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Modern data-driven approaches to modeling make extensive use of co-
variate/model selection. Such selection incurs a cost: it invalidates classical
statistical inference. A conservative remedy to the problem was proposed by
Berk et al. (Ann. Statist. 41 (2013) 802-837) and further extended by Ba-
choc, Preinerstorfer and Steinberger (2016). These proposals, labeled “PoSI
methods,” provide valid inference after arbitrary model selection. They are
computationally NP-hard and have limitations in their theoretical justifica-
tions. We therefore propose computationally efficient confidence regions,
named “UPoSI”! and prove large-p asymptotics for them. We do this for
linear OLS regression allowing misspecification of the normal linear model,
for both fixed and random covariates, and for independent as well as some
types of dependent data. We start by proving a general equivalence result for
the post-selection inference problem and a simultaneous inference problem
in a setting that strips inessential features still present in a related result of
Berk et al. (Ann. Statist. 41 (2013) 802—-837). We then construct valid PoSI
confidence regions that are the first to have vastly improved computational ef-
ficiency in that the required computation times grow only quadratically rather
than exponentially with the total number p of covariates. These are also the
first PoSI confidence regions with guaranteed asymptotic validity when the
total number of covariates p diverges (almost exponentially) with the sample
size n. Under standard tail assumptions, we only require (log ») =o() and
k = o(s/n/log p) where k (< p) is the largest number of covariates (model
size) considered for selection. We study various properties of these confi-
dence regions, including their Lebesgue measures, and compare them theo-
retically with those proposed previously.

1. Introduction and motivation.

1.1. Motivation of the problem. In recent times, there has been a crisis in the sciences
because too many published research results are found to lack reproducibility. Some of this
crisis has been attributed to a failure of statistical methods to account for data-dependent
exploration and modeling that precedes statistical inference. Data-dependent actions such as
selection of subsets of cases, of covariates, of responses, of transformations and of model
types has been aptly named “researcher degrees of freedom” (Simmons, Nelson and Simon-
sohn (2011)), and these may well be significant contributing factors in the current crisis.
Classical statistics does not account for them because it is built on a framework where all
modeling decisions are made independently of the data on which inference is based. But if
the data are in fact used to this end prior to statistical inference, then such inference loses
its justifications and the ensuing validity conferred on it by classical theories. It is therefore
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critical that the theory of statistical inference be brought up to date to account for data-driven
modeling. Updating the theory that justifies statistical inferences usually requires modifying
the procedures of inference such as hypothesis tests and confidence intervals. As a conse-
quence, the new procedures may lose some power relative to the previously stipulated but
illusionary power derived from classical theories. This is a necessary price to be paid for
better justification of statistical inference in the context of the pre-inferential liberties taken
in today’s data-analytic practice. While updating of statistical theories and inference proce-
dures will not solve all problems underlying the current crisis, it is a necessary step as it may
help mitigate at least some aspects of the crisis. In what follows, we refer to all data-analytic
decisions that are made using the data prior to inference as “data-driven modeling.”

A second issue with theories of classical statistical inference is that many of them rely
on the assumption that the data have been correctly modeled in a probabilistic sense. This
means the theories tend to assume that the probability model used for the data correctly
captures the observable features of the data generating process. Justifications of statistical
inferences derived from such theories may therefore be invalid if the model is incorrect or
(using the technical term) “misspecified.” With the proliferation of data-analytic approaches
in science and business, it is becoming ever more unrealistic to assume that all statistical
models are correctly specified and inferences are made only after carefully vetting the model
for correct specification, for example, using model diagnostics. Such vetting may never have
been realistic in the first place, and it should also be said that pre-inferential diagnostics
should be counted among “researcher degrees of freedom” as they may result in data-driven
modeling decisions. It is therefore a mandate of realism to look for so-called “model-robust”
methods of statistical inference, and for statistical theory to provide their justifications. In
matters of misspecification, the situation is somewhat less dire than data-driven modeling as
there exists a rich literature on the study of inference when models are misspecified. We will
naturally draw on extant proposals for misspecification-robust or (using the technical term)
“model-robust” inference and adapt them to our purposes.

To summarize, there exist at least two ways in which inference methods derived from
classical mathematical statistics can be invalidated, namely,

(P1) data-driven modeling prior to statistical inference, and
(P2) model misspecification.

In light of the reproducibility crisis in the sciences, it is of considerable interest, even ur-
gency, to develop methods of statistical inference and associated theoretical justifications that
account for both (P1) and (P2). Even though these problems are manifest in almost all statis-
tical procedures used in practice, it is no simple task to provide methods of valid statistical
inference that address these problems in greater generality. For this reason, the present article
puts forth specifically a method of valid inference for the case that the fitting procedure is
ordinary least squares (OLS) linear regression. Here, there exists a literature that documents
the drastic effects of ignoring (P1) and (P2); see, for example, Buehler and Feddersen (1963),
Olshen (1973), Rencher and Pun (1980) and Freedman (1983). We will address one particular
form of problem (P1), namely, data-driven selection of regressor variables/covariates, and we
will deal with several forms of problem (P2).

Some of the earliest work that studies estimators under data-dependent modeling (P1) in-
clude Hjort and Claeskens (2003) and Claeskens and Carroll (2007). Although these articles
deal with a general class of statistical procedures, a major limitation, in view of the current
article, is that the data-dependent modeling is restricted to a very narrow class of principled
variable selection methods such as optimization of AIC or some other information criterion.
The fact is, however, that few data analysts will confine themselves to a strict protocol of
data-driven modeling. To address broader aspects of “researcher degrees of freedom,” there
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have more recently emerged proposals that provide validity of statistical inference in the case
of arbitrary data-driven selection of covariates. The first such proposal was by Berk et al.
(2013) who solve the problem allowing misspecified response means but retaining the clas-
sical assumptions of homoskedastic and normally distributed errors. We refer to Berk et al.
(2013) for many other prior works related to problem (P1) where data-driven modeling con-
sists of selection of covariates. A more recent article that expands on Berk et al. (2013) is
by Bachoc, Preinerstorfer and Steinberger (2016). An alternative approach is by Lee et al.
(2016), Tibshirani et al. (2016), Tian, Bi and Taylor (2016) (for example). Similar to Hjort
and Claeskens (2003), these proposals do not insure validity of inference against arbitrary
covariate selection but against specific selection methods such as the lasso or stepwise for-
ward selection. This type of post-selection inference is conditional on the selected model and
dependent on distributional assumptions, thereby not addressing problem (P2).

The present article is close in spirit to Berk et al. (2013) and Bachoc, Preinerstorfer and
Steinberger (2016) and lends their approaches a considerable degree of generality by cov-
ering both fixed covariates (as in these references) and (newly) random covariates. Bachoc,
Preinerstorfer and Steinberger (2016) is the only work we know of that provides valid statisti-
cal inference under arbitrary data-dependent covariate selection and general misspecification
of the regression models. Their framework assumes a situation where the set of submodels is
finite and of fixed cardinality independent of the sample size. Their method of statistical in-
ference is NP-hard, hence requires computational heuristics. To overcome these limitations,
we propose here a simplified procedure, called “UPoSI,” with the following properties: (1) it
is comparatively computationally efficient with at most polynomial complexity in the total
number of covariates, and (2) it allows the set of submodels to grow almost exponentially
as a function of the sample size. Thus the procedure is also in the spirit high-dimensional
statistics where the total number of covariates is allowed to be much larger than the sample
size.

1.2. Overview. In what follows, the term “model selection” will always mean arbitrary
data-driven selection of covariates, which is the only aspect of problem (P1) that will be ad-
dressed in this article. Furthermore, the only fitting method considered here is OLS linear
regression. This limitation is for expository purposes, and results for more general types of
regressions will be given elsewhere. Problem (P2) will be addressed by the complete absence
of modeling assumptions. In particular, it will not be assumed that the conditional response
means behave linearly in the covariates and equally it will not be assumed that the errors
are homoskedastic and normally distributed. The goal of the UPoSI approach described here
is to provide confidence regions for linear regression coefficients that are valid after model
selection and allowing complete misspecification. In the process, we will prove simple but
powerful results about linear regression that lend themselves to proving the validity of confi-
dence regions. The main contributions of the current paper are as follows:

1. We treat OLS linear regression as a fitting method for linear equations while treating
the associated Gaussian linear model merely as a working model that is not assumed to be
correctly specified. We consider the case where the observations are random vectors com-
prised of a response variable and one or more covariates, allowing the latter to be random
rather than fixed. Note that fixed covariates are assumed in the settings of Berk et al. (2013)
and Bachoc, Preinerstorfer and Steinberger (2016). Random covariates require us to interpret
and understand what is being estimated more carefully. See Buja (2019) for an explanation
why under misspecification the treatment of random covariates as fixed is not justified.

2. Following Berk et al. (2013) and Bachoc, Preinerstorfer and Steinberger (2016), we
decouple the inference problem from model selection, meaning that the inferences proposed
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here are valid no matter how the model selection was done. This feature has pluses and mi-
nuses. On the plus side, inferences will be valid even in the presence of ad-hoc and informal
selection decisions made by the data analyst, including, for example, visual diagnostics based
on residual plots. On the minus side, decoupling implies that inferences cannot take into ac-
count any properties of the model selection procedure when in fact only one such procedure
was used. A strong argument by Berk et al. (2013) and Bachoc, Preinerstorfer and Stein-
berger (2016) in favor of decoupling, however, is that in reality data analysts will rarely limit
themselves to one and only one formal selection method if it produces unsatisfactory results
on the data at hand. Therefore, in order to truly contribute to solving the reproducibility crisis
in the sciences, unreported informal selection should be assumed and accounted for. Decou-
pling of model selection and inference has a further benefit: It solves the circularity problem
by permitting selection to start over and over as often as the data analyst pleases. Inferences
in all selected models will be valid, whether they are found satisfactory or unsatisfactory for
whatever reasons.

3. Our theory provides validity of post-selection inferences even when model selection is
applied to a very large number of covariates—almost exponential in the sample size. Thus
the theory is in the spirit of contemporary high-dimensional statistics which is interested in
problems where the number of variables is larger than the sample size. We require, of course,
model selection to produce models of size smaller than the sample size in order to avoid
trivial collinearity when the number of covariates exceeds the sample size.

4. We mostly focus on one simple strategy for valid post-selection inference that has the
advantage of great simplicity, both in theory and in computation—its computational cost
being proportional to the number p of covariates. This is surprising as the computational
complexity of Berk et al. (2013) is exponential in p due to searching through all coefficients
in all submodels. The drawback of the present strategy is that its confidence regions are
not aligned with the coordinate axes in covariate space, hence do not immediately provide
confidence intervals for the slope parameters of the form “estimate + half-width.”

5. Most of the present results are based on deterministic inequalities that justify valid
post-selection inference even when the observations are structurally dependent. These proof
techniques may not produce best possible rates in some contexts, but the resulting inferences
will be more robust to violations of the independence assumption.

As a caveat, it should be stated that we do not address the question of when linear regression is
appropriate in a given data analytic situation when misspecification is present. We consider it
areality that many if not most linear regressions are fitted in the presence of various degrees of
misspecification, and reporting results for interpretation should be accompanied by statistical
inference just the same. Our goal is therefore limited to providing asymptotic justification of
inference in the presence of misspecification and after data-driven model selection.

1.3. Alternative approaches. An “obvious” approach to valid post-selection inference is
based on sample splitting, as examined by Rinaldo et al. (2016): Split the data randomly into
two disjoint parts, then use one part for selecting a model M and the other part for inference
in the selected model M. If the two parts of the data are stochastically independent of each
other, post-selection inference is valid. For independent observations, Rinaldo et al. (2016)
were able to provide very general and powerful results. Sample splitting has considerable
appeal due to its universal applicability under independence of the two parts: it “works” for
any type of model selection, formal or informal, as well as for any type of model being
fitted. It has some drawbacks, too, an obvious one being the reduced sample sizes of the
two parts, which increase the sampling variability both at the model selection stage and at the
inference stage. Another drawback is the requirement of independence of the two parts, which
makes it less obvious how to generalize sample splitting to dependent data. To the customers
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of statistical inference, it may also be disconcerting that the splitting procedure could have
produced different results in the hands of another data analyst who would have used another
random split. This potential lack of reproducibility is not a welcome feature in the context of
the reproducibility crisis. It also raises concerns over potential abuse whereby data analysts
sift through multiple random splits until they see results they like, making use of another
“researcher degree of freedom.” On the other hand, even scrupulous data analysts should be
expected to look at multiple random splits if only to learn about the stability of their model
selection and subsequent inferences. This is a valid concern because experience shows that
for most regression data all-subset searches reveal large numbers of submodels with nearly
identical performance. In summary, sample splitting has great appeal and could be highly
informative, but it could also open up another Pandora’s box that defeats the solution to the
problem it was meant to solve.

A different type of post-selection guarantees are available from the selective inference ap-
proach of Lee et al. (2016), Tibshirani et al. (2016), Tian, Bi and Taylor (2016) and Fithian,
Sun and Taylor (2014) when model selection is of a pre-specified form such as lasso selec-
tion or stepwise forward selection. The inference guarantees they provide are conditional on
the selected model. Their approach is ingeniously tailored to these specific formal selection
methods and takes advantage of their properties. It is, however, a model-trusting approach
that relies much on the correctness of the assumed model as being finite-sample correct un-
der a Gaussian or other exponential linear model with fixed covariates. For this reason and
because so much conditioning is performed, it is unlikely that this approach enjoys much
robustness to misspecification (see, e.g., Section A.20 of Tibshirani et al. (2018)). By com-
parison, we strive here for model robustness by limiting ourselves to asymptotically correct
coverage that is marginal rather than conditional, and by allowing covariates to be treated as
random rather than fixed.

The larger point to be reiterated here is that tailoring post-selection inference to a specific
formal selection method such as the lasso does not address the issue that data analysts may not
limit themselves to just one formal selection method and nothing else. It may be more realistic
to assume, as we do here, that they exercise broader liberties that include meta-selection
among multiple formal selection methods as well as informal selection using exploratory and
diagnostics tools. Post-selection inference that casts a wider net on selection methods may
have a better chance of making an at least partial contribution to solving the reproducibility
crisis in the sciences.

1.4. Organization. The remainder of the paper is organized as follows. Section 2 pro-
vides the necessary notation for a rigorous formulation of the problem of valid post-selection
inference. In Section 3, the problem of post-selection inference is shown to be equivalent to a
problem of simultaneous inference. In Section 4, we present a strategy for valid post-selection
inference along with its main features. In Section 5, we study the rate of convergence of the
Lebesgue measure of the confidence regions under independence. In Section 6, we special-
ize our regions for the case of fixed covariates and compare them with those in Berk et al.
(2013). Section 8 describes an implementation method based on the multiplier bootstrap.
Section 9 presents the simulation study comparing our method to Berk et al. (2013) and se-
lective inference of Tibshirani et al. (2016). In Section 10, we discuss various advantages and
disadvantages of the approach presented. Finally, Section 11 summarizes the results.

The Supplement (Kuchibhotla et al. (2020)) is organized as follows. Section S.1 provides
further simulation comparisons. Section S.3 provides a simple generalization to regression
data with problems such as missing values and/or outliers, in which case one may want
to modify the estimators of the relevant second moment matrices and vectors. Section S.4
points out an interesting connection between the post-selection confidence regions proposed
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here and the estimators proposed in the high-dimensional linear regression literature. Many
of the proofs are deferred to Sections S.5-S.9. Most of the discussion in the paper is based
on the assumption of independent random vectors, although comments about applicability
to dependent random vectors are given in appropriate places. Section S.10 provides theoret-
ical background about a high-dimensional central limit theorem and the consistency of the
multiplier bootstrap. These results are required for the computation of joint quantiles for the
proposed confidence regions. Section S.11 describes the functional dependence setting where
the computation of required quantiles is similar to that in the independence setting.

2. Notation and problem formulation.

2.1. Notation related to vectors, matrices and norms. For any vector v € RY and 1 <
Jj < g, v(j) denotes the jth coordinate of v. For any nonempty subset M C {1,2,...,q},
v(M) denotes the subvector of v with indices in M. For instance, if M = {2,4} and g > 4,
then v(M) = (v(2),v(4)). If M = {j} is a singleton, then v(j) is used instead of v({j}).
Therefore, v(M) € RM! where |M| denotes the cardinality of M.

For any symmetric matrix A € R4 and M C {1,2,...,q}, let A(M) denote the subma-
trix of A with indices in M x M and for 1 < j, k <gq, let A(j, k) denote the value at the jth
row and kth column of A.

Define the r-norm of a vector v € R? for 1 <r < oo as usual by

q 1/r
lvll, = <Z|v(j)|r) forl <r <oo, and [|v]e:= max |v(j)|.
=1 l<j=q

Let ||v|lo denote the number of nonzero entries in v (note this is not a norm). For any sym-
metric matrix A, let Amin(A) denote the minimum eigenvalue of A. Also, let the elementwise
maximum and the operator norm be defined, respectively, as

IAlloo := max [A(j, k)| and [|Allop:= sup [AS]>.
l<j.k=q 8l2=1

The following inequalities will be useful:

1/2 T
(1) ||v||1§||v||0/ vll2, [Av]loo < Allccllvlil, and |u’ Av| < [|Allsollullilv]1,

where A €¢ R9*4 and u, v € RY.

2.2. Notation related to regression data and OLS. Let (XiT, YHT eRP xR (1<i<n)
represent a sample of n observations. The covariate vectors X; € R” are column vectors.
It is common to include an intercept term when fitting the linear regression. To avoid extra
notation, we assume that all covariates under consideration are included in the vectors X;,
so the data analyst may take the first coordinate of X; to be 1. In case that the number p of
covariates varies with n, this should be interpreted as a triangular array.

Throughout, the term “model” refers to the subset of covariates present in the regression.
There will be no assumption that any linear model is true for any choice of covariates. In order
to describe models as subsets of covariates, we use nonempty index sets M C {1,2, ..., p}
as in Section 2.1 and write X;(M) for the covariate vectors in the submodel M. For any
1 <k < p, define the set of all nonempty models of size no larger than k by

Mpk)y:={M:MC{1,2,...,p}, 1 <|M| <k},

so that M, (p) is the power set of {1,2, ..., p} excluding the empty set.
To proceed further, we assume that the observations are independent but possibly noniden-
tically distributed. This assumption includes as special cases the settings of (i) independent
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and identically distributed observations and (ii) of fixed (nonrandom) covariates (by defining
the distribution of X; to be a point mass at the observed X;). Our setting is more general in
that it allows some covariates to be fixed and others to be random.

For any model M C {1,2,...,p}and 0 € RIMI, define the OLS empirical and expected
risk functions, respectively, as

5 oo LNy T 2
2) R"(Q’M)'_";{Y’ X! (M6},
111
3) Ru(0: M) := — 3 E[{Y; - x; (M6}

i=1

The notation [E and IP refer to expectations and probabilities with respect to all the randomness
involved. Define the OLS estimator and the corresponding target for model M as

€)) ﬁn,M ;= argmin 1%,1(9; M), and B,y :=argminR,(6; M).
0eRIMI 9cRIM|

Thus ,én M, BnM € RIMI Note, however, that for M ; M’ the estimate vector ,3n M 1S
not a subvector of ,3,1 w and the target vector B, » is not a subvector of B, p. The
reason is nonorthogonality (partial collinearity) between covariates j € M, j/ € M’ \
M in the sense that generally Y ;-;-, X;(j)X;(j') # 0 in the case of estimates and
Y1<i<n E[Xi (j)Xi(j)] # 0 in the case of targets. This is why we must write M as a sub-
script of ,@,1 m and B, » and not in parentheses. (See Section 3.1 of Berk et al. (2013) for a
related discussion.)

Note also that the target 8, » is “dynamic,” that is, it is permitted to change with the
number of observations n. This is a consequence of allowing nonidentically distributed ob-
servations. In a framework of i.i.d. observations, the target 8, s would not depend on n.

Next, define associated second order matrices and vectors in the full model as follows:

. 1 ~ 1 &
Sp==Y X;X! eRPXP. and T, :=-Y X;Y; eR?,
n n; 1 i n l’l; 141

©)
1 & 1
Y, =—Y E[X; X ]eRP*P, d T,:=-Y E[X;Y;] €R".
n nl:ZI [ i ,] an n n; [X;Y;]

Importantly, for these quantities there is no need to define separate versions in submodels M
because they are just the submatrices f)n (M) and X,,(M) of ﬁn and X, respectively, and
subvectors f‘n(M ) and I';,(M) of f‘n and I, respectively. The OLS estimate of the slope
vector and its target in the submodel M satisfy the following normal equations:

(6) S0 (M) Bpyy =T0(M) and  5,(M) .y =Tn(M).

REMARK 2.1. We do not solve the equations (6) on purpose because the confidence
regions to be constructed below will accommodate exact collinearity by including subspaces
of degeneracy. Minimizers of the objective functions R, (0; M) and R, (6; M) defined in (2)
and (3) always exist, even if they are not unique. Estimates Bn, M can only be unique when
|M|] < n because 3, (M) has rank at most minf{|M |, n}. Targets B, p, on the other hand, can
be unique without a constraint on n because they are based on expectations rather than finite
averages, so X, and X, (M) can be strictly positive definite and R,(0; M) strictly convex
with a unique minimizer even when |M| > n.
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2.3. Problem formulation. Under very mild assumptions, /§n M — Bn,m converges to zero
as n tends to infinity for any fixed, nonrandom model M (see Kuchibhotla, Brown and Buja
(2018)). This fact justifies calling ﬁn, M an estimator of B, s or, equivalently, 8, y the target
of estimation of ﬁn M. Also, for a fixed M, /§n m has an asymptotic normal distribution, that
is,

0 2Byt — Bowt) S N©O,AVY) (0 RMI AV, e RIMIXIMIY

for some positive definite matrix AV, that depends on M and some moments of (X, Y); see

the linear representation in Kuchibhotla, Brown and Buja (2018). The notation £ denotes
convergence in law/distribution. Asymptotic normality lends itself for the construction of
(1 — a)-confidence region R,y such that

LminfP(B, y € Rom) > 1 —a
n—o0

for any fixed « € [0, 1]. We approach statistical inference using confidence regions rather
than statistical tests, but this is a technical rather than a conceptual choice due to the duality
between confidence regions and tests: a confidence region with coverage at least 1 — « is a
set of parameter values that could not be rejected at level « if used as point null hypotheses.
The problem of valid post model selection inference is to construct for given nonrandom
sets of models M, a set of confidence regions {7@,1, M : M € M} such that for any random

model M depending (usually) on the same data satisfying P(M e M p) =1, we have
(7 liminfP(8, ; €R, ;) =1—a.

The guarantee (7) is asymptotic because we strive for a theory that requires few assumptions,
whereas finite sample confidence guarantees require strong assumptions.

The notation M for random models requires an elaboration of the sources of randomness
envisioned here. With the reproducibility crisis in mind, we expand our view of the sources of
model randomness by adopting a broad frequentist perspective that includes not only datasets
but data analysts as well. Conventional frequentism can be conceived as capturing the random
nature of an observed dataset in the actual world by embedding it in a universe of possible
worlds with datasets characterized by a joint probability distribution of the observations. The
broader frequentism proposed here is conceived as pairing the random datasets with random
data analysts who have varying data analytic preferences and backgrounds. This variability
among data analysts’ preferences may be called “random researcher degrees of freedom,” a
term that refers to liberties exercised by practitioners when analyzing data in general, and
when selecting regression covariates in particular. Some of the latter freedoms have been
described and classified by Berk et al. ((2013), Section 1): (1) formal selection methods such
as stepwise forward or backward selection, lasso-based selection using a criterion to select
the penalty parameter, or all-subset search using a criterion such as C,, AIC, BIC, RIC, etc.;
(2) informal selection steps such as examination of residual plots or influence measures to
judge acceptability of models; (3) post hoc selection such as making substantive trade-offs of
predictive viability versus cost of data collection. The waters get further muddied even in the
case of formal selection methods (1) when “informal meta-selection” is exercised: trying out
multiple formal selection methods, comparing them and favoring some over others based on
the results produced on the data at hand. This list of “researcher degrees of freedom” in model
selection should make it evident that these freedoms are indeed exercised in practice, and that
they are based on personal background, experience and motivations, as well as historic and
institutional contexts. For these reasons, it may be impossible to capture in a stochastic model
the randomness contributed by data analysts’ exercise of their freedoms.
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Following Berk et al. (2013), this infeasibility can be bypassed by adding a quantifier
“for all M” to the requirement (7), thereby capturing all possible ways in which selection
may be performed. The benefit reaped from this step is that the requirement (7) permits
a reduction to a problem of simultaneous inference. Simultaneity according to Berk et al.
(2013) is over all regression slopes in all submodels, resulting in a NP-hard search problem.
We will approach the simultaneity problem in a different way that lends itself to relatively
inexpensive computations. A cost incurred by asserting ignorance about the selection process
M is that conditioning on the selected model M = M is not possible, hence the approach of
Lee et al. (2016), Tibshirani et al. (2016), Tian, Bi and Taylor (2016) and Fithian, Sun and
Taylor (2014) is infeasible.

Inference, if conceived with a “for all M” quantifier, requires certain limits on the freedom
of model selection. The set of potential covariates must be prespecified before examining the
data. For example, it is not permissible to initially declare the covariates X;(1), ..., X;(p)
to be the universe for searching submodels, only to decide after looking at the data to search
among product interactions X; (j)X; (k) as well. The decision to include interactions in data-
driven selection must be made before looking at the data. Thus data-driven expansion of the
universe of covariates for selection is not currently covered by our framework.

Again following Berk et al. (2013), a curious aspect of the target of estimation has to be
noted: g, N has become a random quantity with a random dimension |M|, whereas for a fixed
M the target Bn,m is a constant. After data-driven modeling, the selected target 8, , has be-

come random due to data-driven selection M. This, however, is the only randomness present:
among all possible targets {8, » : M € M}, one is randomly selected, namely, 8, ;. The

associated estimate ﬂ in the random model M, in addition to its intrinsic Varrabrhty, also
incurs the randomness due to selection.

3. Equivalence of post-selection and simultaneous inference. The first step toward
achieving the goal of constructing a set of confidence regions {7@,17 M M e M} satistying
(7) is to convert the post-selection inference problem into a simultaneous inference problem.
This conversion is provided by Theorem 3.1, which parallels Berk et al. (2013) but offers the
generality needed here. The theorem is proved for a finite number n of observations, but a
version using “liminf;,_, »,” follows readily.

THEOREM 3.1. For any set of confidence regions {ﬁn’M :M e My} and a € [0, 1], the
following two statements are equivalent:

(1) The post-selection inference problem is solved, that is,

P, s €R, i) =1—a

for all data-dependent model selections M satisfying MeM P
(2) The simultaneous inference problem over M € M, is solved, that is,

P( ﬂ {Bn,m Eﬁn,M}> >1—a.

MeM,

PROOF. For fixed M € M, let Ay ={Bu.m € 7%,1 M} be one coverage event inside (2),
and similarly for random M let A =18, € 7%” 7} be the coverage event in (1). Note that

both are random events due to the randomness of 7@,, M-
(2) = (1): Trivially, Ay, 2 ﬂMeM,, Ap because M € M, implying (1).
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(1) = (2): To prove this implication, it is sufficient to construct a data-driven (hence ran-
dom) selection procedure M that satisfies

(8) Ag= [ Awm.
MeM,

This is achieved by letting M be any selection procedure that satisfies

M € argmin1{Ay]},
MeM,

where 1{A} denotes the indicator of event A. It follows that 1{A;;} = minyer, 1{An},
which is equivalent to (8). This completes the proof of (1) = (2). O

REMARK 3.1. The proof makes no use of the regression context at all; it is merely about
indexed random sets/events A and random selections M of the indexes M. The second part
of the proof shows the existence of adversarial random selection procedures M that require
simultaneous coverage over all M. To achieve this, M only has to pick any model M for
which 7@”, u fails to cover B, u if such M exist; else, if 7@”, M covers B, y for all M, M
can be any model M. This provides an existence proof for M that satisfies (8) but it does
not provide an actionable selection procedure for real data analysts because it depends on the
unknown true 8, .

REMARK 3.2. The theorem establishes the equivalence of family-wise simultaneous
coverage and post-selection coverage allowing for arbitrary random (data-driven) selection.
The argument, because it makes no use of the regression context, applies to any type of re-
gression. It also applies universally to any type of confidence procedure 7@,1 M-

REMARK 3.3. The analog of Theorem 3.1 above in Berk et al. (2013) is their Lemma 4.1
(“Significant triviality bound”), and their adversarial selection method is “p-value hunting”
described in their Section 4.9. This selection method, however, does not correspond to the
worst-case selection methods of Theorem 3.1. The difference is that “p-value hunting” is
worst-case under a global null hypothesis and not for coverage events of arbitrary unknown
Bn.m- Under a global null hypothesis, “p-value hunting” becomes actionable and leads to
worst case selection under this null. For the UPoSI procedure to be proposed below, we will
give a test-based actionable version of worst-case selections in Section 6.3. At this point, we
have not even specified a confidence procedure yet. Theorem 3.1 states the equivalence of
post-selection and simultaneous inference in utmost generality for any confidence procedure,
whereas the setup of Berk et al. (2013) provides the equivalence for their PoSI procedure
only.

REMARK 3.4 (Inherent high-dimensionality). Returning to regression, note that in view
of Theorem 3.1, valid post-selection inference is inherently a high-dimensional problem in
the sense that the number of parameters subject to estimation and inference is large, indeed,
often larger than the sample size. For illustration, consider a common regression setting where
the number of covariates is p = 10 and the sample of size n = 500. Estimation and testing
of the slopes in the full model seems unproblematic because there are 50 observations per
parameter. Now, for the post-selection inference problem with all nonempty submodels, there
are 2P — 1 = 1023 vector parameters of varying dimensions, adding up to a total of p2P~! =
5120 parameters in the various submodels, exceeding the sample size n = 500 by a factor of
ten, thus constituting an inference problem in the high-dimensional category.
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Theorem 3.1 shows that in order to achieve post-selection inference that is asymptotically
valid across all data-driven selection procedures M, it is necessary and sufficient to construct
a set of confidence regions R, p such that

©) timintP( () (B € Row)) 2 1-a
MeM,

The solutions to the post-selection inference problem proposed here will satisfy (9).
4. The UPoSI approach to post-selection inference.

4.1. Valid confidence regions. Equipped with the required notation, we proceed to con-
structing confidence regions R, s for linear regression. Define the estimation errors of %,
and I';, from (5) as follows:

DE =%, -3 = S, (M) — S, (M)|| _,
n [ oo Mg/l\fllﬁ(Z)“ n(M) n( )Hoo

(10)
— B .
Dy =Ty — Thlloo = Mé%",in” Ta(M) = Th(M)| .

The equalities on the right-hand side are useful trivialities given here for later use: M, (2)
and M, (1) are the sets of all models of sizes bounded by 2 and 1, respectively, where size 1
is sufficient for “max” to reach all elements of the I" vectors, but size 2 is needed for “max”
to reach all off-diagonal elements of the ¥ matrices as well. Importantly, neither D> nor DY
is a function of submodels M.

The quantities DnE and D,f are statistics whose quantiles will play an essential role in the
construction of the confidence regions to be defined next. In each submodel M € M ,(p), we
will construct for the parameter vector 8, p two confidence regions: The first satisfies finite
sample guarantees at the cost of lesser transparency, whereas the second satisfies asymptotic
guarantees with the benefit of greater simplicity. The motivations for the particular forms of
these regions will become clear in the course of the elementary proofs of the theorems to
follow. With these remarks in mind, we define two types of “UPoSI” confidence regions:

(A1) Raym={0 eRM:[S,(M)(Bym — 6}, < Cr (@) + CY (@)I6]11},
(12) R} =10 e RM S, (M) (Bt — 0] o < Ch (@) + CE (@)1 Bu I}
where C ,1; (o) and an (o) are bivariate joint upper o quantiles of D,l; and Dnz in (10):

(13) P(D! < Cr(a) and DX < CX(a)) > 1 —a.

REMARK 4.1 (Restriction of models for selection). The confidence regions defined in
(11) and (12) do not take advantage of restricted model universes such as “sparse model se-
lection” where M € M p(k) searches only models of sizes up to k (< p). It might, however,
be of practical interest to consider the post-selection inference problem when the set of mod-
els used in selection is indeed a strict subset of the set M ,(p) of all models. This can be
accommodated with an obvious tweak whereby

DI (M) = sup |[[(M) —T,(M)|,, and DF(M):= sup |E,(M) — Z,(M)|
MeM MeM

become functions of the restricted model universe M (C M ,(p)). Note, however, that ac-
cording to (10) we have D,f M) = D}; as long as the model universe M includes all models
of size one, and DX (M) = DF as long as M includes all models of size two. This is the
case, for example, when “sparse model selection” is used, meaning M = M, (k) for k < p.
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Thus confidence regions of the form (11) do not gain from “sparse model selection.” This
is so because the regions depend effectively only on marginal and bivariate properties of the
observations (X;, ¥;) and their distributions through I',;, ', £, and %,,.

Further observations on (D,l: , Dnz) and (CnF (o), an ()):

e Bivariate quantiles are not unique: one may marginally increase one and decrease the other
suitably, maintaining the bivariate coverage probability 1 — «. Allowed is any choice of
C!'(a) and CF («) that satisfies (13).

e These quantiles are not known and must be estimated from the data. A bootstrap procedure
is described in Section 8.

e The estimation errors D,f and DE, being based on averages of quantities of dimensions
p x 1 and p x p, respectively, converge by the law of large numbers to zero as n — oo
under mild conditions (see Lemma 5.1). Hence, max{C,l; (o), CnE (@)} =o0(l) as n — o0.

4.2. Validity of the confidence regions 7A2,,, M- We next prove validity of the simultaneous
inference guarantee (9). This will be done in Theorem 4.1 for the confidence regions 7A€n M
where M € M ,(p), and in Theorem 4.2 for the confidence regions 7%:2 » Where M € M, (k)
for some k < p.

THEOREM 4.1. The UPoSI confidence regions {ﬁn’M : M e M,(p)} defined in (11)
satisfy

(14) P( ( (Bame ﬁn,M}) >1—oa.

MeM,(p)
Furthermore, for any random model M with M € M »(Dp), we have

(15) PB, g €R, )= 1—0.

As mentioned earlier, this theorem is nonasymptotic as it provides guarantees for finite
samples. It is not directly actionable because the bivariate quantiles used in the construction
of the confidence regions need to be estimated. Hence actionable versions of these regions
end up having only asymptotic guarantees as well. In addition, if the observations are not
identically distributed, any bootstrap procedure used for estimation will not be able to account
for the differences in the distributions, but it will be asymptotically conservative. See Liu and
Singh (1995) and Section 8 below.

PROOF. The proof is surprisingly elementary, involving only simple manipulations of
the estimating equations, and is free of stochastic assumptions. We start by differencing the
normal equations of estimates and targets; see (6). This holds for all M € M ,(p):

S0 (M) Bt = Zn(M) By, = T (M) — T (M),
Telescope the left-hand side by subtracting and adding S (M) Bn.m:

S0 (M) Bt — Bumt) + (Sn(M) — (M) Byt = Tn(M) — T (M),

Move the second summand on the left to the right-hand side of the equality, take the sup norm
and apply the triangle inequality on the right-hand side:

|0 (MY Bt — Bum}| o < [Tn(M) = T (M) | o + [{E0 (M) — (M)} Burt | -
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Applying the second inequality in (1) to the last term it follows that
IS0 (MY Bust — Bum}]| o < [Tn(M) = To(M) | o + | Zn (M) — Sy (M) || N Buma 1

Because f‘n (M) —I'y(M) and f),,(M) — X,(M) are just a subvector and a submatrix of
I'y — T, and ¥, — X, respectively, we get

(16) | S0 MY But — Bt} o < 1T = Talloo + 1120 — Salloo |l B mll1-

This inequality is deterministic and holds for any sample and for all M € M ,(p). These facts
allow us to take the intersection of the events (16) over all submodels M and transform it into
a “probability one” statement. Using D,S and Dn2 defined in (10), we have

(17) P( N {||En<M>{ﬂn,M—Bn,M}||oo5D5+DE||ﬁn,M||1})=1.

MEMp(p)

From the definitions of C,l: () and CnE () in (13) follows the required result (14). The second
result (15) for random models follows by an application of Theorem 3.1. [

REMARK 4.2 (Validity guarantee for large p). The guarantee (14) in Theorem 4.1 is
valid for every sample size n and any number of covariates p. In particular, p > n and
p = oo are covered by the theorem even though Sa(M) is necessarily singular for |M| > n.
In this case, the confidence region 7%,, m simply contains a nontrivial affine subspace of R”.

REMARK 4.3 (Estimation of bivariate quantiles). The finite sample guarantee (14) re-
quires the bivariate quantiles C ,l; () and C nz () of D,l: and DnE , respectively, to satisfy (13)
for all p,n > 1. In general, these bivariate quantiles can only be estimated consistently in the
asymptotic sense as explained in Section 8.

REMARK 4.4 (Independence not used). Earlier we assumed for concreteness indepen-
dent observations (X;, ¥;), 1 <i <n. Theorem 4.1, however, holds without this assumption
as the proof made no use of independence. Validity of the post-selection guarantee holds as
long as C,f (o) and an (o) are valid bivariate quantiles in the sense of (13).

4.3. Asymptotic validity of the confidence regions 7@1 v The confidence region 7A2,,, M
is difficult to analyze in terms of its shape and its Lebesgue measure. Because of these dif-
ficulties, we also prove asymptotic validity of the more intuitive confidence regions of the
form 7@2 y defined in (12). As these regions depend on estimates ,3,1, M Wwhose variability
explodesvwith increasing collinearity, we need to control the minimum eigenvalue of X, (M)
for models up to size k. We therefore define

An k) = i Ami En M s
(k) Me%lg(k) mm( ( ))

and make use of the following assumption:
(A1)(k) The estimation error Dnz satisfies an2 =0p(Ap(k)) as n — oo.

This assumption is used for uniform consistency of the least squares estimator in ||-||{-norm
as in Lemma 4.1 below. The rate of convergence of DHE to zero implies a rate constraint on the
maximal submodel size k. Here, as before, k = k;, is allowed to be a sequence depending on 7.
As can be expected, the dependence structure between the observations (X;, Y;), 1 <i <n
and their moments determine the rate at which DF converges to zero. Under certain tail
assumptions on the observations as well as independence, k can grow at the rate o(y/n/log p)
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if A, (k) is bounded away from zero; see Lemma 5.1 for more details. The theorem is stated
with this high-level assumption so that it is more widely applicable, in particular to various
structural dependencies on the observations; see Theorem S.11.1 for a specific result.
Assumption (Al)(k) allows exact collinearity of the full set of covariates but prohibits
exact collinearity of any k-subset of covariates. In particular, the minimum eigenvalue of X,
can converge to zero or even be zero as n — oo if p = p, changes with n.
Before stating a theorem about asymptotic validity of the post-selection confidence regions

A

RZ > We give conditions for uniform-in-model consistency of B,,, M to By m. See Section S.5
for a proof, and also Kuchibhotla et al. (2018) for more results of this flavor.

LEMMA 4.1. Forall k > 1 satisfying anE < A, (k) and for all M € M, (k),

|M|(DY +DE|Bn,mll1)
An(k) — kDY '

(18) 1Bnst — Bamlli <

The following theorem states the validity of the simultaneous inference guarantee for
S5
Rym-

THEOREM 4.2. For every 1 <k < p that satisfies (A1)(k), the confidence regions 7@; M
defined in (12) satisfy

.. 5t
1%131&1)@( N {ﬁn,MeRn’M}> >1-—a.
MeM,, (k)

See Section S.6 of the supplement for a proof.

4.4. Further remarks on the confidence regions 7@,1 M and 7%,}; M-

1. Standardizing covariates: The confidence regions 7%,, m and 7@2 j are not equivariant
with respect to linear transformation of covariates or the response. A simple way to obtain
equivariance with respect to diagonal linear transformations (changes of units) is to standard-
ize the covariates to have sample mean 0 and sample variance 1. Because the validity of the
confidence regions does not require independence (Remark 4.4), data-driven standardization
will not affect the post-selection guarantee as long as marginal means and variances are es-
timated consistently. This may affect the volume of the confidence regions, not in terms of
rate but in terms of constants, because the intercept is no longer needed in || 8, a1l1; see Sec-
tion 10 for more details. (Note that traditional fixed covariate theory of linear models achieves
equivariance under unit changes through the use of -statistics which are free of units.)

2. Comparison of 7%,1’ M and 7%; » In testing: As mentioned earlier, the shape of the con-
fidence region Ién, M is not easily described. However, 7@,1, m has advantages over 7%2 y for
significance testing of null hypotheses Hp ps : Bn. i = 0. The level « test based on 7%,, M
rejects Ho, ps if

|50 (M) B | o = Cr (@)

By comparison, the level « test based on the confidence region 7%1 u rejects Ho pp if

|0 (M) Bt ]| o = CL (@) + CE @) Bu 1

Thus 7@,,, M results in more rejections and hence greater power than 7%2 » at the same level ar.

A similar argument holds even if the null hypothesis is changed to Ho s : Bn.pm = 6o € RIM|
for some sparse 6, for example.
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3. Shape of the confidence regions: The region 7A€n u has a complex shape that is not easy
to describe. The confidence region 7@2  1s a parallelepiped because it can be described by
2| M| linear inequalities that come in pairs of parallel constraints (with random coefficients).
The Lebesgue measure of this confidence region is easier to study than that of the region
7@,1, M (see Proposition 5.1 below).

4. Implied “prediction” regions: Following Berk et al. (2013), Bachoc, Leeb and Potscher
(2019) considered the problem of post-selection prediction regions. Mathematically, the prob-
lem is to cover xo(M)T,B ~ for a randomly selected model M and a given fixed vector
xo € R”. Bachoc, Leeb and Potscher (2019) con51der different versions of the problem de-
pending on whether one observes xp or only xq (M). These issues do not arise here because
our UPoSI confidence regions are not based on a maximization over different models. Based
on the confidence regions 7%,,, M and 7@2 »» W€ may construct post-selection regions for the
best linear prediction surface. The functional 'Bn, sy (as defined in (4)) provides the best lin-

ear prediction x (M) Bn.m to the response based on the covariates X (M) = x(M). For any

random model M, we have B, i € 7%” y; With probability at least 1 — . Hence, for any set
X CRP, ’ ’

P(xT(M)ﬂnM {x (M)6 - GER g} forallx e X)>1—oa.
Similarly, for any random model Me M, (k), we get
I}lrgioréfIP’(xT(M)ﬂnM {x (M)6 : QGRT }forallxeX)> 1 —o.

5. Rate bounds on D,l; , ’D,),: and Lebesgue measure of the regions. Before proceed-
ing further with the study of the confidence regions, we examine the rates at which D} and
Dnz converge to zero under assumptions on the tail behavior as well as independence. As
mentioned in Remark 4.4, the validity of the post-selection coverage guarantee does not re-
quire independence, hence rate results under “functional dependence” are possible also (see
Section S.11 of the supplement). Let Z; = (X-T, Y;) " for 1 <i <n and define

A 1 n
ZZ z', and Q,:= ZE [Z;Z] e RPHDX(+D,

i=1

Observe that maX{D}; , DE} < ||§2n — @y llco- The following lemma from Kuchibhotla and
Chakrabortty (2018) proves a finite sample bound for the expected value of the maximum
absolute value of €2, — €2,,. For this result, set for y > 0 and any random variable W,

(19) IWlly, =inf{C > 0: E[y, (WI|/C)] < 1},

where ¥, (x) :=exp(x”) — 1 for x > 0. For 0 <y < I, ||-|ly, is not a norm but a quasi-
norm. A random variable W satisfying || Wy, < oo is called a sub-Weibull random variable
of order y. The special cases y = 1 and y = 2 correspond to the well-known classes of
subexponential and sub-Gaussian random variables.

LEMMA 5.1. Fix n, p > 2. Suppose the random vectors Z;, 1 <i <n are independent
and satisfy for some 0 <y <2,

(20) max max ”Z,-(j)”wyfl(,w,,

l<i<nl<j<p+l

for some positive constant K, . Then

E[ValI€ — Qulloo] < Cy{An.py/log p + K2, (log plogn)*/¥n=172},



2968 A. K. KUCHIBHOTLA ET AL.

and for all o € (0, 1],

log(%) +2logp

max{C,l;(Ot), C,),: (@)} < 7AH,P\/ n

Cy K2 ,(log(2m))* (log(2) + 2log p)*/”
n :

n

k]

where C, is a positive universal constant that grows at the rate of (1/ WY as y | 0 and
AL = maxi<jk<prin” Y0 Var(Zi(j) Zi (k).

PROOF. See Theorem 4.1 of Kuchibhotla and Chakrabortty (2018). A similar result holds
for y > 2, that is, random variables with tails lighter than the Gaussian. See Theorem 3.4 of
Kuchibhotla and Chakrabortty (2018) for a result along these lines. [

The confidence regions 7@;  are simple parallelepipeds and can be seen as linear transfor-
mations of ||-||.o-norm balls. Hence, their Lebesgue measures can be computed exactly. Since
the confidence regions are valid over a large number of models, we give a relative Lebesgue
measure result uniform over a set of models. For a measurable set A C R? with g > 1, let
Leb(A) denote the Lebesgue measure of A in R?. For convenience, we do not use different
notations for the Lebesgue measure for different g > 1.

PROPOSITION 5.1.  Forany k > 1 such that assumption (A1)(K) are satisfied, the uniform
relative Lebesgue measure result holds:

Leb(R} )AL (k)
sup - =
MeM, k) C (@) +2CF (@) | B, mlIDM]

Moreover, ifA,T1 (k) = O(1), then, in the setting of Lemma 5.1,

M|l |M]|
1) Leb(R] ,,) =0, (, | "%) uniformly for M € M, (k),

if p and n satisfy (log p)*/*(logn)?/*~1/2 = o(n'/?).

0,(1).

PROOF. See Section S.7 of the supplement for a detailed proof. [

REMARK 5.1 (The question of optimality of rates). Even though the problem of post-
selection inference is studied from various perspectives as discussed in Section 2.3, we do
not know of a result regarding the optimal size of confidence regions in the post-selection
problem. The volume rates derived in Proposition 5.1, however, seem sharp and are better
than other existing post-selection confidence regions. A comparison of volumes with the
PoSI regions of Berk et al. (2013) and Bachoc, Preinerstorfer and Steinberger (2016) is in
Section 6 for fixed covariates.

For intuition, consider simultaneous confidence intervals for the mean of a multivariate
normal random vector in R? with i.i.d. N (0, 1) coordinates: The cube formed from them has
volume of order (4/logg/n)? (in the worst case). Thus inference for g parameters that can
be estimated by asymptotically normal estimators would have worst case volume of order
(4/logg/n)4. Toward the sharpness of our volume rates in Proposition 5.1, we note that if
an “oracle” informs us that the selected model M will have cardinality s, then for valid post-
selection inference we need inference for (f ) parameters, 8, y, |M| =s. Because these are
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estimable by ,én m which are asymptotically normal, the worst case confidence regions would
have volume of order (y/slog(ep/s)/n)*. By comparison, our proposition leads to volumes
of order (/slog p/n)* (for model M with |M| = s) even without knowledge of an oracle.
These arguments are still mostly heuristic, and even the meaning of optimality in this context
is not entirely clear. We hope to produce a rigorous optimality framework in the future.

6. Confidence regions for fixed covariates.

6.1. Simplifications for fixed covariates. Because most of the post-selection inference
literature as reviewed in Section 2.1 assumes fixed covariates, it is of particular interest to
understand how the UPoSI confidence regions behave in this case. We can interpret fixed
covariates as having point mass distributions at the observed value X;, hence the two second
moment matrices for the covariates coincide:

2 —‘ZEXXT _IZXXT
i=1

It follows that Dnz = ||§n — Zulleo = 0, hence its quantiles vanish, an (@) =0 for all @ €
[0, 1]. Furthermore, the target specializes to

-1
1 n 1 n
Bt = (E Y Xi(x; (M)) (; Y X (M)E[Yi])
i=1 i=1
and the two types of UPoSI confidence regions (11) and (12) are identical:
R =R 1y =10 e RM: | S, (M) (Buort — 0} o < C (@)}

Finally, for fixed covariates the assumption (A1)(k), which was needed for 7@1 - 18 trivially

satisfied because DHE = 0. Thus, by Theorem 4.1 (or 4.2), finite sample valid post-selection
inference holds for all model sizes under no model or distributional assumptions, as were still
needed in Berk et al. (2013).

6.2. Worst-case selection for UPoSI with fixed covariates. We showed in Section 3 that
for all confidence regions there exist worst-case or adversarial selection procedures M that
require simultaneous control of coverage for all submodels M that M is permitted to search.
We will now characterize such worst-case selection for the UPoSI confidence regions 7A2n,M
in the fixed covariate setting. We start by noting

N a 1
120 (M){Bu.st — Brmt} | oo = H; > XY — E[Yi])H
i=1

o

—ZX(/) (Y — E[Y])‘

= max
JEM|n
Choose a single data-dependent (hence random) coordinate Je {1,2,..., p} such that

J € argmax
I<j<p

nTY X GH (Y — E[Y])].

i=1

It follows that for any model M that contains J we have

| 0 (MY Bt — B} o o= max

n~ me Y; — E[Y])‘

i=1



2970 A. K. KUCHIBHOTLA ET AL.

Hence, for any random model M for which P(J € M) = 1, the coverage of 7%” iy 18 exactly
equal to (1 — «).

An interesting consequence is the following: The number of models that contain J is
2P=1 or half of all models. This fact suggests intuitively that the UPoSI confidence regions
will often be sharp, that is, not conservative.

6.3. Comparison of UPoSI worst-case selection with PoSI of Berk et al. (2013). In Re-
mark 3.3, we noted that the worst-case selection procedure for PoSI described in Berk et al.
(2013) as “p-value hunting” is not directly comparable with the worst-case selection proce-
dures designed here for confidence procedures. The reason is that “p-value hunting” derives
from testing null hypotheses B, y(j) = 0. To achieve comparability of worst-case proce-
dures between UPoSI and PoSI, we need to turn the UPoSI confidence regions into tests of
the null hypotheses B,y = 0 (€ RI™!). This is done by considering the events that the UPoSI
confidence regions R, y cover B, y = 0 assuming that this is the truth. The test statistic
implied by the region 7A2n,M is || fi,, (M){,BA,,,M — Bu.m} oo, which for g, pr = 0 simplifies to
||f]n (M ),BA,,’ Mlloo = ||f‘n (M) ||co- Under simultaneity for all M, the overall test statistic be-
comes ||f‘,, loo =maxi<j<p |% > 1<i<n Xi(j)Yil. Up to an irrelevant factor, this amounts to a
maximum over individual test statistics of the form |)_; X; (j)Y;|.

If the covariates are standardized to remove units and place them on comparable scales for
scale equivariance, the test statistics f‘n (j) =2_; Xi(j)Y; essentially become ¢-statistics for
the univariate regressions of the response on each covariate separately. A worst-case selection
is therefore any model M that has a nonempty intersection with argmaxi<j<, | >_; X;(j)Yil.
Thus, in the fixed covariate setting and for testing null hypotheses 8, s = 0, the worst-case
selection procedure for UPoSI turns out to be “significance hunting” as well, but over only
p marginal z-tests, compared to PoSI of Berk et al. (2013) whose worst-case selection hunts
over p2P~! t-tests.

If UPoSI is related to marginal screening and simple regressions, one may ask how it can
be the basis for simultaneous inference in multiple regression and for testing composite null
hypotheses such as 8,y =0 (€ RIM1). The reason is that > Xi(HE[Y;]=0for j € M and
¥, (M) nonsingular entails 8, 5 = 0.

6.4. A comparison of Lebesgue measures of UPoSI regions with Berk et al. (2013). The
rate bound (21) for Leb(R,'L ) in Proposition 5.1 is written explicitly for general random

covariates. For fixed covariates, we showed that an () =0 and 7A2,, M= 7@; - From the
proof of Proposition 5.1, we get

Leb(R! /) < |, ()| ' (2CF (@)™ for all M € M, (p).

Using the assumptions of Lemma 5.1, we further get

@2 Leb(R} 1) = 0, (|2, ()| ") (/n=Tog p) M.

This is much smaller than the size shown for general random covariates in (21) of Propo-
sition 5.1. An explanation for this discrepancy between fixed and random covariates is
as follows: The confidence regions R,y (11) and le y (12) are written in terms of

f)n (M){ﬁ,,,M — Ba.m}, but for fixed covariates we have ﬁn M)Bum = Zn(M)Bro.m =
I, (M). While the confidence regions are written for B, y, they are equivalent to confidence
regions for the population functionals I, (M). These are just subvectors of the p-dimensional
vector I", for which one can construct a confidence region with length /log p/n on each co-
ordinate, explaining the smaller size of (22). For random covariates, this reasoning does not
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hold because 3, and £, are not identical, injecting sampling variability caused by the ran-
dom covariates.

The surprisingly small rate of (22) calls for a comparison with the Lebesgue volumes of
the fixed covariate PoSI confidence regions of Berk et al. (2013) and Bachoc, Preinerstorfer
and Steinberger (2016). They are both based on the quantiles of the statistic

(23) max maX|f(/3n m () = Bam()))

MeM,k) jeM

where the denominators are some form of standard errors or estimates thereof. (Their choice
differs between these works; for simplicity, we assume them to be known.) Based on this
“max-|¢|” statistic (23), a confidence region for B, u is
4 Ry ={oeRM: max |Vn(Bum () —0() /o m (D] < Cax@),

’ l=j=<IM|
where C, x (o) is the upper « quantile of the max-|z| statistic so as to achieve coverage (1 —o).
For fixed covariates and Gaussian response, /n (B,,, M — Bn.m) is normally distributed, and
from Berk et al. ((2013), Theorem 6.2) it is known that the max-|z| statistic (23) can be of
the order v/k log(ep/k); see Bachoc, Blanchard and Neuvial (2018) for sharpness of this rate.
This implies that C,, x () can be of the order /k log(ep/k), and hence the Lebesgue measure
of the confidence region 7@23};_‘” satisfies

N k1 M|
(25)  Leb(R™) = 0,)(1)(1/ 8P ) uniformly over all M € M, (k).
n

X Iz

This shows that the confidence region 72 is less favorable than RT M (= Rn M) in at

least two aspects. First, the size of the conﬁdence region has an additional factor +/k that
makes the region huge in comparison. Second, the Lebesgue measure does not scale with
model size |M|. For example, after searching over the set of models M, (k), if the analyst
settles on a (random) model of size 1, then the post-selection confidence region 7@237"' has
a size that still scales with k. In sharp contrast, the UPoSI confidence region 7%; u (even
for random covariates) has Lebesgue measure scaling only with the size |M| of the selected

model M = M and does not depend on the size k of the largest models in the search space
M, (k) that is accessible to a data-driven selection procedure M.

6.5. Fixed covariates with the Restricted Isometry Property (RIP). The rate bound (25)
above is derived using the fact that C, x(«) can in general be of order +/klog(ep/k). For
orthogonal designs (2, = I,, the identity matrix in RP*?), Berk et al. (2013) proved that
Ch.x (@) = O(J/1og p), hence the size of the region Rm %11l matches that of our confidence
region. Because the construction of Berk et al. (2013) i is based on normality, the exact size of
the confidence region R ¥ "l could be better (i.e., smaller) than the size of 7@2 - Itis also

interesting to note that, for orthogonal designs, 7@1 r provides a rectangle with sides parallel

to the coordinate axis, hence is of the same shape as that of Rmax Il . Recently, Bachoc,
Blanchard and Neuvial (2018) showed that the orthogonal de51gn restriction can be relaxed
to RIP. A symmetric matrix A € RP*? is said to satisfy RIP of order k with RIP constant §
if for all M € M ,(k) and for all & € RIMI, (1 —8)||0]|> <67 A(M)6 < (1 +8)||6]|%. This is
equivalent to

(26) max ||A<M> — Iyl op =8
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where ||-|lop denotes the operator norm. Thus if f]n satisfies RIP of order k, all covariate
subsets of size k are nearly orthogonal. Theorem 3.3 of Bachoc, Blanchard and Neuvial
(2018) proves that for fixed covariates, a Gaussian response, and X, RIP of order £ with

constant §, we have
/1 k1 k
Cpile) = 0( logp +8¢(8) M).
n n

Here, c(d) is an increasing nonnegative function satisfying c(§) — 1 as § — 0. Hence un-
der the RIP condition (26) with §+/k — 0, the Lebesgue measure of the confidence region
RZI""IA’;_M matches again that of our confidence region R; - Interestingly, under the RIP con-

dition for %, with § — 0, the confidence region 7@; » Provides a parallelepiped with sides
nearly parallel to the coordinate axis. Even more strikingly, the following result holds for
fixed covariates (but not requiring Gaussianity).

PROPOSITION 6.1. Define the confidence region
RELE = {0 e RM 1B, p — Olloo < Ch (@)}

If, for any 1 < k < p, the matrix P satisfies the RIP condition of order k with RIP constant
8 and 8/k = o(1) as n — oo, then

umianP( N {Bum eRRIP}> >1—a.

n—o0
MeM,, (k)

Furthermore, for all M € M, (k),
27) A (Rum. Ri5) < Cr @) (81M['2/(1 - 5)).

where dg (A, B) for two sets A, B is the Hausdorff distance between A and B in terms of the
Euclidean distance, that is,

dy (A, B) = max{sup inf |la — b2, sup inf fla — b||2}

acAb

PROOF. See Section S.8 of the supplement for a proof. [

Inequality (27) implies that the distance between the modified confidence region RRIP and

the original confidence region Rn, M converges to zero at the rate of C ,1; (@)d Vkass= o(1).
This rate should not be taken in an absolute sense because a “good” confidence region should
converge to a singleton set. In our case, it is easy to see that the “Hausdorff radii” satisfy the
following inequality:

max{dy (RELG . (Bu.m}), (1 = 8y (Rum, (Bam})} < CF(a)| M|,

Hence inequality (27) implies that the confidence regions REL2 and 7R,y get closer to each
other faster than they get close to a singleton if § — O. ’

RIP is a well-known condition in the high-dimensional linear regression literature, but it
is also known to be a very restrictive. It implies a requirement of near orthogonal covariate
subsets, which is often not justified in practice.

REMARK 6.1 (Generalization of Theorem 3.3 of BAachoc, Blanchard and Neuvial (2018)).
This result gives a bound on the expectation of sup{|| 8, s — Bn,mlloo : M € M, (k)} for fixed
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covariates and a Gaussian response. The following inequality in the proof of Proposition 6.1
provides a deterministic bound on this supremum quantity:

sup [1Bum — Bumlloo <Dy [1 4 8vk/(1 - 8)].
MeM,, (k)

This, along with Lemma 5.1, proves the rate bound in a more general setting.

7. Implied confidence regions and comparisons. For practical purposes, it would be
easier to interpret/understand confidence regions in a submodel M if they were rectangles
formed from intervals for the coefficients in the submodel M. An obvious conservative con—
struction is to form the smallest confidence rectangle that encloses R .- Note that R M
can be written as

R e =B+ (Za() '8 18lloc < CL (@) + CE (@)1 Bumlln, § € RMIY,

We will now show that the smallest rectangle containing 7%2 » can be obtained analytically
from this reformulation of the conﬁdence region. The projection of 7@; y onto the first coor-

dinate axis is given by [L M(l) M(l)] where
L ()= infle] (Buy + (Za(M)7'8) 1 I8l < CF (@) + C @)1 Bnm 1}
= B () = supfe] (£,(M)) '8 18]l00 < CL (@) + CE@)|Bnm 1},

(28) ) R R .
O, (D) == suple] (Bu.ar + (S (M))'8) : 8]0 < €} (@) + CE (@)1 ma 11}
= Bum (1) + supfe] (£, (M)) '8 : [8ll00 < C (@) + CY @)1 Bumln},
where e; = (1,0, ...,0)" € RIMl is the first basis vector. The second equality for iZ’M(l) in
(28) follows from the symmetric of §. By the duality of || - ||; and || - ||cc norms, we get

supfe] (S, (M)) '8 [18ll00 < Ch (@) + CE(@) | Bn.m I}
= Jle] (Za (M) {Ch (@) + CF @) Bum I }.

Hence the smallest rectangle enclosing 7A€T is given by

(29) Bl = [1IEL D). O (D],

JeEM
where iZ,M(j) and lﬁM(j) satisfy
Bomt () =L (D=0 () = Bum ()
= Jle] (Za(M) ' {Ch (@) + CF @) Bu Il }.

One can also define an enclosing rectangle lén, wu for 7%,, um - In this case, an analytical form of
B, m does not exist but can be obtained by solving a linear programming problem (Belloni
Rosenbaum and Tsybakov ((2017), equa‘non (42) of the supplement)). The region Bn ) In-

herits symmetry around ﬁn, m from Rn - The same is not the case for Rn, M.
We next examine by how much the Lebesgue measure of B; » could inflate in relation to
7@1 11> Whose Lebesgue measure we studied in Section 5. From the definition of I:l »(J) and

U,Z 1 (J) leading to (29), the width of the rectangle on coordinate j is given by

G0y |0 ) =L (Dl =2]e] (SaD) ™ {CE @) + CE @)1 nma 1}
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The quantity parenthesized above is bounded in Proposition 5.1, and thus under the conditions
of Proposition 5.1 (including (A, (k))~! = O(1)), we get

O,(/IM|logp/n) if the covariates are fixed,
O,(y/IM|?log p/n) if the covariates are random.

However, assuming the conditions (Srrpvk = 0(1)) of Proposition 6.1, we get

(31) |ahAn—£LMUN==

O,(,/log p/n) if the covariates are fixed,

O,(/IM|log p/n) if the covariates are not fixed.

See the Appendix for a proof. In summary, the (projected) rectangular confidence regions can
have an inflation of order /|M| and no inflation (rate-wise) if the RIP condition is satisfied.
It should be noted that the bounds (31) and (32) are worst case bounds.

In Section S.2 of the supplement, we consider another type of implied confidence region
related to “max-|7|” intervals.

(32) WhAn—QMUM={

8. Computation by multiplier bootstrap. All of the confidence regions defined in the
previous sections depend only on the available data except for the (joint) quantiles C ,1; (ov) and
CF () which depend on the true data distribution. Computation and estimation of the joint
bivariate quantiles C,l; (a) and an (o) is the most important component of an application
of the UPoSI approach to valid post-selection inference. In this section, we apply a high-
dimensional central limit theorem to justify the use of the multiplier bootstrap to estimate
these quantiles, but in the setting of Lemma 5.1 the classical resampling bootstrap works as
well (see Chernozhukov, Chetverikov and Kato (2017) and Zhang and Cheng (2014) for a
detailed discussion). For simplicity, we will only discuss the multiplier bootstrap approach
in the case of independent random vectors using the results proved in Section S.10 of the
supplement, and refer to Zhang and Cheng (2014) for the case of functional dependence
described in Section S.11.

Define vectors W; that contain the contribution of case i to f‘n and f]n, that is,

(33) Wi = ({Xi(DYil<j<p (XiOXim e p)-

The dimension of W; is ¢ given by ¢ =2p + p(p — 1)/2 = O(p?). To construct bivariate
quantiles for D,l; and DE, consider the event {D,l; <1, D,)E < tr}. As shown in equation

(E.13) in Section S.10 of the supplement, this event for any #1,#, > 0 can be written as a
(symmetric) rectangle in terms of

n
Sy =02y (Wi — (Wi}
i=1
For present purposes, we will assume independent but possibly nonidentically distributed
observations (X;, ¥;). As a consequence, [E[ W;] may not all be equal, in which case it is not
possible to estimate these expectations consistently. However, the following procedure will
provide conservative inference (recall the remark following Theorem 4.1).
Let ey, €3, ..., e, be independent standard normal random variables and define

1 Z _ _ 12
— > ei(Wi—W,) where W,:=-> W,
\/ﬁ i=1 n i=1

Write Sﬁ’W(I) for the first p coordinates of Sfl’W (corresponding to f‘n) and SE’W(II) for

the remaining coordinates of Sy, ‘W (corresponding to ). The following algorithm gives the
pseudo-program for implementing the multiplier bootstrap:

e W . __
seW .=
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1. Generate B, random vectors from a standard normal distribution of dimension 7. Let
these be denoted by {e; j: 1 <i <n,1=<j < B,}.
2. Compute the jth replicate of SV as

1 < _
Spji== eij(Wi=Wy) eR? forl<j<B,.
i=1
3. Find any two numbers (C (), C2n () such that

1 & 5 5
5, 2 M IS5 Ol = Clu(@. I8}, a0 e = Crn@} = 1 -

Here, 1{A} is the indicator function of a set A.

The following theorem proves the validity of the multiplier bootstrap under assumption (20)
of Lemma 5.1. Recall the definition of W; from (33). Note that we only prove asymptotic
conservativeness instead of consistency (which does not hold without further assumptions,
such as identical distributions); see Remark 8.1 below and Remark S.10.1 in Section S.10
of the supplement. This can be easily understood by noting that EE[W;] is replaced by the
average W, which is not a consistent estimator. For the following result, define

Ly p:= 1TJa§q;ZE [IWi (/) — E[W; (D]].

Also, recall the sub-Weibull norm defined in (19).

THEOREM 8.1. Let (X lT JYDT, 1 <i<nbe independent random vectors satisfying

1<j=<q

n
min 1! ZVar(Wi(j)) >B >0,
i=1

and for 1 <i <n,
(34) max{ max | Xi ()|, 1¥illy, | < Knp.

Further if n, p > 1 are such that
(35) max{L;,LKn,p(log p)I+or, L%’plog7 )2 Kf,’,plog P, K,%,q(logplogn)“/”} =o(n),

then the multiplier bootstrap described above provides conservative inference in the sense
that with probability converging to one, we have

inf {P(DY <#,DF <n) — (||S€W(I)|| <t,|

11,02>0

SSWAD| o <121 Z0)} =0,

where Z, = {(XiT, Y)':1<i<n)

PROOF. Theorems S.10.1 and S.10.2 (stated in Section S.10 of the supplement) apply in
the setting above because under assumption (34) we have

2
max max ||W(])||1// = maxnmax[lmjax | X (])“1// Y ||1/,y} <K, ,

I<i<nl<j=<q

The rate restriction (35) on n and p ensures that the bounds in Theorem S.10.1 and S.10.2
both converge to zero. See again Remark S.10.1 for the conservative nature of the result. [J
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Condition (35) essentially means that log p is (very) small compared to n; it can grow
with n but slowly. A relaxation of condition (35) can be found in Deng and Zhang (2017). By
Theorem 8.1, the estimates (é {n (o), CA’ZEH (o)) are consistent for some quantities that can con-
servatively replace the quantiles (C,f (a), an (a)) of (D,l; , Dnz) in (13). This conservativeness
always exists in the case of fixed covariates.

REMARK 8.1 (Consistency under identical distributions). In a framework of merely in-
dependent but not necessarily identically distributed random vectors, one can show that it
is impossible to prove consistency (for a proof see Kuchibhotla, Brown and Buja (2018) in
a simpler setting which, however, applies to the current setting as well). If in addition we
assume identically distributed random vectors, the results of Section S.10 prove that the mul-
tiplier bootstrap described above is in fact consistent under the assumptions of Theorem 8.1.

9. Simulation study. In this section, we compare our confidence regions with those of
the extant literature. Because this literature assumes fixed covariates, our comparisons will be
limited to this setting. The only other methods with a universal post-selection guarantee are
those of Berk et al. (2013) and Bachoc, Preinerstorfer and Steinberger (2016). Additionally,
we compare our method with selective inference as proposed by Tibshirani et al. (2016),
even though this comparison is not quite fair because their method is specifically designed
for certain selection strategies (LARS and forward stepwise selection). We consider the data
generating model

Yi =X Bo+e. 1<i<nwithfo=0, ands <N, 1).

The reason for taking Bp = 0, is to avoid the effect of conservativeness discussed in the
previous section; see also Section S.1 for more details. In computing our confidence regions,
we do not use the normality of errors in the model. Code and more details are available at
https://github.com/post-selection-inference/R. The following three settings of covariates will
be considered:

1. Setting A (orthogonal design): X; are such that T = Y X Xl-T /n = I, the identity
matrix in p dimensions. The data is generated by starting with a random matrix with i.i.d.
Gaussian entries and applying Gram-Schmidt to satisfy X, = I,.

2. Setting B (exchangeable design): X; are chosen such that Sh=1 p+al p1; with o =
—1/(p + 2), which is close to the degenerate case attained for « = —1/p. The data is first

generated as in Setting A and then multiplied by EA],I,/ 2,
3. Setting C (worst-case design): X; are chosen such that

A Ip—l Clp—l
PINRES |: where ¢2 =

0, J1-(p—Dc? 2(p—1)°

Settings A and B lead to the best rate for the “max-|¢|” approach (23), while Setting C leads to
the worst rate. See Berk et al. ((2013), Sections 6.1 and 6.2) for results in these three settings.
We take n = 200, p = 15 to compare our method with Berk et al. (2013) and n = 1000, p =
500 to compare our method with selective inference for steps one to five in forward stepwise
selection and in LARS. The results (from 100 replications) are summarized in Figure 1 while
the exact numbers are given in the supplement.

In Setting C, the collection of all submodels naturally fall into two categories: those con-
taining the last covariate and those that do not. Because the last covariate is highly correlated
with the other covariates, the volume of the Berk et al. (2013) regions and our projected re-
gions are both large for the first category of models and small for the second. This division in
volumes can be seen from the two dots for each model size in Figure 1.
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F1G. 1. Comparison of “UPoSI” with “PoSI” (Berk et al. (2013)) and “selective Inference” (Tibshirani et al.

(2016)). Included are the “UPoSI” confidence regions RT M (12) and the larger “UPoSIBox” regions B’Jr
(29). The first two plots provide comparisons with the “PoSI ” regions (24) of Berk et al. (2013). The next four
plots show comparisons with “selective inference.” Rather than providing overall simultaneous coverage, we
show simultaneous coverage for different model sizes separately: 1 < |M| < 15 for comparison with “PoSI” and
1 <|M| <5 for comparison with “selective inference.” Because the volume of a region in |M| dimensions scales
like C'MI for some constant C, we plot, for example, log(Leb(’lAQ;L- u))/|M|, which allows comparison across
different model sizes. Recall that in Setting C models fall into two <éroups: those that contain the last covariate,
and those that do not. This is the reason for showing two dots for each model size in Setting C. The size of
dots indicates the proportion of models in each group. The dashed lines in the coverage plots show the nominal
confidence level 0.95.

In all three settings, the UPoSI regions have smaller volume with coverage close to the re-
quired confidence of 0.95. In Setting A, the projected confidence region BZ 18 the same
as 7@; »» and in Settings B and C the projected confidence regions are wider for larger
model sizes and are cut-off for comparison purposes. For selective inference, the coverage
]P’(/Sm i€ Rij&lmf) and the volume of the region get worse as the selection steps proceed.
Correct coverage deteriorates in the null case simulated here. Apparently, inclusion of in-
correct regressors has detrimental effects on the coverage provided by selective inference.
(We used the R functions £sInf, larInf with type='active’ from package selec-
tiveInference.)
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10. Discussion of the UPoSI approach. We list various advantages and disadvantages

of the UPoSI approach proposed in this article. We start with the advantages.

Most fundamentally, the UPoSI confidence regions are asymptotically valid for post-
selection inference under quite arbitrary misspecification and after arbitrary model selec-
tion. As such, they represent the first proposal that provides valid and strong post-selection
inference in this generality.

The UPoSI confidence regions are computationally inexpensive. For any selected model
M, they depend only on the least squares linear regression estimator 3n M 1n that model
and model-independent upper joint quantiles C,l; (), an () (defined in (13) and (10)).
Computation of the latter requires a number of operations that grows no more than a linear
function of p (Section 8). This computationally low burden is in sharp contrast to the valid
post-selection inference method proposed by Berk et al. (2013) or Bachoc, Preinerstorfer
and Steinberger (2016) which requires solving for ﬁn u in all the submodels M considered
for selection, amounting generally to an NP-hard problem.

The size of the confidence regions Rn » in terms of Lebesgue measure converges to zero
at a rate that is minimax in the high- -dimensional linear regression literature. We therefore
suspect this might be the optimal rate here, too, but at present we do not have a proof of,
or even a framework for, optimality. An issue is that the volume of the confidence region
for model M is computed with respect to Lebesgue measure in R/

There is one more advantage which might not seem like one at first glance. The UPoSI
confidence region for B, j for a particular model does not require information on how
many models are being used for model selection. The volume of the confidence region for
Bn.m depends only on features of the selected model M. This implies that the confidence

regions T\’, mMe M, (k) can often have much smaller volumes than the ones produced
using the approach of Berk et al. (2013) or Bachoc, Preinerstorfer and Steinberger (2016).

There are some issues associated with the UPoSI approach.

First, our confidence regions are not equivariant under linear transformations of the co-
variates as noted in Section 4.4. This lack of equivariance is shared with most methods for
high-dimensional linear regression that induce sparsity or group sparsity. A more limited
but practically more critical form of equivariance would be under changes of units of the
variables, that is, under diagonal linear transformations of the observations. A commonly
suggested method to attain such equivariance is to standardize all the variables with a dis-
persion measure, usually the standard deviation (as well as center at a location measure,
usually the mean). After standardization, the observations are no longer independent. This
is one of the reasons why we did not assume independence in Theorems 4.1, 4.2 and S.3.1.
For an application of these results, one needs to prove the rates for the error norms D}*
and ’DnE*. We leave it to the reader to verify that the rates are exactly those obtained in
Lemma 5.1 (using a Slutsky-type argument). A similar derivation was used by Cui, Leng
and Sun (2016).

Another issue with the current approach is that the proposed confidence regions are moti-
vated by, and justified by, deterministic inequalities that can be loose in some cases. More
looseness derives from allowing nonidentical distributions of the observations (see Theo-
rem 8.1).

Finally, the UPoSI confidence regions are for the full vectors f,, ys which may entail further
looseness for coordinate-wise inference. In spite of these concerns, we obtain asymptotic
rates that may well be close to the best possible.

We emphasize before ending this section that the main focus of the current approach is va-
lidity and better computational complexity, not optimality. However, optimality holds for our
confidence regions as mentioned in Remark 6 for fixed covariates.
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11. Conclusions and future directions. In this paper, we have considered a computa-
tionally efficient approach to valid post-selection inference in linear regression under arbi-
trary data-driven method of variable selection. The approach here is very different from the
other methodologies available in the literature and is based on the estimating equation of
linear regression. Since our confidence regions are based on deterministic inequalities, our
results provide valid post-selection inference even under dependence and non-identically dis-
tributed random vectors. For this reason, the setting of the current work is the most general
available in the literature of post-selection inference.

In addition to providing several valid confidence regions, we compare the Lebesgue mea-
sure of our confidence regions with the ones from Berk et al. (2013) and Bachoc, Preiner-
storfer and Steinberger (2016). This comparison shows that our confidence regions are much
smaller (in terms of volume) in case of fixed (non-stochastic) covariates. In general, the vol-
ume of our confidence regions scales with the cardinality of model M chosen. This is a feature
not available from the works of Berk et al. (2013) and Bachoc, Preinerstorfer and Steinberger
(2016). Note that the confidence intervals from the selective/conditional inference literature
have infinite expected length as shown in Kivaranovic and Leeb (2018).

APPENDIX: PROOFS OF RESULTS IN SECTION 7

Following the inequalities (30), if the covariates are fixed, then C nE (a) = 0. Hence
10 1) = Ly D] < €] (Ea (D)™ ,C1 (@)
= e} (£, (a0)) "], 0(/log p/n).

under the assumptions of Proposition 5.1. Hence

A - - _ 1
1054 = L} ()] = V] (En0) ™|, 0( )

|M|log p
o 417e2),

if (An(/’c))*1 = O (1). If the covariates are random (or just not fixed), then

A ) A 3 M|l
- |M|*log p
o ()

This proves (31). To prove (32), first note that if f]n satisfies the RIP condition of order k
with constant dg1p, then

e (Ea@D) ™l < 1+ le] (har = (Sa00) ),

(SRIP |M|

1 - SRIP

<1+ VM| gy = (Sa M), < 1+
The assumption Srrpvk =0(1) implies (32).
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