
The Annals of Statistics
2020, Vol. 48, No. 5, 2505–2547
https://doi.org/10.1214/19-AOS1895
© Institute of Mathematical Statistics, 2020

TESTING FOR STATIONARITY OF FUNCTIONAL TIME SERIES IN
THE FREQUENCY DOMAIN

BY ALEXANDER AUE1 AND ANNE VAN DELFT2

1Department of Statistics, University of California, aaue@ucdavis.edu
2Fakultät für Mathematik, Ruhr-Universität Bochum, Anne.vanDelft@rub.de

Interest in functional time series has spiked in the recent past with papers
covering both methodology and applications being published at a much in-
creased pace. This article contributes to the research in this area by proposing
a new stationarity test for functional time series based on frequency domain
methods. The proposed test statistics is based on joint dimension reduction
via functional principal components analysis across the spectral density oper-
ators at all Fourier frequencies, explicitly allowing for frequency-dependent
levels of truncation to adapt to the dynamics of the underlying functional time
series. The properties of the test are derived both under the null hypothesis of
stationary functional time series and under the smooth alternative of locally
stationary functional time series. The methodology is theoretically justified
through asymptotic results. Evidence from simulation studies and an appli-
cation to annual temperature curves suggests that the test works well in finite
samples.
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1. Introduction. The aim of this paper is to provide a new stationarity test for func-
tional time series based on frequency domain methods. Particular attention is given to taking
into account alternatives allowing for smooth variation as a source of nonstationarity, even
though nonsmooth alternatives are covered within the simulation study. Functional data anal-
ysis has seen an upsurge in research contributions for at least one decade. This is reflected
in the growing number of monographs in the area. Readers interested in the current state of
statistical inference procedures may consult Bosq (2000), Ferraty and Vieu (2010), Horváth
and Kokoszka (2012), Hsing and Eubank (2015) and Ramsay and Silverman (2005).

Papers on functional time series have come into focus more recently and now constitute
an active area of research. Hörmann and Kokoszka (2010) introduced a general weak de-
pendence concept for stationary functional time series, while van Delft and Eichler (2018)
provided a framework for locally stationary functional time series. Antoniadis and Sapati-
nas (2003), Aue, Dubart Norinho and Hörmann (2015) and Besse, Cardot and Stephenson
(2000) constructed prediction methodology that may find application across many areas of
science, economics and finance. With the exception of van Delft and Eichler (2018), the above
contributions are concerned with procedures in the time domain. Complementing methodol-
ogy in the frequency domain has been developed in parallel. One should mention Panaretos
and Tavakoli (2013), who provided results concerning the Fourier analysis of time series in
function spaces, and Hörmann, Kidziński and Hallin (2015) who addressed the problem of
dimension reduction for functional time series using dynamic principal components.

The methodology proposed in this paper provides a new frequency domain inference pro-
cedure for functional time series. More precisely, tests for second-order stationarity are devel-
oped. In the univariate case such tests have a long history, going back at least to the seminal
paper Priestley and Subba Rao (1969), who based their method on the evaluation of evo-
lutionary spectra of a given time series. Other contributions building on this work include
von Sachs and Neumann (2000), who used local periodograms and wavelet analysis, and
Paparoditis (2009), whose test is based on comparing a local estimate of the spectral density
to a global estimate. Dette, Preuss and Vetter (2011) and Preuß, Vetter and Dette (2013) de-
veloped methods to derive both a measure of and a test for stationarity in locally stationary
time series, the latter authors basing their method on empirical process theory. In all papers
interest is in smoothly varying alternatives. The same tests, however, also tend to have power
against nonsmooth alternatives such as structural breaks or change points. A recent review
discussing methodology for structural breaks in time series is Aue and Horváth (2013), while
Aue, Rice and Sönmez (2018) is a recent contribution to structural breaks in functional time
series.

The proposed test for second-order stationarity of functional time series seeks to exploit
that the Discrete Fourier Transform (DFT) of a functional time series evaluated at distinct
Fourier frequencies are asymptotically uncorrelated if and only if the series is second-order
stationary. Therefore, the proposed method is related to the initial work of Dwivedi and Subba
Rao (2011) who put forth similar tests in a univariate framework. Their method has since been
generalized to multivariate time series in Jentsch and Subba Rao (2015) as well as to spatial
and spatio-temporal data by Bandyopadhyay and Subba Rao (2017) and Bandyopadhyay,
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Jentsch and Subba Rao (2017), respectively. A different version of functional stationar-
ity tests, based on time domain methodology involving cumulative sum statistics (Aue and
Horváth (2013)), was given in Horváth, Kokoszka and Rice (2014).

The intrinsic variation of a functional time series can be larger than any sample size, and
standard results known from univariate and multivariate time series analysis do not directly
apply. From a practical perspective this brings to the fore the question of how to compress this
infinite-dimensional variation to finite dimension in a meaningful way, as there is a complex
interplay between dynamics occurring across frequencies and the function space. This means
that dimension reduction has to be done jointly across estimated spectral density operators
at all Fourier frequencies, yet separately as the exact level of dimension reduction has to be
decided per frequency. The proposed test statistics collect these different sets of projections,
obtained via functional principal components analysis, into a quadratic form encapsulating
the second-order dynamics. To derive the large-sample behavior of this statistic under both the
null hypothesis of a stationary time series and the alternative of a locally stationary functional
time series requires new, and perhaps independently interesting, results on distributional con-
vergence of a cross-periodogram operator in the function space where verifying existence of
the limit process and tightness are nontrivial tasks. The subsequent proofs of distributional
convergence of the test statistics, which require taking into account the pecularities of fPCA
estimators, are also complex and new. The main results are derived under the assumption that
the curves are observed in their entirety, corresponding to a setting in which functions are
sampled on a dense grid rather than a sparse grid. Differences for these two cases have been
worked out in Li and Hsing (2010).

The remainder of the paper is organized as follows. Section 2 provides background, gives
requisite notations, introduces properties of functional version of the DFT and gives intuition
for the test. The exact form of the hypothesis test, model assumptions and the test statistics are
introduced in Section 3. The large-sample behavior under the null hypothesis of second-order
stationarity and the alternative of local stationarity is established in Sections 4. Empirical
aspects are highlighted in Section 5. The proofs are technical and relegated to Appendices
A–E. Several further auxiliary results are proved in the Supplementary Material (Aue and
van Delft (2019)), henceforth referred to simply as the Online Supplement.

2. Notation and setup. A functional time series (Xt : t ∈ Z) will be viewed as a se-
quence of random elements on a probability space (�,A,P ) with paths in a separable
Hilbert space. Without loss of generality, we shall focus on processes taking values in
HR = L2

R
([0,1]), the space of equivalence classes of real-valued, square integrable func-

tions on the unit interval [0,1]. Because the methodology introduced in this paper is based
on a frequency domain approach, we shall make extensive use of the complex Hilbert space
H = L2

C
([0,1]). We briefly introduce notation and relevant properties of this space and asso-

ciated operators. The complex conjugate of z ∈ C is denoted by z and the imaginary number
by i. For f,g ∈ H , the inner product and the induced L2-norm on H are, respectively, given
by

(1) 〈f,g〉 =
∫ 1

0
f (τ)g(τ ) dτ and ‖f ‖2 =√〈f,f 〉.

Two elements of H are understood to be equal if their difference has vanishing L2-norm.
More generally, for measurable functions g : [0,1]k → C, the Lp-norm shall be denoted by
‖g‖p and the supremum norm by ‖g‖∞ = supτ∈[0,1]k |g(τ )|.

Next, some properties of linear operators on H are stated. Denote by S∞(H) the Ba-
nach space of bounded linear operators A : H → H equipped with the operator norm
~A~∞ = sup‖g‖2≤1 ‖Ag‖2. For all f,g ∈ H , the adjoint operator of A, denoted by A†, is
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defined by 〈Af,g〉 = 〈f,A†g〉 and the conjugate operator of A is given by Ag = (Ag). An
operator A is called self-adjoint if 〈Af,g〉 = 〈f,Ag〉 for all f,g ∈ H and nonnegative definite
if 〈Ag,g〉 ≥ 0 for all g ∈ H . For v ∈ H , define the tensor product f ⊗g : H ⊗H → H as the
bounded linear operator (f ⊗ g)v = 〈v, g〉f . A compact operator A admits a singular value
decomposition

(2) A =
∞∑

n=1

sn(A)ψn ⊗ φn,

where (sn(A) : n ∈ N) are the singular values of A, and where (φn : n ∈ N) and (ψn : n ∈
N) are orthonormal bases of H . The singular values are ordered to form a monotonically
decreasing sequence of nonnegative numbers. A compact operator A is said to belong to the
Schatten p-class Sp(H) if and only if the sequence s(A) = (sn(A) : n ∈ N) of singular values

of A belongs to the sequence space �p , so if and only if ~A~p = (
∑∞

n=1 s
p
n (A))

1/p
< ∞,

where ~A~p is referred to as the Schatten p-norm. Relevant here are S1(H), the space of
trace-class operators, and particularly S2(H), the space of Hilbert–Schmidt operators. The
latter is also a Hilbert space with inner product 〈A,B〉S =∑∞

i=1〈Aψi,Bψi〉, where A,B ∈
S2(H) and (ψn : n ∈ N) is an ONB of H . The mapping T : H ⊗ H → S2(H) defined by the
linear extension of T (f ⊗ g) = f ⊗ g is an isometric isomorphism and defines a Hilbert–
Schmidt operator with kernel in H × H given by (f ⊗ g)(τ, σ ) = f (τ)g(σ ), τ, σ ∈ [0,1].
As a consequence, A ∈ S2(H) if and only if there exists a ∈ H × H such that ~A~2 = ‖a‖2.
Further useful properties needed in the proofs of the various statements of this paper are
relegated to Appendices A–E and the Online Supplement.

2.1. Dependence structure on the function space. Let L2
C
(�) be the Hilbert space with

elements satisfiying E[‖X‖2
2] < ∞ and denote by E[X] the mean function of X, where the

expectation should be viewed in the sense of a Bochner integral. For X,Y ∈ L2
C
(�), the

covariance operator CX,Y : H ⊗ H → H is defined as CX,Y = E[(X − E[X]) ⊗ (Y − E[Y ])]
and belongs to S1(H). A functional time series X = (Xt : t ∈ Z) is called strictly stationary
if, for all finite sets of indices J ⊂ Z, the joint distribution of (Xt+j : j ∈ J ) does not depend
on t ∈ Z. Similarly, X is weakly stationary if its first- and second-order moments exist and
are invariant under translation in time. Without loss of generality, it is assumed throughout
that E[Xt ] = 0 and that Xt ∈ L2

R
(�) for all t ∈ Z. The lag-h covariance operator between Xt

and Xt+h is denoted by

Ct,h = E[Xt+h ⊗ Xt ]
which reduces to Ch = E[Xh ⊗ X0] in case of weak stationarity. Note that this object is a
nonnegative definite element of S1(HR) for h = 0. The covariance operator Ch can be shown
to form a Fourier pair with a nonnegative Hermitian element of Sp(H). Provided sufficiently
fast decay of the second-order structure, the spectral density operator Fω is well defined and
given by the Fourier transform of Ch,

(3) Fω = 1

2π

∑
h∈Z

Che
−iωh.

A sufficient condition for the existence of Fω in Sp(H) is
∑

h∈Z ~Ch~p < ∞.
Higher-order dependence among the functional observations is defined through cumulant

mixing conditions (Brillinger (1981), Brillinger and Rosenblatt (1967)). For this the notion
of higher-order cumulant tensors is required; see Appendix B for their definition and a dis-
cussion of their properties for nonstationary functional time series.
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2.2. The functional discrete Fourier transform. The starting point of this paper is the
following proposition that characterizes second-order stationary behavior of a functional time
series in terms of a spectral representation. Its proof is in Appendix A.

PROPOSITION 2.1. A zero-mean H -valued stochastic process (Xt : t ∈ Z) admits the
representation

(4) Xt =
∫ π

−π
eitω dZω a.s.,

where (Zω : ω ∈ (−π,π ]) is a right-continuous functional orthogonal-increment process if
and only if it is weakly stationary.

If the process is not weakly stationary, then a representation in the frequency domain is
not necessarily well defined and certainly not with respect to complex exponential basis func-
tions. However, a time-dependent functional Cramér representation exists if the characteris-
tics of the process are captured by a Bochner-measurable mapping that is an evolutionary
operator-valued mapping in time direction (van Delft and Eichler (2018)). Assume that the
functions X1, . . . ,XT have been observed. If the process is weakly stationary, the functional
Discrete Fourier Transform (fDFT) evaluated at frequency ω, given by

(5) D(T )
ω = 1√

2πT

T∑
t=1

Xte
−iωt ,

can be seen as an estimate of the increment process Zω and exists almost surely as an element
of H . The functional time series itself can then be represented through the inverse fDFT as

(6) Xt =
√

2π

T

T∑
j=1

D(T )
ωj

eiωj t .

Under regularity conditions, a set of fDFTs evaluated at distinct frequencies yield asymptoti-
cally independent Gaussian random elements in H and, for fixed ω, one has Var(D(T )

ω ) → Fω

(Panaretos and Tavakoli (2013)). The fDFT sequence of a Hilbertian-valued stationary pro-
cess is, in particular, asymptotically uncorrelated at the canonical frequencies ωj = 2πj/T .
Consequently, provided the series is weakly stationary, for j = j ′ or j = T − j ′ we have
~Cov(D

(T )
ωj ,D

(T )
ωj ′ )~2 = O(1/T ). In other words, the lag-h covariance operator of the fDFT

converges in norm and hence in the weak operator topology to the zero operator as T → ∞.
Similar to the above, the reverse argument (uncorrelatedness of the functional DFT sequence
implies weak stationarity) can be shown by means of the inverse fDFT. Using expression (6),
the covariance operator Ct,h of Xt+h and Xt can be written in terms of the fDFT sequence as

Ct,h = 2π

T

T∑
j,j ′=1

E
[
D(T )

ωj
⊗ D(T )

ωj ′
]
eiωjh = 2π

T

T∑
j=1

E
[
D(T )

ωj
⊗ D(T )

ωj

]
eiωjh = Ch,

where the equality holds in an L2-sense. This demonstrates that the autocovariance kernel of
a second-order stationary functional time series is obtained and, hence, that an uncorrelated
fDFT sequence implies second-order stationarity up to lag T − 1. The fDFT thus captures
exactly the defining property of a weakly stationary process and provides a natural starting
point for a test of stationarity. It is, however, a nontrivial task to construct a test statistic
that optimally extracts the information contained in the infinite-dimensional process to finite
dimensions. Not only can the dependence structure and the resulting dynamics of a functional
time series be of a complicated nature (see Figure 1 and the example given in Section S8
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of the Online Supplement), but the process will vary along both frequency and functional
directions. To construct a powerful test, it is therefore crucial to understand how the fDFT’s
behave when weak stationarity is violated. In accordance with aforementioned time series
literature, the theoretical behavior of the fDFT sequence under smooth alternatives is studied.
These properties will then be exploited to verify large-sample results for a testing framework
for functional stationarity.

3. The functional stationarity testing framework. This section gives precise formula-
tions of the hypotheses of interest, states the main assumptions of the paper and introduces
the test statistics. Throughout, interest is in testing the null hypothesis

H0 : (Xt : t ∈ Z) is a weakly stationary functional time series

versus the alternative

HA : (Xt : t ∈ Z) is a locally stationary functional time series,

where locally stationary functional time series are defined as follows.

DEFINITION 1. A stochastic process (Xt : t ∈ Z) taking values in HR is said to be locally
stationary if:

(1) Xt = X
(T )
t for t = 1, . . . , T and T ∈N; and

(2) for any rescaled time u ∈ [0,1], there is a strictly stationary process (X
(u)
t : t ∈ Z) such

that ∥∥X(T )
t − X

(u)
t

∥∥
2 ≤
(∣∣∣∣ tT − u

∣∣∣∣+ 1

T

)
P

(u)
t,T a.s.,

where P
(u)
t,T is a positive, real-valued triangular array of random variables such that, for some

ρ > 0, E[|P (u)
t,T |ρ] < ∞ for all t and T , uniformly in u ∈ [0,1].

Observe that the process constitutes a triangular array of functions under HA. Inference
methods are based on in-fill asymptotics as popularized in Dahlhaus (1997) for univariate
time series. This asymptotic theory prescribes that the process is observed on an increasingly
finer grid as T increases such that more observations become available at a local level. A
rigorous statistical framework for locally stationary functional time series was recently pro-
vided in van Delft and Eichler (2018). Note that Definition 1 encompasses the class of weakly
stationary processes, for which the asymptotic framework reduces to standard asymptotics.

Based on the observations in Section 2.2, a test for weak stationarity can be set up exploit-
ing the uncorrelatedness of the elements in the sequence (D

(T )
ωj : j = 1, . . . , T ). This could

be done considering the lag-h sample covariance operator T −1∑T
j=1 D

(T )
ωj ⊗ D

(T )
ωj+h which

should be centered at the zero element of S2 for all h = 1, . . . , T − 1. Here, two statistics
based on the coefficients in the Karhunen–Loève decomposition of the fDFTs are consid-
ered. For j = 1, . . . , T , let (φ

ωj

l : l ∈ N) be the orthonormal basis of eigenfunctions of Fωj

and observe that for this choice of basis Var(〈Dωj
,φ

ωj

l 〉) = 〈Fωj
(φ

ωj

l ), φ
ωj

l 〉 = λ
ωj

l , where

(λ
ωj

l : l ∈ N) ∈ R+ are the eigenvalues of Fωj
. Then, for any j , j ′, (φ

ωj

l ⊗ φ
ωj ′
l′ : l, l′ ∈ N) is

an orthonormal basis of L2
C
([0,1]2) and, by definition of the Hilbert–Schmidt inner product
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on the algebraic tensor product space H ⊗ H ,

(7)

1

T

T∑
j=1

D(T )
ωj

⊗ D(T )
ωj+h

= 1

T

T∑
j=1

∞∑
l=1

∞∑
l′=1

〈
D(T )

ωj
⊗ D(T )

ωj+h
, φ

ωj

l ⊗ φ
ωj+h

l′
〉
Sφ

ωj

l ⊗ φ
ωj+h

l′

≈ 1

T

T∑
j=1

L∑
l=1

L′∑
l′=1

〈
D(T )

ωj
, φ

ωj

l

〉〈
D

(T )
ωj+h, φ

ωj+h

l′
〉
φ

ωj

l ⊗ φ
ωj+h

l′

for sufficiently large L and L′. The foregoing motivates to set up tests based on the score
products

(8) γ
(T )
j,h

(
l, l′
)= 〈D(T )

ωj
, φ

ωj

l

〉〈
D

(T )
ωj+h, φ

ωj+h

l′
〉

or on the standardized score products

(9) ρ
(T )
j,h

(
l, l′
)= γ

(T )
j,h (l, l′)√
λ

ωj

l λ
ωj+h

l′
.

In practice, the unknown spectral density operators Fωj
and Fωj+h

are to be replaced with

consistent estimators F̂ (T )
ωj and F̂ (T )

ωj+h which will then yield respective sample eigenvalues

λ̂
ωj

l and eigenfunctions φ̂
ωj

l . The estimated quantities corresponding to (8) and (9) will be

denoted by γ̂
(T )
j,h (l, l′) and ρ̂

(T )
j,h (l, l′), respectively. As an estimator of Fω, take

(10) F̂ (T )
ω = 2π

T

T∑
j=1

Kb(ω − ωj)
(
D(T )

ωj
⊗ D(T )

ωj

)
,

where Kb(·) is a kernel with bandwidth b satisfying the following conditions:

ASSUMPTION 3.1. (a) Let K : [−1
2 , 1

2 ] → R+ be symmetric with
∫

K(x)dx = 1 and∫
K(x)2 dx < ∞.
(b) Let b = bT be a bandwidth such that T −1/2 � bT � T −1/4.
(c) Let Kb(x) = b−1K((2πb)−1x) and extend the kernel periodically such that Kb(x) =

Kb(x ± 2π) in order to include estimates for frequencies around ±π .

To set up the test statistics, it now appears reasonable to extract information across a range
of directions l = 1, . . . ,Lj and l′ = 1, . . . ,Lj+h as well as a selection of lags h = 1, . . . , h̄,
where h̄ denotes an upper limit. The truncation parameters Lj = L(ωj ) and Lj+h = L(ωj+h)

are explicitly allowed to depend on the j th and (j + h)th Fourier frequencies in order to
accommodate heterogeneity in the Karhunen–Loève decompositions across the spectral do-
main. Set

(11)

β̂
(T )
h,u = 1

T

T∑
j=1

Lj∑
l=1

Lj+h∑
l′=1

γ̂
(T )
j,h

(
l, l′
)

and

β̂
(T )
h,s = 1

T

T∑
j=1

Lj∑
l=1

Lj+h∑
l′=1

ρ̂
(T )
j,h

(
l, l′
)
,
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where the subscripts u and s refer to the unstandardized and standardized forms, respectively.
In the following, the subscript x will be used to refer to any of these two versions when no
confusion can arise.

Choose next a collection h1, . . . , hM of lags, each of which bounded from above by h̄, to
pool information across a number of autocovariances and build the vectors

b̂
(T )

M,x = (�β̂
(T )
h1,x

, . . . ,�β̂
(T )
hM,x,�β̂

(T )
h1,x

, . . . ,�β̂
(T )
hM,x

)�
,

where � and � denote real and imaginary part, respectively. Finally, set up the quadratic
forms

(12) Q̂
(T )
M,x = T

(
b̂

(T )

M,x

)�
�̂−1

M,x b̂
(T )

M,x,

where �̂M,x is an estimator of the asymptotic covariance matrix of the vectors b
(T )
M,x which

are defined by replacing γ̂
(T )
j,h (l, l′) and ρ̂

(T )
j,h (l, l′) with γ

(T )
j,h (l, l′) and ρ

(T )
j,h (l, l′) in (11) and

then using the resulting β
(T )
h,x in place of β̂

(T )
h,x in the definition of b̂

(T )

M,x . The foregoing provides

the two test statistics Q̂
(T )
M,u and Q̂

(T )
M,s that will be used to test the null of stationarity against

the alternative of local stationarity. Note that both quadratic forms depend on the tuning
parameters Lj , Lj+h and M , the selection of which will be evaluated empirically in Section 5.

To facilitate the derivation of large-sample results, the following assumptions are made for
the unstandardized respectively standardized test:

Condition Cu: Let Lj ∼ logT and liml infω λω
l > 0;

Condition Cs : Let infω λω
L̄

> 0 for some L̄ ≥ supj Lj .

In keeping with the above arrangement, the respective conditions will be referred to as Cx if
no confusion arises. Condition Cu for the unstandardized test allows to send the truncation
levels Lj to infinity in a coordinated manner as long as the divergence is slow (here, logarith-
mic) compared to T ; see Fremdt et al. (2014). Condition Cs for the standardized test requires
on the other hand a finite truncation level; this to ensure that the smallest eigenvalues of the
compact operators Fωj

are bounded away from zero, which show up in the denominator of
(9).

4. Large-sample results.

4.1. Assumptions. The following gives the main requirements under both stationarity and
local stationarity in terms of cumulant tensors of the functional time series (Appendix B) that
are needed to establish the asymptotic behavior of the test statistics under both hypotheses.
Note that the null hypothesis is nested within the alternative. Because of this basic fact, we
start with the general assumptions under local stationarity before specializing to the stationary
case.

ASSUMPTION I(k, �). Assume (X
(T )
t : t ≤ T ,T ∈ N) and (X

(u)
t : t ∈ Z) are as in Def-

inition 1. Suppose supt E[‖Xt‖min(k,12)
2 ] < ∞ and that there exists a a positive sequence

κk;t1,...,tk−1 in L2
R
([0,1]k), independent of T such that, for all j = 1, . . . , k − 1 and some

� ∈ N,

(13)
∑

t1,...,tk−1∈Z

(
1 + |tj |�)‖κk;t1,...,tk−1‖2 < ∞.

Suppose furthermore that there exist representations

(14) X
(T )
t − X

(t/T )
t = Y

(T )
t and X

(u)
t − X

(v)
t = (u − v)Y

(u,v)
t ,
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for some processes (Y
(T )
t : t ≤ T ,T ∈ N) and (Y

(u,v)
t : t ∈ Z) taking values in HR whose kth

order joint cumulants satisfy:

(i) ‖ cum(X
(T )
t1

, . . . ,X
(T )
tk−1

, Y
(T )
tk

)‖2 ≤ 1
T
‖κk;t1−tk,...,tk−1−tk‖2,

(ii) ‖ cum(X
(u1)
t1

, . . . ,X
(uk−1)
tk−1

, Y
(uk,v)
tk

)‖2 ≤ ‖κk;t1−tk,...,tk−1−tk‖2,

(iii) supu ‖ cum(X
(u)
t1

, . . . ,X
(u)
tk−1

,X
(u)
tk

)‖2 ≤ ‖κk;t1−tk,...,tk−1−tk‖2,

(iv) supu ‖ ∂�

∂u� cum(X
(u)
t1

, . . . ,X
(u)
tk−1

,X
(u)
tk

)‖2 ≤ ‖κk;t1−tk,...,tk−1−tk‖2.

Assumption I provides Lipschitz conditions that are generalizations of those in Lee and
Rao (2017) who investigated the properties of quadratic forms of stochastic processes in a
finite-dimensional setting. The above conditions enable to express the behavior of the fDFT’s
of a kth order locally stationary process in terms of kth order time-varying spectral density
tensors (Lemma B.1). This is convenient in order to derive explicit expressions of the dis-
tributional properties under the alternative and to understand departures from stationarity.
Under HA, we can uniquely characterize the second-order stucture of the stochastic process
(X

(T )
t : t ≤ T ,T ∈ N) via the time-varying spectral density operator

Fu,ω = 1

2π

∑
h∈Z

Cu,he
−iωh,(15)

where Cu,h = cum(X
(u)
h ,X

(u)
0 ) denotes the local cumulant tensor at fixed time u of the sta-

tionary approximating process (X
(u)
t : t ∈ Z). Note that the parameter � and (iii)–(iv) in As-

sumption I influence the smoothness of the operator-valued mapping (u,ω) �→ Fu,ω. Under
Assumption I(2,2), derivative maps are well-defined elements of S2(H), and ω �→ Fu,ω is
uniformly continuous in ω with respect to ~·~2. We refer to Lemma S2.2 for details. More
generally, under kth order local stationarity, these properties carry over to the local kth order
cumulant spectral density tensor

(16) Fu;ω1,...,ωk−1 = 1

(2π)k−1

∑
t1,...,tk−1∈Z

Cu;t1,...,tk−1e
−i
∑k−1

j=1 ωj tj ,

where ω1, . . . ,ωk−1 ∈ R and Cu;t1,...,tk−1 = cum(X
(u)
t1

, . . . ,X
(u)
tk−1

,X
(u)
t0

) is the corresponding
local cumulant kernel tensor of order k at time u0. Observe that, for k > 1, (16) can be viewed
as an element of S2(H

⊗�(k+1)/2�
,H
⊗�k/2�

). Under kth order stationarity the above objects
become independent of local time u, so that Fu;ω1,...,ωk−1 ≡ Fω1,...,ωk−1 , and Assumption I
specializes to the following:

ASSUMPTION I∗(k, �). Let (Xt : t ∈ Z) be a kth order stationary functional time se-
ries with values in HR such that (i) E[‖X0‖min(k,12)

2 ] < ∞ and (ii)
∑∞

t1,...,tk−1=−∞(1 +
|tj |�)‖Ct1,...,tk−1‖2 < ∞ for all 1 ≤ j ≤ k − 1.

Because the test statistics require estimators of the eigenelements of Fω, it is of importance
to consider the properties of the estimator (10) for both null and alternative hypotheses. The
next theorem shows that it is a consistent estimator of the integrated (in a Bochner sense)
time-varying spectral density operator

Gω =
∫ 1

0
Fu,ω du,

where the convergence is uniform in ω ∈ [−π,π ] with respect to ~·~2. This, therefore, be-
comes an operator-valued function in ω that acts on H and is independent of rescaled time u.
Under H0, Gω thus reduces to Fω.
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THEOREM 4.1 (Consistency and uniform convergence). Suppose (X
(T )
t : t ≤ T ,T ∈ N)

satisfies Assumption I(4,2). Consider the estimator F̂ (T )
ω in (10) with smoothing kernel K

fulfilling Assumption 3.1(a) and (c). Then:

(a) E[~F̂ (T )
ω − Gω~2

2] = O((bT )−1 + b4), uniformly in ω ∈ [−π,π ].
(b) If, in addition, Assumption 3.1(b) holds and K has bounded derivative on (−1/2,1/2)

then,

sup
ω∈[−π,π ]

~F̂ (T )
ω − Gω~2

p→ 0.

The proof of Theorem 4.1 is given in Section C.3 of Appendix C. Since the theorem shows
consistency of F̂ω, a self-adjoint element of S2(H), it follows from Mas and Menneteau
(2003) that the sample eigenelements (λ̂ω

l , φ̂ω
l : l ∈ N) of F̂ω provide consistent estimators

for the eigenelements (λ̃ω
l , φ̃ω

l : l ∈ N) of Gω. If H0 is satisfied, then the stated consistency
holds for the eigenelements (λω

l , φω
l : l ∈ N) of Fω.

4.2. Properties under the null of stationarity. The asymptic results under H0 are col-
lected in this section. The first theorem establishes that the scaled difference between β

(T )
h,x

and β̂
(T )
h,x is negligible in large samples. Note that the assumptions here and for other theorems

in this section are formulated imposing stationarity on certain moments for the null hypoth-
esis via Assumption I∗. To verify the results, further assumptions on higher-order cumulants
are typically required. These are controlled via Assumption I.

THEOREM 4.2. Let Assumption 3.1, Assumption I(12,2) and Cx hold. Then, under H0,
for any fixed h,

√
T
∣∣β̂(T )

h,x − β
(T )
h,x

∣∣= Op

(
1

bT
+ b2
)
.

The proof is given in Section D.2.2 of Appendix D. In view of Assumption 3.1, Theo-
rem 4.2 shows that the distributional properties of β̂

(T )
h,x are asymptotically the same as those

of β
(T )
h,x under the stated conditions on the bandwidth rates. Note these rates are necessary for

the estimator in (10) to be consistent, as is seen from part (a) of Theorem 4.1, which reduces
to the stationary case if the process does not depend on u. They hence do not impose an
additional constraint under H0.

The next theorem derives that, under the additional assumption of fourth-order stationarity,
the asymptotic variance is uncorrelated for all lags h and that there is no correlation between
the real and imaginary parts. For n ∈ N, set [n] = {1, . . . , n}.

THEOREM 4.3. Let Assumption 3.1 and Cx hold. Suppose further that Assump-
tion I∗(4,2) is satisfied. Then, for h1 = h2 = h,

(a) T Cov
(�β̂

(T )
h,u ,�β̂

(T )
h,u

)
= T Cov

(�β̂
(T )
h,u ,�β̂

(T )
h,u

)
→ 1

4π

∫ ∫ ∑
(l,l′)∈L×L′

〈
Fω,−ω−ωh,−ω′

(
φω′

l′1
⊗ φ

ω′+ω′
h

l′2

)
, φω

l1
⊗ φ

ω+ωh

l2

〉
dωdω′

+ 1

2π

∫ ∑
l∈L

λω
l1
λ

ω+ωh

l2
dω,
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(b) T Cov
(�β̂

(T )
h,s ,�β̂

(T )
h,s

)
= T Cov

(�β̂
(T )
h,s ,�β̂

(T )
h,s

)
→ 1

4π

∫ ∫ ∑
(l,l′)∈L×L′

〈Fω,−ω−ωh,−ω′(φω′
l′1

⊗ φ
ω′+ω′

h

l′2
), φω

l1
⊗ φ

ω+ωh

l2
〉√

λω
l1
λ

ω+ωh

l2
λω′

l′1
λ

ω′+ω′
h

l′2

dωdω′

+ 1

2π

∫ ∑
l∈L

δl1,l2 dω,

where l = (l1, l2), l′ = (l′1, l′2), L = [L(ω)] × [L(ω + ωh)], L′ = [L(ω′)] × [L(ω′ +
ω′

h)] and δi,j = 1 if i = j and 0 otherwise. If h1 = h2, T Cov(�β̂
(T )
h1,x

,�β̂
(T )
h2,x

) → 0,

T Cov(�β̂
(T )
h1,x

,�β̂
(T )
h2,x

) → 0 and T Cov(�β̂
(T )
h1,x

,�β̂
(T )
h2,x

) → 0.

The proof of Theorem 4.3 is given in Appendix C.2. Observe that the results in part (b)
imply that the standardized test statistics is pivotal if the data is Gaussian. Note also that the
results in the theorem use at various instances the fact that the kth order spectral density oper-
ator at frequency ω = (ω1, . . . ,ωk)

T ∈ R
k is equal to the kth order spectral density operator

at frequency −ω in the manifold
∑k

j=1 ωj mod 2π .
With the previous results in place, the large-sample behavior of the quadratic form statistics

Q̂
(T )
M,x defined in (12) can be derived. This is done in the following theorem.

THEOREM 4.4. Let Assumption 3.1 and Cx hold. Suppose further that Assump-
tion I(k,2) is satisfied for all k ≥ 3. Then, under H0:

(a) For any collection h1, . . . , hM bounded by h̄,
√

T b̂
(T )

M,x

D→ N2M(0,�0,x) (T → ∞),

where
D→ denotes convergence in distribution. Under the additional assumption of fourth-

order stationarity, N2M(0,�0,x) is a 2M-dimensional normal distribution with mean 0 and
diagonal covariance matrix �0,x = diag(σ 2

0,m,x : m = 1, . . . ,2M) whose elements are

σ 2
0,m,x = lim

T →∞T Cov(�β̂hm,x,�β̂hm,x), m = 1, . . . ,M,

and σ 2
0,M+m,x = σ 2

0,m,x . The explicit form of the limit is determined by Theorem 4.3. If fourth-
order stationarity is violated, then the limiting normal distribution has a nondiagonal covari-
ance structure.

(b) Using the result in (a), it follows that for the statistic defined in (12)

Q̂
(T )
M,x

D→ χ2
2M (T → ∞),

where χ2
2M is a χ2-distributed random variable with 2M degrees of freedom.

The proof of Theorem 4.4 is provided in Appendix D. Part (b) of the theorem can now be
used to construct tests with asymptotic level α. Note that the application of the test requires
an estimator of �̂M,x . This will be discussed in Section 4.4.

To explicitly compute the limiting covariance structure in part (a) of Theorem 4.4 under
second-order stationarity but fourth-order nonstationarity, the source of nonstationarity needs
to be specified. For example, the results put forward in the next two sections allow for the
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computation of �0,x if the process is fourth-order locally stationary. Then, in the covariance
structure of the covariance operator of the fDFT’s, the fourth-order cumulant tensor com-
ponent will, for h1 = h2, (quadratically) decay in norm as the distance |h1 − h2| increases
(see Lemma B.1, Corollary B.1(ii) and equation (26)). As a consequence of this term being
present in the covariance structure, the real and imaginary part of the projections are no longer
uncorrelated, but the correlation decays with increasing distance |h1 − h2|. In this scenario a
small loss of power is to be expected when the test statistic is built under the assumption of a
diagonal covariance structure.

4.3. Properties under the alternative. This section contains a generalization of the re-
sults in Section 4.2 to locally stationary functional time series. The following theorem is the
counterpart to Theorem 4.2 under the null hypothesis.

THEOREM 4.5. Let Assumption 3.1, Assumption I(12,2) and Cx hold. Then, under HA,
√

TE
[∣∣β̂(T )

h,x − β
(T )
h,x −B(T )

h,x

∣∣]= O

(
1

bT
+ b2 + 1

b
√

T
+ b2

√
T

)
,

where

B(T )
h,x = 1

T

T∑
j=1

∑
l∈L

ζl,x

〈
E[Dωj

⊗ Dωj+h
],E[φ̂ωj

l ⊗ φ̂
ωj+h

l′
]− φ̂

ωj

l ⊗ φ̂
ωj+h

l′
〉
S

is a stochastic bias term satisfying
√

TB(T )
h,x = OP (1), and ζl,u = 1 and ζl,s = (λ̃ω

l ,

λ̃
ω+ωh

l′ )−1/2.

The proof of Theorem 4.5 is given in Section D.2.2 of Appendix D. In view of As-
sumption 3.1, the theorem shows that β̂

(T )
h,x has the same asymptotic sampling proper-

ties as β
(T )
h,x up to a stochastically bounded bias term (after scaling with

√
T ). Note that

|β̂(T )
h,x −E[β(T )

h,x ]| P→ 0, where

(17) E
[
β

(T )
h,x

]→ 1

2π

∫ 2π

0

∫ 1

0

∑
l∈L

ζl,x

〈
Fu;ωe−ı2πuh, φ̃ω

l ⊗ φ̃
ω+ωh

l′
〉
S dudω = μh,x

is an noncentrality parameter (see Appendix C.1) that will have to enter the limit distribution
of Q̂

(T )
M,x as a consequence of the violation of weak stationarity. We discuss this term in some

more detail below.
A precise formulation of the asymptotic properties under HA is given in the next theorem.

THEOREM 4.6. Let Assumption 3.1 and Cx hold. Suppose further that Assump-
tion I(k,2) is satisfied for all k ≥ 2. Then, under HA:

(a) For any collection h1, . . . , hM bounded by h̄,
√

T b̂
(T )

M,x

D→ N2M(μx,�A,x) (T → ∞),

where N2M(μx,�A,x) denotes a 2M-dimensional normal distribution with mean vector μx

whose first M components are �μhm,x and last M components are �μhm,x , where μhm,x is
defined through (17), and nondiagonal block covariance matrix

�A,x =
⎛⎝�

(11)
A,x �

(12)
A,x

�
(21)
A,x �

(22)
A,x

⎞⎠
whose M × M blocks are determined by the results in Appendix E and Section S6.2 of the
Online Supplement.
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(b) Using the result in (a), it follows that for the statistic defined in (12)

Q̂
(T )
M,x

D→ χ2
μx,2M (T → ∞),

where χ2
μx,2M denotes a generalized noncentral χ2-distributed random variable with non-

centrality parameter μx = ‖μx‖2
2 and 2M degrees of freedom.

The proof of Theorem 4.6 can be found in Appendix E. Observe that the limiting noncen-

trality parameter μx of the statistic Q̂
(T )
M,x measures the aggregation of the functions in (17).

Under HA, the operator in (7) no longer converges in norm to the zero operator but instead to
the operator 1

2π

∫ 2π
0
∫ 1

0 Fu,ωe−i2πuh dudω. The properties of the latter, which are extracted
to finite dimension via μh,x , carry some meaningful information on the behavior of the test
under the alternative. First, denote a general term in the limiting expansion of μh,x by

μh,x(l) = 1

2π

∫ 2π

0

∫ 1

0
ζl,x

〈
Fu;ωe−i2πuh, φ̃ω

l ⊗ φ̃
ω+ωh

l′
〉
S dudω.

For fixed directions l = (l, l′), this function can be seen to approximate the (h,0)th Fourier
coefficients of the function (u,ω) �→ ζl,x〈Fu,ω(φ̃

ω+ωh

l′ ), φ̃ω
l 〉, that is, for small h and T → ∞

they approximate

ϑh,j,x(l) = 1

2π

∫ 2π

0

∫ 1

0
ζl,x

〈
Fu,ωφ̃

ω+ωh

l′ , φ̃ω
l

〉
ei2πuh−ijω dudω

with j = 0. In other words, μh,x(l) ≈ ϑh,0,x(l). If the process is weakly stationary, then
the integrand of the coefficient does not depend on u and all Fourier coefficients are zero
except ϑ0,j,x(l). In particular, ϑ0,0,s(l) = 1. Following Paparoditis (2009) and Dwivedi and
Subba Rao (2011), the mean functions can thus be seen to reveal long-term nonstationary
behavior. Unlike testing methods based on segments in the time domain, the proposed method
is therefore able to detect smoothly changing behavior in the temporal dependence structure.

Secondly, the operator
∫ 1

0 Fu,ωe−i2πuh du can be viewed as the hth Fourier coefficient of
the operator-valued function (u) �→ Fu,ω for fixed ω (Lemma B.1) which exhibits a quadratic
decay in norm as a function of h such that the sum of the norms of these coefficients is finite
(Corollary B.1). Since this behavior carries over to the projections, the contribution to μx of
the functions μh,x in (17) for larger values of h will become negligible. Intuitively, utilizing
large values of M in the statistic Q̂

(T )
M,x is hence expected to increase the likelihood of a type

II error; see also Section 5.
The results in this and the previous section require an understanding of the estimator �̂M,x

used in the definition of the test statistics Q̂
(T )
M,x in (12). The corresponding results are part of

the next subsection.

4.4. Estimating the fourth-order spectrum. The estimation of the matrix �M is a neces-
sary ingredient in the application of the proposed stationarity test. Generally, the estimation
of the sample (co)variance can influence the power of tests, as has been observed in a num-
ber of previous works set in similar albeit nonfunctional contexts. Among the contributions
more closely related to this paper are Paparoditis (2009), who used the spectral density of the
squares, Dwivedi and Subba Rao (2011), who focused on Gaussianity of the observations,
and Jentsch and Subba Rao (2015), who employed a stationary bootstrap procedure. A dif-
ferent idea was put forward by Bandyopadhyay and Subba Rao (2017) and Bandyopadhyay,
Jentsch and Subba Rao (2017). These authors utilized the notion of orthogonal samples to
estimate the variance, falling back on a general estimation strategy developed in Subba Rao
(2018).
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In order to utilize the results of Theorem 4.4, we require an estimator of the trispectral
density operator Fω,−ω−ωh,−ω′ which can then, subsequently, be projected onto the (stan-
dardized) empirical eigenfunctions and integrated over ω, ω′. As an estimator, consider

(18)
F̂ωj1 ,...,ωj4

= (2π)3

(b4T )3

∑
k1,k2,k3

K4

(
ωj1 − ωk1

b4
, . . . ,

ωj4 − ωk4

b4

)

× �(ωk1, . . . ,ωk4)I
(T )
ωk1 ,...,ωk4

,

where

I (T )
ωk1 ,ωk2 ,ωk3 ,ωk4

= T

2π
Dωk1

⊗ Dωk2
⊗ Dωk3

⊗ Dωk4

denotes the triperiodogram tensor and where K4(x1, . . . , x4) is a smoothing kernel with com-
pact support on R

4 and where

�(α1, α2, α3, α4) = 1

if
∑4

k=1 αk ≡ 0 mod 2π such that
∑

k∈J αk ≡ 0 mod 2π where J is any nonempty subset of
{1,2,3,4} and equals 0 otherwise. This function therefore controls that we are only working
with those combinations of frequencies that lie on the principal manifold but do not lie in
any proper submanifold. The reason for this is that, for k > 2, the expectation of kth order
periodogram tensors evaluated at such submanifolds possibly diverges (see also Brillinger
and Rosenblatt (1967), for the Euclidean case). As the next theorem shows, the estimator in
(18) can be shown to be consistent if the bandwidth b4 satisfies b4 → 0 but b−3

4 T → ∞ as
T → ∞.

THEOREM 4.7. Suppose Assumption I∗(4,2) and Assumption I(8,2) hold. Then, the
estimator (18) of the trispectral density operator satisfies

(19)

E

[
�

�

�

�

(2π)2

T 2

T∑
j1,j2=1

F̂ωj1 ,−ωj1+h,−ωj2
−
∫ ∫

Fω,−ω+ωh,−ω′ dωdω′
�

�

�

�

2

2

]

= O

(
1

b3
4T

+ b4
4

)
.

The section is rounded out with large-sample behavior under the alternative.

THEOREM 4.8. Suppose Assumption I(8,2) holds. Then,

(a)

�

�

�

�

E

[
(2π)2

T 2

T∑
j1,j2=1

F̂ωj1 ,−ωj1+h,−ωj2

]
−
∫ ∫

Gω,−ω+ωh,−ω′ dωdω′ −Zh

�

�

�

�

2

= O

(
1

b4T
+ b4

)
,

(b) ~Cov(F̂ωj1 ,ωj2 ,ωj3
, F̂ωj1 ,ωj2 ,ωj3

)~
2
2 = O

(
1

b3
4T

)
,

where Gω,−ω+ωh,−ω′ denotes the time-integrated trispectral operator and where Zh ∈
S2(H ⊗ H) is a bias term of order O(~Zh~2) = 1.

The proofs of Theorems 4.7 and 4.8 are given in Section S7 of the Online Supplement.
Using continuity of the inner-product, Theorem 4.1(a) and the continuous mapping theorem
imply projecting onto the empirical eigenfunctions will not affect the rates.
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5. Empirical results. This section reports the results of an illustrative simulation study
designed to verify that the large-sample theory is useful for applications to finite samples.
The test is subsequently applied to annual temperature curves data. The findings provide
guidelines for a further fine-tuning of the test procedures to be investigated in future research.

5.1. Simulation setting. To generate functional time series, the general strategy applied,
for example, in Aue, Dubart Norinho and Hörmann (2015) and Hörmann, Kidziński and
Hallin (2015), is utilized. For this simulation study all processes are built on a Fourier basis
representation on the unit interval [0,1] with basis functions ψ1, . . . ,ψ15. Note that the lth
Fourier coefficient of a pth-order functional autoregressive, FAR(p), process (Xt : t ∈ Z)

satisfies

(20)

〈Xt,ψl〉 =
∞∑

l′=1

p∑
t ′=1

〈Xt−t ′,ψl〉〈At ′(ψl),ψl′
〉+ 〈εt ,ψl〉

≈
Lmax∑
l′=1

p∑
t ′=1

〈Xt−t ′,ψl〉〈At ′(ψl),ψl′
〉+ 〈εt ,ψl〉,

the quality of the approximation depending on the choice of Lmax. The vector of the first
Lmax Fourier coefficients Xt = (〈Xt,ψ1〉, . . . , 〈Xt,ψLmax〉)� can thus be generated using the
pth-order vector autoregressive, VAR(p), equations

Xt =
p∑

t ′=1

At ′Xt−t ′ + εt ,

where the (l, l′) element of At ′ is given by 〈At ′(ψl),ψl′ 〉 and εt = (〈εt ,ψ1〉, . . . , 〈εt ,

ψLmax〉)�. The entries of the matrices At ′ are generated as N (0, ν
(t ′)
l,l′ ) random variables

with the specifications of νl,l′ given below. To ensure stationarity or the existence of a
causal solution, the norms κt ′ of At ′ are required to satisfy certain conditions, for exam-
ple,
∑p

t ′=1 ~At ′~∞ < 1, which might be of more complicated nature (see Bosq (2000), van
Delft and Eichler (2018), for the stationary and locally stationary case, respectively). The
functional white noise, FWN, process is included in (20) setting p = 0. All simulation exper-
iments were implement in R and any result reported in the remainder of this section is based
on 1000 simulation runs.

5.2. Specification of tuning parameters. The test statistics in (12) depends on the tun-
ing parameters Lj = L(ωj ), determining the dimension of the projection spaces, and M , the
number of frequency lags to be included in the procedure. In the following, a criterion will be
set up to choose Lj , while for M only a limited number of values were entertained because
the selection is less critical for the performance as long as it is not chosen too large. Figure 1
shows that it can well be of interest in practice to choose Lj in a frequency-dependent way, as
the eigenvalue decay might vary significantly between different ωj . The left part of the figure
shows the situation for a functional white noise sequence. The spectral density operators are
constant operator-valued functions of frequency and consequently their spectral decomposi-
tions coincide, producing relatively straight lines in the sample eigenvalue plots. In this case
one would not necessarily have to resort to determining the various truncation levels Lj in-
dividually. However, the right part of the figure shows a time series with a significant level of
dependence, in fact DGP (b) introduced in Section 5.3 below. The functional variation of this
second-order autoregressive process receives drastically different contributions from differ-
ent frequency bands, yielding large differences also in the spectral decompositions: sample
eigenvalues plotted against frequency are far from constant. Note also how the plot of the top
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FIG. 1. Plot of sample eigenvalues λ
ωj

l across Fourier frequencies ωj for l = 1, . . . ,15 for a functional white
noise process (left) and a second-order functional autoregression (right).

sample eigenvalue resembles the univariate spectral density of a scalar second-order autore-
gression with levels of dependence determined by the operator norm ~·~∞. Both plots taken
together highlight that some flexibility in choosing the Lj is desirable.

To accommodate the previous observation, the following arrangements were made for the
standardized test based on Q̂

(T )
M,s . Firstly, a reasonable level of variation explained at each

frequency ωj is ensured through requiring that 0.5 < TVEj < 0.9 for all j . Secondly, the
procedure adapts to different eigenvalue decays by choosing

Lj = max
{
l : λ

ωj

l

λ
ωj

1

> 0.2 − 1√
bT

}
subject to the TVE criterion being satisfied. If no such Lj exists, choose Lj = 1. The un-
standardized test statistics is very stable in practice and does not require the specification of
tuning parameters.

Estimation of the spectral density operator and its eigenelements, needed to compute
the two statistics, was achieved using (10) with the concave smoothing kernel K(x) =
6(0.25 − x2) with compact support on x ∈ [−1/2,1/2] and bandwidth b = T −0.26. The
fourth-order estimation is done with K4(x1, . . . , x4) = ∏4

j=1 K(xj ), where K is same as

before, and bandwidth b4 = T −1/5. It should be noted that the outcomes were not overly
sensitive with respect to bandwidth choices for b respecting Assumption 3.1. It is worthwhile
to mention that the computational complexity of the fourth-order estimator is considerable
for larger sample sizes. The implementation was therefore partially done with the compiler
language C++ and the Rcpp-package in R.

5.3. Finite sample performance under the null. Under the null hypothesis of stationarity
the following data generating processes, DGPs, were studied:

(a) The Gaussian FWN variables ε1, . . . , εT with coefficient variances Var(〈εt ,ψl〉) =
exp(−(l − 1)/10);

(b) The FAR(2) variables X1, . . . ,XT with operators specified through the respective
variances ν

(1)
l,l′ = exp(−l − l′) and ν

(2)
l,l′ = 1/(l + l′3/2

) and operator norms κ1 = 0.75 and
κ2 = −0.4, and innovations ε1, . . . , εT as in (a);

(c) The FAR(2) variables X1, . . . ,XT as in (b) but with operator norms κ1 = 0.4 and
κ2 = 0.45.
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The sample sizes under consideration are T = 2n for n = 6, . . . ,10, so that the smallest
sample size consists of 64 functions and the largest of 1024. The processes in (a)–(c) comprise
a range of stationary scenarios. DGP (a) is the simplest model, specifying an independent
FWN process. DGPs (b) and (c) exhibit significant second-order autoregressive dynamics of
different persistence.

The empirical rejection levels for the processes (a)–(c) can be found in Table 1. It can
be seen that the empirical levels for both statistics with M = 1 are generally well adjusted
with slight deviations in a few cases. The performance of the statistics with M = 5 is similar,
although the empirical rejection levels tend toward the nominal ones with increasing sample
size. Some evidence on closeness between empirical and limit densities for the statistics Q̂

(T )
5,u

and Q̂
(T )
5,s are provided in Figure 2.

Figure 3 shows the average choices of L over the 1000 repetitions for the various DGPs for
the sample sizes T = 64 and T = 1024. First, one can see that the average L increases with
the sample size, as more degrees of freedom become available. For the small sample size
T = 64, choices of Lj under the null hypothesis are more similar both across frequencies
and across the three DGPs because the form of dependence is not yet entirely evident. With
increasing sample size, the average Lj increases uniformly for DGP (a), while for DGPs (b)
and (c) Lj in certain frequency bands are accentuated while others are attenuated according
to their contributions to the spectral analysis of variance of the underlying functional time
series. For DGP (b) the shape of the curve ωj �→ Lj might also be compared to the shape of
the curve ωj �→ λ

ωj

1 in the right panel of Figure 1.

5.4. Finite sample performance under the alternative. Under the alternative the follow-
ing data generating processes are considered:

(d) The tvFAR(1) variables X1, . . . ,XT with operator specified through the variances
ν

(1)
l,l′ = exp(−l − l′) and operator norm κ1 = 0.8 and innovations given by (a) with added

multiplicative time-varying variance

σ 2(t) = cos
(

1

2
+ cos

(
2πt

T

)
+ 0.3 sin

(
2πt

T

))
;

(e) The tvFAR(2) variables X1, . . . ,XT with both operators as in (d) but with time-
varying operator norm

κ1,t = 1.8 cos
(

1.5 − cos
(

4πt

T

))
,

constant operator norm κ2 = −0.81 and innovations as in (a);
(f) The structural break FAR(2) variables X1, . . . ,XT given in the following way:

– For t ≤ 3T/8, the operators are as in (b) but with operator norms κ1 = 0.7 and κ2 = 0.2,
and innovations as in (a);

– For t > 3T/8, the operators are as in (b) but with operator norms κ1 = 0 and κ2 = −0.2,
and innovations as in (a) but with variances Var(〈εt ,ψl〉) = 2 exp(−(l − 1)/10).

All other aspects of the simulations are as in Section 5.3. The processes studied under the
alternative provide intuition for the behavior of the proposed tests under different deviations
from the null hypothesis. DGP (d) is time varying only through the innovation structure, in
the form of a slowly varying variance component. The first-order autoregressive structure is
independent of time. DGP (e) is a time-varying second-order FAR process for which the first
autoregressive operator varies with time. The final DGP in (f) models a structural break, a
different type of alternative. Here, the process is not locally stationary as prescribed under
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TABLE 1
Median of test statistic values and rejection rates of Q̂

(T )
M,u and Q̂

(T )
M,s at the 1% and 5% asymptotic level for the processes (a)–(c) for various choices of M and T . All table entries

are generated from 1000 repetitions

% level % level % level % level

T Q̂
(T )
1,u 5 1 Q̂

(T )
5,u 5 1 Q̂

(T )
1,s 5 1 Q̂

(T )
5,s 5 1

(a) 64 1.33 5.80 1.40 8.93 9.10 2.60 1.29 4.30 1.50 8.26 7.80 2.70
128 1.41 5.90 1.20 9.03 7.20 2.10 1.36 5.70 1.00 8.96 5.70 2.10
256 1.26 5.10 0.90 9.15 5.30 1.70 1.27 5.20 1.40 9.02 5.10 1.00
512 1.37 4.80 1.30 9.27 6.80 1.40 1.40 4.60 1.30 9.16 6.30 1.30

1024 1.32 4.70 1.20 9.19 5.20 1.50 1.33 5.40 0.60 9.33 4.60 1.10

(b) 64 1.58 6.00 1.50 9.50 9.40 3.50 1.35 5.70 1.40 8.65 6.10 2.70
128 1.44 5.70 1.60 9.35 8.90 2.80 1.30 4.70 1.50 8.72 6.30 1.70
256 1.28 4.20 0.90 9.11 6.20 2.30 1.32 4.70 0.60 8.78 7.00 1.70
512 1.32 5.00 1.70 9.42 6.70 1.90 1.26 4.70 0.90 9.11 6.10 0.90

1024 1.44 4.40 0.80 9.26 5.40 1.10 1.32 4.70 0.50 8.87 4.80 0.90

(c) 64 1.42 5.60 1.90 8.50 7.60 3.30 1.20 5.70 0.90 8.36 8.20 2.60
124 1.31 5.20 1.00 9.05 6.20 2.50 1.29 4.00 0.50 8.77 5.70 2.00
256 1.48 6.10 1.20 9.19 6.70 1.90 1.42 5.20 1.70 8.90 6.10 1.30
512 1.35 5.60 0.70 9.48 4.90 1.00 1.41 4.50 0.60 8.99 5.30 1.40

1024 1.34 6.90 1.60 9.26 5.70 1.30 1.35 4.60 1.10 9.10 4.40 0.90
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FIG. 2. Empirical density of Q̂
(T )
5,u (black) and Q̂

(T )
5,s (blue) for T = 64 (left panel) and T = 512 (right panel)

for DGPs (a)–(c) (top to bottom). Red: The corresponding chi-squared densities predicted under the null.

the alternative in this paper but piecewise stationary with the two pieces being specified as
two distinct FAR(2) processes.

The empirical power of the various test statistics for the processes in (d)–(f) are in Table 2.
Power results are roughly similar across the selected values of M for both statistics. For DGP
(f) and to some extent for DGP (d), power is low for the small sample sizes T = 64. It reaches
100% for all T larger or equal to 256 for all DGPs but (f) where close to perfect detection
is reached for T = 512. Generally, the standardized statistic is slightly more unstable than its
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FIG. 3. Average choice of truncation level Lj against frequency ωj for the six DGPs (solid lines) with respective
standard deviations (dashed lines) for T = 64 (left) and T = 1024 (right).

unstandardized counterpart for DGP (e), while both statistics behave remarkably similar for
the other processes. The results for DGP (f) indicate that the proposed statistics have power
against structural break alternatives. This is intuitive since the second-order structure is in
this case not invariant under translations of time and, hence, induces a nonzero mean in the
test statistics.

Figure 4 exhibits exemplary the empirical densities for DGP (d). It can be seen that the
deviation from the chi-squared distribution predicted under the null hypothesis grows with
increasing sample size. Figure 3 contains the average choice of Lj for DGPs (d)–(f) under
the alternative. While processes (d) and (f) display behavior more similar to the null DGPs,
process (e) is significantly different, as almost always only one principal component is chosen
at each frequency for both the small and the large sample size.

5.5. Finite sample performance under non-Gaussian observations. In this section the
behavior of the eigenbased test under non-Gaussianity is further investigated through the
following processes:

(g) The FAR(2) variables X1, . . . ,XT as in (b) but with both independent t19-distributed
FWN and independent β(6,6)-distributed FWN;

(h) The tvFAR(1) variables X1, . . . ,XT as in (d) but with independent t19-distributed
FWN and independent β(6,6)-distributed FWN.

For direct comparison both t19- and β(6,6)-distributions were standardized to conform to
zero mean and unit variance as the standard normal. All other aspects are as detailed in
Section 5.3. The additional simulations were designed to shed further light on the effect
of estimating the fourth-order spectrum in situations deviating from the standard Gaussian
setting. Note in particular that the t19-distribution serves as an example for leptokurtosis (the
excess kurtosis is 0.4) and the β(6,6) distribution for platykurtosis (the excess kurtosis is
−0.4). Process (g) showcases the behavior under the null, while process (h) highlights the
performance under the alternative. The corresponding results are given in Table 3 and can
be readily compared with corresponding outcomes for the Gaussian processes (b) and (d) in
Tables 1–2.

It can be seen from the results in Table 3 that the proposed procedures perform roughly as
expected. First, under the null hypothesis the levels for both types of innovations, both sets
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TABLE 2
Median of test statistic values and rejection rates of Q̂

(T )
M,u and Q̂

(T )
M,s at the 1% and 5% asymptotic level for the processes (d)–(f) for various choices of M and T . All table entries

are generated from 1000 repetitions

% level % level % level % level

T Q̂
(T )
1,u 5 1 Q̂

(T )
5,u 5 1 Q̂

(T )
1,s 5 1 Q̂

(T )
5,s 5 1

(d) 64 9.84 77.80 54.30 20.33 57.30 39.80 8.61 71.30 46.70 17.92 48.80 30.70
128 19.55 99.00 94.40 33.34 94.10 84.10 18.26 98.20 91.40 30.44 90.20 76.30
256 36.70 100.00 100.00 54.07 99.90 99.70 34.40 100.00 100.00 50.27 99.80 99.40
512 69.49 100.00 100.00 94.47 100.00 100.00 62.90 100.00 100.00 84.75 100.00 100.00

1024 140.53 100.00 100.00 179.75 100.00 100.00 118.18 100.00 100.00 152.12 100.00 100.00

(e) 64 33.38 100.00 100.00 131.80 100.00 98.10 33.46 99.50 99.20 100.13 99.30 99.20
128 49.04 100.00 100.00 118.13 100.00 100.00 66.48 99.70 99.30 172.30 99.80 99.70
256 98.43 100.00 100.00 393.65 100.00 100.00 151.44 99.70 99.60 568.55 99.90 99.80
512 173.35 100.00 100.00 763.11 100.00 100.00 302.51 100.00 100.00 1257.93 100.00 100.00

1024 286.54 99.90 99.90 1311.08 100.00 100.00 579.00 99.80 99.80 2484.54 100.00 99.90

(f) 64 5.64 46.50 25.40 15.02 33.70 19.90 4.38 35.20 16.50 12.36 24.40 12.70
128 10.90 82.80 60.90 21.65 64.30 43.20 8.93 83.10 48.40 18.37 50.40 29.30
256 18.29 98.20 90.50 30.40 90.00 77.50 15.71 95.70 85.20 27.03 84.70 66.00
512 31.81 100.00 100.00 47.49 99.90 99.20 30.71 99.90 99.80 45.71 99.80 98.50

1024 62.72 100.00 100.00 83.82 100.00 100.00 62.29 100.00 100.00 83.18 100.00 100.00
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FIG. 4. Empirical density of Q̂
(T )
5,u (black) and Q̂

(T )
5,s (blue) for T = 64 (left panel) and T = 512 (right panel)

for DGP (d).

of tests and both choices of M are well adjusted and observe similar patterns as their normal
counterparts in DGP (b) in Table 1. Second, under the alternative for process (h), powers
align roughly as for the Gaussian case in Table 2. Overall, the simulation results reveal that
the estimation of the fourth-order spectrum does not lead to a marked decay in performance.

5.6. Application to annual temperature curves. To give an instructive data example, the
proposed method was applied to annual temperature curves recorded at several measuring sta-
tions across Australia over the last century and a half. The exact locations and lengths of the
functional time series are reported in Table 4, and the annual temperature profiles recorded at
the Gayndah station are displayed for illustration in the left panel of Figure 5. To test whether
these annual temperature profiles constitute stationary functional time series or not, the pro-
posed testing method was utilized, using specifications similar to those in the simulation
study. To get an idea of the spectral structure of these different temperature curves, the left-
hand side of Figure 6 shows the averaged eigenvalue decay standardized with respect to the
largest eigenvalue at each frequency. More precisely, 1

T

∑T
j=1 λ

ωj

l /λ
ωj

1 is plotted against l.

Figure 7 displays, in addition, the plots of the l-largest sample eigenvalues λ
ωj

l against j

for l = 1, . . . ,15. It can be seen that frequency-specific contributions are heterogeneous for
each of the four stations. There are also substantial differences in the eigenvalue plots across
different stations. The choices of Lj across frequency ωj as used by the standardized test
procedure are shown in the right-hand side of Figure 6.

The p-values for the standardized test statistics are essentially zero for all stations and all
M = 1, . . . ,5. The testing results for the unstandardized statistics are summarized in Table 4.
Stationarity is rejected in favor of the alternative at the 1% significance level at all measuring
stations for Q̂

(T )
M,u with all specifications of M , with one notable exception; no choice of

M leads to a rejection of the null hypothesis at Boulia station. Additionally, rejection at
Melbourne and Sydney stations is not possible at the smallest significance levels for several
M . At all other measuring stations rejection of the null is very strong. Note that Boulia station
showed the slowest eigenvalue decay in Figure 6 and the spectral behavior most different from
the other stations in Figure 7. It is particularly interesting that around frequency π there is
little to no separation between first and second sample eigenvalues. The lack of estimation
accuracy in the case of tied eigenvalues might help explain why Boulia station delivers results
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TABLE 3
Median of test statistic values and rejection rates of Q̂

(T )
M,u and Q̂

(T )
M,s at the 1% and 5% asymptotic level for the processes (g) and (h), where t and β indicate t19- and

β(6,6)-distributed innovations, respectively. All table entries are generated from 1000 repetitions

% level % level % level % level

T Q̂
(T )
1,u 5 1 Q̂

(T )
5,u 5 1 Q̂

(T )
1,s 5 1 Q̂

(T )
5,s 5 1

(g), t 64 1.58 5.60 0.70 9.46 7.70 2.70 1.40 2.90 0.60 8.65 6.20 1.40
128 1.42 4.50 1.30 9.37 6.90 2.00 1.30 3.60 0.40 8.81 4.80 1.30
256 1.40 4.40 0.80 9.17 5.50 1.70 1.29 4.90 0.90 8.89 5.70 1.20
512 1.47 4.70 0.70 9.33 4.70 1.30 1.44 4.10 0.50 9.32 4.30 1.20

1024 1.53 5.90 0.40 9.52 5.00 1.00 1.43 5.40 0.90 8.92 4.70 1.10

(g), β 64 1.31 3.10 0.80 9.00 6.70 1.60 1.29 3.40 0.80 8.66 5.50 1.10
128 1.37 4.80 1.10 9.13 6.10 1.90 1.25 3.70 0.60 8.89 4.50 0.90
256 1.39 4.70 1.00 9.13 4.10 1.30 1.32 4.70 1.10 8.57 3.40 0.60
512 1.30 3.90 0.70 9.22 4.50 1.00 1.32 4.50 0.90 9.13 5.80 1.40

1024 1.43 5.00 0.90 9.57 4.40 0.80 1.34 4.20 1.20 9.37 4.90 0.70

(h), t 64 9.07 77.10 49.00 18.95 53.10 29.10 8.16 69.30 41.30 16.82 43.50 22.10
128 17.21 98.30 92.80 28.78 91.10 74.30 16.47 98.00 89.70 26.52 87.00 66.70
256 31.12 100.00 99.90 45.94 100.00 99.70 30.12 100.00 99.70 43.54 99.70 98.60
512 57.81 100.00 100.00 78.95 100.00 100.00 53.14 100.00 100.00 71.69 100.00 100.00

1024 112.95 100.00 100.00 146.21 100.00 100.00 98.88 100.00 100.00 127.16 100.00 100.00

(h), β 64 9.17 77.80 49.60 18.30 50.00 28.10 8.20 69.40 40.20 16.86 42.60 21.60
128 17.49 98.40 91.40 29.06 91.30 74.10 16.31 97.20 88.50 27.21 87.00 67.70
256 31.05 100.00 100.00 46.75 99.90 99.30 29.58 100.00 100.00 44.06 99.90 98.60
512 57.90 100.00 100.00 78.97 100.00 100.00 52.97 100.00 100.00 71.40 100.00 100.00

1024 114.13 100.00 100.00 146.75 100.00 100.00 100.95 100.00 100.00 128.45 100.00 100.00
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TABLE 4
Summary of results for eight Australian measuring stations. The column labeled T reports the sample size, the

other columns report p-values for the given choices of M for Q̂
(T )
M,u

Station T M = 1 M = 2 M = 3 M = 4 M = 5

Boulia 120 0.71 0.17 0.20 0.36 0.44
Robe 130 0.01 0.00 0.00 0.00 0.00
Cape Otway 150 0.00 0.00 0.00 0.00 0.00
Gayndah 118 0.00 0.00 0.00 0.00 0.00
Gunnedah 134 0.00 0.00 0.00 0.00 0.00
Hobart 122 0.00 0.00 0.00 0.00 0.00
Melbourne 158 0.03 0.04 0.02 0.01 0.01
Sydney 154 0.15 0.01 0.00 0.00 0.00

FIG. 5. Annual temperature curves at Gayndah station.

FIG. 6. Average eigenvalue decay standardized with respect to the largest eigenvalue at each frequency,
1
T

∑T
j=1 λ

ωj

l /λ
ωj

1 (left) and truncation level Lj across ωj (right) across different measuring stations.
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FIG. 7. Plots of the 15 largest sample sample eigenvalues across Fourier frequencies at Boulia (top left), Cape
Otway (top right), Gayndah (bottom left) and Gunnedah (bottom right) stations.

at odds with the findings at the other stations. In the future it might be worthwhile looking into
running the stationarity tests only in certain frequency bands, excluding those frequencies for
which separation of sample eigenvalues is not sufficiently large. This is, however, beyond the
scope of the current paper.

6. Conclusions and future work. In this paper methodology for testing the stationarity
of a functional time series is put forward. The tests are based on frequency domain analy-
sis and exploit that fDFTs at different canonical frequencies are uncorrelated if and only if
the underlying functional time series are stationary. The limit distribution of the quadratic
form-type test statistics has been determined under the null hypothesis as well as under the
alternative of local stationarity. Finite sample properties were highlighted in simulation ex-
periments with various data-generating processes and an application to annual temperature
profiles.

The empirical results show promise for further applications to real data, but future research
has to be devoted to a further fine-tuning of the proposed method; for example, an automated
selection of frequencies hm outside of the standard choice hm = m for all m = 1, . . . ,M . This
can be approached through a more refined analysis of the size of the various β̂

(T )
hm,x in (11)

whose real and imaginary part make up the vector b̂(T )
M,x in the test statistics Q̂

(T )
M,x .
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APPENDIX A: A FUNCTIONAL CRAMÉR REPRESENTATION

PROOF OF PROPOSITION 2.1. Let X = (Xt : t ∈ Z) be a zero-mean, weakly stationary
H -valued stochastic process. Then X admits the functional Cramér representation in (4) (see
van Delft and Eichler (2019), Theorem 4.5). Conversely,

Cov(Xt ,Xs) = E

[∫ π

−π
eitλ1 dZλ1 ⊗

∫ π

−π
eisλ2 dZλ2

]
=
∫ π

−π
ei(t−s)λ dF (λ) = Ct−s,

where F denotes the operator-valued measure induced by the sequence of covariance opera-
tors of X (see van Delft and Eichler (2019), Theorem 4.4), which shows that a process that
admits representation (4) must be weakly stationary. �

APPENDIX B: PROPERTIES OF FUNCTIONAL CUMULANTS

For random elements X1, . . . ,Xk in a Hilbert space H , the moment tensor of order k can
be defined as

E[X1 ⊗ · · · ⊗ Xk] = ∑
l1,...,lk∈N

E

[
k∏

t=1

〈Xt,ψlt 〉
]
(ψl1 ⊗ · · · ⊗ ψlk ),

where the elementary tensors (ψl1 ⊗ · · · ⊗ ψlk : l1, . . . , lk ∈ N) form an orthonormal basis in
the tensor product space

⊗k
j=1 H if (ψl : l ∈ N) is an orthornormal basis of the separable

Hilbert space H . Similarly, define the kth order cumulant tensor by

(21)

cum(X1, . . . ,Xk)

= ∑
l1,...,lk∈N

cum
(〈X1,ψl1〉, . . . , 〈Xk,ψlk 〉

)
(ψl1 ⊗ · · · ⊗ ψlk ),

where the cumulants on the right-hand side are as usual given by

cum
(〈X1,ψl1〉, . . . , 〈Xk,ψlk 〉

)
= ∑

ν=(ν1,...,νp)

(−1)p−1(p − 1)!
p∏

r=1

E

[∏
t∈νr

〈Xt,ψlt 〉
]
,

the summation extending over all unordered partitions ν of {1, . . . , k}. The following is a
generalization of the product theorem for cumulants (Brillinger (1981), Theorem 2.3.2):

THEOREM B.1. Consider the tensor Xt =⊗Jt

j=1 Xtj for random elements Xtj in H

with j = 1, . . . , Jt and t = 1, . . . , k. Let ν = {ν1, . . . , νp} be a partition of {1, . . . , k}. The
joint cumulant tensor is given by

cum(X1, . . . ,Xk)

= ∑
r11,...,rkJt

∑
ν=(ν1,...,νp)

p∏
n=1

cum
(〈Xtj ,ψrtj 〉|(t, j) ∈ νn

)
ψr11 ⊗ · · · ⊗ ψrkJt

,

where the summation extends over all indecomposable partitions ν = (ν1, . . . , νp) of the table

(1,1) · · · (1, J1)
...

. . .
...

(k,1) · · · (k, Jt ).
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Formally, abbreviate this by

cum(X1, . . . ,Xk) = ∑
ν=(ν1,...,νp)

Sν

( p⊗
n=1

cum
(
Xtj |(t, j) ∈ νn

))
,

where Sν is the permutation that maps the components of the tensor back into the original
order, that is, Sν(

⊗p
r=1
⊗

(t,j)∈νr
Xtj ) = X11 ⊗ · · · ⊗ XkJt .

Next, expressions and bounds for cumulants of the fDFT are given in both locally station-
ary and stationary regimes.

LEMMA B.1 (Cumulants of the fDFT under local stationarity). Let (Xt,T : t ≤ T ,T ∈ N)

be a kth order locally stationary process in H satisfying Assumption I(k,1) for arbitrary fixed
k. The cumulant tensor of the local fDFT satisfies

cum
(
D(T )

ωj1
, . . . ,D(T )

ωjk

)
= (2π)k/2−1

T k/2

T −1∑
t=0

Ft/T ;ωj1 ,...,ωjk−1
e−i
∑k

l=1 tωjl + Rk,T(22)

= (2π)k/2−1

T k/2−1 F̃j1+···+jk;ωj1 ,...,ωjk−1
+ Rk,T ,

where ‖Rk,T ‖2 = O(T −k/2) and the operator

(23) F̃s;ωj1 ,...,ωjk−1
=
∫ 1

0
Fu;ωj1 ,...,ωjk−1

e−i2πsu du

denotes the sth Fourier coefficient of Fu;ωj1 ,...,ωjk−1
and belongs to S2.

The proof can be found in Section S2 of the Online Supplement. Lemma B.1 provides
a relation between the kth order cumulant tensor of the local fDFT and the Fourier coeffi-
cients of the kth order time-varying spectral density tensors which induce Hilbert–Schmidt
operators. The proof of (23) makes apparent that the dependence structure of the local fDFT
behaves in a very specific manner that is based on the distance of the frequencies. The Fourier
coefficients additionally provide an upper bound on the norm of the cumulant operator.

COROLLARY B.1. If Assumption I(k,2) holds for arbitrary fixed k, then:

(i) ~cum
(
D(T )

ωj1
, . . . ,D(T )

ωjk

)
~2 ≤ C

T k/2−1|j1 + · · · + jk|2 + O

(
1

T k/2

)
;

(ii) sup
ω

∑
s∈Z

~F̃s;ω~2 ≤ ∞.

Note that if
∑k

l=1 ωjl
= 0 mod 2π , then (22) yields approximately a time average of

the kth order time-varying spectral density tensor. In case the process does not depend
on time u, F̃s;ωj1 ,...,ωj2k−1

= OH for s = 0. That is, the operator F̃s;ωj1 ,...,ωj2k−1
maps any

ψ ∈ L2([0,1]k,C) to the origin for s = 0. Consequently, under kth order stationarity the
following corollary holds.

COROLLARY B.2 (Cumulants of the fDFT under stationarity). Let (Xt : t ∈ Z) be a kth
order stationary sequence taking values in HR that satisfies Assumption I∗(k,1) for arbitrary
fixed k. Then, the cumulant tensor of the fDFT satisfies

(24) cum
(
D(T )

ωj1
, . . . ,D(T )

ωjk

)= (2π)k/2−1

T k/2 �
(
∑k

l=1 ωjl
)

T Fωj1 ,...,ωjk−1
+ RT,k,
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where the function �
(ω)
T = T for ω ≡ 0 mod 2π , �

(ωj )

T = 0 for j ≡ 0 mod T and the re-
mainder satisfies ~RT,k~2 = O(T −k/2).

APPENDIX C: FIRST- AND SECOND-ORDER DEPENDENCE STRUCTURE

C.1. Expectation. From Lemma B.1, for h = 0 mod T ,
�

�

�

�

1

T

T∑
j=1

E
(
D(T )

ωj
⊗ D(T )

ωj+h

)��
�

�

2

=
�

�

�

�

1

T

T∑
j=1

1

T

T∑
t=1

Ft/T ;ωj
e−itωh + RT,2

�

�

�

�

2

=
{
O
(
T −1) under H0,

O
(
h−2 + T −1) under HA.

In particular, using that the operator-valued functions (u,ω) �→Fu,ω are Lipschitz continuous
in (u,ω), yields that, under HA,

1

T

T∑
j=1

1

T

T∑
t=1

Ft/T ;ωj
e−itωh → 1

2π

∫ 2π

0

∫ 1

0
Fu,ωe−i2πuh dudω,

where the convergence is in S2(H). Since E[‖D(T )
ω ‖2

2] < ∞, the Cauchy–Schwarz inequality
implies Fubini’s theorem can be applied. Together with the above, it follows that the expec-
tation of β

(T )
h,u satisfies

E
[
β

(T )
h,u

]= 1

T

T∑
j=1

L(ωj )∑
l=1

L(ωj+h)∑
l′=1

〈
E
(
D(T )

ωj
⊗ D(T )

ωj+h

)
, φ̃

ωj

l ⊗ φ̃
ωj+h

l′
〉
S

= 1

T

T∑
j=1

L(ωj )∑
l=1

L(ωj+h)∑
l′=1

〈
1

T

T −1∑
t=0

Ft/T ,ωj
e−itωh + R2,T , φ̃

ωj

l ⊗ φ̃
ωj+h

l′

〉
S

= O

(
1

h2

)
+ O

(
1

T

)

→ 1

2π

∫ 2π

0

∫ 1

0

L(ω)∑
l=1

L(ω+ωh)∑
l′=1

〈
Fu,ωe−i2πuh, φ̃ω

l ⊗ φ̃
ω+ωh

l′
〉
S dudω,

where the stated order O(·) for the projections follows from the previously stated conver-
gence in norm. Similarly,

E
[
β

(T )
h,s

]→ 1

2π

∫ 2π

0

∫ 1

0

L(ω)∑
l=1

L(ω+ωh)∑
l′=1

〈Fu,ω(φ̃
ω+ωh

l′ ), φ̃ω
l 〉e−i2πuh√

λ̃ω
l λ̃

ω+ωh

l′
dudω,

under Condition Cs .

C.2. Covariance structure. Theorem B.1 implies that the covariance structure of the
cross-periodogram operators is given by

(25)

Cov
(
D(T )

ωj1
⊗ D(T )

ωj1+h1
,D(T )

ωj2
⊗ D(T )

ωj2+h2

)
= cum

(
D(T )

ωj1
,D

(T )
−ωj1+h1

,D
(T )
−ωj2

,D(T )
ωj2+h2

)
+ S1324

(
cum
(
D(T )

ωj1
,D

(T )
−ωj2

)⊗ cum
(
D

(T )
−ωj1+h1

,D(T )
ωj2+h2

))
+ S1423

(
cum
(
D(T )

ωj1
,D(T )

ωj2+h2

)⊗ cum
(
D

(T )
−ωj1+h1

,D
(T )
−ωj2

))
,
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where Sijkl denotes the permutation operator on
⊗4

i=1 L2
C
([0,1]) that permutes the compo-

nents of a tensor according to the permutation (1,2,3,4) �→ (i, j, k, l), that is, Sijkl(x1 ⊗
· · · ⊗ x4) = xi ⊗ · · · ⊗ xl . Under Assumption I(4,2) we obtain from Lemma B.1,

(26)

Cov

(
1√
T

T∑
j1

D(T )
ωj1

⊗ D(T )
ωj1+h1

,
1√
T

T∑
j2

D(T )
ωj2

⊗ D(T )
ωj2+h2

)

= 1

T

T∑
j1,j2

(
2π)

T 2

∑
t

Ft/T :ωj1 ,−ωj1+h1 ,−ωj2
e−it (ωh2−ωh1 ) + RT,4

)

+ S1324

((
1

T

∑
t

Ft/T :ωj1
e−it (ωj1−ωj2 ) + RT,2

)

⊗
(

1

T

∑
t

Ft/T :−ωj1+h1
e−it (−ωj1+h1+ωj2+h2 ) + RT,2

))

+ S1423

((
1

T

∑
t

Ft/T :ωj1
e−it (ωj1+ωj2+h2 ) + RT,2

)

⊗
(

1

T

∑
t

Ft/T :−ωj1+h1
e−it (−ωj1+h1−ωj2 ) + RT,2

))
.

Using Minkowski’s inequality and Corollary B.1(ii), it follows that, for all T , h1, h2,

(27)

�

�

�

�

Cov

(
1√
T

T∑
j1

D(T )
ωj1

⊗ D(T )
ωj1+h1

,
1√
T

T∑
j2

D(T )
ωj2

⊗ D(T )
ωj2+h2

)
�

�

�

�

2

= O(1),

both under HA and H0. The focus is here on the covariance structure under fourth-order
stationarity. The more general expression is derived in Section S6 of the Online Supplement.

PROOF OF THEOREM 4.3. Under Assumption I∗(4,2), Corollary B.2 implies that (26)
becomes

Cov

(
1√
T

T∑
j1

D(T )
ωj1

⊗ D(T )
ωj1+h1

,
1√
T

T∑
j2

D(T )
ωj2

⊗ D(T )
ωj2+h2

)

= 1

T

T∑
j1,j2

(
(2π)

T 2 Fωj1 ,−ωj1+h1 ,−ωj2
�

(ωh2−ωh1 )

T + RT,4

)

+ S1324

((
Fωj1

1

T
�

(ωj1−ωj2 )

T + RT,2

)
⊗
(
F−ωj1+h1

1

T
�

(−ωj1+h1+ωj2+h2 )

T + RT,2

))
+ S1423

((
Fωj1

1

T
�

(ωj1+ωj2+h2 )

T + RT,2

)
⊗
(
F−ωj1+h1

1

T
�

(−ωj1+h1−ωj2 )

T + RT,2

))
.

By the properties of �
(·)
T , the term on the second line is of lower order unless h1 − h2 = 0

mod T , while the third line requires j1 − j2 = 0 mod T and h1 − h2 = 0 mod T . For the
fourth line to not be of lower order we require j1 +j2 +h2 = 0 mod T and −j1 −h1 −j2 = 0
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mod T which give the constraints j1 + j2 = T −h2 and j1 + j2 = T −h1, implying we must
have j1 + j2 = T − h. It follows therefore that the covariance is of order O(T −1) in Hilbert–
Schmidt norm if h1 − h2 = 0 mod T . If h1 − h2 = 0 mod T , then

(28)

Cov

(
1√
T

T∑
j1

D(T )
ωj1

⊗ D(T )
ωj1+h

,
1√
T

T∑
j2

D(T )
ωj2

⊗ D(T )
ωj2+h

)

= 1

T

T∑
j1,j2

(2π)

T
Fωj1 ,−ωj1+h,−ωj2

+ RT,2

+ 1

T

T∑
j1

(
(Fωj1

+ RT,2)⊗̃(Fωj1+h
+ RT,2)

+ (Fωj1
+ RT,2)⊗̃�(Fωj1+h1

+ RT,2)
)
,

where Definition S1.1 was used. Thus, as T → ∞, this converges in norm to

1

4π

∫ ∫
Fω,−ω−ωh,−ω′ dωdω′ +

∫
Fω⊗̃Fω+ωh

+Fω⊗̃�Fω+ωh
dω.

Consider then the covariance structure of β̂
(T )

h,u which is obtained by projecting the fDFT onto
the eigenfunctions of Fω. Write this covariance structure as

Cov
(√

T β
(T )
h1,u

,
√

T β
(T )
h2,u

)
= 1

T

T∑
j1,j2

∑
l1∈[L(ωj1 )],l2∈[L(ωj1+h1 )],
l3∈[L(ωj2 )],l4∈[L(ωj2+h2 )]

〈
Cov
(
D(T )

ωj1
⊗ D(T )

ωj1+h
,D(T )

ωj2
⊗ D(T )

ωj2+h

)

× (φωj2
l3

⊗ φ
ωj2+h2
l4

)
, φ

ωj1
l1

⊗ φ
ωj1+h1
l2

〉
.

Under the conditions of Theorem 4.3, (28) yields that the summand of the above expression
reduces to

= (2π)

T 2

〈
Fωj1 ,−ωj1+h1 ,−ωj2

(
φ

ωj2
l3

⊗ φ
ωj2+h2
l4

)
, φ

ωj1
l1

⊗ φ
ωj1+h1
l2

〉
�

(ωh2−ωh1 )

T

+ O

(
1

T 2

)
+
[
λ

ωj1
l1

〈
φ

ωj2
l3

, φ
ωj1
l1

〉 1
T

�
(ωj1−ωj2 )

T + O

(
1

T

)]
×
[
λ

−ωj1+h1
l2

〈
φ

−ωj2+h2
l4

, φ
−ωj1+h1
l2

〉 1
T

�
(ωj1+h1−ωj2+h2 )

T + O

(
1

T

)]
+
[
λ

ωj1
l1

〈
φ

−ωj2+h2
l4

, φ
ωj1
l1

〉 1
T

�
(ωj1+ωj2+h2 )

T + O

(
1

T

)]
×
[
λ

−ωj1+h1
l2

〈
φ

ωj2
l3

, φ
−ωj1+h1
l2

〉 1
T

�
(−ωj1+h1−ωj2 )

T + O

(
1

T

)]
,

where self-adjointness of the spectral density operator gave

〈
Fωj1

(
φ

ωj2
l2

)
, φ

ωj1
l1

〉= 〈φωj2
l2

,Fωj1

(
φ

ωj1
l1

)〉= λ
ωj1
l1

〈
φ

ωj2
l2

, φ
ωj1
l1

〉
.
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Self-adjointness of Fω, orthogonality of the eigenfunctions and 2π -periodicity of the
eigenelements imply that

Cov
(√

T β
(T )
h,u,

√
T β

(T )
h,u

)
= 2π

T 2

T∑
j1,j2=1

∑
l1∈[L(ωj1 )],l2∈[L(ωj1+h)],
l3∈[L(ωj2 )],l4∈[L(ωj2+h)]

〈
Fωj1 ,−ωj1+h,−ωj2

(
φ

ωj2
l3

⊗ φ
ωj2+h

l4

)
,

φ
ωj1
l1

⊗ φ
ωj1+h

l2

〉
+ 2

T

T∑
j1

∑
l1∈[L(ωj1 )],l2∈[L(ωj1+h)]

λ
ωj1
l1

λ
ωj1+h

l2
+ O

(
1

T

)
,

in case h1 = h2 = h and Cov(
√

T β
(T )
h1,u

,
√

T β
(T )
h2,u

) = O(T −1) if h2 = h1 mod T . It can then

be derived, similarly, that T Cov(β
(T )
h1,u

,β
(T )
h2,u

) = O(T −1) for h2 = T − h1 mod T . Since

�β
(T )
h1,u

= 1

2

(
β

(T )
h1,u

+ β
(T )
h1,u

)
and �β

(T )
h1,u

= 1

2i

(
β

(T )
h1,u

− β
(T )
h1,u

)
,

it follows therefore that

T Cov
(�β

(T )
h1,u

,�β
(T )
h2,u

)= O
(
T −1)

uniformly in h1, h2 and, thus, T Cov(�β
(T )
h1,u

,�β
(T )
h2,u

) = T Cov(�β
(T )
h1,u

,�β
(T )
h2,u

) = T
2 ×

Cov(β
(T )
h1,u

,β
(T )
h2,u

). Finally, using Lipschitz continuity of ω �→Fω and of its eigenelements to
replace the Riemann approximations with their limits completes the proof. �

C.3. Proof of Theorem 4.1.

PROOF OF THEOREM 4.1. (i) In order to prove the first assertion of the theorem, intro-
duce the bias-variance decomposition

(29)
E
[
~F̂ (T )

ω −E
[
F̂ (T )

ω

]+E
[
F̂ (T )

ω

]− Gω~
2
2
]

= E
[
~F̂ (T )

ω −E[Ĝω]~2
2
]+E
[
~E
[
F̂ (T )

ω

]− Gω~
2
2
]
.

The cross terms cancel because E[〈F̂ (T )
ω − E[F̂ (T )

ω ],E[F̂ (T )
ω ] − Gω〉H⊗H ] and E[F̂ (T )

ω −
E[F̂ (T )

ω ]] = OH . Now, by Corollary B.2,

cum
(
D(T )

ω ,D
(T )
−ω

)= 1

T

T −1∑
t=0

Ft/T ,ω + RT,2 = G(T )
ω + RT,2,

where ‖RT,2‖2 = O(T −1). Note that the integral approximation in time direction does not
change the error term because of Lipschitz continuity of the mapping (u,ω) �→ Fu,ω in u.
Convolution of the cumulant tensor with the smoothing kernel, replacing the integral approx-
imation with the limit and a change of variables give

E
[
F̂ (T )

ω

]= 2π

bT

T∑
j=1

Kb(ω − ωj) cum
(
D(T )

ωj
,D

(T )
−ωj

)
=
∫

K(x)Gω−xb dx + Rb,T + RT,2,
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where ‖Rb,T ‖2 = O(bT −1). Since supω,u ~Fu,ω~2 < ∞ and supω,u ~
∂2

∂ω2
Fu,ω~2 < ∞, the

mapping ω �→ Gω is twice differentiable and supω ~
∂2

∂ω2
Gω~2 < ∞. Therefore, a Taylor ex-

pansion around ω and symmetry of the kernel then lead to

E
[
F̂ (T )

ω

]= ∫ K(x)Gω−xb dx = Gω +
2∑

i=1

1

i!(b)i
∂iGν

∂νi

∣∣∣∣
ν=ω

∫
xiK(x) dx

= Gω + εb,T ,

where ‖εb,T ‖2 = O(b2 + (bT ))−1. Thus, the second term on the right-hand side of (29)
satisfies

E
[
~EF̂ (T )

ω − Gω~
2
2
]= O

(
b2 + 1

bT

)2
(30)

uniformly in ω ∈ [−π,π ]. To bound the first term of the right-hand side in (29), observe that,
for j1 + j2 ≡ 0 mod T , Lemma B.1 with k = 2 yields

cum
(
D(T )

ωj1
,D(T )

ωj2

)= 1

T

T∑
t=1

Ft/T e−i(ωj1+ωj2 )t + R2,T

→
∫ 1

0
Fu;ωj1

e−i2πu(j1+j2) du = F̃j1+j2;ωj1
.

Furthermore, from Corollary B.2 and Minkowski’s inequality,

(31)

~cum
(
D(T )

ω ,D
(T )
−ω,D

(T )
ω′ ,D

(T )
−ω′
)
~2

≤ 1

T

�

�

�

�

1

T

T −1∑
t=0

F t
T

,ω,−ω,ω′

�

�

�

�

2

+ O

(
1

T 2

)

= 1

T
~G

(T )
ω,−ω,ω′~2 + O

(
1

T 2

)
= O

(
1

T

)
.

The last equality follows since

sup
u,ω,ω′

~Ft/T ,ω,−ω,ω′~2 ≤ ∑
h1,h2,h3∈Z

‖κ3;h1,h2,h3‖2 = O(1)

by Assumption I. Hence, Theorem B.1 implies that

Cov(F̂ω, F̂ω)

= 1

(bT )2

T∑
k1,k2=1

K

(
ω − ωk1

b

)
K

(
ω − ωk2

b

)[
cum
(
D(T )

ωk1
,D

(T )
−ωk1

,D
(T )
−ωk2

,D(T )
ωk2

)
+ S1324

(
cum
(
D(T )

ωk1
,D

(T )
−ωk2

)⊗ cum
(
D

(T )
−ωk1

,D(T )
ωk2

))
+ S1423

(
cum
(
D(T )

ωk1
,D(T )

ωk2

)⊗ cum
(
D

(T )
−ωk1

,D
(T )
−ωk2

))]
.

Using Lemma B.1, this equals

(32)

1

(bT )2

T∑
k1,k2=1

K

(
ω − ωk1

b

)
K

(
ω − ωk2

b

)

× [S1324(F̃k1−k2;ωk1
⊗ F̃−k1+k2;−ωk1

)

+ S1423(F̃k1+k2;ωk1
⊗ F̃−k1−k2;−ωk1

) + R2,T

]
,
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where we used (31) is of order O( 1
T
) in S2 uniformly in −π ≤ ω, ω′ ≤ π . Using a change

of variables, the properties of the smoothing kernel, Hölder’s inequality and Corollary B.1, it
follows that

�

�

�

�

1

(bT )2

T∑
k1,k2=1

K

(
ω − ωk1

b

)
K

(
ω − ωk2

b

)
F̃k1−k2;ωk1

⊗̃F̃−k1+k2;−ωk1

�

�

�

�

2

≤
�

�

�

�

1

(bT )2

T∑
k1

K

(
ω − ωk1

b

)2∑
s

F̃s;ωk1
⊗ F̃−s;−ωk1

�

�

�

�

2

≤ sup
ω

∑
s∈Z

~F̃s;ω~
2
2

∣∣∣∣∣ 1

(bT )2

T∑
k1

K

(
ωj1 − ωk1

b

)2
∣∣∣∣∣= O

(
1

bT

)
.

A similar argument holds for the remaining term of (32). Hence,

~Cov
(
F̂ (T )

ω , F̂ (T )
ω

)
~2

=
�

�

�

�

(
2π

T

)2 T∑
j,j ′=1

Kb(ω − ωj)Kb(ω − ωj ′)Cov
(
I (T )
ωj

, I (T )
ωj ′
)��
�

�

2

= O

(
1

bT

)
.

Fubini’s theorem together with the above implies that the first term of (29) satisfies

E
[
~F̂ (T )

ω −EF̂ (T )
ω ~

2
2
]= trace

(
Var
(
F̂ (T )

ω

))= O

(
1

bT

)
uniformly in ω ∈ [−π,π ]. This establishes (i).

(ii) This part of the proof requires the following lemma verified in Section S1 of the Online
Supplement.

LEMMA C.1. Let Yν, ν ∈ [a, b] be a zero-mean L2([0,1]k)-valued stochastic process of
which the derivative mapping ν �→ ∂

∂ν
Yν is well defined in L2([0,1]k) for any ν ∈ [a, b]. If

E‖Yν‖2
2 < ∞ and E‖ ∂Yν

∂ν
‖2

2 < ∞, then

2E sup
a≤ν≤b

‖Yν‖2
2 ≤ E‖Ya‖2

2 +E‖Yb‖2
2 +
∫ b

a

√
E

∥∥∥∥ ∂

∂α
Yα

∥∥∥∥2
2

√
E‖Yα‖2

2

+
∫ b

a

√
E‖Yα‖2

2 dα

√
E

∥∥∥∥ ∂

∂α
Yα

∥∥∥∥2
2
dα.

Lemma C.1 with k = 2 applied to the spectral density kernel function f̂ω implies—due to
the norm equivalence with the operator F̂ω—that

E sup
0≤ω≤π

2~F̂ω −EF̂ω~
2
2

≤ E~F̂0 −EF̂0~
2
2 +E~F̂π −EF̂π~

2
2

+ 2
∫ π

0

√
E~F̂ω −EF̂ω~2

2

√√√√
E

�

�

�

�

∂

∂ω
(F̂ω −EF̂ω)

�

�

�

�

2

2
dω(33)
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= Tr Var(F̂0) + Tr Var(F̂π) + 2
∫ π

0

√
Tr Var(F̂ω)

√
Tr Var

(
∂

∂ω
F̂ω

)
dω

= O

(
1

bT

)
+ O

(
1√

bT
√

b2T

)
= O

(
1

b2T

)
,

where the latter follows from part (i). The rate for the covariance structure of the operator-
valued function ω �→ ∂

∂ω
F̂ω follow as before, noting that an application of the chain rule of

the derivative will lead to an extra O( 1
b2 ) term in S2(H) in comparison to the covariance of

F̂ω. Minkowski’s inequality therefore implies

P

(
sup

ω∈[−π,π ]
~F̂ (T )

ω − Gω~2 > ε
)

≤ P

(
sup

ω∈[−π,π ]
~F̂ (T )

ω −EF̂ω~2 >
ε

2

)

+ P

(
sup

ω∈[−π,π ]
~EF̂ (T )

ω − Gω~2 >
ε

2

)
.

Using Markov’s inequality together with (33), for any ε > 0,

P

(
sup

ω∈[−π,π ]
~F̂ (T )

ω −EF̂ω~2 >
ε

2

)
≤ O

(
1

ε2b2T

)
→ 0

as b2T → ∞. Similary, Markov’s inequality together with (30) yields

P

(
sup

ω∈[−π,π ]
~EF̂ (T )

ω − Gω~2 >
ε

2

)
≤ O

(
1

ε2

(
b2 + 1

bT

)2)
→ 0

as bT → ∞ and b → 0 as T → ∞. The result therefore holds provided Assumption 3.1 is
satisfied. �

APPENDIX D: WEAK CONVERGENCE

The proof of the distributional properties of β̂
(T )

h,x , as stated in Theorem 4.4 and 4.6, are es-
tablished in this section. The proof consists of several steps. First, the distributional properties
are derived for β

(T )
h,x , when spectral density operators and their corresponding eigenelements

are known. For this, we investigate the distributional properties of the operator

(34) w
(T )
h = 1

T

T∑
j=1

D(T )
ωj

⊗ D(T )
ωj+h

, h = 1, . . . , T − 1.

Theorem D.1 below shows that
√

T (w
(T )
h − Ew

(T )
h ) converges weakly to a functional Gaus-

sian process both under the null and the alternative. The distributional properties of β
(T )
h,x

immediately follow from this result and thus converge weakly to a Gaussian process under

both hypotheses. Focus is finally on β̂
(T )

h,x , where the effect of replacing the eigenelements
with their empirical counterparts on the distributional properties is clarified. In particular,
Theorems 4.2 and 4.5 are established as well as the orders of

E
√

T
∣∣β̂(T )

h,u − β
(T )
h,u

∣∣ and E
√

T
∣∣β̂(T )

h,s − β
(T )
h,s

∣∣.



TESTING FOR STATIONARITY OF FUNCTIONAL TIME SERIES 2539

D.1. Weak convergence on the function space. To demonstrate weak convergence of
(34), the following result by Cremers and Kadelka (1986) is used which considerably sim-
plifies the verification of the usual tightness condition often invoked in weak convergence
proofs of Banach space-valued random variables.

LEMMA D.1. Let (T ,A,μ) be a measure space, let (B, | · |) be a Banach space, and let
X = (Xn : n ∈ N) be a sequence of random elements in L

p
B(T ,μ) such that:

(i) the finite-dimensional distributions of X converge weakly to those of a random element
X0 in L

p
B(T ,μ);

(ii) lim supn→∞E[‖Xn‖p
p] ≤ E[‖X0‖p

p] < ∞.

Then, X converges weakly to X0 in L
p
B(T ,μ).

To apply Lemma D.1 in the present context, consider the sequence (Ê
(T )
h : T ∈ N) of

random elements in L2
C
([0,1]2), for h = 1, . . . , T − 1 defined through

Ê
(T )
h = √

T
(
w

(T )
h −E

[
w

(T )
h

])= ∞∑
l,l′=1

〈
Ê

(T )
h ,ψll′

〉
ψll′,

where the second equality uses a representation with respect to an L2
C
([0,1]2) orthonormal

basis ψll′ = ψl ⊗ ψ ′
l . From this representation it is easily seen that the finite-dimensional

distributions of the basis coefficients provide a complete characterization of the distribu-
tional properties of Ê

(T )
h . To formalize this, we put the functional Ê

(T )
h in duality with

(Ê
(T )
h )∗ ∈ L2

C
([0,1]2)

∗
through the pairing Ê

(T )
h (φ) = 〈Ê(T )

h , φ〉 for all φ ∈ L2
C
([0,1]2)∗.

This leads to the following result, which is stated under the more general Assumption I,
which encompasses the stationary case.

THEOREM D.1 (Weak convergence). Let (Xt : t ∈ Z) be a stochastic process taking val-
ues in HR satisfying Assumption I with � = 2. Then,

(35)
(�Ê

(T )
hi

,�Ê
(T )
hi

: i = 1, . . . , k
) d→ (Rhi

,Ihi
: i = 1, . . . , k),

where Rh, Ih′ , h,h′ ∈ {1, . . . , T −1} are jointly Gaussian elements in L2
C
([0,1]2) with means

E[Rh(ψll′)] = E[Ih′(ψll′)] = 0 and covariance structure:

1. Cov
(
Rh(ψl1l

′
1
),Rh′(ψl2l

′
2
)
)

= 1

4

[
ϒh,h′(ψl1l

′
1l2l

′
2
) + ϓh,h′(ψl1l

′
1l2l

′
2
)

+ ϒ̀h,h′(ψl1l
′
1l2l

′
2
) + ϒ̄h,h′(ψl1l

′
1l2l

′
2
)
]
,

2. Cov
(
Ih(ψl1l

′
1
),Rh′(ψl2l

′
2
)
)

= 1

4i

[
ϒh,h′(ψl1l

′
1l2l

′
2
) + ϓh,h′(ψl1l

′
1l2l

′
2
)

− ϒ̀h,h′(ψl1l
′
1l2l

′
2
) − ϒ̄h,h′(ψl1l

′
1l2l

′
2
)
]
,

3. Cov
(
Rh(ψl1l

′
1
),Ih′(ψl2l

′
2
)
)

= 1

4i

[
ϒh,h′(ψl1l

′
1l2l

′
2
) − ϓh,h′(ψl1l

′
1l2l

′
2
)

+ ϒ̀h,h′(ψl1l
′
1l2l

′
2
) − ϒ̄h,h′(ψl1l

′
1l2l

′
2
)
]
,
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4. Cov
(
Ih(ψl1l

′
1
),Ih′(ψl2l

′
2
)
)

= 1

4

[
ϒh,h′(ψl1l

′
1l2l

′
2
) − ϓh,h′(ψl1l

′
1l2l

′
2
)

− ϒ̀h,h′(ψl1l
′
1l2l

′
2
) + ϒ̄h,h′(ψl1l

′
1l2l

′
2
)
]

for all h, h′ and l1, l′1, l2, l′2, and where ϒh,h′ , ϓh,h′ , ϒ̀h,h′ and ϒ̄h,h′ are given in (S6.3)–
(S6.5).

PROOF. It remains to verifiy the conditions of Lemma D.1. For the first, the following
theorem establishes that the finite-dimensional distributions converge weakly to a Gaussian
process both under the null and the alternative.

THEOREM D.2. Under the conditions of Theorem D.1, we have for all li , l
′
i ∈ N, hi =

1, . . . , T − 1, i = 1, . . . , k and k ≥ 3,

cum
(
Ê

(T )
h1

(ψl1l
′
1
), . . . , Ê

(T )
hk

(ψlkl
′
k
)
)= o(1) (T → ∞).

The proof of Theorem D.2 can be found in Section S3 of the Online Supplement. Note that,
for the second condition of Lemma D.1, Parseval’s identity and the monotone convergence
theorem yield

(36)

E
[∥∥Ê(T )

h

∥∥2
2

]= ∞∑
l,l′=1

E
[∣∣Ê(T )

h (ψll′)
∣∣2]

→
∞∑

l,l′=1

E
[∣∣Eh(ψll′)

∣∣2]= E
[‖Eh‖2

2
]

(T → ∞),

with Eh denoting the limiting process. Observe that, from (27) and the Cauchy–Schwarz
inequality, the terms ϒh,h′ , ϓh,h′ , ϒ̀h,h′ and ϒ̄h,h′ are finite. Condition (ii) of Lemma D.1 is
then satisfied, since

E
[∥∥Ê(T )

h

∥∥2
2

]= ∫
[0,1]2

Var
(
Ê

(T )
h

(
τ, τ ′))dτ dτ ′ = TE

∥∥w(T )
h

∥∥2
2

→ Tr
(
Var(Rh)

)+ Tr
(
Var(Ih)

)
< ∞,

where Tonelli’s theorem was applied to obtain the first equality. This completes the proof.
�

D.2. Replacing eigenelements with estimates.

D.2.1. Invariance under rotation. We now focus on replacing the projection basis with
estimates of the eigenfunctions of the spectral density operators. It can be shown (Mas and
Menneteau (2003)) that for rates of the bandwidth b for which the estimated spectral density
operator is a consistent estimator of the true spectral density operator, the corresponding esti-
mated eigenprojectors �̂ω

l = φ̂l
ω ⊗ φ̂l

ω
are consistent for the eigenprojectors �ω

l . However,
the estimated eigenfunctions are not unique and only identified up to rotation on the unit
circle. In order to show that replacing the eigenfunctions with estimates does not affect the
limiting distribution, the issue of rotation has to be considered first. More specifically, when
estimating, a version ẑl φ̂

ωj

l , where ẑl ∈ C with modulus |ẑl| = 1, is obtained which cannot
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be guaranteed to be close to the true eigenfunction φ
ωj

l . It is therefore essential that the test
statistic is invariant under rotations. To show this, write

�h

(
j, l, l′

)= 〈D(T )
ωj

, φ̂
ωj

l

〉〈
D

(T )
ωj+h, φ̂

ωj+h

l′
〉

and let �(h) = vec(�h(j, l, l
′, )) be the stacked vector of dimension

∏T −h
j=1 L(ωj )L(ωj+h).

Note that then β̂
(T )

h,u = e��(h). Construct the diagonal matrix

Z
j
L(ωj ) =

⎛⎜⎜⎜⎜⎜⎜⎝
ẑ
j
1 · · ·
... ẑ

j
2

. . .

ẑ
j
L(ωj )

⎞⎟⎟⎟⎟⎟⎟⎠ ,

the block diagonal matrix Z1:T
L(ωj ) = diag(Z

j
L(ωj ) : j = 1, . . . , T ) and the Kronecker product

Z(h) = Z1:T −h
L(ωj ) ⊗ Zh:T

L(ωj ). This is a diagonal object of dimension (
∏T −h

j=1 L(ωj )L(ωj+h))
2,

whose diagonal elements are given by {ẑj
l ẑ

j+h

l′ }. Rotating the eigenfunctions on the unit circle
yields versions

β̂
(T )

h,u = e�Z(h)�(h).

For these versions, write
√

TZM b̂
(T )

M,u = √
T (�β̂

(T )

h1,u
, . . . ,�β̂

(T )

hM,u,�β̂
(T )

h1,u
, . . . ,�β̂

(T )

hM,u)
�,

where the block diagonal matrix is given by ZM = diag(�Z(h1), . . . ,�Z(hM),�Z(h1), . . . ,

�Z(hM))�. The same rotation, however, also implies that �̂M,u becomes ZM�̂M,uZ�
M and

hence

T
(
b̂

(T )

M,u

)�
(ZM)�

[
ZM�̂M,uZM

�]−1ZM b̂
(T )

M,u = Q̂
(T )
M,u,

thereby showing that the value of the test statistic is not affected by rotation of the estimated
eigenfunctions. In the rest of the proof, focus is therefore only on estimates φ̂

ωj+h

l and φ̂
ωj+h

l′ ,

and their respective unknown rotations ẑ
j
l and ẑ

j+h

l′ are ignored.

D.2.2. Limiting distristributions of β̂
(T )

h,u and β̂
(T )

h,s . We now investigate the rate of con-
vergence of the statistic, when the eigenfunctions as a basis are replaced with their empirical
counterparts, and prove Theorems 4.2 and 4.5. For this, it is sufficient to derive the order of
the difference

(37)
√

TE
∣∣β̂(T )

h,x − β
(T )
h,x

∣∣.
In the following we shall focus on β̂

(T )

h,u and postpone the derivation for β̂
(T )

h,s to Section S5.2.

In order to bound (37), relate φ̂
ωj

l ⊗ φ̂
ωj+h

l′ −φ
ωj

l ⊗φ
ωj+h

l′ with F̂ωj1
⊗̃F̂ωj1+h

−Fωj1
⊗̃Fωj1+h

from noting that

(Fωj
⊗̃Fωj+h

)
(
φ

ωj

l ⊗ φ
ωj+h

l′
)

= ∑
m,m′

λ
ωj
m λ

ωj+h

m′ φ
ωj
m ⊗ φ

ωj
m

(
φ

ωj

l ⊗ φ
ωj+h

l′
)
φ

ωj+h
m ⊗ φ

ωj+h

m′

= λ
ωj

l λ
ωj+h

l′
(
φ

ωj

l ⊗ φ
ωj+h

l′
)
,
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where we used Definition S1.1(i). Similarly, (F̂ωj
⊗̃F̂ωj+h

)(φ̂
ωj

l ⊗ φ̂
ωj+h

l′ ) = λ̂
ωj

l λ̂
ωj+h

l′ (φ̂
ωj

l ⊗
φ̂

ωj+h

l′ ). A first-order Taylor expansion of the eigenvalue–eigenvector equation yields (e.g.,
Hall and Hosseini-Nasab (2006))

(38)

φ̂
ωj

l ⊗ φ̂
ωj+h

l′ − (φωj

l ⊗ φ
ωj+h

l′
)

= ∑
m=l
m′ =l′

1

λ
ωj

l λ
ωj+h

l′ − λ
ωj
m λ

ωj+h

m′

〈
(F̂ωj1

⊗̃F̂ωj+h
−Fωj

⊗̃Fωj+h
)

× (φωj

l ⊗ φ
ωj+h

l′
)
, φ

ωj
m ⊗ φ

ωj+h

m′
〉
φ

ωj
m ⊗ φ

ωj+h

m′ + R,

where the remainder R is of order ~R~2 = Op(~F̂ωj1
⊗̃F̂ωj1+h

−Fωj1
⊗̃Fωj1+h

~2
2) and will

be of smaller order than the first term on the right-hand side of (38). In the proof we require
thus that

λ
ωj

l λ
ωj+h

l′ − λ
ωj
m λ

ωj+h

m′ = λ
ωj

l

(
λ

ωj+h

l′ − λ
ωj+h

m′
)+ (λωj

l − λ
ωj
m

)
λ

ωj+h

m′ > 0,(39)

which implies no multiplicity of eigenvalues. It is also required that the spectral density oper-
ators are strictly positive definite, a condition needed to ensure that their eigenfunctions form
a complete orthonormal basis of H . Note, however, that the assumption of no multiplicity
is without loss of generality as one can group multiple eigenelement pairs into blocks and
apply the same techniques over these blocks (e.g., Wilkinson (1965)). Given (39) holds true,
linearity and continuity of the inner product imply that the error can be rewritten as

(40)

1√
T

T∑
j=1

∑
l,l′

〈
Dωj

⊗ Dωj+h
, φ

ωj

l ⊗ φ
ωj+h

l′ − (φ̂ωj

l ⊗ φ̂
ωj+h

l′
)〉

S,

= Op

(
1√
T

T∑
j=1

∑
l,l′

∑
m=l
m′ =l′

〈
Dωj

⊗ Dωj+h
, φ

ωj
m ⊗ φ

ωj+h

m′
〉
S

× 〈(F̂ωj
⊗̃F̂ωj+h

−Fωj
⊗̃Fωj+h

)
(
φ

ωj

l ⊗ φ
ωj+h

l′
)
, φ

ωj
m ⊗ φ

ωj+h

m′
〉
S

)

= Op

(
1√
T

T∑
j=1

∑
l,l′

〈
Dωj

⊗ Dωj+h
,

(F̂−ωj
⊗̃F̂−ωj+h

−F−ωj
⊗̃F−ωj+h

)
(
φ

−ωj

l ⊗ φ
−ωj+h

l′
)〉

S

)
,

using that 〈A,B〉S =∑m∈N〈A,ψmm′ 〉S〈ψmm′,B〉S for any orthonormal basis {ψmm′ }m,m′∈N
of S2. In other words, the order of the difference is completely determined by the order of the
difference when replacing the Kronecker products of the estimated spectral density operators
with their empirical counterparts. This finding can be utilized to determine the order of (37)
by decomposing it as follows and considering each of the terms separately:

J1 = 1√
T

T∑
j=1

∑
l,l′

〈
Dωj

⊗ Dωj+h
−E(Dωj

⊗ Dωj+h
),

(41)
φ

ωj

l ⊗ φ
ωj+h

l′ −E
(
φ̂

ωj

l ⊗ φ̂
ωj+h

l′
)〉

S,

J2 = 1√
T

T∑
j=1

∑
l,l′

〈
Dωj

⊗ Dωj+h
−E(Dωj

⊗ Dωj+h
),
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(42)
E
(
φ̂

ωj

l ⊗ φ̂
ωj+h

l′
)− φ̂

ωj

l ⊗ φ̂
ωj+h

l′
〉
S,

J3 = 1√
T

T∑
j=1

∑
l,l′

〈
E(Dωj

⊗ Dωj+h
), φ

ωj

l ⊗ φ
ωj+h

l′ −E
(
φ̂

ωj

l ⊗ φ̂
ωj+h

l′
)〉

S,(43)

J4 = 1√
T

T∑
j=1

∑
l,l′

E
(〈
Dωj

⊗ Dωj+h

)
,E
(
φ̂

ωj

l ⊗ φ̂
ωj+h

l′
)− φ̂

ωj

l ⊗ φ̂
ωj+h

l′
〉
S.(44)

The following lemma contains the order of these four terms:

LEMMA D.2. Under Assumption I(12,2),

E|J1| = O

(
1

bT
+ b2
)
,(45)

E|J2| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

(
1

bT
√

T

)
+ O

(
1

bT

)
under H0,

O

(
1

b
√

T

)
+ O

(
1

bT

)
under HA,

(46)

E|J3| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

(
1

bT
√

T
+ b2

√
T

)
under H0,

O

(
1

b
√

T
+ b2

√
T

)
under HA,

(47)

E|J4| =
⎧⎪⎨⎪⎩

O

(
1√
bT

)
under H0,

O(1) under HA.

(48)

The proof is relegated to Section S5 of the Online Supplement.

APPENDIX E: LIMITING DISTRIBUTION UNDER HA

THEOREM E.1. Under the conditions of Theorem 4.6, we have, for all hi, hj ∈ Z with
i, j = 1, . . . , k,

(49) T k/2 cumn,r

(
β

(T )
hi

,B(T ))
hj

)= o(1) (T → ∞),

where cumn,r (β
(T )
h ,B(T ))

h′ ) denotes the joint cumulant

cum
(
β

(T )
h , . . . ,β

(T )
h︸ ︷︷ ︸

n times

,B(T ))
h′ , . . . ,B(T ))

h′︸ ︷︷ ︸
r times

)
with 0 ≤ n, r ≤ k such that n + r = k.

PROOF. We will show that
√

T β
(T )
h and

√
TB(T )

h are jointly normal. Using (40) and

hence that the order of B(T )
h is determined by the order of

V(T )
h = 1

T

T∑
j=1

〈
E(Dωj

⊗ Dωj+h
), (F̂ωj1

⊗̃F̂ωj+h
−EF̂ωj

⊗̃F̂ωj+h
)
(
φ

ωj

l ⊗ φ
ωj+h

l′
)〉

S,
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we will show that, for k > 2,

T k/2 cumn,r

(
β

(T )
h ,V(T ))

h

)= cum
(
β

(T )
h , . . . ,β

(T )
h︸ ︷︷ ︸

n times

,V(T ))
h , . . . ,V(T ))

h︸ ︷︷ ︸
r times

)= o(1),

where 0 ≤ n, r ≤ n such that n + r = k. First, note that the operator E[Dωj
⊗ Dωj+h

] is
compact and therefore separable. Without loss of generality, in order to ease notation, write
therefore D

(l)
ωjk

= 〈D(T )
ωjk

,ψl〉 and F̂ (lm)
ωj = 〈F̂ωj

(ψm),ψl〉, where {ψl}l∈N forms a basis of H .
Using then Theorem B.1

T k/2 cumn,r

(
β

(T )
h ,V(T ))

h

)
= T k/2

∑
j1,...,jk

cum
(
D(l1)

ωj1
D

(l′1)−ωj1+h1
, . . . ,D(ln)

ωjn
D

(l′n)
−ωjn+hn

,

F̂ (ln+1mn+1)
ωjn+1

F̂ (l′n+1m
′
n+1)

ωjn+1+hn+1
, . . . , F̂ (lkmk)

ωjk
F̂ (l′km′

k)
ωjk+hk

)
= T −k/2

∑
j1,...,jk

(
2π

bT

)2r k∏
d=n+1

T∑
qd=1

K

(
ωjd

− ωq2(d−n)−1

b

)

× K

(
ωjd+hd

− ωq2(d−n)

b

)
×∑

i.p.

cum
(
D

(vs)
λjs

: s ∈ P1
) · · · cum

(
D(vs)

ωjs
: s ∈ PQ

)
,

where the summation extends over all indecomposable partitions P = {P1, . . . ,PQ} of the
array

(1,1) (1,2)
...

...

(n,1) (n,2)

(n + 1,1) (n + 1,2) (n + 1,3) (n + 1,4)
...

...
...

(k,1) (k,2) (k,3) (k,4),

(50)

using similar notation as in the proof of Theorem D.1. In particular, the value s = ii ′ cor-
responds to entry (i, i′) of (50). For a partition P = {P1, . . . ,PQ}, the elements of a set Pν

will be denoted by sν1, . . . , sν|Pν |, with |Pν | being the number of elements in Pν . In this case

we associate with entry s the frequency index js = jii′ = (−1)i
′−1(ji + hi′−1

i ) for i ≤ n;
for i > n we associate the frequency index js = qii′ = (−1)i

′−1q2(i−n)−1+�i′/3� such that

λjs = 2πjs

T
and the basis function index vs = vii′ = l2−i′

i l′i
i′−1 for i = 1, . . . , k and i ′ = {1,2},

while for i ′ = {3,4} we set vs = vii′ = m4−i′
i m′

i
i′−3.

For the array to be indecomposable, the rows must hook. Since interest is only in a bound
for the partition of highest order, only partitions have to be considered for which each set
satisfies |Pν | = 2, since all other partitions will be of lower order. Without loss of generality,
consider that row i hooks with i+1 for i = 2, . . . , k−1, and let the first and the last row hook.
In particular, a partition of highest order would be one for which Pi = {(i,2) ∪ (i + 1,1)} for
i = 2, . . . , k and P1 = {(1,1) ∪ (k,2)} and where the 2r variables in the third and fourth
columns of the last r rows are decomposable, meaning that Pn+i = {(n + i,3) ∪ (n + i,4)}
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for i = 1, . . . , r , s that these latter r sets form proper submanifolds of the frequency manifold.
Using Lemma B.1, such a partition can be written as

T −k/2
∑

j1,...,jk

(
2π

bT

)2r k∏
d=n+1

T∑
qd=1

K

(
ωjd

− ωq2(d−n)−1

b

)
K

(
ωjd+hd

− ωq2(d−n)

b

)

×
k∏

ν=1

[(
F̃ (vs)∑

s js ;λjs
: s ∈ Pν

)+ O

(
1

T

)] n+r∏
ν=n+1

[(
F̃ (vs)

0;λjs
: s ∈ Pν

)+ O

(
1

T

)]
.

In exactly k sets of the partition there are exactly k − 1 equations of the form ys =∑s js . In
the above partition the first k sets yield the following set of equations:

yi = (−1)i(ji + hi − ji+1), i = 1, . . . , n − 1,

ỹi = (−1)i(q2i−1 − q2i+1), i = 1, . . . , r − 2,

ỹr−1 = (jn − q1),

ỹr = (j1 − q2r−1).

By Corollary B.1 these equations correspond to k − 1 summations out of the total k + 2r

summations that are bounded. It can be verified that the above set of equations and an iterative
change of variables shows that the other 2r +1 free variables are interrelated via the 2r kernel
functions. These means that 2r sums can at most be of order bT , while one of them can be
of order T . Consequently,

T k/2 cumn,r

(
β

(T )
h ,V(T ))

h

)= O
(
T −k/2(bT )−2r (bT )2rT

)= O
(
T −k/2+1),

which converges to zero for k > 2 as T → ∞, for any choice of n and r such that n + r = k.
�
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