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Variance Prior Forms for High-Dimensional
Bayesian Variable Selection

Gemma E. Moran∗, Veronika Ročková† and Edward I. George‡

Abstract. Consider the problem of high dimensional variable selection for the
Gaussian linear model when the unknown error variance is also of interest. In this
paper, we show that the use of conjugate shrinkage priors for Bayesian variable
selection can have detrimental consequences for such variance estimation. Such
priors are often motivated by the invariance argument of Jeffreys (1961). Revisit-
ing this work, however, we highlight a caveat that Jeffreys himself noticed; namely
that biased estimators can result from inducing dependence between parameters
a priori. In a similar way, we show that conjugate priors for linear regression,
which induce prior dependence, can lead to such underestimation in the Bayesian
high-dimensional regression setting. Following Jeffreys, we recommend as a rem-
edy to treat regression coefficients and the error variance as independent a priori.
Using such an independence prior framework, we extend the Spike-and-Slab Lasso
of Ročková and George (2018) to the unknown variance case. This extended pro-
cedure outperforms both the fixed variance approach and alternative penalized
likelihood methods on simulated data. On the protein activity dataset of Clyde
and Parmigiani (1998), the Spike-and-Slab Lasso with unknown variance achieves
lower cross-validation error than alternative penalized likelihood methods, demon-
strating the gains in predictive accuracy afforded by simultaneous error variance
estimation. The unknown variance implementation of the Spike-and-Slab Lasso is
provided in the publicly available R package SSLASSO (Ročková and Moran, 2017).

Keywords: Bayesian variable selection, Bayesian shrinkage, Jeffreys’ priors,
penalized likelihood, Spike-and-Slab Lasso.

1 Introduction

Consider the classical linear regression model

Y = Xβ + ε, ε ∼ Nn(0, σ
2In) (1.1)

where Y ∈ R
n is a vector of responses, X = [X1, . . . ,Xp] ∈ R

n×p is a fixed regression
matrix of p potential predictors, β = (β1, . . . , βp)

T ∈ R
p is a vector of unknown regres-

sion coefficients and ε ∈ R
n is the noise vector of independent normal random variables

with σ2 as their unknown common variance.

When β is sparse so that most of its elements are zero or negligible, finding the
non-negligible elements of β, the so-called variable selection problem, is of particular
importance. Whilst this problem has been studied extensively from both frequentist
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and Bayesian perspectives, much less attention has been given to the simultaneous es-
timation of the error variance σ2. Accurate estimates of σ2 are important to discourage
fitting the noise beyond the signal, thereby helping to mitigate overfitting of the data.
Variance estimation is also essential in uncertainty quantification for inference and pre-
diction.

In the frequentist literature, the question of estimating the error variance in our
setting has begun to be addressed with papers including the scaled Lasso (Sun and
Zhang, 2012) and the square-root Lasso (Belloni et al., 2014). Contrastingly, in the
Bayesian literature, the error variance has been fairly straightforwardly estimated by
including σ2 in prior specifications. Despite this conceptual simplicity, the majority of
theoretical guarantees for Bayesian procedures restrict attention to the case of known
σ2, as there is not a generally agreed upon prior specification when σ2 is unknown. More
specifically, priors on β and σ2 are typically introduced in one of two ways: either via
a conjugate prior framework or via an independence prior framework.

Conjugate priors have played a major role in regression analyses. The conjugate
prior framework for (1.1) begins with specifying a prior on β that depends on σ2 as
follows:

β|σ2 ∼ N(0, σ2V), (1.2)

where V may be fixed or random. This prior (1.2) results in a Gaussian posterior for
β and as such is conjugate. To complete the framework, σ2 is assigned an inverse-
gamma (or equivalently scaled-inverse-χ2) prior. A common choice in this regard is the
right-Haar prior for the location-scale group (Berger et al., 1998):

π(σ) ∝ 1/σ. (1.3)

Whilst the right-Haar prior is improper, it can be viewed as the limit of an inverse-
gamma density. When combined with (1.2), the prior (1.3) results in an inverse-gamma
posterior for σ2 and as such it behaves as a conjugate prior. Prominent examples that
utilize the above conjugate prior framework include:

• Bayesian ridge regression priors, with V = τ2I;

• Zellner’s g-prior, with V = g(XTX)−1; and

• Gaussian global-local shrinkage priors, with V = τ2Λ, for Λ = diag{λj}pj=1.

We note that the conjugate prior framework refers only to the prior characterization of
β and σ2, and allows for any prior specification on subsequent hyper-parameters such
as g and τ2 which do not appear in the likelihood.

A main reason for the popularity of the conjugate prior framework is that it of-
ten allows for marginalization over β and σ2, resulting in closed form expressions for
Bayes factors and updates of posterior model probabilities. This allowed for analyses of
the model selection consistency (Bayarri et al., 2012) as well as more computationally
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efficient MCMC algorithms (George and McCulloch, 1997). Despite these advantages,
however, the conjugate prior framework is not innocuous for variance estimation, as we
will show in this work.

Alternatively to the conjugate prior framework, one might treat β and σ2 as inde-
pendent a priori. The formulation corresponding to (1.2) for this independence prior
framework is:

β ∼ N(0,V), (1.4)

π(σ) ∝ 1/σ.

Note that the prior characterization (1.4) does not yield a normal inverse-gamma pos-
terior distribution on (β, σ2) and as such is not conjugate.

In addition to the above prior frameworks, Bayesian methods for variable selection
can be further categorized by the way they treat negligible predictors. Discrete compo-
nent Bayesian methods for variable selection exclude negligible predictors from consid-
eration, adaptively reducing the dimension of β. Examples of such discrete component
methods include spike-and-slab priors where the “spike” distribution is a point-mass
at zero (Mitchell and Beauchamp, 1988). In contrast, continuous Bayesian methods for
variable selection shrink, rather than exclude, negligible predictors and as such β re-
mains p-dimensional (George and McCulloch, 1993; Polson and Scott, 2010; Ročková
and George, 2014).

In this paper, we show that for continuous Bayesian variable selection methods, the
conjugate prior framework can result in underestimation of the error variance when: (i)
the regression coefficients β are sparse; and (ii) p is of the same order as, or larger than
n. Intuitively, conjugate priors implicitly add p “pseudo-observations” to the posterior
which can distort inference for the error variance when the true number of non-zero
β is much smaller than p. This is not the case for discrete component methods which
adaptively reduce the size of β. To avoid the underestimation problem in the continuous
case, we recommend the use of independent priors on β and σ2. Further, we extend the
Spike-and-Slab Lasso of Ročková and George (2018) to the unknown variance case with
an independent prior formulation, and highlight the performance gains over the known
variance case via a simulation study. On the protein activity dataset of Clyde and
Parmigiani (1998), we demonstrate the benefit of simultaneous variance estimation for
both variable selection and prediction.

It is important to note the difference in the scope of this work with previous work
on variance priors, including Gelman (2004); Bayarri et al. (2012); Liang et al. (2008).
Here, we are focused on the estimation of the error variance, σ2. In contrast, the afore-
mentioned works are concerned with the choice of priors for hyper-parameters which
do not appear in the likelihood, i.e. the g in the g-prior, and τ2 and λ2

j for global-local
priors. We recognize the importance of the choice of these priors for Bayesian variable
selection; however, the focus of this paper is the prior choice for the error variance in
conjunction with variable selection.

We also note that our discussion considers only Gaussian related prior forms for the
regression coefficients. Despite this seemingly limited scope, we note that the majority
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of priors used in Bayesian variable selection can be cast as a scale-mixture of Gaussians

(Polson and Scott, 2010), and that popular frequentist procedures such as the Lasso

and variants thereof also fall under this framework.

The paper is structured as follows. In Section 2, we discuss invariance arguments

for conjugate priors and draw connections with Jeffreys priors. We then highlight situa-

tions where we ought to depart from Jeffreys priors; namely, in multivariate situations.

In Section 3, we take Bayesian ridge regression as an example to highlight why conju-

gate priors can be a poor choice. In Section 4, we draw connections between Bayesian

regression and concurrent developments with variance estimation in the penalized like-

lihood literature. In Section 5, we examine the mechanisms of the Gaussian global-local

shrinkage framework and illustrate why they can be incompatible with the conjugate

prior structure. In Section 6, we consider the Spike-and-Slab Lasso of Ročková and

George (2018) and highlight how the conjugate prior yields poor estimates of the error

variance. We then extend the procedure to include the unknown variance case using an

independent prior structure and demonstrate via simulation studies how this leads to

performance gains over not only the known variance case, but a variety of other variable

selection procedures. In Section 7, we apply the Spike-and-Slab Lasso with unknown

variance to the protein activity dataset of Clyde and Parmigiani (1998), highlighting

the improved predictive performance afforded by simultaneous variance estimation. We

conclude with a discussion in Section 8.

2 Invariance Criteria

A common argument used in favor of the conjugate prior for Bayesian linear regression

is that it is invariant to scale transformations of the response (Bayarri et al., 2012).

That is, the regression coefficients depend a priori on σ2 in a “scale-free way” through

π(β|σ2) =
1

σp
h(β/σ), (2.1)

for some proper density function h(x). This means that the units of measurement used

for the response do not affect the resultant estimates; for example, if Y is scaled by a

factor of c, one would expect that the estimates for the regression coefficients, β, and

error variance, σ2, should also be scaled by c.

A more general principle of invariance was proposed by Jeffreys (1961) in his seminal

work, The Theory of Probability, a reference which is also sometimes given for the

conjugate prior. In this section, we examine the original invariance argument of Jeffreys

(1961) and highlight a caveat with this principle that the author himself noted; namely

that it should be avoided in multivariate situations. We then draw connections between

this suboptimal multivariate behavior and the conjugate prior framework, ultimately

arguing similarly to Jeffreys that we should treat the mean and variance parameters as

independently a priori.
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2.1 Jeffreys Priors

For a parameter α, the Jeffreys prior is

π(α) ∝ |I(α)|1/2, (2.2)

where I(α) is the Fisher information matrix. The main motivation given by Jeffreys
(1961) for these priors was that they are invariant for all nonsingular transformations
of the parameters. This property appeals to intuition regarding objectivity; ideally,
the prior information we decide to include should not depend upon the choice of the
parameterization, which itself is arbitrary.

Despite this intuitively appealing property, the following problem with this principle
was spotted in the original work of Jeffreys (1961) and later re-emphasized by Robert
et al. (2009) in their revisit of the work. Consider the normal means model

Yi ∼ N(μi, σ
2), i = 1, . . . , n

where the n-dimensional mean is denoted by μ = (μ1, . . . , μn). If we treat the pa-
rameters μ and σ independently, the Jeffreys prior is π(μ, σ) ∝ 1/σ. However, if the
parameters are considered jointly, the Jeffreys prior is π(μ, σ) ∝ 1/σn+1. In effect, by
considering the parameters jointly as opposed to independently, we are implicitly includ-
ing additional “pseudo-observations” of σ2 and consequently distorting our estimates of
the error variance.

This “pseudo-observation” interpretation can be seen explicitly in the conjugate form
of the Jeffreys prior for a Gaussian likelihood. The joint Jeffreys prior π(μ, σ) ∝ 1/σn+1

is an improper inverse-gamma prior with shape parameter, n/2, and scale parameter
zero. As the prior is conjugate, the posterior distribution for the variance is also inverse-
gamma:

π(σ2|Y,μ) ∼ IG

(
n

2
+

n

2
, 0 +

∑n
i=1(Yi − μi)

2

2

)
(2.3)

where the first term of both the shape and scale parameters in (2.3) are the prior
hyperparameters. Thus, the dependent Jeffreys prior can be thought of as encoding
knowledge of σ2 from a previous experiment where there were n observations which
yielded a sample variance of zero. This results in the prior concentrating around zero
for large n and will severely distort posterior estimates of σ2. As we shall see later, this
dependent Jeffreys prior for the parameters is in some cases akin to the conjugate prior
framework in (1.2).

This prior dependence between the parameters is explicitly repudiated by Jeffreys
(1961) who states (with notation changed to match ours): “in the usual situation in an
estimation problem, μ and σ2 are each capable of any value over a considerable range,
and neither gives any appreciable information about the other. We should then take:
π(μ, σ) = π(μ)π(σ).” That is, Jeffreys’ remedy is to treat the parameters independently
a priori, a recommendation which we also adopt. In addition, Jeffreys points out that
a key problem with the joint Jeffreys prior is that it does not have the same reduction
of degrees of freedom required by the introduction of additional nuisance parameters.
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We shall examine this phenomenon in more detail in Section 3 where we will discuss
the consequences of using dependent Jefferys priors and other conjugate formulations
in Bayesian linear regression.

We note a possible exception to this independence argument which is found later in
The Theory of Probability where Jeffreys argues that for simple normal testing, the prior
on μ under the alternative hypothesis should depend on σ2. However, it is important to
note that this recommendation is for the situation where μ is one-dimensional and so the
underestimation phenomenon observed in (2.3) is not a problem. Given Jeffreys’ earlier
concerns regarding multivariate situations, it is unlikely he intended this dependence to
generalize for higher dimensional μ.

3 Bayesian Regression

3.1 Prior Considerations

Consider again the classical linear regression model in (1.1). For a non-informative
prior, it is common to use π(β, σ2) ∝ 1/σ2 (see, for example, Gelman et al., 2014).
Similarly to our earlier discussion, this prior choice corresponds to multiplying the
independent, Jeffreys priors for β and σ2. In contrast, the joint Jeffreys prior would
be π(β, σ2) ∝ 1/σp+2. Let us now examine the estimates resulting from the former,
independent Jeffreys prior. In this case, we have the following marginal posterior mean
estimate for the error variance:

E[σ2|Y] =
‖Y −Xβ̂‖2
n− p− 2

(3.1)

where β̂ = (XTX)−1XTY is the usual least squares estimator. We observe that the
degrees of freedom adjustment, n− p− 2, naturally appears in the denominator.1 This
degrees of freedom adjustment does not occur with the joint Jeffreys prior where the
marginal posterior mean is given by:

E[σ2|Y] =
‖Y −Xβ̂‖2

n− 2
. (3.2)

For large p, this estimator will severely underestimate the error variance. Avoiding this,
it is commonly accepted that the independent Jeffreys prior π(β, σ2) ∝ 1/σ2 should be
the default non-informative prior in this setting.

There is no such clarity, however, in the use of conjugate priors for Bayesian linear
regression. To add to this discourse, we show that these conjugate priors can suffer the
same problem as the dependent Jeffreys priors and recommend, similarly to Jeffreys,
that independent priors should be used instead. We make this point with the following
example. A common conjugate prior choice for Bayesian linear regression is

β|σ2, τ2 ∼ Np(0, σ
2τ2I). (3.3)

1Note that had we treated β1 as an intercept and integrated it out with respect to a uniform prior,
this term would be the usual n− p− 1.
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For simplicity of exposition, in this section we consider the parameter τ2 to be fixed,
which corresponds to Bayesian ridge regression. In later sections we will consider the
global-local shrinkage framework where τ2 is assigned a prior.

With an additional non-informative prior π(σ2) ∝ 1/σ2, we then have the joint prior

π(β|σ2)π(σ2) = π(β, σ2) ∝ 1

σp+2
exp

{
− 1

2σ2τ2
‖β‖2

}
. (3.4)

Note again the σp+2 in the denominator, similarly to the joint Jeffreys prior.

Instead of considering how β depends on σ2 a priori as in (3.3), it is illuminating
to consider the reverse: how this prior induces dependence of σ2 on β. From (3.4), the
implicit conditional prior on σ2 is given by

σ2|β ∼ IG

(
p

2
,
‖β‖2
2τ2

)
. (3.5)

The mean of this inverse-gamma prior is approximately 1
p‖β‖2/τ2. Heuristically, this

term is of order O(q/p), where q is the number of non-zero β. When β is sparse and
bounded with q � p, (3.5) will then transmit downward biasing information from
β to σ2. This intuition is formalized in Proposition 1, which shows that the implicit
conditional prior on σ2 concentrates around zero in regions where β is sparse.

Proposition 1. Suppose ‖β‖0 = q and maxj β
2
j = K for some constant K ∈ R. Denote

the true variance as σ2
0. Then

P
(
σ2/σ2

0 ≥ ε | β
)
≤ q

p− 2

K

τ2
1

εσ2
0

. (3.6)

Proof. Proposition 1 follows from Markov’s inequality and the bound ‖β‖2 ≤ qK.

Proposition 1 implies that we can choose 0 < ε < 1 such that as q/p → 0, the prior
places decreasing mass on values of σ2 greater than εσ2

0 . Thus, in regions of bounded
sparse regression coefficients, the conjugate Gaussian prior can result in poor estimation
of the true variance.

Further, from a more philosophical perspective, it is troubling that the error variance
depends on the regression coefficients a priori, given that the noise is generally assumed
to be independent of the signal and in particular the regression coefficients.

In the next section, we conduct a simulation study for the simple case of Bayesian
ridge regression and show empirically how this implicit prior on σ2 can distort estimates
of the error variance.

3.2 The Failure of a Conjugate Prior

As an illustrative example, we take n = 100 and p = 90 and compare the least squares
estimates of β and σ2 to Bayesian ridge regression estimates with (i) the conjugate



1098 Variance Prior Forms for Bayesian Variable Selection

formulation with (3.3) and (ii) the independent prior formulation with

π(β) ∼ Np(0, τ
2I). (3.7)

For both Bayesian ridge regression procedures we use the non-informative error variance
prior: π(σ2) ∝ 1/σ2. The predictors Xi, i = 1, . . . , p are generated as independent
standard normal random variables. The true β0 is set to be sparse with only six non-zero
elements; the non-zero coefficients are set to {−2.5,−2,−1.5, 1.5, 2, 2.5}. The response
Y is generated according to (1.1) with the true variance being σ2 = 3. We take τ = 10 as
known and highlight that this weakly informative choice leads to poor variance estimates
in the conjugate prior framework. Whilst an empirical or fully Bayes approach for
estimating τ2 may be preferable for high-dimensional regression, it is troubling that the
conjugate prior yields poor results for a simple example where n > p and in which least
squares and the independent prior formulation perform well.

The conjugate prior formulation allows for the exact expressions for the marginal
posterior means of β and σ2:

E[β|Y] = [XTX+ τ−2I]−1XTY (3.8)

E[σ2|Y] =
YT [I−Hτ ]Y

n− 2
(3.9)

where Hτ = X[XTX + τ−2I]−1XT . Similarly to (3.2), the above marginal posterior
mean for σ2 does not incorporate a degrees of freedom adjustment and so we expect
this estimator to underestimate the true error variance.

It is illuminating to observe the underestimation problem when considering the
conditional posterior mean of σ2, instead of the marginal:

E[σ2|Y,β] =
‖Y −Xβ‖2 + ‖β‖2/τ2

n+ p− 2
. (3.10)

The additional p in the denominator here leads to severe underestimation of σ2 when β
is sparse and bounded as in Proposition 1 and p is of the same order as, or larger than,
n, as discussed in the previous section. We note in passing that a value of τ2 close to
‖β‖2/pσ2, which may be obtainable with an empirical or fully Bayes approach, would
avoid this variance underestimation problem, as can be seen from (3.10).

This is in contrast to the conditional posterior mean for σ2 using the independent
prior formulation (1.4), which we also consider. This estimator is given by:

E[σ2|Y,β] =
‖Y −Xβ‖2

n− 2
. (3.11)

Here we do not observe a degrees of freedom adjustment because (3.11) is the conditional
posterior mean, not the marginal. Earlier in (3.1) we considered the marginal posterior
mean for the independent Jeffreys’ prior which led to the n− p− 2 in the denominator.
For the marginal posterior means of β and σ2, the independent prior formulation does
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not yield closed form expressions. To compute these, we use a Gibbs sampler, the details
of which may be found in Section 1 of the supplement (Moran et al., 2019).

When τ2 is large, the estimate of β for both the conjugate and independent formu-
lations are almost exactly the least-squares estimate, β̂ = [XTX]−1XTY. However, the
estimates of the variance σ2 differ substantially.

In Figure 1, we display a boxplot of the estimates of σ2 for (i) Least Squares, (ii)
Conjugate Bayesian ridge regression, (iii) Zellner’s prior:

β|σ2 ∼ N(0, σ2τ2[XTX]−1), (3.12)

and (iv) Independent Bayesian ridge regression over 100 replications. Here, the estimates
from least squares and the independent ridge are reasonably distributed around the
truth. In sharp contrast, the estimates from the conjugate ridge and Zellner’s prior
consistently underestimate the error variance with medians of σ̂2 = 0.27 and 0.55,
respectively. This poor performance is a result of the bias induced by adding p “pseudo-
observations” of σ2 as discussed in Section 3.1, which also occurs for the Zellner prior.

Figure 1: Estimated σ̂2 for each procedure over 100 repetitions. The true σ2 = 3 is the
red horizontal line.

This phenomenon of underestimating σ2 can also be seen in EMVS (Ročková and
George, 2014), which can be viewed as iterative Bayesian ridge regression with an adap-
tive penalty term for each regression coefficient βj instead of the same τ2 above. EMVS
also uses a conjugate prior formulation in which β depends on σ2 a priori similarly
to (3.3). As in the above ridge regression example, with this prior EMVS yields good
estimates for β, but severely underestimates σ2. This occurs in the Section 4 example
of Ročková and George (2014) with n = 100 and p = 1000. There, conditionally on the
modal estimate of β, the associated modal estimate of σ2 is 0.0014, a severe underesti-
mate of the true variance σ2 = 3. Fortunately, EMVS can be easily modified to use the
independent prior specification, as now has been done in the publicly available EMVS R
package (Ročková and Moran, 2018). It is interesting to note that the SSVS procedure
of George and McCulloch (1993) used the nonconjugate independence prior formulation
in lieu of the conjugate prior formulation for the continuous spike-and-slab setup.
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A natural question to ask is: how does the poor estimate of the variance in the con-
jugate case affect the estimated regression coefficients? Insight is obtained by comparing
(3.8) to the conditional posterior mean of β in the independent case, given by:

E[β|σ2,Y] =

[
XTX+

σ2

τ2
I

]−1

XTY. (3.13)

In (3.8), the Gaussian prior structure allows for σ2 to be factorized out so that the
estimate of β does not depend on the variance. This lack of dependence on the variance
is troubling, however, as we want to select fewer variables when the error variance is
large making the signal-to-noise ratio low. This is in contrast to (3.13) where when σ2

is large relative to τ2, the signal-to-noise ratio is low and so the posterior estimate for
β will be close to zero, correctly reflecting the relative lack of information. This does
not occur for the posterior mean of β in the conjugate case.

3.3 What About a Prior Degrees of Freedom Adjustment?

At this point, one may wonder: if the problem seems to be the extra σp in the denomi-
nator, why not use the prior π(σ2) ∝ σp−4 instead of the right-Haar prior π(σ2) ∝ σ−2

that is commonly used? This “p-sigma” prior then results in the joint prior:

π(β|σ2)π(σ2) ∝ 1

(σ2)2
exp

{
− 1

2σ2τ2
‖β‖2

}
, (3.14)

which yields the implicit conditional prior on σ2:

σ2|β ∼ IG

(
1,

‖β‖2
2τ2

)
. (3.15)

For the simulation setup in Section 3.2, this alternative conjugate prior would in fact
remedy the variance estimates of the conjugate formulation (3.3). However, the p-sigma
prior can actually lead to overestimation of the error variance, as opposed to the un-
derestimation observed in Section 3.1. Heuristically, the mean of the prior (3.15) is now
of order O(q), where q is the number of non-zero β. As many posterior concentration
results require q → ∞, albeit at a much slower rate than p (see, for example, van der
Pas et al., 2016), this is particularly troublesome.

This overestimation can be further seen from the concentration of the prior captured
in Proposition 2 below. As we will discuss in Section 4, a similar phenomenon also occurs
for a penalized likelihood procedure that implicitly uses a p-sigma prior.

Proposition 2. Suppose ‖β‖0 = q and minj,βj �=0 β
2
j = K for some constant K ∈ R.

Denote the true variance as σ2
0. Then

P (σ2 ≥ δσ2
0 | β) ≥ 1− exp

(
− qK

2δσ2
0τ

2

)
. (3.16)
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Proof. We have:

P (σ2 ≥ δσ2
0 | β) =

∫ ∞

δσ2
0

‖β‖2
2τ2

1

u2
exp

(
−‖β‖2

2τ2
1

u

)
du

≥ 1− exp

(
− qK

2δσ2
0τ

2

)
.

Proposition 2 implies that we can choose arbitrary δ > 1 such that as q → ∞, the
p-sigma prior places increasing mass on values of σ2 greater than δσ2

0 . Another concern
regarding the p-sigma prior is more philosophical. As p gets larger, the p-sigma prior
puts increasing mass on larger and larger values of σ2, which does not seem justifiable.

For these reasons, we prefer the independent prior forms for the regression coefficients
and error variance. We are also of the opinion that the simplicity of the independent
prior is in its favor.

4 Connections with Penalized Likelihood Methods

Here we pause briefly to examine connections between Bayesian methods and devel-
opments in estimating the error variance in the penalized regression literature. Such
connections can be drawn as penalized likelihood methods are implicitly Bayesian; the
penalty functions can be interpreted as priors on the regression coefficients so these
procedures also in effect yield MAP estimates.

One of the first papers to consider the unknown error variance case for the Lasso was
Städler et al. (2010), who suggested the following penalized loss function for introducing
unknown variance into the frequentist Lasso framework:

Lpen(β, σ
2) =

‖Y −Xβ‖2
2σ2

+
λ

σ
‖β‖1 + n log σ. (4.1)

Optimizing this objective function is in fact equivalent to MAP estimation for the
following Bayesian model with the p-sigma prior discussed in Section 3.2:

Y ∼ N(Xβ, σ2I) (4.2)

π(β|σ2) ∝ 1

σp

p∏
j=1

e−λ|βj |/σ

π(σ2) ∝ σp.

Interestingly, Sun and Zhang (2010) proved that the resulting estimator for the error
variance overestimates the noise level unless λ‖β∗‖1/σ∗ = o(1), where β∗ and σ∗ are
the true values of the regression coefficients and error variance, respectively. However,
this condition requires q, the true number of non-zero β, to be of the following order
(details in Section 2 of the supplement, Moran et al., 2019)

q = o
(√

n/log p
)
. (4.3)
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That is, the true dimension q cannot at the same time increase at the required rate for
posterior contraction and result in consistent estimates for the error variance. Note also
the connection to Proposition 2: there, the prior mass on σ2 will concentrate on values
greater than the true variance unless ‖β‖2/τ2 = o(1).

To resolve this issue of overestimating the error variance, Sun and Zhang (2012) pro-
posed as an alternative the “scaled Lasso”, an algorithm which minimizes the following
penalized joint loss function via coordinate descent:

Lλ(β, σ) =
‖Y −Xβ‖2

2σ
+

nσ

2
+ λ

p∑
j=1

|βj |. (4.4)

This loss function is a penalized version of Huber’s concomitant loss function, and so
may be viewed as performing robust high-dimensional regression. It is also equivalent to
the “square-root Lasso” of Belloni et al. (2014). Minimization of the loss function (4.4)
can be viewed as MAP estimation for the Bayesian model (with a slight modification):

Y ∼ N(Xβ, σI) (4.5)

π(β) ∝
p∏

j=1

λ

2
e−λ|βj |

σ ∼ Gamma(n+ 1, n/2).

Note that to interpret the scaled Lasso as a Bayesian procedure, σ, rather than σ2, plays
the role of the variance in (4.5). Sun and Zhang (2012) essentially then re-interpret σ
as the standard deviation again after optimization of (4.4). This re-interpretation can
be thought of as an “unbiasing” step for the error variance. It is a little worrisome,
however, that the implicit prior on the error variance is very informative: as n → ∞,
this Gamma prior concentrates around σ = 2.

Sun and Zhang (2012) proved that the scaled Lasso estimate σ̂(X,Y) is consistent
for the “oracle” estimator

σ∗ =
‖Y −Xβ∗‖√

n
, (4.6)

where β∗ are the true regression coefficients, for the value of λ0 ∝
√

(2/n) log p. This
estimator (4.6) is called the oracle because it treats the true regression coefficients as
if they were known. The term ‖Y −Xβ∗‖2 is then simply the sum of normal random
variables, of which we calculate the variance as

∑n
i=1 ε

2
i /n.

5 Global-Local Shrinkage

In this section, we examine how the use of a conjugate prior affects the machinery of the
Gaussian global-local shrinkage paradigm. The general structure for this class of priors
is given by:

βj ∼ N(0, τ2λ2
j ), λ2

j ∼ π(λ2
j ), j = 1, . . . , p (5.1)
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τ2 ∼ π(τ2)

where τ2 is the “global” variance and λ2
j is the “local” variance. Note that taking τ2 to

be the same as the error variance σ2 would result in a conjugate prior in this setting.
This is exactly what was done in the original formulation of the Bayesian lasso by
Park and Casella (2008), which can be recast in the Gaussian global-local shrinkage
framework as follows (notation changed slightly for consistency):

Y|β, σ2 ∼ Nn(Xβ, σ2In) (5.2)

βj |σ2, λ2
j ∼ N(0, σ2λ2

j ), π(λ2
j ) =

u2

2
e−u2λ2

j/2, j = 1, . . . , p

π(σ2) ∝ σ−2.

In the conjugate formulation (5.2), σ2 plays the dual role of representing the error
variance as well as acting as the global shrinkage parameter. This is problematic in light
of the mechanics of global-local shrinkage priors. Specifically, Polson and Scott (2010)
recommend the following requirements for the global and local variances in (5.1): π(τ2)
should have substantial mass near zero to shrink all the regression coefficients so that
the vast majority are negligible; and π(λ2

j ) should have heavy tails so that it can be
quite large, allowing for a few large coefficients to “escape” the heavy shrinkage of the
global variance.

This heuristic is formalized in much of the shrinkage estimation theory. For the
normal means problem where X = In and β ∈ R

n, van der Pas et al. (2016) prove
that the following conditions result in the posterior recovering nonzero means with the
optimal rate: (i) π(λ2

j ) should be a uniformly regular varying function which does not

depend on n; and (ii) τ2 = q
n log(n/q), where q is number of non-zero βj .

The uniformly regular varying property in (i) intuitively preserves the “flatness”
of the prior even under transformations of the parameters, unlike traditional “non-
informative” priors (Bhadra et al., 2016). In preserving these heavy tails, such priors
for λ2

j allow for a few large coefficients to be estimated. The condition (ii) encourages τ2

to tend to zero which would be a concerning property if it were also the error variance.
These results suggest we cannot identify the error variance with the global variance
parameter on the regression coefficients as in (5.2): it cannot simultaneously both shrink
all the regression coefficients and be a good estimate of the residual variance. Finally,
we note that Hans (2009) also considered the independent case for the Bayesian lasso
in which the error variance is not identified with the global variance.

An alternative conjugate formulation for Gaussian global-local shrinkage priors is
to instead include three variance terms in the prior for βj : the error variance, σ2, the
global variance, τ2, and the local variance, λ2

j . For example, Carvalho et al. (2010) give
the conjugate form of the horseshoe prior:

βj |σ2, τ2, λ2
j ∼ N(0, σ2τ2λ2

j ), λ2
j ∼ π(λ2

j ), j = 1, . . . , p (5.3)

τ2 ∼ π(τ2),

π(σ2) ∝ σ−2.
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This prior formulation (5.3) remedies the aforementioned issue in the Bayesian lasso
as it separates the roles of the error variance and global variance. However, this prior
structure can still be problematic for error variance estimation.

Consider the conditional posterior mean of σ2 for the model (5.3):

E[σ2|Y,β, τ2, λ2
j ] =

‖Y −Xβ‖2 +
∑p

j=1 β
2
j /λ

2
jτ

2

n+ p− 2
. (5.4)

Proposition 3 highlights that, given the true regression coefficients, the conditional pos-
terior mean of σ2 underestimates the oracle variance (4.6) when β is sparse.

Proposition 3. Consider the global-local prior formulation given in (5.3). Denote the
true vector of regression coefficients by β∗ where ‖β∗‖0 = q. Suppose maxj β

∗2
j = M1

for some constant M1 ∈ R. Denote the oracle estimator for σ given in (4.6) by σ∗ and
suppose σ∗ = O(1). Suppose also that for j ∈ {1, . . . , p} with βj �= 0, we have τ2λ2

j > M2

for some M2 ∈ R. Then

E[σ2|Y,β∗, τ2, λ2
j ] ≤

nσ∗2

n+ p− 2
+

q

n+ p− 2

M1

M2
. (5.5)

In particular, as p/n → ∞ and q/p → 0, we have

E[σ2|Y,β∗, τ2, λ2
j ] = o(1). (5.6)

Given the mechanics of global-local shrinkage priors, the assumption in Proposition
3 that the term τ2λ2

j is bounded from below for non-zero βj is not unreasonable. This is

because for large βj , the local variance λ
2
j must be large enough to counter the extreme

shrinkage effect of τ2. Indeed, the prior for λ2
j must have “heavy enough” tails to enable

this phenomenon.

We should note that Proposition 3 illustrates the poor performance of the posterior
mean (5.4) given the true regression coefficients β∗, whereas the horseshoe procedure
does not actually threshold the negligible βj to zero in the posterior mean of β. For
these small βj , the term τ2λ2

j may be very small and potentially counteract the un-
derestimation phenomenon. However, it is still troubling to use an estimator for the
error variance that does not behave as the oracle estimator when the true regression
coefficients are known. This is in contrast to the independent prior formulation where
the conditional posterior mean of σ2 is simply:

E[σ2|Y,β] =
‖Y −Xβ‖2

n− 2
. (5.7)

Note also that the problem of underestimation of σ2 is exacerbated for modal esti-
mation under the prior (5.3). This is because modal estimators often threshold small
coefficients to zero and so the term

∑p
j=1 β

2
j /λ

2
jτ

2 becomes negligible as in Proposition
3. As MAP estimation using global-local shrinkage priors is becoming more common
(see, for example, Bhadra et al., 2017), we caution against the use of these conjugate
prior forms.
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A different argument for using conjugate priors with the horseshoe is given by Pi-
ironen and Vehtari (2017). They advocate for the model (5.3), arguing that it leads to
a prior on the effective number of non-zero coefficients which does not depend on σ2

and n. However, this quantity is derived from the posterior of β and so does not take
into account the uncertainty inherent in the variable selection process. As a thought
experiment: suppose that we know the error variance, σ2, and number of observations,
n. If the error variance is too large and the number of observations are too few, we
would not expect to be able to say much about β at all, and this intuition should be
reflected in the effective number of non-zero coefficients. This point is similar to our
discussion at the end of Section 3.2 regarding estimation of β.

As before, we recommend independent priors on both the error variance and regres-
sion coefficients to both prevent distortion of the global-local shrinkage mechanism and
to obtain better estimates of the error variance.

6 Spike-and-Slab Lasso with Unknown Variance

6.1 Spike-and-Slab Lasso

We now turn to the Spike-and-Slab Lasso (SSL, Ročková and George, 2018) and consider
how to incorporate the unknown variance case. The SSL places a mixture prior on the
regression coefficients β, where each βj is assumed a priori to be drawn from either a
Laplacian “spike” concentrated around zero (and hence be considered negligible), or a
diffuse Laplacian “slab” (and hence may be large). Thus the hierarchical prior over β
and the latent indicator variables γ = (γ1, . . . , γp) is given by

π(β|γ) ∼
p∏

j=1

[γjψ1(βj) + (1− γj)ψ0(βj)] , (6.1)

π(γ|θ) =
p∏

j=1

θγj (1− θ)1−γj and θ ∼ Beta(a, b),

where ψ1(β) = λ1

2 e−|β|λ1 is the slab distribution and ψ0(β) = λ0

2 e−|β|λ0 is the spike
(λ1 � λ0), and we have used the common exchangeable beta-binomial prior for the
latent indicators.

Ročková and George (2018) recast this hierarchical model into a penalized likelihood
framework, allowing for the use of existing efficient algorithms for modal estimation
while retaining the adaptivity inherent in the Bayesian formulation. The regression
coefficients β are then estimated by

β̂ = argmax
β∈Rp

{
−1

2
‖Y −Xβ‖2 + pen(β)

}
(6.2)

where

pen(β) = log

[
π(β)

π(0p)

]
, π(β) =

∫ 1

0

p∏
j=1

[θψ1(βj) + (1− θ)ψ0(βj)]dπ(θ). (6.3)



1106 Variance Prior Forms for Bayesian Variable Selection

Ročková and George (2018) note a number of advantages in using a mixture of
Laplace densities in (6.1), instead of the usual mixture of Gaussians as has been stan-
dard in the Bayesian variable selection literature. First, the Laplacian spike serves to
automatically threshold modal estimates of βj to zero when βj is small, much like the
Lasso. However, unlike the Lasso, the slab distribution in the prior serves to stabilize
the larger coefficients so they are not downward biased. Additionally, the heavier Lapla-
cian tails of the slab distribution yields optimal posterior concentration rates (Ročková,
2018).

Although the use of the spike-and-slab prior is typically associated with “two-group”
Bayesian variable selection methods, the Spike-and-Slab Lasso can also be interpreted as
a “one-group” global-local shrinkage method as the spike density is continuous. As such,
the use of a conjugate prior for the error variance here will result in underestimation,
similarly to the results for global-local shrinkage priors in Section 5. Further details of
this underestimation problem for the SSL in particular can be found in Section 3 of
the supplement (Moran et al., 2019). In the next section, we introduce the SSL with
unknown variance which avoids this underestimation problem by instead utilizing an
independent prior framework.

6.2 Spike-and-Slab Lasso with Unknown Variance

We now introduce the Spike-and-Slab Lasso with unknown variance, which considers the
regression coefficients and error variance to be a priori independent. The hierarchical
model is

π(β|γ) ∼
p∏

j=1

[γjψ1(βj) + (1− γj)ψ0(βj)] (6.4)

γ|θ ∼
p∏

j=1

θγj (1− θ)1−γj , θ ∼ Beta(a, b) (6.5)

π(σ2) ∝ σ−2. (6.6)

The log posterior, up to an additive constant, is given by

L(β, σ2) = − 1

2σ2
‖Y −Xβ‖2 − (n+ 2) log σ +

p∑
j=1

pen(βj |θj) (6.7)

where, for j = 1, . . . , p,

pen(βj |θj) = −λ1|βj |+ log[p∗(0; θj)/p
∗(βj ; θj)], (6.8)

with p∗(β; θ) =
θψ1(β)

θψ1(β) + (1− θ)ψ0(β)
and θj = E[θ|β\j ]. (6.9)

For large p, Ročková and George (2018) note that the conditional expectation E[θ|β\j ]
is very similar to E[θ|β] and so for practical purposes we treat them as equal and denote
θβ = E[θ|β].
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To find the modes of (6.7), we pursue a similar coordinate ascent strategy to Ročková
and George (2018), cycling through updates for each βj and σ2 while updating the
conditional expectation θβ . This conditional expectation does not have an analytical
expression; however, Ročková and George (2018) note that it can be approximated by

θβ ≈ a+ ‖β‖0
a+ b+ p

. (6.10)

We now outline the estimation strategy for β. As noted in Lemma 3.1 of Ročková
and George (2018), there is a simple expression for the derivative of the SSL penalty:

∂pen(βj |θβ)
∂|βj |

≡ −λ∗(βj ; θβ) (6.11)

where
λ∗(βj ; θβ) = λ1p

∗(βj ; θβ) + λ0[1− p∗(βj ; θβ)]. (6.12)

Using the above expression, the Karush-Kuhn-Tucker (KKT) conditions yield the fol-

lowing necessary condition for the global mode β̂:

β̂j =
1

n

[
|zj | − σ2λ∗(β̂j ; θβ)

]
+
sign(zj), j = 1, . . . , p (6.13)

where zj = XT
j (Y −

∑p
k �=j β̂k ·Xk) and we assume that the design matrix X has been

centered and standardized to have norm
√
n. The condition (6.13) is very close to the

familiar soft-thresholding operator for the Lasso, except that the penalty term λ∗(βj ; θ)
differs for each coordinate. Similarly to other non-convex methods, this enables selective
shrinkage of the coefficients, mitigating the bias issues associated with the Lasso. As a
non-convex method, however, (6.13) is not a sufficient condition for the global mode.
This is particularly problematic when the posterior landscape is highly multimodal, a
consequence of p � n and large λ0. To eliminate many of these suboptimal local modes
from consideration, Ročková and George (2018) develop a more refined characterization
of the global mode. This characterization follows the arguments of Zhang and Zhang
(2012) and can easily be modified for the unknown variance case of the SSL, detailed
in Proposition 4.

Proposition 4. The global mode β̂ satisfies

β̂j =

{
0 when |zj | ≤ Δ
1
n [|zj | − σ2λ∗(β̂j ; θβ)]+sign(zj) when |zj | > Δ

(6.14)

where
Δ ≡ inf

t>0
[nt/2− σ2pen(t|θβ)/t]. (6.15)

Unfortunately, computing (6.15) can be difficult. Instead, we seek an approximation
to the threshold Δ. A useful upper bound is Δ ≤ σ2λ∗(0; θβ) (Zhang and Zhang,
2012). However, when λ0 gets large, this bound is too loose and can be improved. The
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improved bounds are given in Proposition 5, the analogue of Proposition 3.2 of Ročková
and George (2018) for the unknown variance case. Before stating the result, the following
function is useful to simplify exposition:

g(x; θ) = [λ∗(x; θ)− λ1]
2 +

2n

σ2
log[p∗(x; θ)]. (6.16)

Proposition 5. When σ(λ0 − λ1) > 2
√
n and g(0; θβ) > 0 the threshold Δ is bounded

by
ΔL < Δ < ΔU ,

where

ΔL =
√

2nσ2 log[1/p∗(0; θβ)]− σ4dj + σ2λ1, (6.17)

ΔU =
√

2nσ2 log[1/p∗(0; θβ)] + σ2λ1 (6.18)

and

0 < dj <
2n

σ2
−

(
n

σ2(λ0 − λ1)
−

√
2n

σ

)2

.

Thus, when λ0 is large and consequently dj → 0, the lower bound on the threshold
approaches the upper bound, yielding the approximation Δ ≈ ΔU . We additionally note
the central role that the error variance plays in the thresholds in Proposition 5. As σ2

increases, the thresholds also increase, making it more difficult for regression coefficients
to be selected. This is exactly what we want when the signal to noise ratio is small.

Bringing this all together, we incorporate this refined characterization of the global
mode into the update for the coefficients via the generalized thresholding operator of
Mazumder et al. (2011):

S̃(z, λ,Δ) =
1

n
(|z| − λ)+sign(z)I(|z| > Δ). (6.19)

The coordinate-wise update is then

β̂j ← S̃(zj , σ̂
2λ∗(β̂j ; θ̂β),Δ) (6.20)

where

Δ =

{√
2nσ̂2 log[1/p∗(0; θ̂β)] + σ̂2λ1 if g(0; θ̂β) > 0,

σ̂2λ∗(0; θ̂β) otherwise.
(6.21)

The conditional expectation θβ is updated according to (6.10).

Finally, given the most recent update of the coefficient vector β̂, the update for the
error variance σ2 is simply:

σ̂2 ← ‖Y −Xβ̂‖2
n+ 2

. (6.22)
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Note that this update for σ2 is a conditional mode, not a marginal mode, and so it does
not underestimate the error variance in the same way as (3.9). Indeed, conditional on
the true regression coefficients, (6.22) is essentially the oracle estimator (4.6). However,
although we retain the update (6.22) during optimization in order to iterate between
the modes of β and σ2, after the algorithm has converged, our final estimator of σ2 is
obtained as

σ̂2
adj =

‖Y −Xβ̂‖2
n− q̂

, (6.23)

where q̂ = ‖β̂‖0. Note that (6.23) incorporates an appropriate degrees of freedom ad-

justment to account for the fact that β̂ is an estimate of the unknown true β.

In principle, both σ2 and the conditional expectation θβ should be updated after each
βj , j = 1, . . . , p. In practice, however, there will be little change after one coordinate
update and so both σ2 and θβ can be updated after M coordinates are updated, where
M is the update frequency. The default implementation updates σ2 and θβ after every
M = 10 coordinate updates.

6.3 Implementation

In the SSL with fixed variance, Ročková and George (2018) propose a “dynamic pos-
terior exploration” strategy whereby the slab parameter λ1 is held fixed and the spike
parameter λ0 is gradually increased to approximate the ideal point mass prior. Hold-
ing the slab parameter fixed serves to stabilize the non-zero coefficients, unlike the
Lasso which applies an equal level of shrinkage to all regression coefficients. Meanwhile,
gradually increasing λ0 over a “ladder” of values serves to progressively threshold negli-
gible coefficients. More practically, the dynamic strategy aids in mode detection: when
(λ1 − λ0)

2 ≤ 4, the objective is convex (Ročková and George, 2018). In fact, when
λ0 = λ1, it is equivalent to the Lasso. As λ0 is increased, the posterior landscape be-
comes multimodal, but using the solution from the previous value of λ0 as a “warm
start” allows the procedure to more easily find modes. Thus, progressively increasing
λ0 acts as an annealing strategy.

When σ2 is treated as unknown, the successive warm start strategy of Ročková and
George (2018) will require additional intervention. This is because the objective (6.7) is
always non-convex when σ2 is unknown, unlike the fixed case where it is convex when
(λ1 − λ0)

2 ≤ 4. In particular, for small λ0 ≈ λ1 there may be many negligible but non-
zero βj included in the model. When p > n, this severe overfitting can result in all the
variation in Y being explained by the model, forcing the estimate of the error variance,
σ̂2 to a mode at zero. If this suboptimal solution is propagated for larger values of λ0,
the optimization routine will remain “stuck” in that part of the posterior landscape.
As an implementation strategy to avoid this absorbing state, we keep the estimate of
σ2 fixed at an initial value until λ0 reaches a value at which the algorithm converges
in less than 100 iterations. We then reinitialize β and σ2 and begin to simultaneously
update σ2 for the next largest λ0 value in the ladder. The intuition behind this strategy
is that we first find a solution to a convex problem (with σ2 fixed) and then use this



1110 Variance Prior Forms for Bayesian Variable Selection

solution as a warm start for the non-convex problem (with σ2 unknown). A related two-
step strategy for non-convex optimization has also been proven successful for robust
M-estimation (Loh, 2017).

For initialization, we follow Ročková and George (2018) and initialize the regression
coefficients, β, at zero and θ0 = 0.5. For the error variance, we devised an initialization
strategy that is motivated by the prior for σ2 used in Chipman et al. (2010). Those
authors used a scaled-inverse-χ2 prior for the error variance with degrees of freedom
ν = 3 and scale parameter chosen such that the sample variance of Y corresponds
to the 90th quantile of the prior. This is a natural choice as the variance of Y is the
maximum possible value for the error variance. We set the initial value of σ2 to be
the mode of this scaled-inverse-χ2 distribution, a strategy which we have found to be
effective in practice.

The entire implementation strategy is summarized in Algorithm 1 (Section 4 of the
supplement, Moran et al., 2019).

6.4 Scaled Spike-and-Slab Lasso

An alternative approach for extending the SSL for unknown variance is to follow the
scaled Lasso framework of Sun and Zhang (2012). In their original scaled Lasso paper,
Sun and Zhang (2012) note that their loss function can be used with many penalized
likelihood procedures, including the MCP and the SCAD penalties. Here, we develop
the scaled Spike-and-Slab Lasso. The loss function for the scaled SSL is the same as that
of the scaled Lasso but with a different penalty:

L(β, σ2) = − 1

2σ
‖Y −Xβ‖2 − nσ

2
+

p∑
j=1

pen(βj |θβ) (6.24)

where pen(βj |θβ) is as defined in (6.8) and again we use the approximation (6.10) for the
conditional expectation θβ . In using this loss function, we are of course departing from
the Bayesian paradigm and simply considering this procedure as a penalized likelihood
method with a spike-and-slab inspired penalty.

The algorithm to find the modes of (6.24) is very similar to Algorithm 1, the only
difference being we replace all σ2 terms in the updates (6.20) and (6.21) with σ. This is
because the refined thresholds for the coefficients are derived using the KKT conditions
where the only difference between the two procedures is σ vs. σ2.

The update for σ2 is only very slightly different from the SSL with unknown variance:

σ̂2 ← ‖Y −Xβ̂‖2
n

. (6.25)

How do we expect the scaled Spike-and-Slab Lasso to compare to the Spike-and-
Slab Lasso with unknown variance? The threshold levels Δ for the scaled SSL will be
smaller after replacing σ2 with σ. This may potentially result in more false positives
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being included in the scaled SSL model. In terms of variance estimation, the updates
for σ2 are effectively the same; the only differences we should expect are those arising
from a more saturated estimate for β. These hypotheses are examined in the simulation
study in the next session.

6.5 Simulation Study

We now compare the Spike-and-Slab Lasso with unknown variance with several penal-
ized likelihood methods, including the original Spike-and-Slab Lasso with fixed variance
of Ročková and George (2018) as well as the scaled Spike-and-Slab Lasso outlined in the
previous section. We investigate both the efficacy of the SSL with unknown variance
and the benefits of simultaneously estimating the regression coefficients β and error
variance σ2 in variable selection. We do not consider the SSL with the p-sigma prior
from Section 3.3 as the objective is similar to Städler et al. (2010) (albeit with an adap-
tive penalty) and so we would expect similar overestimation of σ2 as proved by Sun and
Zhang (2012). We consider three different simulation settings.

For the first simulation setting, we consider the same simulation setting of Ročková
and George (2018) with n = 100 and p = 1000 but use an error variance of σ2 =
3 instead of σ2 = 1. The data matrix X is generated from a multivariate Gaussian
distribution with mean 0p and a block-diagonal covariance matrix Σ = bdiag(Σ̃, . . . , Σ̃)

where Σ̃ = {σ̃}50i,j=1 with σ̃ij = 0.9 if i �= j and σ̃ii = 1. The true vector β0 is constructed
by assigning regression coefficients {−2.5,−2,−1.5, 1.5, 2, 2.5} to q = 6 entries located
at {1, 51, 101, 151, 201, 251} and setting to zero the remaining coefficients. Hence, there
are 20 independent blocks of 50 highly correlated predictors where the first 6 blocks
each contain only one active predictor. The response was generated as in (1.1) with
error variance σ2 = 3.

We compared the Spike-and-Slab Lasso with unknown variance to the fixed variance
Spike-and-Slab Lasso with two settings: (i) σ2 = 1, and (ii) σ2 = 3, the true variance.
The prior settings for θ were a = 1, b = p. The slab parameter was set to λ1 = 1. For
the spike parameter, we used a ladder λ0 ∈ I = {1, 2, . . . , 100}.

Additional methods compared were the scaled SSL from Section 3.4, the Lasso
(Friedman et al., 2010), the scaled Lasso (Sun and Zhang, 2012), the Adaptive Lasso
(Zou, 2006), SCAD (Fan and Li, 2001), and MCP (Zhang, 2010).

The analysis was repeated 100 times with new covariates and responses generated
each time. For each, the metrics recorded were: the Hamming distance (HAM) between
the support of the estimated β and the true β0; the prediction error (PE), defined as

PE = ‖Xβ0 −Xβ̂‖2; (6.26)

the number of false negatives (FN); the number of false positives (FP); the number of
true positives (TP); Matthew’s Correlation Coefficient (MCC), defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
; (6.27)
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the percentage of times the method found the correct model (COR); and the time in
seconds (TIME). The average of these metrics for each method over the 100 repetitions
are displayed in Table 1.

We can see that the Spike-and-Slab Lasso with the variance fixed and equal to the
truth (σ2 = 3) performs the best in terms of the Hamming distance, prediction error,
and MCC. Encouragingly, the Spike-and-Slab Lasso with unknown variance performs
almost as well as the “oracle” version where the true variance is known. The SSL with
unknown variance in turn performs better than a naive implementation of the SSL with
fixed variance (σ2 = 1). We note that the prediction error for the latter implementa-
tion is higher than the Adaptive Lasso and SCAD; however, these frequentist methods
use cross-validation to choose their regularization parameter and so are optimizing for
prediction to the possible detriment of other metrics; the SSL (σ2 = 1) still has fewer
false positives and a higher MCC. However, both the SSL (σ2 = 3) and unknown σ2

have smaller prediction error than the rest of the methods, including those which use
cross-validation, which highlights the predictive gains afforded by variance estimation.

Following from the discussion in Section 3.4, we can see that the scaled SSL indeed
finds more false positives than the SSL with unknown variance. This is a result of the
smaller thresholds in estimating the regression coefficients. We can see that the scaled
Lasso significantly reduces the number of false positives found as compared to the Lasso;
however, the issues with the Lasso penalty remain.

Figure 2 shows the variance estimates over the 100 repetitions for the SSL with
unknown variance, the scaled SSL and the scaled Lasso. For the SSL with unknown
σ2, these are the estimates (6.23). For the scaled SSL and the scaled Lasso variance
estimates, we also applied a degrees of freedom correction similarly to (6.23) using the
number of non-zero coefficients found by each method. The variance estimates from the
SSL (unknown σ2) have a median of 2.87 and standard error 0.04. Meanwhile, the scaled
SSL slightly underestimates the variance with a median of 2.76 and standard error 0.04,
as expected from the larger number of false positives observed in Table 1. Finally, the
scaled Lasso highly inflates the variance with a median of 5.88 and standard error 0.14.

7 Protein Activity Data

We now apply the Spike-and-Slab Lasso with unknown variance to the protein activ-
ity data set from Clyde and Parmigiani (1998). Following those authors, we code the
categorical variables by indicator variables and consider all main effects, two-way inter-
actions and quadratic terms for the continuous variables. This results in a linear model
with p = 88 potential predictors. The sample size is n = 96. We assess the perfor-
mance of the Spike-and-Slab Lasso with unknown variance in both variable selection
and prediction.

7.1 Variable Selection

As an approximation to the “truth”, we use the Bayesian adaptive sampling algorithm
(BAS, Clyde et al., 2011), which has previously been applied successfully to this dataset.
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HAM PE MCC TP FP FN COR TIME

SSL (fixed σ2 = 3) 1.1 (0.1) 39.6 (3.7) 0.91 (0.01) 5.5 (0.1) 0.5 (0.1) 0.5 (0.1) 58 0.03 (0.00)
SSL (unknown σ2) 1.2 (0.2) 43.4 (3.9) 0.90 (0.01) 5.4 (0.1) 0.6 (0.1) 0.6 (0.1) 55 0.04 (0.00)
Scaled SSL 2.0 (0.2) 65.8 (5.0) 0.84 (0.01) 5.2 (0.1) 1.2 (0.1) 0.8 (0.1) 32 0.07 (0.00)
SSL (fixed σ2 = 1) 4.5 (0.3) 114.9 (5.3) 0.69 (0.02) 4.8 (0.1) 3.3 (0.2) 1.2 (0.1) 5 0.17 (0.01)
MCP** 7.0 (0.4) 186.1 (7.0) 0.48 (0.02) 3.1 (0.1) 4.1 (0.3) 2.9 (0.1) 1 0.32 (0.00)
Adaptive LASSO 8.1 (0.5) 92.0 (4.1) 0.60 (0.02) 4.8 (0.1) 6.9 (0.5) 1.2 (0.1) 1 5.36 (0.11)
SCAD 11.2 (0.6) 124.4 (6.2) 0.47 (0.02) 4.0 (0.1) 9.2 (0.5) 2.0 (0.1) 0 0.39 (0.01)
MCP* 11.5 (0.4) 181.4 (6.3) 0.35 (0.02) 2.8 (0.1) 8.3 (0.3) 3.2 (0.1) 0 0.32 (0.00)
Scaled LASSO 16.1 (0.4) 302.4 (9.6) 0.42 (0.01) 4.5 (0.1) 14.6 (0.4) 1.5 (0.1) 0 0.51 (0.01)
LASSO 30.9 (0.6) 111.0 (2.5) 0.36 (0.01) 5.4 (0.1) 30.3 (0.6) 0.6 (0.1) 0 0.40 (0.01)

Table 1: Average metrics over 100 repetitions for each of the procedures, ordered by increasing Hamming distance. Standard
errors are shown in parentheses. *ncvreg implementation using cross-validation over a one-dimensional grid with a default
value of the second tuning parameter γ. **hard thresholding tuning with γ = 1.0001 and cross-validation over λ.
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Figure 2: Estimated σ̂2
adj over 100 repetitions. The true variance σ2 = 3 is the red

horizontal line.

BAS gives posterior inclusion probabilities (PIP) for each of the p potential predictors
from which we determined the median probability model (MPM: predictors with PIP
> 0.5). The median probability model found by BAS consisted of q = 7 predictors: (i)
con:detT: the interaction of protein concentration and detergent T, (ii) detT: detergent
T, (iii) bufTRS:detN: the interaction of buffer TRS and detergent N, (iv) con: protein
concentration, (v) bufPO4:temp: the interaction of buffer P04 and temperature, (vi)
detN: detergent N, and (vii) detN:temp: the interaction of detergent N and temperature.

For the SSL with unknown variance, we used the same settings as the simulation
study with λ1 = 1 and λ0 ∈ {1, 2, . . . , n}. The procedure found a model with q̂ = 6
predictors, including four of the MPM: con, detN, bufTRS:detN, con:detT. Addi-
tionally, instead of detT, the SSL with unknown variance found the interaction of pH
with detergent T (pH:detT). The correlation between detT and pH:detT is 0.988, ren-
dering the two predictors essentially exchangeable. Thus, 5 out of the 6 predictors found
by the SSL with unknown variance matched with the benchmark MPM.

For the SSL with known variance, we fixed σ2 = 0.24. This is the mean of the scaled-
inverse-χ2 distribution induced by the variance of the response, as detailed in Section
6.4. For the protein data, the variance of the response is 0.41 and so fixing σ2 = 1
overestimates the variance, resulting in no signal being found. The SSL with this fixed
variance found q̂ = 2 predictors: one of the MPM (detT) and one not in the MPM but
having a correlation of 0.735 with detN.

Here, we can see the benefit of simultaneously estimating the error variance; the
estimate from SSL with unknown variance was σ̂2 = 0.167, resulting in a less sparse
solution.

7.2 Predictive Performance

We now compare the predictive performance of the SSL with unknown variance with the
penalized regression methods from the simulation study in Section 6.5 using 8-fold cross
validation. We split the data into K = 8 sets and denote each set by Sk, k = 1, . . . ,K.
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The 8-fold cross-validation error is given by:

CV =
1

K

K∑
k=1

∑
i∈Sk

[
yi − xiβ̂\k

]2
(7.1)

where β̂\k is the estimated regression coefficient using the data in SC
k . We repeated this

procedure 100 times and display the resulting cross-validation errors in Figure 3. We
do not display the results from the scaled Lasso in Figure 3 as there were a number of
outliers: the cross-validation error for the scaled Lasso was greater than 25 in 20% of
the replications.

Figure 3: Boxplots of 8-fold cross-validation error over 100 replications for each of the
methods (from left to right): 1. SSL (unknown σ2). 2. SCAD. 3. MCP (ncvreg). 4.
LASSO. 5. Adaptive LASSO. 6. MCP (γ = 1.0001). 7. SSL (fixed σ2).

We can see that the SSL with unknown variance has the smallest cross-validation
error. This highlights the gains in predictive performance that can be achieved by si-
multaneously estimating the error variance and regression coefficients. This result is
also very encouraging given that all the other methods (except for the SSL with fixed
variance) use cross-validation in choosing their regularization parameters. This also ex-
plains the slightly worse performance of the SSL with fixed variance, which we expect
would be competitive if we were to also choose the regularization parameters with cross-
validation. However, SSL with fixed variance still performs well without the need for
computationally intensive cross-validation to choose the parameters.

8 Conclusion

In this paper, we have shown that conjugate continuous priors for Bayesian variable
selection can lead to underestimation of the error variance when (i) β is sparse; and (ii)
when p is of the same order as, or larger than, n. This is because such priors implicitly
add p “pseudo-observations” of σ2 which shift prior mass on σ2 towards zero. Conjugate
priors for linear regression are often motivated by the invariance principle of Jeffreys
(1961). Revisiting this work however, we highlighted that Jeffreys’ himself cautioned
against applying his invariance principle in multivariate problems. Following Jeffreys,
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we recommended priors which treat the regression coefficients and error variance as
independent.

We then proceeded to extend the Spike-and-Slab Lasso of Ročková and George
(2018) to the unknown variance case, using an independent prior for the variance. We
showed that this procedure for the Spike-and-Slab Lasso with unknown variance per-
forms almost as well empirically as the SSL where the true variance is known. We
additionally compared the Spike-and-Slab Lasso with unknown variance to a popular
frequentist method to estimate the variance in high dimensional regression: the scaled
Lasso. In simulation studies, the SSL with unknown variance performed much better
than the scaled Lasso and additionally outperformed the “scaled Spike-and-Slab Lasso”,
a variant of the latter procedure but with the Spike-and-Slab Lasso penalty. On a pro-
tein activity dataset, the SSL with unknown variance performed well for both variable
selection and prediction. In particular, the SSL with unknown variance exhibited smaller
cross-validation error than other penalized likelihood procedures which choose their reg-
ularization parameters based on cross-validation. This highlights the predictive benefit
of simultaneous variance estimation. The unknown variance implementation of the SSL
is provided in the publicly available R package SSLASSO (Ročková and Moran, 2017).
Code to reproduce the results in this paper is also available at https://github.com/
gemma-e-moran/variance-priors.

Supplementary Material

Supplementary Material for “Variance Prior Forms for High-Dimensional Bayesian Vari-
able Selection”
(DOI: 10.1214/19-BA1149SUPP; .pdf).
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