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A Loss-Based Prior for Variable Selection in
Linear Regression Methods

Cristiano Villa∗ and Jeong Eun Lee†

Abstract. In this work we propose a novel model prior for variable selection in
linear regression. The idea is to determine the prior mass by considering the worth
of each of the regression models, given the number of possible covariates under
consideration. The worth of a model consists of the information loss and the loss
due to model complexity. While the information loss is determined objectively,
the loss expression due to model complexity is flexible and, the penalty on model
size can be even customized to include some prior knowledge. Some versions of
the loss-based prior are proposed and compared empirically. Through simulation
studies and real data analyses, we compare the proposed prior to the Scott and
Berger prior, for noninformative scenarios, and with the Beta-Binomial prior, for
informative scenarios.

Keywords: Bayesian variable selection, linear regression, loss functions, objective
priors.

1 Introduction

In this paper, we propose a method to derive model prior probabilities for variable se-
lection problems in linear regression. The obtained prior, in its general form, is designed
to penalise complex models and, therefore, to favour sparsity. We focus on the general
case in which the total number of covariates, d, is smaller than the number of observa-
tions n. The prior we propose is based on losses and it is compared with existing options,
including the Beta-Binomial prior (George and McCulloch, 1993), where a beta prior is
defined over the (unknown) covariate inclusion probability, and a particular case of it
known as the Scott and Berger prior (Scott and Berger, 2010). The priors are compared
by using simulated data as well as real data sets: the Hald data (Woods et al., 1932)
and the human micro-array gene expression data in colon cancer patients (Calon et al.,
2012).

Variable selection problems, in the Bayesian framework, are in line with any other
inferential procedure. That is, a posterior distribution for the space of models is obtained
in order to represent the posterior uncertainty about the true regression model (see
Gelman et al. (2004)). There may be instances where the above is not appropriate, for
example if there are models with a negligible posterior probability, in which case a subset
of all the possible regression models can be considered. With a prior distribution on the
space of models, representing the model uncertainty related to variable selection, one
way to proceed is by using Bayesian model averaging (Hoeting et al., 1999). When the
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model posterior distribution tends to be spread across many of the possible regression
models, and when prediction is an important part of the statistical analysis, Raftery
et al. (1997) show that Bayesian model averaging performs better than choosing the
regression model with the highest posterior probability. Also, although one may decide
to explore a different route than model averaging, Barbieri and Berger (2004) show that
the median probability model (MPM), under certain conditions, has a predictive power
at least as good as the one of the highest probability model (HPM). The MPM derives
from an equivalent “answer” to the above problem obtained by estimating the marginal
posterior probability that each variable has, independently from the others, of being
included in the regression model.

An important component of the Bayesian variable selection approach is the definition
of the prior for the regression coefficients, including the intercept, and the regression
variance. In fact, we can comfortably say that the majority of literature related to
variable selection is focused on the identification of appropriate prior distributions for
the model specific parameters. Keeping in mind the importance of parameter specific
priors, in this paper we will focus on the model prior distribution only, referring to
the specific literature on the subject. See, for example, Bayarri et al. (2012) and the
references therein.

The underlying idea of the proposed prior is that, given the total number of covari-
ates, we associate a worth to each of the 2d possible linear regression model, depending
on the fact that model has been chosen to be part of the problem (Villa and Walker,
2015). The worth is determined by measuring what is lost if the model were to be
excluded and it is the true model. The fact that a regression model has been chosen
to be part of the model space (i) conveys information and (ii) induces complexity; as
such, we can measure the loss in information carried by a model and the loss due to its
complexity. These losses will then form the basis to determine the worth of the model
and hence, the model prior probability. We will show that the loss in information one
would incur in choosing the “wrong” model, due to the nature of the problem, is always
zero, leaving the loss due to complexity only to form the basis for the prior. Further-
more, we will show that the prior exhibits, in its general form, an exponential decay
which depends on a constant (namely, c); by calibrating the constant one may induce
different degrees of sparsity in the prior. We will discuss some guidelines on how c can
be calibrated.

The paper is organised as follows. In Section 2 we define the notation used through-
out the paper and formalise the problem of variable selection for linear regression
models in a Bayesian framework. In Section 3 we discuss the current model priors
for variable selection (the Beta-Binomial prior and its particular case the Scott and
Berger prior) and we present the proposed prior based on losses. The results of sim-
ulation studies are provided in Section 4. In the section we examine the performance
of the considered priors on the basis of the frequentist results of the corresponding
model size posterior distributions. Section 5 reports the analysis results using real
data sets widely discussed in literature. The final Section 6 concludes and provides
some discussion points on the proposed prior and its comparison with the other pri-
ors.
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2 Notation and problem specification

Given the vector y of n responses, the design matrix X of size n×d, an intercept α and
a vector of coefficients βββ of dimension d, the response outcome yi is expressed as

yi = α+

d∑
j=1

βjXij + εi, i = 1, . . . , n, (1)

where εi ∼ N(0, 1/φ) are the i.i.d. normally distributed errors with unknown variance
1/φ. We assume that the number of observations n is larger than the number of covari-
ates (i.e. n > d), and the design matrix is of full rank. The variable selection problem
can be seen as identifying which of the possible d covariates has impact on y. In other
words, we aim to identify which of the regression parameters βjs are different from zero.
Let us consider the binary vector γ, where the j-th element is zero if βj = 0 and one if
βj �= 0. Then, the generic Bayesian regression model is indicated by

Mγγγ = {f(y|α,βββγγγ , φ);πγγγ(α,βββγγγ , φ)} , (2)

where
f(y|α,βββγγγ , φ) = N(y|α+Xγγγβββγγγ , I/φ),

and πγγγ(α,βββγγγ , φ) represents the prior distribution for the parameters of the model, the so-
called model-specific parameter prior. Note that |γ| (the number of ones in γγγ) indicates
the number of covariates included in the model Mγ . There are 2d possible regression
models and each one of them identified by γγγ.

In the Bayesian framework, inference about model uncertainty is based on the model
posterior probability

p(Mγγγ |y) ∝ m(y|Mγγγ)p(Mγγγ),

where p(Mγγγ) is the prior probability for model Mγγγ and

m(y|Mγγγ) =

∫
f(y|α,βββγγγ , φ)πγγγ(α,βββγγγ , φ) dα dβββγγγ dφ, (3)

is the marginal likelihood of the observations under model Mγγγ . The model posterior
distribution can then be used to either choose a specific regression model or perform
model averaging.

The number of possible regression models grows exponentially with d. When d is
large the model posterior probabilities are often small for most models, and posterior
inclusion probabilities could give a better idea of the posterior uncertainty in comparison
to model posterior probabilities. The posterior inclusion probability of the j-th covariate
is defined as

ωj = Pr(γj �= 0|y) =
∑
γ

p(Mγ |y) · 1γj=1.

Prior and posterior inclusion probabilities originate from the common idea in Bayesian
variable selection to consider variable inclusions as exchangeable Bernoulli trials, with
ω ∈ [0, 1], implying

p(Mγ |ω) = ω|γ|(1− ω)d−|γ|, (4)

where |γ| represents the number of covariates included in the model Mγ .
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Model-specific parameter prior Prior choice on model-specific parameters has re-
ceived much attention, and well-received priors include the Zellner–Siow prior (Zellner
and Siow, 1980), the Zellner’s g-prior (Zellner, 1986), the mixtures of g-priors (Liang et
al., 2008), and the more recent robust prior by Bayarri et al. (2012), among others. The
robust prior has the advantage of yielding closed-form marginal likelihoods and to not
suffer from the information paradox (Liang et al., 2008). The robust prior is defined as

πγγγ(α,βββγγγ , φ) = π(α, φ)× π(βββγγγ)

= φ1/2

∫ ∞

0

N|γγγ|(βββγγγ |0, gΣγγγ)πγγγ(g) dg, (5)

where Σγγγ is the covariance matrix of the maximum likelihood estimator of βββγγγ . The
distribution of g is given by

πγγγ(g) = a[ργγγ(b+ n)]a(g + b)−(a+1) · 1{g>ργγγ(b+n)−b},

where a, b > 0 and ργγγ ≥ b/(b+ n). The prior (5) is called robust as its tails behave like
the tails of a multivariate t density, therefore less sensible to outliers.

In this paper, as the focus is solely on model priors, most of the analysis are per-
formed by using the same model-specific parameter prior, the robust prior with hyper-
parameter values a = 1/2, b = 1 and ργγγ = 1/(d+ 1), as recommended in Bayarri et al.
(2012), so differences in the results can be ascribed to differences in the model prior.
For large d simulations and the large real data analysis we have used the g-Zellner prior,
for computational convenience.

3 Model priors in objective variable selection

We begin this section with a short summary about the existing priors, then describe the
loss-based prior in Section 3.1 followed by the choices for the penalty factor in Section
3.2 and the generalized version in Section 3.3.

In principle, the choice of the prior on the model space should incorporate any
prior knowledge about the subsets of covariates which should be included in the model.
A common way of achieving the above result is to subjectively determine ω in equation
(4) (George and McCulloch, 1993). Furthermore, by subjectively fixing ω, so to represent
the proportion of covariates that one believes should be included in the model, will
induce multiplicity correction (Scott and Berger, 2010). To address this issue, Cui and
George (2008) suggested a beta prior distribution on ω

p(Mγ) =

∫ 1

0

p(Mγ |ω)π(ω) dω =
B(a+ |γ|, b+ d− |γ|)

B(a, b)
, (6)

where B(·) is the beta function and a, b are the parameters of the beta prior. Thus, by
setting a and b, one could represent prior knowledge about the true proportion of the
covariates that should be included in the model.
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Alternatively, one may wish to adopt an objective approach and, to the best of our
knowledge, the choice of model prior probabilities which convey minimal information is
limited to two options: the uniform prior and the Scott and Berger prior.

The model uniform prior is obtained by assigning equal prior mass to each regression
model, that is p(Mγγγ) = 1/(2d) for any γγγ, and it yields a prior inclusion probability of
ω = 1/2. Scott and Berger (2010) discuss the following model prior for variable selection

p(Mγγγ) =

∫ 1

0

p(Mγγγ |ω)π(ω) dω

=
1

d+ 1

(
d

|γ|

)−1

. (7)

Their model prior is obtained by assigning a beta prior to ω, with both the hyper-
parameters equal to one, and then marginalising over ω. This prior was previously
discussed in the literature, see for example Ley and Steel (2009), with the aim of repre-
senting prior minimal information. The motivation behind the choice of the model prior
by Scott and Berger (2010) lies in its property to correct for multiplicity, which can
be seen as an issue when model choice is performed by multiple statistical testing with
respect to a reference model (typically the null model or the full model). The Scott
and Berger prior induces a marginal prior inclusion probability of ω = 1/2 for each
covariate, same as the uniform model prior. However, as thoroughly discussed in Scott
and Berger (2010), given that their prior is a function of d, it allows the multiplicity
correction.

Both the uniform prior and the Scott and Berger prior assume that the expected
number of covariates is d/2.

3.1 Model prior based on losses

The model prior based on losses has been introduced by Villa and Walker (2015), where
model selection problems involving nested and non-nested models have been discussed.
However, in Villa and Walker (2015) model complexity was not considered. The basic
idea is that we can assign a worth to each model by objectively measuring what is lost if
the model is removed from the space of models, and it is the true one. While in Villa and
Walker (2015) the worth of a model was associated to a measure of loss in information
only, in cases of variable selection it is sensible to include a component of loss due to
the complexity of the model.

We introduce the idea to assign prior mass to models by means of the following
illustration (from Villa and Walker (2015)). Let us consider three trivial models Mj =
{fj(x|θj), πj(θj)}, for j = 1, 2, 3. Here each model represents a single density. We also
assume that models M1 and M2 (and so densities f1 and f2) are very similar, and
that the third model M3 (density f3) is significantly different from the other two. We
do not question the rational behind this scenario set up, we just assume that there is
one.
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By analysing this scenario in the light of the utility of each model we note that the
worth of models M1 or M2 is less than the one of model M3. In fact, should we lose
either M1 or M2, we would still have the remaining one to “represent” that position in
the set of all possible models. On the other hand, M3 would be more valuable, as its
removal from the set of choices would lead to bad inference if it turned out to be the
true model.

Having identified this approach to assign the mass to each model on the basis of
worth, we see it takes into consideration the “position” of each model with respect to
the others. The quantification of the worth comes from a result in Berk (1966) which
says that, if the model is misspecified, the posterior distribution asymptotically tends to
accumulate at the nearest model in terms of the Kullback–Leibler divergence. Therefore,
if we were to remove model Mj from the set of possible models, and it is the true one, the
loss we would incur is given by the Kullback–Leibler divergence from it to the nearest
of {fi}, i �= j. Thus, by defining the Kullback–Leibler divergence between Mj and Mi

by DKL(fj‖fi) =
∫
fj log(fj/fi) dfj , the loss associated with model Mj would be

l(Mj) = lj = −min
j �=i

DKL(fj‖fi). (8)

That is, the larger the value of minj �=i DKL(fj‖fi) the greater the utility (or, equiva-
lently, the smaller the loss) of keeping the model.

If we consider the mass to be put on each model P (Mj), this can be linked to
the worth of the model via the self-information loss function. The self-information
loss function (also known as the log-loss function in machine learning) measures the
performance of a probability statement with respect to an outcome. Thus, for every
probability assignment P = {P (A), A ∈ Ω}, the self-information loss function is defined
as

l(P,A) = − logP (A).

More details and properties of this particular loss function can be found, for example,
in Merhav and Feder (1998). Therefore, for each model Mj we have a measure of the
information loss related to its worth, given by (8), and related to the self-information,
given by − logP (Mj). We then equate the two losses, yielding

− logP (Mj) = −min
j �=i

DKL(fj‖fi),

equivalently

P (Mj) ∝ exp

{
min
j �=i

DKL(fj‖fi)
}
. (9)

In other words, the mass that we assign to each model is proportional to the exponential
of the Kullback–Leibler divergence between the model and the nearest one in the set of
options.

We can now take the basis of the idea to regression models, that is in a variable
selection scenario.

If we consider the regression model Mγγγ , with the simplified notation θθθγγγ = (α,βββγγγ , φ),
the loss in information associated to the model, equivalent to equation (8), can be
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written as

LI(Mγγγ) = −
∫
θθθγγγ

inf
θθθγγγ′ �=θθθγγγ

DKL

(
f(y|θθθγγγ)‖f(y|θθθγγγ′)

)
πγγγ(θθθγγγ) dθθθγγγ ,

where f(y|θθθγγγ′) represents the regression distribution of Mγγγ′ , that is, the regression
model which is the most similar to f(y|θθθγγγ). We then see that the loss in information
associated to model Mγγγ is the expected minimum Kullback–Leibler divergence between
Mγγγ and the nearest one, where the expectation is taken with respect to the prior πγγγ(θθθγγγ),
representing the prior uncertainty about the true values of α, βββγγγ and φ.

As anticipated, to fully describe the worth of a regression model it is also necessary
to take into considerations the complexity of the model. For the regression model Mγγγ ,
we denote the loss due to complexity by LC(Mγγγ), which it is determined as follows. If
we keep model Mγγγ in the space of models, the loss would be proportional to the number
of covariates that have to be considered and measured. Therefore, the loss of keeping a
linear regression model increases with the number of covariates it contains, and we have

L(remove Mγγγ) = U(keep Mγγγ) = −c · |γγγ|,

and
L(keep Mγγγ) = c · |γγγ|, c > 0,

where L(·) represents a loss and U(·) a utility.

The loss component due to complexity is easily fit in our framework and the model
prior for Mγγγ is

p(Mγγγ) ∝ exp

{∫
θθθγγγ

[
min
γγγ′ �=γγγ

DKL

(
f(y|θθθγγγ)‖f(y|θθθγγγ′)

)
πγγγ(θθθγγγ) dθθθγγγ

]
− c · |γγγ|

}
. (10)

In other words, the prior is constructed based upon a cumulative loss with a compo-
nent representing the loss in information and a component representing the loss due to
complexity.

The following Theorem 3.1 (which proof is in Appendix A in the Supplementary
Material (Villa and Lee, 2019)) shows the expression of the minimum Kullback–Leibler
divergence between regression models.

Theorem 3.1. Let Mγγγ = {f(y|θθθγγγ);πγγγ(θθθγγγ)} and Mγγγ′ = {f(y|θθθγγγ′);πγγγ′(θθθγγγ′)} be linear
normal regression models as in (2), with design matrices, respectively, Xγγγ and Xγγγ′ .
If XT

γγγ′Xγγγ′ is invertible, the minimum Kullback–Leibler divergence between f(y|θθθγγγ) and
f(y|θθθγγγ′) is

min
θθθγγγ′

DKL

(
f(y|θθθγγγ)‖f(y|θθθγγγ′)

)
= 0 ∀γγγ �= γγγ′. (11)

Theorem 3.1 shows that the minimum Kullback–Leibler divergence between any two
linear regression models is zero, regardless to the number of covariates in the models.
This means that, in variable selection problems for linear regression models, there is
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no loss in information in selecting the “wrong” model, as such the model prior in (10)
becomes

p(Mγγγ) ∝ exp {−c · |γγγ|} . (12)

It is therefore equation (12), for a suitable c, that will be used in the paper to
represent the prior uncertainty on the space of regression models.

3.2 Setting the constant c

The proposed prior in (12) depends on the constant c, which can be interpreted as
the penalty factor on the number of covariates included. So, the question is how to
calibrate c, noting that it controls the rate at which the prior decreases as the model size
increases, as well as the way the prior behaves. Here we discuss some ideas, intended to
help the analyst, but we do not claim to be exhaustive. Our intention is to provide some
insights on how the choice of c can be carried out on the basis, for example, whether
prior information about the covariates to be included in the model is available, or if
multiplicity correction is a matter of concern. There are fundamentally three options;

• c is fixed to a specific value. This can be either on the basis of any available
initial knowledge about the number of covariates to be included in the model or
in agreement to some criterion.

• c is a function of d.

• Adopting a hierarchical approach, a prior is assigned on c. Here as well it is possible
to reflect any available prior information in the hierarchical structure or opt for a
noninformative choice.

Fixed c If the constant c is fixed to a specific value which does not depend on the
total number of covariates in the problem (see the next paragraph below), there is
no multiplicity correction unless this reflects some prior knowledge (Scott and Berger,
2010). Although one may agree that multiplicity correction is one way to define model
prior probabilities in an objective sense, it is argued that this is not a necessary condition
for a model prior to satisfy, in particular if the problem of interest is related to prediction.
Furthermore, this is not an issue should one believe that for variable-selection problems
the approach should be in line with the Bayesian framework of having prior and posterior
probability representing, respectively, prior and posterior uncertainty.

To understand how the constant c acts like a penalty factor, we note that as c → 0,
p(Mγγγ) → 1/{2d} for all models, yielding the uniform prior. As c gets larger, the prior
assigns more and more mass to sparse models, and the rate at which the prior drops to
zero increases.

The noninformative criterion we propose to set c is based on maximising the expected
loss with respect to c. From equation (12), let K = |γ|; then the prior on model size
K = k given c is

P (k|c) ∝
(
d

k

)
e−ck,
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which, normalised, gives

P (k|c) =

(
d

k

)
e−ck

/ d∑
l=0

(
d

l

)
e−cl

=

(
d

k

)
e−ck

(e−c + 1)d
. (13)

Then, the expectation of K given c > 0 is

E(K|c) =
d∑

k=0

kP (k|c) = d

ec + 1
,

and the expected loss, in terms of c, is given by

EL(K|c) = c
d

ec + 1
. (14)

We note that (14) goes to 0 for c → 0 and for c → ∞. As such, we can maximise the
expected loss in terms of c. Differentiating

d

dc

cd

ec + 1
∝ [log c− log(ec + 1)]

=
1

c
− ec

ec + 1
,

which solution gives c = W (e−1) + 1 ≈ 1.2785, where W (·) is the Lambert W function.

In our simulation study, the choice is c ≈ 1.2785 and the sensitivity raised by c
is numerically examined using real data sets in Section 5. We noted the conservative
aspect that the above choice induces a prior inclusion probability of ω = 0.22, as it can
be seen from equation (15) below.

Function of d The idea is to identify some specific functions of the total number of
covariates under examination that have desirable properties. Having then c dependent
on d, the prior corrects for multiplicity (Scott and Berger, 2010). First, we note that it
is advisable to have a prior capable to produce sensible results even for large values of
d. This is dictated to the obvious fact that modern regression models can easily include
thousands (and more) covariates. One choice could simply be to set c = d; however,
even for moderate values of d, the prior will exhibit an extremely fast decrease to zero
with the consequence of assigning most of the mass to the very sparse models. Another
possible choice would be to set c = d−1. While this function would allow to avoid the
previous undesirable behaviour, the consequence is that the prior will rapidly converge
to a uniform prior, with all the negative caveats discussed in Scott and Berger (2010).
We believe that a sensible choice is to have c = log(d). In a scenario of sparsity, most of
the considered covariates will bring little (if not zero) information; as such, a desirable
property of the prior would be to not “implode” as d grows, which is the case of, for ex-
ample, the above choice of c = d. At the same time, it would be desirable to have a prior
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that it is sensible to minimal changes for small d. A process that exhibit this behaviour
is the logarithmic process, which shows rapid growth when it is small and slow growth
when it is large. Hence, having c = log(d) appears to be a sensible choice, and results
for simulated data in Section 4 appear to provide empirical support for this choice.

Hierarchical approach The third approach to calibrate c consists in assigning a prior
distribution to c; thus, obtaining

P (Mγγγ) =

∫ ∞

0

P (Mγγγ |c)π(c) dc,

for a suitable density π(c). Although setting, for example, c ∼ Ga(a, b), for some a, b > 0,
represents a sensible choice, the resulting prior would be analytically intractable and,
moreover, the calibration of the hyperparameters a and b is not straightforward. A more
interpretable approach is as follows. First, we note that

P (Mγγγ |c) = e−c|γ|
/ d∑

l=0

(
d

l

)
e−cl

=
e−c|γ|

(1 + e−c)d

=

(
1

1 + ec

)|γ| (
ec

1 + ec

)d−|γ|
, c > 0, k = 0, 1, . . . , d.

We then set ω = (1 + ec)−1, giving

P (Mγγγ |c) = ω|γ|(1− ω)d−|γ|, ω ∈ (0, 1/2). (15)

By assigning the following Generalised Beta distribution to ω,

π(ω) =
2p

B(p, q)
ωp−1(1− 2ω)q−1, p, q > 0, (16)

that is ω ∼ GB(a = 1, b = 1/2, c = 0, p, q), we have

P (Mγγγ) =

∫ 1/2

0

P (Mγγγ |c)π(ω) dω. (17)

By inserting (15) and (16) in equation (17), we have

P (Mγγγ) =

∫ 1/2

0

ω|γ|(1− ω)d−|γ| 2p

B(p, q)
ωp−1(1− 2ω)q−1 dω

=
2p

B(p, q)

∫ 1/2

0

ω|γ|+p−1(1− ω)d−|γ|(1− 2ω)q−1 dω

=
2p

B(p, q)

∫ 1/2

0

ω|γ|+p−1(1− ω)d−|γ|
q−1∑
m=0

(
q − 1

m

)
(−2)mωm dω
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=
2p

B(p, q)

q−1∑
m=0

(
q − 1

m

)
(−2)m

∫ 1/2

0

ωm+|γ|+p−1(1− ω)d−|γ| dω

=
2p

B(p, q)

q−1∑
m=0

(
q − 1

m

)
(−2)mB1/2(m+ |γ|+ p, d− |γ|+ 1), (18)

where B1/2(·, ·) is the incomplete Beta function defined over (0, 1/2).

The hyperparameters p and q can be chosen to reflect prior information about ω
(and hence about c), if available. A noninformative option would be to assign a uniform
prior to ω, corresponding to a Generalised Beta distribution with p = q = 1, giving
π(ω) = 2, for ω ∈ (0, 1/2). The prior of the regression model, from (18) above, Mγγγ

becomes

P (Mγγγ) = 2

∫ 1/2

0

ω|γ|(1− ω)d−|γ| dω

= 2B1/2(|γ|+ 1, d− |γ|+ 1).

Should one be interested in expressing the prior distribution with respect to the number
of covariates included in the regression model, K = k, one has to consider

P (k|c) =

(
d

k

)(
1

1 + ec

)k (
ec

1 + ec

)d−k

=

(
d

k

)
ωk(1− ω)d−k,

with ω = (1 + ec)−1. We have, by assigning a Generalised Beta distribution to ω,

P (k) =

(
d

k

)
2p

B(p, q)

q−1∑
m=0

(
q − 1

m

)
(−2)mB1/2(m+ k + p, d− k + 1),

and, for p = q = 1, that is the noninformative choice,

P (k) =

(
d

k

)
2B1/2(k + 1, d− k + 1).

Figure 1 compares the proposed prior with c = 1.2785, c = log(d) and the hierar-
chical loss-based to the Scott and Berger prior for d = 30. In other words, it compares
noninformative choices of P (k). Whilst Scott and Berger prior has a symmetrical be-
haviour, the proposed prior assigns more mass to the more simple models than to the
more complex ones, as expected from expression (12). We note how the different choice
of c impacts the rate at which the prior mass decreases as the model becomes more
complex. In particular, for c = log(d) the prior assigns the highest mass to the null
model with a quick drop in the prior probability for already moderate values of the
number of covariates. While the choice of setting c = 1.2785 allows for a more dis-
tributed prior mass among the sparse model. The hierarchical approach, as it can be
seen from the plot, yields a prior distribution that is relatively high for values of the
number of covariates smaller than d/2, to decrease towards zero afterwards. It is the
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Figure 1: Prior model comparison when the full model contains d = 30 covariates.

above characteristics of the proposed prior of assigning more pass to the lower region
of the parameter space (although with different behaviours) that makes the loss-based
prior more suitable in scenarios where preference is put on the more sparse models,
when compared to the Scott and Berger prior.

Figure 2 below shows examples of the loss-based prior for different values of the
parameters p and q reflecting, respectively, an approximate prior mean of 1, 3, 5 and

Figure 2: Loss-based prior obtained by using the hierarchical approach with the Gener-
alised Beta.
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7 (with d = 30). The parameters, numerically obtained, of the Generalised Beta are,
respectively, p = 1, 6, 8, 8 and p = 14, 23, 16, 9.

4 Simulation study

In this section we present the results of simulation studies designed to assess the per-
formance of the proposed prior and to compare it to the Scott and Berger’s prior. We
consider different scenarios, in terms of number of covariates, sample size as well as
whether prior information is available or not.

It is well known that a variable selection problem is driven by both the choice of
the model prior and of the model-specific parameter prior. However, here the interest
is in the effects on variable selection determined by the prior probability on the space
of models. As such, the simulation exercise described has the purpose to analyse the
frequentist properties of the posterior distribution on the model size and, to minimise
any possible effects of the model-specific parameters prior, we choose to use the robust
prior for the parameter of the regression.

In the first simulation study, the performances of the priors for various scenarios
are compared considering the posterior means squared error from the mean (MSE), the
coverage of the posterior 95% credible interval and the frequency rate for identifying
the true model by the HPM. The detailed results are reported in Tables in Appendix
B (included in the Supplementary Material), while graphical analysis of the MSE and
the coverage will be presented in the current Section. The second simulation study is
limited to relatively sparse models and it consider the case where prior information, in
terms of the mean number of covariates the model should include, is available and it
is reflected in the choice of prior hyperparameter(s). The simulation considers correct
prior information as well as inaccurate prior knowledge.

4.1 Non-informative simulation

The study involves 250 experiments and each experiment uses four data sets, one for
each d = 5, 10, 15, 30, and repeated for n = 50 and n = 100. The procedure of each
experiment follows;

• Generate a design matrix X of size n × d where each element is an independent
realisation of a standard normal distribution;

• Generate a binary vector γγγ from a sequence of d independent Bernoulli experi-
ments with probability of success equal to ω;

• From the robust prior in (5), generate the vector of coefficients βββγγγ ;

• Generate the response vector from the regression model in (1), considering φ = 1;

• Using the above values of the design matrix and the vector of responses, compute
the necessary quantities, including the marginal likelihoods, the model posteriors
and the model size posterior distribution.
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Figure 3: Coverage of the 95% posterior credible interval under the Scott and Berger
prior and the loss-based prior, for the three methods of calibration of c. The plots
represent the posterior summary statistic for different values of d and for n = 50.

The last step of the above procedure has been performed under the Scott and Berger
prior and the loss-based prior with the three proposed methods to calibrate c, that is
setting c = 1.2785 (so to maximise the expected loss), c = log(d) and the hierarchical
approach as described in the previous section, where the parameters of the Generalised
Beta have been both set to one. These choices for c are made for the case in which no
prior information about the true model size is available, but sparsity is expected.

The simulation result using the loss-based prior and Scott and Berger prior are
summarized in Appendix B (included in the Supplementary Material). Five values of
ω are considered to examine small to large model sizes. For each model prior, the
coverage of the 95% credible interval of the posterior (Coverage), the mean squared
error of posterior mean (MSE Mean) and frequency rate of the HPM equals to the true
model (Freq. True) from 250 experiments are estimated. Finally, we note that for d = 30
we have used a Gibbs search to explore the space of models resulting in relatively low
frequencies for the true model, as well as a larger variability in the different performances
of the priors.

The coverage (Figures 3 and 4) under the Scott and Berger prior appears to be the
most stable across sample size and model size, although it is mostly above the nominal
value of 95%. The prior we propose appears to have a relatively low coverage when
ω = 0.75; this is particularly obvious for the prior with c = log(d) set up, and it is due
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Figure 4: Coverage of the 95% posterior credible interval under the Scott and Berger
prior and the loss-based prior, for the three methods of calibration of c. The plots
represent the posterior summary statistic for different values of d and for n = 100.

to the fact that the distribution goes to zero (for large k) much faster than the other
two loss-based options. However, the loss-based prior shows an overall performance in
the coverage closer to the nominal value than the Scott and Berger’s. For n = 100, as
one would expect, the differences between the priors becomes smaller in comparison to
the case n = 50; again, we notice that the loss-based prior with c = log(d) has the worst
performance when ω = 0.75.

Considering the HPM when it refers to the true model, we note that all the priors
exhibit a similar pattern (Appendix B in the Supplementary Material). In fact, for any
value of d, the frequency the true model is identified decreases as the average model size
(i.e. ω) increases. For n = 50 the frequencies between the priors have more variability
when compared to the case n = 100. Furthermore, more variability in the performance
is observed for d = 30; as in this case the inference is performed through a random
exploration of the model space (i.e. Gibbs), a higher degree of uncertainty is included
in the process by the fact that the model space itself is very large.

Comparing the MSE in Figure 5 and Figure 6, we note the following. First, as
expected, the MSE is larger for n = 50 then for n = 100 as the information in the
data increases. For d = 5, that is for a small model space, the priors tend to be quite
similar, overall. We note that the Scott and Berger prior tends to perform better for
relatively large models, while the loss-based priors with c = 1.2785 and c = log(d) have
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Figure 5: MSE under the Scott and Berger prior and the loss-based prior, for the three
methods of calibration of c. The plots represent the posterior summary statistic for
different values of d and for n = 50.

smaller MSE for ω = 0.05. The loss-based prior with a hierarchical approach has the
largest MSE for relatively smaller models, and this behaviour is consistent for any n
and any d. In fact, its behaviour of spreading most of its mass evenly in the lower part
of the parameter space of k, renders it weak in dealing with models with a relatively
small number of covariates. When d is either 10 or 15, we note a similar pattern in
the remaining priors (the Scott and Berger’s and the loss-based with c = 1.2785 and
c = log(d)) as to when d = 5. Differences are a bit more accentuated, in particular for
small sample sizes, but the overall performances are quite stable. As we have observed for
the frequency of “guessing” the true model, when d = 30 the random search contributes
in increasing the variability of the differences. For example, the Scott and Berger prior
does not have the smallest MSE for ω = 0.75.

Undoubtedly, the Scott and Berger prior will have a higher degree of efficiency
when the true model is the full model (or a true model that contains a very large
proportion of possible covariates). In fact, if one suspects that the true model is quite
large, possibly this is the prior to employ. On the other hand, when the model tends to
be sparse (or when it is thought that this is the case), the loss-based approach appears
to give better results; at least, when we calibrate c = 1.2785 or c = log(d). The latter
option might be preferable should one be concerned with multiplicity correction. The
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Figure 6: MSE under the Scott and Berger prior and the loss-based prior, for the three
methods of calibration of c. The plots represent the posterior summary statistic for
different values of d and for n = 100.

hierarchical approach here explored, when non information is included in the prior, is
the less preferable, as it has been shown by the summary statistics considered.

4.2 Informative simulation

In this simulation study we analyse the performance of the loss-based prior when prior
information about the true size of the model is available and we compare its performance
with the Beta-Binomial prior with same mean and variance. For the coefficients, we have
employed the ‘robust’ prior in (5). We have simulated 200 data sets of different sizes,
n = 50, 100, with d = 5, 10, 15, covariates. We have started by considering the vector of
coefficients βββ = (0.5,−0.5, 0, 0,−1) for d = 5 and added 5 and 10 extra null coefficients
for the simulations with, respectively d = 10 and d = 15. As all scenarios yielded the
same conclusion that the priors perform in the same manner, we show the details of the
more complex ones only, that is for n = 50, 100 and d = 15. We proceeded as follows.

We assume to have prior information about the mean number of covariates that the
true model includes, say m, and we look at scenarios where this information is correct,
i.e. m = 3, and where it is inaccurate, i.e. m = 1, 5, 7. With this piece of information,
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m c Var(K) a b
1 2.64 0.93 131 1828
3 1.39 2.40 672 2687
5 0.69 3.33 233 466
7 0.13 3.73 3658 4181

Table 1: Values of c, a and b for the simulation study to compare the loss-based prior
with the Beta-Binomial prior for d = 15.

we obtain the value of c for the loss-based prior in (12) by setting

E(K|c) = d

ec + 1
= m. (19)

With the obtained value of c, we then derive the variance of the loss-based prior by
applying

Var(K|c) = E(K2|c)− [E(K|c)]2

=
d(ec + d)

(ec + 1)2
− d2

(ec + 1)2

=
dec

(ec + 1)
. (20)

For example, for d = 5 and m = 1, we have c = 2.64 and Var(K) = 0.31. We then
obtain the values of a and b of the Beta-Binomial prior by equating the expectation and
the variance of the distribution to m and Var(K), respectively, and solve with respect
to the two parameters. Table 1 shows the values associated with the simulation study
for d = 15 and m = 1, 3, 5, 7. The results for n = 30 and n = 100 are reported in
Appendix C (included in the Supplementary Material) in graphical form. We note that
the loss-based prior and Beta-Binomial prior, when they have same means and same
variances, is almost identical (within the same scenario and for the same coefficient). As
one would expect, the posterior inclusion probability reflects more accurately the true
nature of a coefficient when n is relatively large; or when the true value is relatively
different from zero (i.e. for β5). If we consider the priors performance on the basis of the
accuracy of the prior information m, we see that the posterior inclusion probabilities
of the non-null coefficients is better for a large (although inaccurate) m in the case
of n = 50. This is a consequence of having a prior that puts more mass on relatively
large models; however, there is also a larger inclusion of null coefficients. For n = 100
the above effect is drastically reduced, in the sense that for m = 3 (the true value),
the inclusion posterior probabilities, overall, reflect the true status of the regression
model.

The Figures in Appendix C (refer to the Supplementary Material) contain also the
results when the hierarchical loss-based prior is used (right violin plots). The parameters
p and q of the Generalised Beta density have been chosen so to have mean m and
variance similar to the one in Table 1 (as mentioned at the end of Section 3 above). We
note that, for n = 50, the hierarchical loss-based prior has similar performances to the
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other priors when the coefficient is either 0 or -1 (i.e. β3 to β15). When β = ±0.5, i.e.
β1 and β2, its performance appear to be better when the prior information about the
mean is either accurate or larger than the true one. In fact, we note that the means of
the posterior inclusion probabilities are above 0.5. For m = 1, although the posterior
inclusion probability yielded (in mean) is below the 0.5 threshold, it has a larger value
when any of the other two priors is used. For n = 100, the above differences are still
noticeable, but with the magnitude that is diminished by the increase in information in
the data.

A remark is that the loss-based prior has only one parameter that has to be cali-
brated. This allows a single piece of information (e.g. the mean) to be easily reflected in
the prior, while the Beta-Binomial prior and the hierarchical loss-based would need to
fix one of the to parameters “freely”. It is true that two parameters would allow to in-
clude an extra piece of information, such as variability, but in practice this information
is not known or, at least to a practitioner, it is not easy to define.

5 Illustrative examples with real data sets

In this section we investigate the properties of objective model priors for variable se-
lection in real data sets. The first considered data set is the Hald data (Woods et al.,
1932), which have been extensively used in the literature (see Kubinyi (1996) and Liang
et al. (2008), for example). The second data set considered concerns with the study of
gene expression data in colon cancer patients (Calon et al., 2012). For both examples
we compare the Scott and Berger prior with the three approaches for the loss-based
prior discussed in Section 3.2.

5.1 Hald data

The Hald data set contains n = 13 observations with d = 4 covariates, and it con-
cerns an engineering application to study the cement composition (Woods et al., 1932).
In particular, the study considers the effect on the heat evolved per gram of cement
(in calories) by the amount of tricalcium aluminate, the amount of tricalcium silicate,
the amount of tricalcium aluminio ferrite and the amount of dicalcium silicate.

The summary statistics of the model size posterior distributions are presented in
Table 2. The corresponding histograms of the posterior distributions are represented
in Figure 7. The loss-based priors appear to yield similar posteriors for the number of
covariates. In fact, the posterior distributions have very similar statistics and histograms.
The Scott and Berger prior is more spread with a slightly higher mean. Although the
above differences, all priors basically point in the direction of the same regression model
for the Hald data set.

The above conclusion is supported by the information in Table 3, where we note that
the MPM is the same under each prior with posterior inclusion probabilities that clearly
suggest the inclusion of both the Tricalciums and the exclusion of the remaining two co-
variates. In the table we have also reported the posterior probabilities associated to the



552A Loss-Based Prior for Variable Selection in Linear Regression Methods

Model prior Mean Median SD 95% C.I. HPM MPM
Scott & Berger 2.41 2 0.81 (2,4) 2 2
Loss-based (c = 1.2785) 2.09 2 0.72 (2,3) 2 2
Loss-based (c = log(d)) 2.08 2 0.72 (2,3) 2 2
Loss-based (Hierarcical) 2.12 2 0.71 (2,3) 2 2

Table 2: Comparison of the posterior summary statistics for the Hald data set. Four
statistics for the number covariates are measured: mean, median, standard deviation
(SD) and the 95% confidence interval (95% C.I.). The number of covariates included
in the HPM and in the MPM are reported. The hierarchical version of the Loss-based
prior is as discussed in Section 3.2 and it is based on the Generalised Beta distribution
with parameters p = q = 1.

Figure 7: Posterior distribution of the number of covariates for the Hald data set. Four
model priors are considered: Scott and Berger, loss-based proposed prior with c = 1.2785
(to maximise the expected loss), the loss-based prior with c = log(d) = log(4) = 1.39
and the loss-based prior with the hierarchical approach based on the Generalised Beta
distribution GB(1,1).

highest posterior density (HPD) interval. Again, the conclusions are in direction on the
above model, but we note that the loss-based prior (under each method) yields a pos-
terior probability definitely larger than the once yielded by the Scott and Berger prior.
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Posterior Inclusion Probability
Covariate S&B LB-ml LB-lg LB-gb
Ticalcium aluminate 0.98• 0.99• 0.99• 0.99•
Tricalcium silicate 0.76• 0.75• 0.75• 0.75•
Tetracalcium alumino ferrite 0.26 0.09 0.06 0.08
Dicalcium silicate 0.42 0.29 0.28 0.30
HPM Posterior Prob. 0.47 0.69 0.69 0.67

Table 3: Posterior inclusion probabilities for the Hald data set. The covariates with
a posterior inclusion probability greater than 1/2 are highlighted in bold, and a dot
notation represents the covariate included in the highest posterior probability model.
The prior compared are: S&B (Scott and Berger), LB-ml (loss-based with c = 1.2785,
to maximise the expected loss), LB-lg (loss-based with c = log(d)) and LB-gb (hierar-
chical loss-based using the Generalised Beta GB(1,1)). The table includes the posterior
probability of the HPM under each prior.

5.2 Large data set analysis

Data sets with a large number of covariates are, nowadays, widespread. It is therefore
important to illustrate how the proposed method deals with a practical problem with
a large size, in terms of covariates. We illustrate the prior performance with the human
micro-array gene expression data in colon cancer patients. This data set was originally
discussed in Calon et al. (2012) and it consists of d = 172 predictors for a total of
n = 262 patients. The aim is to identify which genes have an effect on the expression
of transforming growth factor-beta (TGFB). Although the whole data set consists of
10, 172 genes, we limit the dimension as we are working under the assumption that
n > d, and the first 172 genes are the key ones for a preliminary analysis (Rossell
and Telesca, 2017). The analysis has been performed by running 10000 simulations,
with a burn-in period of 500, using the Gibbs-search mechanism implemented into the
‘BayeVarSel’ R-package under the g-Zellner prior with g = d2. Posterior statistics are
summarised in Table 4, while Table 5 shows the probeset identifiers (which can be
associated to genes ESM1, GAS1, HIC1, CILP and IGFBP3) contained in the HPMs
under each prior distribution.

When we consider a large data set we note important differences in the priors.
Both Scott and Berger and the loss-based prior with c = log(d) give similar results.
In particular, in Table 4 we see that the posterior statistics are virtually the same
and, from Table 5, that they both identify as the “best” model the one with four
probesets. When we consider the loss-based prior with a value of c chosen so that
the expected loss is maximised, the posterior statistics appear to suggest a slightly
larger model than the previous one, which is supported by the fact that the extra
probeset ‘212143 s at’ is included in the model; although the inclusion posterior prob-
ability is only 0.51. Differently, when the loss-based hierarchical prior is adopted, the
inferential process results in what is a different outcome; in fact, the posterior statis-
tics show a wider posterior distribution for the number of covariates and probeset
‘212143 s at’ is included but with a larger posterior probability (0.75) compared to
the above one.
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Model prior Mean Median SD 95% C.I. HPM MPM
Scott & Berger 4.20 4 0.85 (4,5) 4 4
Loss-based (c = 1.2785) 5.71 6 1.38 (4,8) 5 5
Loss-based (c = log(d)) 3.92 4 0.87 (3,5) 4 4
Loss-based (Hierarcical) 8.86 9 2.07 (4,13) 5 5

Table 4: Comparison of the posterior summary statistics for the gene expression data
set. Four statistics for the number covariates are measured: mean, median, standard
deviation (SD) and the 95% confidence interval (95% C.I.). The number of covariates
included in the HPM and in the MPM are reported. The hierarchical version of the
Loss-based prior is as discussed in Section 3.2 and it is based on the Generalised Beta
distribution with parameters p = q = 1.

Covariate Posterior Inclusion Probability
(Probeset) S&B LB-ml LB-lg LB-gb
208394 x at 0.82• 0.84• 0.76• 0.84•
204457 s at 0.99• 0.99• 0.99• 0.99•
230218 at 0.95• 0.93• 0.95• 0.86•
206227 at 0.98• 0.99• 0.94• 0.99•
212143 s at 0.23 0.51• 0.19 0.75•

Table 5: Posterior inclusion probabilities for the gene expression data set. The covariates
with a posterior inclusion probability greater than 1/2 are highlighted in bold, and
a dot notation represents the covariate included in the highest posterior probability
model. The prior compared are: S&B (Scott and Berger), LB-ml (loss-based with c =
1.2785, to maximise the expected loss), LB-lg (loss-based with c = log(d)) and LB-gb
(hierarchical loss-based using the Generalised Beta GB(1,1)). The table includes the
posterior probability of the HPM under each prior.

6 Discussion

This paper introduces a novel prior distribution for the model space in variable selection
for linear regression. The prior is based on the idea that, if the “wrong” model is
chosen, we incur in a cumulative loss with two components: one represents the loss
in information and one related to the complexity of the model expressed by its size.
The proposed prior, in its general form, exhibits an exponential decay which depend
on the number of covariates included in the model and that can be controlled by the
calibration of a constant c. It is therefore possible to reflect any prior information into
the prior by setting the constant accordingly. For example, in Section 4.2 we discuss
how the constant c can be set up so to reflect a prior expected number of covariates that
should be included in the regression model. We also discuss how prior information can
be included through a hierarchical approach, in particular by means of a Generalised
Beta hyperprior.

It is also possible to represent minimal information in the prior by choosing particular
values of the parameters of the prior. In the paper, besides showing through simulation
how choices of c perform, we have discussed some general guidelines on how it can be
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fixed, considering or not considering correction for multiplicity, and how c can be either
directly fixed or modelled through an appropriate prior density in a hierarchical set up.

The simulation studies are carried out to show frequentist performance of the pro-
posed model prior relative with selective choices on c and they are compared to the Scott
and Berger prior (Scott and Berger, 2010), when the true model is relatively sparse. In
the case where prior information about the model size is available, we show how the
constant c can be easily calibrated so to reflect, for example, prior information about
the mean number of covariates one believes should be included in the model.

When it comes to real data analysis, we note a fair closeness of the results obtained
by using the proposed prior with the one of Scott and Berger’s when the size of the
problem is small (Hald data). Both MPM and HPM represent the same regression model
under each prior, although the loss-based priors result in a higher posterior probability
for the HPM than Scott and Berger’s.

We have also analysed a relatively large data set (colon cancer data), in terms on
number of covariates. Here we note that the loss-based prior with c = log(d) and the
Scott and Berger prior give very similar results. The loss-based prior with c = 1.2785 and
the hierarchical loss-based prior, on the other hands, identifies a slightly larger model.

Supplementary Material

A loss-based prior for variable selection in linear regression methods. Supplementary Ma-
terial (DOI: 10.1214/19-BA1162SUPP; .pdf). The Supplementary Material of “A loss-
based prior for variable selection in linear regression” contains the Appendices A, B
and C.
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M. V., Sevillano, M., Nadal, C., Jung, P., Zhang, X. H. F., Byrom, D., Riera, A.,
Rossell, D., Mangues, R., Massague, J., Sancho, E. and Batlle, E. (2012). “Depen-
dency of colonrectal cancer on the tgf-beta-driven programme in stromal cells for
metastasis initiation.” Cancer Cell 22, 571–584. 533, 551, 553

Carlin, B. and Louis, T. (2000). “Empirical Bayes: Past, present and future.” Journal
of the American Statistical Association 95, 1286–1289. MR1825277. doi: https://
doi.org/10.2307/2669771.

Casella, G. and Moreno, E. (2006). “Objective Bayesian variable selection.” Journal of
the American Statistical Association 101, 157–167. MR2268035. doi: https://doi.
org/10.1198/016214505000000646.

Clyde, M. A. and George, E. I. (2004). “Model uncertainty.” Statistical Science 19,
81–94. MR2082148. doi: https://doi.org/10.1214/088342304000000035.

Cui, W. and George, E. I. (2008). “Empirical Bayes vs. fully Bayes variable se-
lection.” Journal of Statistical Planning and Inference 138, 888–900. MR2416869.
doi: https://doi.org/10.1016/j.jspi.2007.02.011. 536

Fernández, C., Ley, E. and Steel, M. F. J. (2001). “Benchmark priors for Bayesian model
averaging.” Journal of Econometrics 100, 381–427. MR1820410. doi: https://doi.
org/10.1016/S0304-4076(00)00076-2.
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