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I would like to congratulate Johannes Schmidt–Hieber on a very interest-
ing paper in which he considers regression functions belonging to the class of
so-called compositional functions and analyzes the ability of estimators based
on the multivariate nonparametric regression model of deep neural networks
to achieve minimax rates of convergence.

In my discussion, I will first regard such a type of result from the general
viewpoint of the theoretical foundations of deep neural networks. This will
be followed by a discussion from the viewpoint of expressivity, optimization
and generalization. Finally, I will consider some specific aspects of the main
result.

I will start my discussion by setting the results by Schmidt–Hieber into context. Neural
networks have lately shown tremendous performance in a variety of real-world applications
and are already starting to impact public life in various aspects such as in the health care
sector. However, despite the outstanding success of deep neural networks, most of the related
research is empirically driven, and a deep theoretical understanding is of great demand, in
particular, for sensitive applications.

Deep learning can be regarded as a statistical learning problem, whose empirical risk con-
sists of three parts, namely: the approximation error related to the hypothesis class, the op-
timization error from the optimization procedure as well as the out-of-sample error related
to the capability of predicting the outcome of unseen samples correctly. Consequently, also
the theoretical analysis of deep neural networks can be separated—certainly with various
interconnections—into three parts as well: expressivity, optimization and generalization.

The work by Schmidt–Hieber focusses on expressivity and generalization, and excludes
the optimization aspects such as convergence of the training algorithm or occurring errors due
to a wrong choice of the initial values. In his work he focusses on the regression problem,
assuming the regression function to belong to the class of compositional functions, and as
hypothesis class he considers sparsely connected deep neural networks.

The area of expressivity is, currently, perhaps the furthest developed of the three directions.
By combining expressivity and generalization of deep neural networks, the work by Schmidt–
Hieber can be considered an important contribution. Now, due to the rapid evolvement of
the theory of deep learning, other intriguing approaches aiming to provide a comprehensive
framework combining all three error components were also developed, such as [6], in which
the authors regard neural networks as interacting particle systems.

In the sequel, I will now discuss several aspects of the paper in more detail.

1. Expressivity: The choice of models. As a model for the regression function,
Schmidt–Hieber considers the class of compositorial functions, which are characterized by
the fact that they are a composition of functions, each of which just depends on a very small
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number of variables. One should positively stress that this model is mathematically indepen-
dent of the choice of models for neural networks, namely, sparsely connected ones, in the
sense that the characteristics such as the number of compositions q or the number ti of vari-
ables of the functions gi,j are not linked to characteristics of the network class such a depth
L, sparsity bound s, etc. This provides a quite general framework.

However, Schmidt–Hieber states that one argument for choosing the class of compositorial
functions is that it is “natural for neural networks.” I agree that choosing a proper function
class is highly difficult, and compositorial functions were used before for approximation
results of neural networks, for example, in [4]. From my viewpoint, the choice of the model
should, however, not depend on (or be “natural for”) the approximation system, here the
neural network but vice versa. In fact, one key question to my mind is to identify realistic
function classes for which neural networks do still perform very well.

This is closely related to the realm of the curse of dimensionality. The fact that deep neural
networks are that effective in high-dimensional data settings is usually attributed to their
ability to beat the curse of dimensionality. This has been already proven in several instances,
in particular, in the situation of partial differential equations (see, e.g., [1–3]). It would be
interesting to discuss this aspect also in the setting considered by Schmidt–Hieber. From
this viewpoint, the considered model of the class of compositorial functions might, however,
not be the best choice due to the fact that the low-dimensional structure is already easily
accessible, not allowing for a deep insight in the ability of deep neural networks to circumvent
the curse of dimensionality.

At this point, let me refer to the useful overview by Schmidt–Hieber of the current state
of the art of approximation theory for neural networks in Section 6 of his paper, which also
includes a focus on ReLU neural networks. I would like to add [5] to this list. To my mind, it
would have been nice to include and discuss this reference, since it provides, in fact, optimal
approximation results for piecewise smooth functions by ReLU neural networks, analyzing
also their ability to avoid the curse of dimensionality.

2. Optimization: The role of training. For the practitioner it is of key importance to
derive a profound understanding of the algorithmic aspects of the training, namely, the op-
timization part. Schmidt–Hieber does not analyze optimization in detail but instead uses the
term �n(f̂n, f0), thereby also allowing that the optimization problem is not solved exactly,
but sufficiently precisely. Although it would certainly be highly desirable to ultimately have
a theory available which encompasses all three components, that is, expressivity, optimiza-
tion and generalization, to my mind the results by Schmidt–Hieber are already a fundamental
contribution and an excellent basis for continuation.

However, I would still like to allow myself to raise constructive criticism and provide
comments on two aspects. For this, I will first briefly review the key components of training
a neural network. A neural network in its vanilla form is a highly structured function f :
R

p0 →R
pL+1 of the form

f (x) = WLσvL
WL−1σvL−1 · . . . · W1σv1W0x,

where Wi , i = 0, . . . ,L are pi+1 × pi matrices and σvi
, i = 0, . . . ,L is the ReLU function

shifted by the vector vi ∈ R
pi componentwise. Given training data (Xi , Yi)

n
i=1, optimization

strategies such as stochastic gradient descent (SGD) intend to minimize the empirical risk,
that is, solve

(2.1) min
(Wj ,vj )Lj=0

n∑

i=1

L
(
f(Wj ,vj )Lj=0

(Xi), Yi

) + λR
(
(Wj ,vj )

L
j=0

)
,
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where f(Wj ,vj )Lj=0
is a deep neural network, L a loss function, R a regularizer and λ the

regularization parameter. SGD does not compute the gradient for each pair of data (Xi , Yi)

but, in each iteration, selects one of those indices randomly to reduce the computational
complexity. A variant of SGD is to select a so-called batch instead of selecting just one
sample.

Closely analyzing the definition of �n(f̂n, f0) in equation (5), one realizes that the term
f̂n is, in fact, a stochastic term. This is due to the fact that the common strategy of SGD
consists of a random selection step in each iteration. Therefore, it would be interesting—and
from a practical viewpoint necessary—to understand the expected value with respect to a
suitable distribution incorporating also the selections of the batches which is not the case in
the definition in (5).

The second point I would like to raise is the fact that, in practise, the empirical risk mini-
mization typically contains a regularization term as in (2.1). Moreover, the quadratic loss as
the loss function is presumably the most often selected one, but other loss functions, such
as the hinge loss, are also frequently used. It might be that the results are not too difficult to
transfer to more general loss functions as well as to regularization which would be closer to
the training typically performed in applications.

3. Generalization: Role of neural networks. Schmidt–Hieber considers the prediction
error in his analysis, for which he provides upper and/or lower bounds under some conditions.
One key question in the analysis of deep neural networks is why this particular model gener-
alizes this well. In fact, although the optimization problem does not possess a unique global
minimizer in general and instead there might be (infinitely) many solutions and spurious local
minima, neural networks trained by SGD generalize extremely well in the over-parameterized
regime.

The fact that classical methods do not explain the success concerning the generalization
ability of deep neural networks sufficiently well, has and still is the point of an intense dis-
cussion; see, for example, [7]. Schmidt–Hieber’s work contributes to that extent that he, in
particular, shows an upper bound for the generalization error depending on the depth L of a
neural network, the number of training samples as log2 n and the term φn, depending on the
chosen class of compositorial functions. In fact, this connection gives very useful indications
on the impact of those components on the generalization ability of a neural network. In light
of a deeper understanding of generalization, it would be very interesting to shed more light
on the term �n(f̂n, f0) which depends on the optimization scheme/algorithm as well as the
function class.

4. Theorem 1. Let me end with two comments on Theorem 1 which is the main theorem
of Schmidt–Hieber. Condition (iii) requires the minimal width of the layers to be an upper
bound of nφn. This, in particular, implies that, if the smoothnesses β∗

i are small, which one
usually encounters in applications, the number ti of variables of the functions gi,j has to be
very small to compensate for the factor n, which could be in the range of millions, whereas
the number of neurons per layer is usually less or in the order of the input dimension. Thus,
the key question is to which extent this condition can be relaxed to encompass compositorial
functions composed of higher dimensional components in typical network settings.

The second comment relates to the conditions on �n(f̂n, f0), depending on which different
estimates for R(f̂n, f0) are derived. It would be interesting to analyze numerically which
situation occurs and when. This would also provide additional insight into the generalization
question, as discussed in Section 3.
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