dropout time, ui, are modeled with a joint multivariate normal distribution:(

bi
log(ui)

)
∼ N

(
μ =

(
μb

μu

)
,Σ =

(
Σb σ′

bu

σbu σ2
u

))
,

where μb is the mean of the random coefficients, μu is the mean of the natural log of
dropout time, Σb is the covariance matrix of the random coefficients, σbu is a row vector
containing the covariances of u and each random coefficient, and σ2

u is the variance of the
natural log of the dropout times. This model allows the underlying slope and intercept to
be associated with dropout time, via the covariance parameters σbu. If these covariances
are zero, then the random coefficients and dropout time are independent and dropout
is assumed to be non-informative.

In addition to assuming a log-normal distribution of dropout times, the parametric
frailty model assumes that there is a linear relationship between the log of dropout time
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and the dropout time specific intercepts and slopes, since the random coefficients are
related to dropout time through the covariance parameters. We illustrate how to relax
these assumptions using a Dirichlet process mixture of frailty models, rather than a
single model, to allow for non-parametric modeling of the distribution of dropout times
and random effects. There is no need to specify a parametric form for the relationship
between dropout time and the subject-specific effects, as in the conditional linear model
(CLM) (Wu and Bailey, 1989), which models the effect of time on the longitudinal
response as a low-order polynomial function of dropout time. Our DP mixture of frailty
models also does not require any a priori grouping of subjects with subjectively similar
patterns of missing data, as in a pattern mixture model (PMM) approach (Pauler et al.,
2003). We see the main benefits of our approach as the robust modeling of the subject-
specific coefficients and dropout time distributions, as well as the relationship between
dropout time and the subject-specific coefficients, since it is known that inferences can
be sensitive to parametric assumptions, particularly in the presence of dropout (Moore
et al., 2017; Forster et al., 2012; Hogan et al., 2004a; Molenberghs et al., 1997; Linero and
Daniels, 2015). In addition, our model allows the number and timing of responses to vary
from subject to subject, as is common in long-term cohort studies, and accommodates
longitudinal binary and count responses.

1.4 Outline

In Section 2, we describe the DP-Drop method, how to estimate the model using Markov
chain Monte Carlo, and how to calculate marginal effects, averaged over the distribution
of dropout times. In Section 3, we present results of a simulation study which show
that the DP-Drop method reduces bias and mean squared error for the marginal slope
compared to 1) standard generalized linear mixed models (GLMM), 2) simple frailty
models for non-ignorable dropout and 3) the conditional linear model (CLM) for non-
ignorable dropout when data are missing not at random. In Section 4, we demonstrate
the benefits of the DP-Drop method by examining the impact of hard drug use on CD4+

T cell decline in untreated HIV infected subjects enrolled in the WIHS.

2 Model Description

2.1 The Dirichlet Process Mixture Model for Dropout

For m subjects with ni longitudinal observations, let yi = (yi1, . . . , yini) be the vector of
outcomes for subject i observed at times ti = (ti1, . . . , tini), for i = 1, . . . ,m. Let ui be
the dropout time for subject i, which may occur at any continuous point in time. ui is ob-
served for subjects that drop out and censored for those that complete the study, so that
we observe uo

i = min(ui, Ci), where Ci is the amount of time subject i is followed on the
study in the absence of early withdraw or dropout. Let δi = 1 if ui is censored and 0 else.

Similar to Linero and Daniels (2015), we model the joint distribution of the outcomes,
y, and dropout times, u, as a mixture of parametric models, such that:

p(y,u|ω,θ) ∼
∫

f(y,u|ω,θ)F(dθ), (2.1)
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F is modeled with a Dirichlet process with base measure H and mass α > 0 (Escobar
and West, 1995). Sethuraman (Sethuraman, 1994) showed that the Dirichlet process
mixture is a prior on latent class models, with an unknown, potentially infinite number
of classes, so that (1) is equivalent to:

p(y,u|ω,θ) =

∞∑
k=1

pkf(y,u|ω,θ(k)), (2.2)

where pk = Vk

∏k−1
l=1 (1−Vl), Vk ∼ Beta(1, α) and θ(k) ∼ H(dθ). The specification in (2)

is known as the “stick breaking” construction of the Dirichlet process. {pk}∞k=1 are the
probabilities of belonging to latent class or cluster k. {Vk}∞k=1, known as “stick breaking
weights,” are the conditional probabilities of belonging to latent class k given that the
subject was not in classes 1 to k − 1. θ(k) are the parameters associated with joint
distribution of y and u in latent class or cluster k, while parameters common across
clusters are included in ω. We take f(y,u|ω,θ(k)) to follow a frailty or shared parameter
model similar to the model proposed by Schluchter (1992), in which the distributions
of y and u are linked through subject-specific random coefficients, b1 . . . bm. The main
advantage of using the stick breaking formulation is that it allows for straight forward
estimation of the posterior with Gibbs sampling.

Model for Latent Class k

Using the stick breaking construction, we can think of each subject as belonging to a
latent class, with data from subjects clustered together in class k following a common
distribution with parameters θ(k). To facilitate posterior computation, we use a trunca-
tion of the stick breaking model by replacing the infinite sum in (2) with a sum across
the first N terms (see Section 2.3 Estimation) (Ishwaran and James, 2001). We intro-
duce latent variables K = {K1, . . .Km} in {1 . . . N}, which indicate the latent class or
cluster assignment of each subject. Let 1k be an indicator function for class k. We may
then write our model:

yi|bi,βC , φ ∼ EF(Xibi +ZiβC , φ)

Ki|p ∼
N∑

k=1

pk1k

bi|μ(Ki),Σb

b ∼ N(μ
(Ki)
b ,Σb)

log(ui)|bi,μ(Ki)
u , σ2

u,σbu,μ
(Ki)
b ,Σb ∼ N(μ(Ki)

u +σbuΣ
−1
b (bi −μ

(Ki)
b ), σ2

u −σbuΣ
−1
b σ′

bu).

For y, we assume a hierarchical random coefficient model to account for correlation due
to repeated measurements made on the subjects over time, where EF is an exponential
family distribution with a scale parameter φ. The linear predictor for subject i is Xibi+
ZiβC , where Xi is an ni x p design matrix for the subject-specific coefficients, bi, and
Zi is the design matrix for covariate effects βC . For continuous data, a typical choice
for EF is the normal distribution with φ = Σ = Iσ2

ε , where I is an ni x ni identity
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matrix. For bi, we typically include a random intercept, b0i, and time effect, b1i, for
each subject.

Within latent class k, subjects share common random coefficient and dropout time

distributions, with class specific parameters θ(k) = (μ
(k)
u ,μ

(k)
b )′. In class k, we assume

that the random coefficients have a multivariate normal distribution, with cluster spe-

cific mean μ
(k)
b and covariance Σb. Random coefficients account for correlation when

the measurement times are misaligned between subjects or there are large number of
observation times. This differs from the approach of Linero and Daniels, who modeled
correlation by allowing Σ to be an unstructured covariance matrix, which is better suited
to studies with a small number of common observation times.

Since dropout times take on positive values, we assume a log normal distribution
for the dropout time within latent class k. We note that others working with discrete
dropout times or patterns of missingness have chosen to use Bayesian bootstraps or
to model the discrete hazard of dropout at time j sequentially with logistic regres-
sion (Linero, 2017; Linero and Daniels, 2015). While it has been applied to continuous
dropout time distributions (Su and Hogan, 2010), the Bayesian bootstrap assumes that
dropout time values that are not observed in the data have zero posterior probabil-
ity. Rubin (1981) notes that using the Bayesian bootstrap for a variable X effectively
makes the assumption that all possible distinct values of X have been observed in the
data and that the Bayesian bootstrap is “clearly inappropriate if X can take on many
more than [the] n” observed values, as inferences may be sensitive to this assumption.
While the Bayesian bootstrap is well suited to modeling dropout time in studies where
dropout occurs at discrete visits, the assumptions of the Bayesian bootstrap are likely
not met in studies such as the WIHS where the timing of subjects’ repeated measure-
ments is mis-aligned and dropout may occur at any continuous point in time. Following
Schluchter (1992), we allow a subject’s dropout time, ui, to depend on yi through the
random coefficients, bi, as we believe that subjects with poorer outcomes are more

likely to dropout. In our notation, μ
(k)
u is the intercept of the mean function for la-

tent class k and σbu is a row vector containing the covariances of u and each random
coefficient.

For simplicity in our model write up, we have not included covariate effects in the

distributions of bi or ui; however, our model does allow μ
(k)
b and μ

(k)
u to depend on

categorical covariates. For example, in our application, we allow separate μ
(k)
b and μ

(k)
u

for hard drug users and others.

Relationship to Parametric Frailty Models

Although perhaps an unusual presentation, we can write the joint distribution of dropout
times and the subject-specific random effects as a multivariate normal distribution to
highlight which parameters are included in the Dirichlet process mixture and to clearly
show our model as a natural extension of Schluchter et al.:(

bi
log(ui)

)
|ω,θ(k) ∼ N

(
μ(k) =

(
μ

(k)
b

μ
(k)
u

)
,Σ =

(
Σb σbu

σbu σ2
u

))
.
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Within class k the data are modeled using the parametric frailty model proposed by
Schluchter (1992). We note that this joint distribution, p(ui, bi|μ(Ki),Σ) = p(ui|, bi,
μ(Ki),Σ) p(bi|μ(Ki),Σb), is part of the posterior distribution as factored in Section
2.2: Priors and Posterior. Our approach non-parametrically models the distribution of
dropout times as a mixture of log-normal distributions and the distribution of subject-
specific coefficients as a mixture of multivariate normal distributions, while also clus-
tering subjects with similar dropout times and coefficient values.

In order to account for non-ignorable dropout, we must allow for dependence between
the outcome model and the dropout model. Clustering is a flexible method to achieve
this dependence without requiring that the relationship between the random coefficients
and dropout time take any particular functional form. This relaxes the assumption of
a linear relationship between dropout time and subject-specific slopes common in both
the parametric frailty model and the conditional linear model. Pattern mixture models
use a similar strategy to account for non-ignorable dropout, by fitting separate models
for a series of dropout patterns. However, unlike PMM’s, the DP model does not re-
quire a-priori grouping of subjects into subjective patterns or clusters. A similar strategy
has been implemented by Linero and Daniels (2015) for discrete dropout times. Linero
(2017) also notes that an alternative to his proposed method using the Bayesian boot-
strap would be to model the joint distribution of the outcomes and the missing data
as a mixture, treating the outcomes and missing data as conditionally independent
given class membership, with each class having unique parameters for both the dropout
distribution and the distribution of the data. We propose a similar mixture; however,
since within each mixture component we assume a normal distribution for the subject
specific effects as well as log(u), it is natural to model these quantities using a multi-
variate normal distribution, similar to that proposed by Schluchter (1992), as we believe
that subjects with poorer outcomes are more likely to dropout. This allows for potential
covariance between the subject specific effects and dropout time within cluster. It is pos-
sible for this covariance to be estimated at or near 0, in which case the subject specific
effects and dropout time would be conditionally independent given cluster membership,
similar to the model for discrete dropout times proposed by Linero and Daniels (2015).

2.2 Priors and Posterior

Above we derived the model for p(y,u|ω,θ). However, we are interested in the posterior
distribution, p(ω,θ|y,u) ∝ p(y,u|ω,θ)p(ω,θ). In our model specification, p(y,u|ω,θ)
p(ω,θ) factorizes as follows:[

m∏
i=1

p(yi|bi,βC , φ)p(ui|, bi,θ(Ki),Σb,σbu, σ
2
u)p(bi|θ(Ki),Σb)

]

×
[

N∏
k=1

p(θ(k)|μ0,Σ0)

]
× p(K|V )p(V |α)p(βC)p(Σ)p(α)p(μ0)p(Σ0)p(φ).

As mentioned in Section 2.1, Vk ∼ Beta(1, α) and θ(k) = (μ
(k)
u ,μ

(k)
b )′ ∼ H, where

α is the concentration parameter and H is the baseline distribution of the Dirichlet
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process. In practice, we use a normal baseline distribution, so that the parameters
θ(k) ∼ N(μ0,Σ0). In addition, the following priors are assigned:

βC ∼ N(0,R0)

Σ|ν0,T 0 ∼ IW(ν0,T 0)

μ0|mb,Sb ∼ N(mb,Sb)

Σ0|νb,T b ∼ IW(νb,T b)

α ∼ Gamma(a0, b0),

where IW is the inverse Wishart distribution. For normally distributed outcomes, the
within-subject error variance is assigned an inverse gamma prior.

2.3 Estimation

The posterior distribution is not analytically tractable and must be approximated.
Markov chain Monte Carlo (MCMC) is a common approach (Ishwaran and James,
2001; MacEachern, 1994; Jain and Neal, 2004), although other alternatives, including
partial predictive recursion (Newton and Zhang, 1999), variational Bayes approxima-
tions (Blei and Jordan, 2006), sequential importance sampling (MacEachern et al.,
1999), and weighted Chinese restaurant sampling (Ishwaran and Takahara, 2002) have
been proposed. A blocked Gibbs sampler for non-parametric random effects distribu-
tions has been described in detail by Ishwaran and James (Ishwaran and James, 2001).
The method approximates the posterior using a truncation of the stick breaking model
of (2.2). Since the probability weights assigned to each cluster decrease as the number
of clusters increases, the infinite sum can be replaced by a sum across the first N terms
by letting VN = 1, and a good approximation can be achieved for fairly modest N of 20
to 50 (Dunson, 2010). For non-Gaussian exponential family outcomes, we utilize a hy-
brid Gibbs Metropolis-Hastings sampler based on the truncated stick breaking approach
(Ishwaran and James, 2001). For Gaussian outcomes, the posterior can be estimated us-
ing Gibbs sampling alone. We use data augmentation to simulate the censored dropout
times for subjects that complete the study or are administratively censored (δi = 1)
(Wei and Tanner, 1990). To initialize the algorithm, we set ui = uo

i for the first itera-
tion. Details of our sampler are described in Appendix A of the Supplementary Material
(Moore et al., 2019). An R package to implement these models is available at https://
github.com/kreidles/informativeDropout.

2.4 Calculation of Marginal and Dropout Time Specific Effects

Marginal Effects, Averaged Over Clusters

At each iteration of the MCMC algorithm, subjects are assigned to clusters or latent
classes, with class specific means for their random coefficients. However, we are typically
interested in the expected value of the coefficients, averaged across clusters. The stick
breaking construction of the Dirichlet process makes the calculation of these marginal
effects straight forward, since the probability of belonging to cluster k, pk, is calculated

https://github.com/kreidles/informativeDropout
https://github.com/kreidles/informativeDropout
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at each iteration. At iteration s of the MCMC, we calculate the marginal or expected

value of the subject-specific coefficients as follows: E(b
(s)
i ) =

∑N
k=1 p

(s)
k μ

(k)(s)
b .

Dropout Time Specific Effects

In order to understand the relationship between dropout time and the subject-specific
coefficients, we are also interested in the expected values of the random coefficients at
specific dropout times, E(bi|ui = u). These can also be estimated at each iteration as

E(bi|u)(s) =
∑N

k=1 p
(s)
k|uE(bi|θ(k)(s),ω(s), u), where p

(s)
k|u is the probability of belonging

to cluster k given a particular dropout time and E(bi|θ(k)(s),ω(s), u) is the expected
value of the random coefficients in cluster k for a subject with dropout time u at iteration
s. pk|u can be estimated at iteration s as follows:

p
(s)
k|u =

p
(s)
k f(log(u)|μ(k)(s)

u , σ
2(s)
u )∑N

k=1 p
(s)
k f(log(u)|μ(k)(s)

u , σ
2(s)
u )

,

where f is the normal probability density function with mean μ
(k)(s)
u and variance σ

2(s)
u .

Using properties of the multivariate normal distribution, E(bi|k, u) at iteration s can
be calculated:

E(bi|k, u)(s) = μ
(k)(s)
b + σ

(s)
bu σ

−2(s)
u (log(u)− μ(k)(s)

u ).

2.5 Specification of Hyperparameters and Sensitivity to Priors

Dunson (2010) has discussed implementation issues when using Dirichlet process priors
to non-parametrically model the random effects distribution in hierarchical models. The
posterior distribution of the number of clusters is influenced by both α and the Dirichlet
process baseline distribution. The data inform strongly about α, so robust results can
be obtained by choosing a hyperprior for α; a common choice is Gamma(1,1). However,
the posterior distribution is sensitive to the choice of baseline distribution and a poor
choice can lead to a model with a single cluster or very few clusters. For example, for
the N(μ0,Σ0) baseline distribution, choosing the diagonal variance components of Σ0

to be extremely large in order to be “non-informative” may result in all of the subjects
being allocated to the same cluster, since the conditional posterior probability of allo-
cating subjects to unoccupied clusters is very low. This would result in the parametric
frailty model. Interestingly, allocating all subjects to separate clusters also results in a
parametric model since the random effects distribution is then the N(μ0,Σ0) baseline
distribution. To properly characterize a non-normal distribution of subject-specific ef-
fects, subjects should be assigned to a few distinct clusters (Dunson, 2010). This makes
it important to choose the baseline distribution with careful thought about realistic
values given the problem.

One solution that we have employed in this paper is to use a hyperpriors for the
baseline distribution parameters, although the hyperparameters, mb,Sb, νb, and T b,
must still be chosen. For HIV cohort studies, there is a wealth of information in the
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literature that can help inform these choices. For example, in our application, we con-
sidered the range of typical CD4+ T cell counts observed in untreated HIV+ subjects
and the mean and range of dropout times in our dataset to help inform our choices for
mb and Sb, the hyperprior parameters for the mean of the normal baseline distribu-
tion. Since we planned to include baseline log(CD4+ T cell count) as a covariate in our
models, setting the first element of mb, which relates to the subject specific intercepts,
to 0 was a reasonable choice. Since declines in log(CD4+ T cell count) are typically
small (less than 1 log per year) and our primary interest was in comparing changes in
CD4+ T cell count over time between groups, we set the second element of mb to 0 to
be non-informative. For the third element of mb, we used the log(mean dropout time)
in our dataset. Sb quantifies our prior confidence in our estimates of mb, the mean of
the normal hyperprior on the mean of the baseline distribution. We set Sb to a 3 x
3 identity matrix, as this covered the range of subject specific intercepts, slopes and
dropout times we believed were plausible.

Specifying νb and T b, the hyperparameters for the inverse Wishart hyperprior on the
covariance of the normal baseline distribution, can be more challenging. We chose to use
a 3 x 3 identity matrix for T b and then set νb so that the expected variances of the inverse
Wishart distribution would cover the plausible range of intercepts, slopes, and dropout
times in our dataset. For example, the expected value of the inverse Wishart distribution
is T b/(νb-4), if a subject specific intercept and slope are included in the cluster specific
coefficients. Setting νb to 5, resulted in prior expected variances of 1 for the baseline
distribution, which covered the range of values expected or seen in our dataset well. For
example, log(dropout time) ranged from approximately -0.6 to 1.6 log(years), so a single
standard deviation above and below the expected mean of the baseline distribution
would cover all the of the observed values in our dataset. Since the log of dropout times,
intercepts and changes in log(CD4)+ over time were on a similar scale, this strategy
worked well. If this were not the case, a more complex T b, with unequal diagonal
elements, may have been more appropriate. Shi et al. (2019) have proposed methods for
developing low information priors for Dirichlet process mixture models, which involve
scaling the data before analysis. This offers another potential solution when there is less
subject-specific information available to choose hyperparameter values. We also suggest
fitting additional models varying the hyperparameter values for the hyperpriors for α
and the mean and variance of the baseline distribution to better understand sensitivity
of inferences to these choices.

Other hyperparameters that must be specified include R0, the prior variance of
covariate effects, and ν0 and T0, the prior degrees of freedom and scale matrix for the
inverse Wishart prior on Σ, the within cluster the covariance matrix for the subject
specific intercept, slope and log of dropout time. For R0 we typically use a covariance
matrix with zeros for the off-diagonal elements and large values on the diagonal, in order
to be uninformative. In our simulation and applications, we set the diagonal elements
to 100, but in general “large” will depend on the scale of the data. Again, we set ν0 and
T0 to 5 and a 3 x 3 identity matrix, respectively, as this would cover the range of means
for subject specific intercepts, slopes and dropout times we believed were plausible in
our dataset.
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2.6 Identifiability of Model Parameters

The identifiability of parameters is an issue both in statistical models for missing data
and in Bayesian non-parametric modelling in general. Likelihood invariance under label
switching is a well-known problem in Bayesian mixture modeling, which complicates
inference on the parameters of the individual components of mixture models (Stephens,
2000; Celeux et al., 2000; Makov et al., 1985). However, in our proposed approach, we do
not attempt to assign meaning to or make inference on individual components; rather,
we simply use the mixture model approach to flexibly model the marginal distribution of
dropout times and subject-specific effects. As noted in Linero (2017), in the presence of
missing data, identification of model parameters and causal effects requires assumptions
about the missing data which cannot be checked, making sensitivity analysis important.
In our model, we assume that after accounting for dropout time, data are missing at
random and that subject specific slopes remain unchanged after dropout (i.e. subjects
continue on the same linear trajectory after dropout). In practice, we perform sensitivity
analyses to determine if results are robust to this assumption by re-fitting the model
assuming that slopes change by a multiplicative factor of Δ after dropout. We consider a
range of Δ and examine results to understand the extent to which Δ changes estimates
of the expected value of the outcome over time. We perform a sensitivity analysis in the
analysis of the WIHS data in Section 4.2.

3 Simulation

We assess the performance of our model to estimate the marginal slope (expected change
in the outcome over time) as well as dropout time specific slopes. Data were generated
under four different scenarios, including two normally distributed outcomes and two
binary outcomes. In these four scenarios the subject-specific slopes were related to
dropout time by two different dropout mechanisms: (i) a continuous and smooth func-
tion of dropout time, resulting in a left skewed distribution of subject-specific slopes
and (ii) a discontinuous step function, resulting in a bimodal distribution. In addition,
simulations for a linear relationship and no dropout effect are presented in Appendix B
of the Supplementary Material to show the method can also fit CLMs and GLMMs.

More specifically, the following form for generating simulated data was assumed:
ηij = β0 + β1(ui)tij + γ0i + γ1itij , i = 1, . . . ,m, j = 1, . . . , ni for m subjects with
ni observations for the ith subject, where (γ0i, γ1i)

′ ∼ N(0,Σγ). For the Gaussian
simulations, yij ∼ N(ηij , σ

2), and β0 = 0. Dropout times were u = U/15 ∈ [0, 1],
resulting in 16 time points spaced equally from 0 to 1. Dropout was created from a
beta-binomial where p ∼ Beta(1.5, 1.5) and U ∼ Bin(15, p). The within-subject vari-
ance, σ2, was set at 0.067. The elements of Σγ were as follows: σ2

0 = 0.4, σ2
1 = 0.01

and σ01 = −0.01. For the binary simulations, yij ∼ Bernoulli(logit−1(ηij)), β0 = −3,
and for stability, dropout began at the third observation. The elements of Σγ were
as follows: σ2

0 = 0.4, σ2
1 = 0.1 and σ01 = −0.01. The forms of the dropout-varying

slope were: Normal (i): β1(u) = −3 exp(−4u), Normal (ii): β1(u) = I(u>2/3), Binary (i):
β1(u) = 10[1 − 2 exp(−4u)], Binary (ii): β1(u) = 4 + 6I(u>2/3), where I(u>2/3) is an
indicator function that equals 1 if u > 2/3. The forms of the dropout-varying slopes are



1152 A Dirichlet Process Mixture Model for Non-Ignorable Dropout

represented by the solid lines in Figure 3. For each simulation scenario, 1,000 datasets
with 400 subjects each were created. The magnitude of the dropout effects in these
scenarios are similar to those seen in HIV cohort studies (Forster et al., 2013; Moore,
2013).

3.1 Methods of Evaluation

DP-Drop models, frailty models (Schluchter et al., 2001), and CLM’s (Wu and Bailey,
1989) to account for drop out, as well as standard generalized linear mixed models
(GLMM’s) were fit to each dataset. The DP-Drop was implemented as described in
Section 2.1, including subject-specific intercepts and time effects for bi. Similarly, the
frailty model was implemented as shown in Section 1.2, also including subject-specific
intercepts and time effects for bi. The conditional linear model was implemented as
follows:

yi ∼ EF (ηi, φ)

μi = g(ηi)

ηi = 1i(β0 + b0i) + ti(β1 + β2ui + b1i)(
b0i
b1i

)
∼ N

([
0
0

]
,Σb

)
,

where 1i is an ni x 1 vector of 1’s and b0i and b1i are subject-specific random effects
centered at 0. Marginal effects for the CLM were calculated by averaging over the
empirical distribution of dropout times. The GLMM was similar to the CLM, with the
exception that the β2ui term was excluded from the linear predictor. The performance
of the methods was compared graphically and in terms of bias, variance, and mean
square error for the marginal slope, as well as for the sixteen dropout time specific
slopes.

3.2 Implementation

Non-informative priors, with large variances were used for all models. The priors for Σ
andΣ0 were IW(5, I3x3), where I3x3 is a 3 x 3 identity matrix, and the prior for the mean

of the baseline distribution was N
((

0, 0, log(0.5)
)′
, I3x3

)
. The hyperparameters for

α were both set to 1, and an inverse gamma prior with both hyperparameters set to
0.001 was used for the within-subject variance for the normal distribution simulations.
A truncation level of K = 20 was used and subjects were randomly assigned to one
of the clusters to initialize the MCMC chain. The MCMC chains were run for 20,000
iterations, with the first 5,000 iterations used as burn in. Trace plots were used to check
for convergence. Similar MCMC algorithms were run for the frailty model, the CLM, and
the standard generalized linear mixed model. The DP-Drop, CLM, frailty model and
GLMM methods were implemented in R using a custom MCMC algorithm utilizing the
MASS (Venables and Ripley, 2002), mvtnorm (Genz et al., 2014), MCMCpack (Martin
et al., 2011), and gtools (Warnes et al., 2014) packages.
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Normal (i) Normal (ii)
Method Slope Bias Var. MSE Coverage Slope Bias Var. MSE Coverage
DP-Drop -0.56 0.14 (20%) 0.006 0.03 0.62 0.33 -0.02 (-6%) 0.006 0.006 0.96
CLM -0.45 0.25 (36%) 0.003 0.06 0.20 0.30 -0.05 (-14%) 0.028 0.03 0.23
Frailty -0.52 0.19 (27%) 0.004 0.04 0.18 0.16 -0.19 (-54%) 0.005 0.04 0.22
GLMM -0.21 0.49 (70%) 0.001 0.24 0 0.65 0.31(89%) 0.002 0.10 0

Binary (i) Binary (ii)
Method Slope Bias Var. MSE Coverage Slope Bias Var. MSE Coverage
DP-Drop 7.66 0.30 (4%) 0.21 0.30 0.69 6.36 -0.36 (-5%) 0.27 0.39 0.70
CLM 8.02 0.66 (9%) 0.11 0.54 0.50 6.47 -0.24 (-4%) 0.14 0.20 0.90
Frailty 8.14 0.78 (11%) 0.14 0.75 0.36 6.04 -0.96 (-14%) 0.18 1.11 0.60
GLMM 9.09 1.74 (24%) 0.09 3.11 0 8.56 1.85 (28%) 0.14 3.55 0

Table 1: Simulation Study Comparing the DP-Drop, Parametric Frailty Model, CLM
and GLMM Methods: Posterior Mean Marginal Slope Estimates, Bias (Absolute, (Rel-
ative)), Variance (Var.), Mean Squared Error (MSE), and 95% Credible Interval Cov-
erage. Negative bias values indicate the slope was underestimated, while positive values
indicate overestimation.

3.3 Results

Model performance was quantified in terms of bias, variance, mean squared error (MSE)
and 95% credible interval coverage for the marginal slope (Table 1). The median number
of non-empty clusters for the DP-Drop model was 10.5, 12.0, 6.5, and 8.1 for the Nor-
mal (i), Normal (ii), Binary (i), and Binary (ii) scenarios, respectively. The GLMM had
the lowest variance, likely because the method makes unmet assumptions that simplify
the model and also has the fewest parameters. The DP-Drop method had the lowest bias
and MSE, as well as the highest coverage probability, of all the methods, except in the
Binary (ii) scenario, where the CLM had better performance. However, in this scenario,
the CLM poorly modeled the dropout time specific slopes, underestimating slopes at
early dropout times and over-estimating at later dropout times. This combination of
over and under estimation, rather than appropriate model fit, resulted in the minimized
bias values.

While the DP-Drop had the best performance in terms of credible interval coverage,
we note that the DP-Drop 95% credible intervals do not always maintain 95% fre-
quentist coverage probabilities. While in certain scenarios, Bayesian credible intervals
can achieve nominal frequentist coverage probabilities, in general, there is no guarantee
that a 95% Bayesian credible interval will maintain 95% frequentist coverage probabil-
ity, as coverage probability depends on the prior distribution and sample size, as well
as other factors (Wasserman, 2011; Gray et al., 2015). In these simulations with non-
ignorable dropout, coverage is lower than expected since the estimates of change over
time for subjects that dropout early, and therefore have fewer observations, are neces-
sarily shrunk towards subjects with more information. For example, for the Normal (i)
scenario, subjects that dropout after their first visit have the smallest change over time,
but only have one observation, which is not enough information to estimate a slope.
Therefore, it is not surprising that the DP-Drop method estimates the marginal slope
to be higher than the true simulation value and that the coverage is less than 95% due
to this shrinkage.
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Figure 3: Simulation Study Comparing the DP-Drop, CLM and Frailty Model Meth-
ods to Account for Dropout: Posterior Mean Estimates of the Dropout-Varying Slope,
Averaged Over 1,000 Simulations. In all cases the DP-Drop method fits the simulated
dropout-varying slope more closely than the frailty model.

Graphs of the predicted DP-Drop frailty model, and CLM slopes at each dropout
time are presented in Figure 3. The DP-Drop method was able to more accurately
describe the relationship between dropout time and the subject-specific slope compared
to the frailty model and the CLM, which always fits a linear relationship. While the
frailty model and DP-Drop seemed to provide a similar fit for the Normal (i) scenario,
where the dropout-varying slope could be relatively well represented by the logarithmic
curve of the frailty model, the DP-Drop method provided a much better fit for form (ii)
and in the binary simulations. The densities of the subject-specific slopes are presented



C. M. Moore, N. E. Carlson, S. MaWhinney, and S. Kreidler 1155

Figure 4: Simulation Study Comparing the DP-Drop, CLM, Parametric Frailty Model,
and GLMM Methods: Estimated Densities and Actual Distribution of the Subject-
Specific Slope for a Single Simulated Dataset. The DP-Drop is able to model the left
skew in the distribution of subject specific effects in scenario (i) and the bi-modal nature
of the distribution in scenario (ii).

in Figure 4. The DP-Drop method was able to capture the skewness of the form (i)
distributions and the bimodal nature of the form (ii) distributions. The CLM, frailty
and GLMM models fit normal distributions to these data, resulting in shrinkage of the
estimates of subjects with early dropout times towards the mean for form (i) and large
variances in form (ii). For the DP-Drop form (ii), in particular for the binary case, we
see that while the density is bimodal, the modes of the estimated density are shifted
towards one another compared to the histogram of the simulated data, and are slightly
shrunk towards the overall mean. This is not surprising, as there is uncertainty in cluster
assignment, particularly for subjects that dropout early and have few observations.
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In Appendix B, we present additional simulation study results, including a scenario
when dropout is ignorable and there is no relationship between dropout time and the
subject specific slope. If there is no relationship between the subject specific slopes and
dropout time, the DP-Drop is more complex than needed (as are other models that
account for dropout) and the variance and MSE are increased compared to GLMM’s.

4 Application

We use our methodology to analyze data from the WIHS. Recall that we are primarily
interested in comparing the expected change in ln(CD4+) over time between hard drug
users and other subjects in the cohort, while controlling for baseline ln(CD4+) and
its interaction with time. At all study visits, subjects in the WIHS were questioned
regarding illicit drug use since their previous visit. Subjects that reported the use of any
hard drug, such as cocaine, amphetamines, heroin or other injection drugs, at more than
half of visits were classified as consistent hard drug users and comprised the hard drug
use group for this analysis. We define dropout time as the time of the last observation
plus 1 day.

4.1 Comparison to Alternatives and Assessing Model Fit

In addition to the DP-Drop, we consider two parametric models to account for non-
ignorable dropout, the CLM and the parametric frailty model. We also fit a standard
linear mixed model (LMM) that did not account for dropout for comparison. Baseline
ln(CD4+) and its interaction with time were included as common covariates in all
models. All models also included random subject-specific intercepts and time effects.
The CLM and the LMM included separate intercepts and time effects for hard drug
users and others. The CLM also included a time by dropout time by hard drug use
interaction to allow a separate effect of dropout time for hard drug users and other
subjects. For the frailty model the means of the subject-specific coefficients and dropout
times were allowed to differ for drug users and others. For the DP-Drop, distributions
of the subject-specific coefficients and dropout times were allowed to differ for drug
users and others. For full details of these models, see Appendix C of the Supplementary
Material.

For the DP-Drop, when possible, we used uninformative priors with large variances.
An inverse gamma prior with both hyperparameters set to 0.001 was used for the within-
subject variance. The prior for the covariates was N(0, 100). The hyperparameters for
α were both set to 1. Priors for Σ and Σ0 were both IW(5, I3x3). The prior for the

mean of the baseline distribution was N
((

0, 0, log(1.9)
)′
, I3x3

)
. These values were

chosen using the approaches outlined in Section 2.5. A truncation level of N = 60 was
used. The MCMC chain was run for 200,000 iterations with a burn in of 50,000. We fit
additional models varying the priors for α and the mean and variance of the baseline
distribution. As our dataset is fairly large, we did not see significant changes in the
results. Similar MCMC algorithms were run for the frailty model, the conditional linear
model, and the standard generalized linear mixed model.
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Others Hard Drug Users Difference
CV Loss PM 95% CI PM 95% CI PM 95% CI PP

DP-Drop 17.6 -0.16 (-0.21, -0.11) -0.28 (-0.39, -0.19) -0.12 (-0.24, -0.01) 0.98
Frailty Model 18.3 -0.19 (-0.22, -0.15) -0.27 (-0.33, -0.22) -0.08 (-0.15, -0.02) 0.99

CLM 18.0 -0.20 (-0.22, -0.17) -0.27 (-0.32, -0.22) -0.07 (-0.13, -0.02) 0.99
LMM 18.5 -0.16 (-0.18, -0.13) -0.24 (-0.29, -0.18) -0.08 (-0.14, -0.02) 0.99

Table 2: Estimated Change in ln(CD4+) per year for Untreated Subjects in the WIHS
Using the DP-Drop, CLM, Frailty, and LMM Methods, Assuming a Baseline CD4+

count of 478. PM=posterior mean, CI = Credible Interval, PP=posterior probability of
a difference < 0/lower slopes among drug users, CV = cross-validation.

To compare model fit between the methods, we performed a 10-fold cross validation.
We first created 10 independent datasets consisting of all observations on 61 subjects (13
subjects reporting hard drug use, 48 others). In each fold of the cross-validation, models
were trained on 90% of the data, and predicted values were generated for the remaining
10% of the data in the test set. We calculated a squared error loss function as follows: we
calculated the mean squared error of the predicted values for each subject in the test set
and summed these values across subjects. Values of the loss function were then averaged
over the 10 folds. Lower values of the loss function indicate better model performance.
The DP-Drop model had significantly lower loss than any of the alternatives (Table 2),
likely because the parametric assumptions of the CLM and frailty models were not met.
For example, we see in Panel a of Figure 5 that the CLM assumes a linear relationship
between dropout time and the slopes, the frailty model assumes a log-linear relationship,
and the DP-Drop model is more flexible. However, this increased flexibility comes at
the price of wider credible intervals. In Figure 5b, we see that the histograms of the
subject specific slopes estimated using the DP-Drop method reasonably approximates
the distributions seen in Figure 1b.

4.2 Results and Sensitivity Analysis

For subjects that reported hard drug use, CD4+ counts declined by an average of 24.4%
per year compared to 15.2% per year for other subjects (Table 2). The DP-Drop method
had a posterior mean of 7 clusters (95% credible interval: 4-11) for subjects reporting
hard drug use and 13 clusters (95% credible interval: 10-17) for others. Using a linear
mixed model that does not account for dropout, these declines are estimated to be
21.0% and 14.4% respectively. Accounting for dropout, we estimate larger declines in
CD4+ count over time, particularly for hard drug users, who were more likely to drop
out. In addition, we find larger differences in declines between hard drug users and
other subjects (Table 2). Failing to account for dropout could result in underestimating
the effect of hard drug use (Figure 6). In Table 3, we see that subjects that reported
hard drug use had lower posterior mean slopes across the range of the dropout times,
and significantly steeper declines for subjects that dropped out at years 2 and 3. This
indicates that the significant marginal difference in CD4+ decline (averaged over dropout
time distribution) between subjects reporting hard drug use and others is not only driven
by differences in dropout time distribution, but also by more rapid declines in CD4+
at specific dropout times.
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Figure 5: a) DP-Drop, CLM and Frailty Model Posterior Mean and 95% Credible In-
terval for Change in CD4+ Count per Year by Dropout Time for Untreated Subjects
in the WIHS, Assuming a Baseline CD4+ Count of 478. b) Histogram of the DP-Drop
Posterior Mean Estimates of the Subject Specific Slopes.

Our estimates of CD4+ count over time rely on the untestable assumption that
subjects continue to have the same rate of CD4+ decline after they dropout of the
study. We evaluate the sensitivity of our results to this assumption by estimating CD4+

count over time assuming that the rate of decline changes by a factor of Δ after dropout.
Δ > 1 would indicate more rapid declines after dropout, and 0 < Δ < 1 would indicate
an attenuation of the rate of decline after dropout. Δ of 0 represents the assumption that
subjects experience no further declines in CD4+ count after dropout, which is unrealistic
in a cohort of untreated subjects. For Δ of 0, 0.5, and 0.75, differences in CD4+ count
between hard drug users and other subjects are estimated to be smaller, but are still
statistically significant at years 2, 3, 4, and 5, with drug users having significantly lower
CD4+ than other subjects (Figure 7, Table 4). This sensitivity analysis suggests that
our results are relatively robust to violations of the assumption that subjects’ CD4+

counts continue to decline at the same rate after dropout.



C. M. Moore, N. E. Carlson, S. MaWhinney, and S. Kreidler 1159

Figure 6: DP-Drop and LMM Posterior Mean CD4+ Count Over Time in Untreated
Subjects in the WIHS, Assuming a Baseline CD4+ Count of 478.

Others Hard Drug Users Difference
Dropout Time (years) PM 95% CI PM 95% CI PM 95% CI PP

1 −0.19 (−0.32, −0.01) −0.32 (−0.58, −0.12) −0.14 (−0.44, 0.11) 0.85
2 −0.18 (−0.25, −0.10) −0.34 (−0.49, −0.22) −0.16 (−0.32, −0.02) 0.99
3 −0.21 (−0.30, −0.12) −0.41 (−0.65, −0.25) −0.21 (−0.45, −0.02) 0.99
4 −0.19 (−0.25, −0.14) −0.31 (−0.56, −0.14) −0.12 (−0.38, 0.07) 0.87
5 −0.15 (−0.19, −0.12) −0.19 (−0.36, −0.06) −0.03 (−0.21, 0.10) 0.66

Table 3: Estimated Dropout Time Specific Change in ln(CD4+) per year for Untreated
Subjects in the WIHS Using the DP-Drop, Method, Assuming a Baseline CD4+ count
of 478. PM=posterior mean, CI = Credible Interval, PP=posterior probability of a
difference < 0/lower slopes among drug users.

One potential limitation of this analysis is that subjects in our study may have
dropped out due to death. Subjects who die do not have potential outcomes after their
dropout. Estimates of CD4+ presented in marginal plots, such as Figure 6, are averaged
over all subjects, including those who may have died. Therefore in the presence of death,
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Figure 7: A Sensitivity Analysis of Posterior Mean CD4+ Count Over Time in Untreated
Subjects in the WIHS for Δ = 0, 0.5, and 0.75.

marginal estimates and plots should not be interpreted as the expected CD4+ across
the surviving patients in the cohort. If dropout due to death is known, it may be more
relevant to report the proportion of subjects surviving to the end of the study in each
group and the expected longitudinal trajectories for those that survive, or to compare
estimates of dropout time specific slopes between groups, as in Figure 5, which do not
depend on extrapolating beyond the observed dropout times.

5 Discussion

We propose a flexible Dirichlet process mixture method to account for dropout in a
Bayesian framework. The DP-Drop method allows for dropout occurring at any contin-
uous point in time and avoids making parametric assumptions about the distribution
of dropout times or the functional form of dropout-varying slope, by modeling both the
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Δ Year Difference (Drug users – Others)
PM 95% CI

0 1 -0.03 (-0.06, 0.00)
2 -0.10 (-0.14, -0.06)
3 -0.13 (-0.17, -0.09)
4 -0.13 (-0.18, -0.09)
5 -0.13 (-0.18, -0.08)

0.5 1 -0.03 (-0.06, 0.00)
2 -0.11 (-0.16, -0.06)
3 -0.16 (-0.22, -0.10)
4 -0.20 (-0.27, -0.12)
5 -0.22 (-0.32, -0.13)

0.75 1 -0.03 (-0.06, 0.00)
2 -0.12 (-0.18, -0.07)
3 -0.20 (-0.28, -0.11)
4 -0.26 (-0.37, -0.14)
5 -0.32 (-0.46, -0.17)

1 1 -0.03 (-0.06, 0.00)
2 -0.14 (-0.20, -0.07)
3 -0.23 (-0.34, -0.12)
4 -0.32 (-0.47, -0.17)
5 -0.41 (-0.61, -0.21)

Table 4: Sensitivity Analysis. Estimated Differences in ln(CD4+) Between Hard Drug
Users and Others, for Untreated Subjects in the WIHS for Δ = 0, 0.5, 0.75 and 1.

distribution of the log of dropout time and the subject specific effects as a Dirichlet
process mixture of normals. The model flexibly clusters subjects with similar random
effects and dropout times in order to model skewed, multi-modal and other non-normal
distributions of subject-specific effects and to more accurately characterize longitudinal
outcomes when non-ignorable dropout is present. Results of our simulation studies show
that the DP-Drop reduces bias and mean squared error for the marginal slope compared
to standard GLMMs, frailty models and conditional linear models when non-ignorable
dropout is present. Natural extensions to this model might include adding continuous
covariates to the class specific model for the random effects or dropout time or addi-
tions to account for differing dropout reasons among subjects (Moore et al., 2017; Pauler
et al., 2003). In longitudinal studies, subjects may dropout for a variety of reasons, such
as loss to follow up, declines or improvements in health, or death. Since subjects with
similar dropout reasons are also likely to have similar subject-specific coefficients, we
expect that the DP-Drop will cluster subjects with similar dropout reasons together and
that the heterogeneity of effects across different dropout reasons would be taken into
account. However, as the model does not explicitly include reason, we cannot compare
differences in declines between subjects dropping out for different reasons.

Applying the DP-Drop method to the analysis of untreated CD4+ count in the
WIHS, we find important differences in estimates of CD4+ decline for both hard drug
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users and others compared to a standard LMM and the CLM and frailty models that
account for dropout. In addition, since differential dropout is present, we also find a
larger difference in CD4+ declines between hard drug users and others. Since we must
assume that subjects continue on the same trajectory after dropout in order to identify
model parameters, we performed a sensitivity analysis and found that the results of the
WIHS analysis are relatively robust to violations of this assumption. Our preliminary
investigation of the WIHS data suggested that additional parametric assumptions of
common methods to account for non-ignorable dropout, such as log-normally distributed
dropout times and/or normally distributed subject specific effects, may be violated.
As inferences can be sensitive to these assumptions, having flexible approaches with
minimal assumptions, such as the DP-Drop, is important when considering how missing
data may influence the results of longitudinal data analyses.

Supplementary Material

Supplementary Material: A Dirichlet Process Mixture Model for Non-Ignorable Dropout
(DOI: 10.1214/19-BA1181SUPP; .pdf).
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